
Journal of Lie Theory
Volume 12 (2002) 369–395
c© 2002 Heldermann Verlag

Polynomial Identities in Smash Products

Yuri Bahturin∗ and Victor Petrogradsky†

Communicated by E. Zelmanov

Abstract. Suppose that a group G acts by automorphisms on a (restricted)
Lie algebra L over a field K of positive characteristic. This gives rise to
smash products U(L)#K[G] and u(L)#K[G] . We find necessary and sufficient
conditions for these smash products to satisfy a nontrivial polynomial identity.

1. Introduction: polynomial identities in group algebras and
enveloping algebras

The first observation on the polynomial identities in enveloping algebras was made
by V. N. Latyshev [9]. He proved that the universal enveloping algebra of a finite
dimensional Lie algebra over a field of characteristic zero satisfies a nontrivial
identical relation if and only if this Lie algebra is abelian. Later Yu. Bahturin has
noticed in [1] that the condition of finite dimensionality is inessential.

D. S. Passman has obtained the complete description of group algebras
satisfying polynomial identities.

Theorem 1.1. ([11]) The group algebra K[G] of a group G satisfies a nontriv-
ial polynomial identity if and only if the following conditions are satisfied:

1. there exists a normal subgroup A ⊂ G of finite index;

2. A is abelian if char K = 0, and the commutator subgroup A′ is a finite
abelian p-group if char K = p > 0.

Yu. Bahturin has settled the problem of the existence of nontrivial identities
for the universal enveloping algebra fields of positive characteristic.

Theorem 1.2. ([2]) Let L be a Lie algebra over a field K of positive character-
istic. Then the universal enveloping algebra U(L) satisfies a nontrivial polynomial
identity if and only if the following conditions are satisfied:
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1. there exists an abelian ideal H ⊂ L of finite codimension;

2. all inner derivations adx, x ∈ L are algebraic of bounded degree.

Petrogradsky [15] and Passman [14] have specified restricted Lie algebras
(also called Lie p-algebras) L such that the restricted enveloping algebra u(L)
satisfies a nontrivial polynomial identity.

Theorem 1.3. ([14], [15]) Let L be a Lie p-algebra. Then the restricted en-
veloping algebra u(L) satisfies a nontrivial polynomial identity if and only if there
exist restricted ideals Q ⊂ H ⊂ L such that:

1. dimL/H <∞, dimQ <∞;

2. H/Q is abelian;

3. Q is abelian with nilpotent p-mapping.

See also further developments for Lie p-superalgebras [16] and color Lie
p-superalgebras [3].

The main body of this paper consists of the proof of our main result which
completely describes smash products u(L)#K[G] that are PI rings (Theorem 3.1).
We start with establishing some identical relations that nicely suit our purposes
(Section 4). As an important ingredient we begin developing a delta-theory for
smash products (Section 5). Next we describe the structure of delta-sets in our
case (Section 6).

But the first results in this paper (Section 2) deal with necessary and suffi-
cient conditions under which the smash product U(L)#K[G] satisfies a nontrivial
identity (Theorem 2.3). Actually, this result, as well as Theorem 2.1 could be de-
rived from a result on general smash products by Handelman - Lawrence - Schelter
(see [7]) and probably by Passman [13]. But we prefer to keep our proofs here since
they are relevant to the techniques of delta-sets used in the next sections for the
proof of the main result (Theorem 3.1).

2. Polynomial identities in smash products U(L)#K[G]

We denote the ground field by K . Suppose that a group G acts on an associative
algebra A by automorphisms: ϕ : G→ Aut(A), ϕ(g) : x 7→ ϕ(g)(x), g ∈ G , x ∈
A . We set g ∗ x = ϕ(g)(x). Now one can form the smash product R = A#K[G] .
This is a vector space R = A⊗K K[G] endowed with multiplication

(a1, g1) · (a2, g2) = (a1(g1 ∗ a2), g1g2), a1, a2 ∈ A, g1, g2 ∈ G.

By linearity also the group ring K[G] acts on A :

(α1g1 + · · ·+ αmgm) ∗ a = α1(g1 ∗ a) + · · ·+ αm(gm ∗ a), gi ∈ G,αi ∈ K, a ∈ A.

Now suppose that G acts on a Lie algebra L by automorphisms. Then this action
is naturally extended to the action on the universal enveloping algebra U(L) and
we can form the smash product U(L)#K[G] . Such algebras are important because
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each cocommutative Hopf algebra over an algebraically closed field of characteristic
zero can be presented as a smash product U(L)#K[G] (Kostant, Cartier, et al.,
see [10]).

The conditions for the existence of nontrivial identities for the smash prod-
ucts U(L)#K[G] can be derived from [7]. Our next formulation is from [8].

Theorem 2.1. Let G be a group, L a Lie algebra over a field K of charac-
teristic 0, and G acts on L by automorphisms. Then U(L)#K[G] satisfies a
nontrivial polynomial identity if and only if the following conditions are satisfied:

1. L is abelian;

2. there exists an abelian normal subgroup A ⊂ G of finite index;

3. A acts trivially on L.

The proof in [8] as well as the original proof of the theorem about the
identical relations in U(L) [2] (see also [1], [3]) is based on the following classical
result.

Theorem 2.2. (Posner, [5]) Let R be a prime algebra with unit over a field
satisfying some nontrivial polynomial identity. Let C be the center of R and Q
the field of quotients of C . Then the algebra RQ = Q ⊗C R of central quotients
of R is finite-dimensional central simple over Q and coincides with the left and
the right classical rings of quotients of R . Moreover, R and RQ satisfy the same
identities.

The goal of this section is to prove a result similar to the one just formulated
in the case of the fields of positive characteristic. Again we mention a possibility
of deriving this result from [7].

Theorem 2.3. Let G be a group, L a Lie algebra over a field K of charac-
teristic p > 0 and G act on L by automorphisms. Then U(L)#K[G] satisfies a
nontrivial polynomial identity if and only if the following conditions are satisfied:

1. there exists an abelian G-invariant ideal H ⊂ L of finite codimension and
all derivatives adx, x ∈ L are algebraic of bounded degree;

2. there exists a normal subgroup A ⊂ G of finite index with the commutator
subgroup A′ being a finite abelian p-group.

3. A acts trivially on L.

Let us comment on this result. We observe that K[G] and U(L) are the
subrings of U(L)#K[G] and thus Theorems 1.1 and 1.2 apply. This gives us the
structure for G and L described in the first two claims except for the fact that H
is G-invariant. So, the most essential here is the third claim.

We start with recalling the notion of delta-sets. They provide us with the
key instrument to the study of identities of enveloping algebras. One defines the
sets of elements of “finite width”

δn(L) = {x ∈ L | dim[x, L] ≤ n}, n ∈ N;

δ(L) =
∞
∪
n=1

δn(L).
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These sets have appeared in [2] as Lie algebra analogues of delta-sets for the groups.
Those delta-sets were crucial in the study identical relations for group rings [11],
[12]. Namely, if G is a group then one can define the sets of elements having
finitely many conjugates as follows

δn(G) = {g ∈ G | |gG| ≤ n}, n ∈ N;

δ(G) =
∞
∪
n=1

δn(G).

Lemma 2.4. ([3]) Let L be a Lie algebra. Then the delta-sets have the following
properties.

1. if x ∈ δi(L), y ∈ δj(L) then αx + βy ∈ δi+j(L), α, β ∈ K ;

2. if x ∈ δi(L), y ∈ L then [x, y] ∈ δ2i(L);

3. let x ∈ δi(L) and suppose that L is a restricted Lie algebra. Then x[p] ∈
δi(L);

4. δi(L) is invariant under the automorphisms of L, i ∈ N;

5. δ(L) is a (restricted) invariant ideal of L.

Recall that a subalgebra is called invariant if it is stable under all automorphisms
and restricted if closed under the p-map.

We use this lemma to prove Theorem 2.3

Proof. First, let us check that our conditions are sufficient. Let f1, . . . , fk
form a basis of L modulo H . By the hypothesis, each ad fi annihilates some
nonzero polynomial qi(t), i = 1, . . . , k . Recall that a polynomial of the form
q(t) =

∑s
i=0 αit

pi is called a p-polynomial [6]. Such polynomials have the following
property. Let x be an element of an associative algebra over the field of charac-
teristic p , viewed as a Lie algebra under the bracket operation [a, b] = ab − ba .
Then

ad(q(x)) = ad(
s∑
i=0

αix
pi) =

s∑
i=0

αi(adx)p
i

= q(adx). (1)

Any polynomial is a divisor of some nonzero p-polynomial [6]. So, we may assume
that qi(t) are some p-polynomials. By (1) zi = qi(fi), i = 1, . . . , k are central
elements in U(L). Let di , i = 1, . . . , k , be the degrees of polynomials qi . We
denote by B the ring generated by U(H) along with z1, . . . , zk . Then BU(L) is
a free B -module with a finite basis {f i11 · · · f

ik
k |0 ≤ ij < dj, 1 ≤ j ≤ k} [6]. Let

g1, . . . , gs be the right coset representatives of A in G . Since A acts trivially
on the whole of L we obtain that B̃ = B ⊗ K[A] is a commutative subring of
R = U(L)#K[G] . Also, B̃R is a free module with a basis {fα1

1 · · · f
αk
k gj|0 ≤ αi <

di, 1 ≤ j ≤ s} and rank t = d1 · · · dks .

We identify any x ∈ R with an operator of the right multiplication: R→ R ,
a 7→ ax , a ∈ R . This yields an embedding of R into a matrix ring over the
commutative ring B̃ :

R ⊂ EndB̃ R
∼= Mt(B̃) ∼= Mt(K)⊗K B̃.
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By Regev’s Theorem about tensor products of PI-rings [17] we conclude that
R = U(L)#K[G] is a PI-ring.

Now suppose that U(L)#K[G] satisfies a nontrivial polynomial identity.

First, let us prove that there exists a G-invariant abelian ideal H ⊂ L of
finite codimension. We need to recall the steps of the proof of Theorem 1.2 in [2]
(see also this construction in [15], [16], and [3]).

1) The existence of a nontrivial identity in U(L) implies that for some
number m we have δ(L) = δm(L) and dimL/δ(L) <∞ . We set D = δ(L).

2) We apply P.M.Neumann’s Theorem on bilinear maps (see Theorem 6.7
below) and conclude that the commutator subalgebra D2 = [D,D] is finite-
dimensional. We set C = CD(D2) = {x ∈ D|[x,D2] = 0} . Then dimD/C < ∞ ,
and C3 = 0.

3) We again use the identity in the enveloping algebra for C and prove that
dimC/H <∞ , where H = Z(C) is the center of C .

One can trace these steps and see by Lemma 2.4 that all these subalgebras
are invariant ideals. Hence, we obtain the G-invariant abelian ideal H ⊂ L of
finite codimension.

Next, we apply Theorem 1.1 and obtain a subgroup of finite index B ⊂ G
such that the commutator subgroup B′ is a finite abelian p-group. Now our
task is reduced to the following. We consider the smash product U(L)#K[B]
and find a subgroup of finite index A ⊂ B acting trivially on the whole of L .
Let {Un(L)|n = 0, 1, 2 . . . } be the standard filtration on the universal enveloping
algebra. Then it induces a filtration on the smash product, the associated graded
algebra is also PI and

gr{Un(L)#K[B]|n = 0, 1, 2, . . . } ∼= (gr{Un(L)|n = 0, 1, 2, . . . })#K[B].

But gr{Un(L)|n = 0, 1, 2, . . . } ∼= U(L̄), where L̄ is an abelian Lie algebra with
the same vector space L . So, we may assume that L is abelian so that U(L) is a
polynomial ring.

Let g ∈ B be an element of infinite order. We claim that there exists m > 0
such that gm acts trivially on L . Let 〈g〉 be the cyclic subgroup generated by
g . By way of contradiction suppose that 〈g〉 acts faithfully on L . One easily
verifies that the ring R = U(L)#〈g〉 has no zero divisors, hence is prime. Let C
be the center of R and consider some central element c =

∑
i cig

i ∈ C , ci ∈ U(L).
Suppose that there exists cj 6= 0, j 6= 0. Since 〈g〉 acts faithfully on L we find
a ∈ L with gj ∗ a 6= a . Remark that (gj ∗ a− a)cj 6= 0 because U(L) has no zero
divisors. Then

[c, a] =
∑
i

cig
ia− a

∑
i

cig
i =

∑
i

(gi ∗ a− a)cig
i 6= 0. (2)

This is a contradiction with the fact that c is central. Therefore ci = 0 for i 6= 0,
so C ⊂ U(L). Let Q be the field of fractions for C . Then the elements gi , i ∈ N
are linearly independent over Q in the ring of fractions for R . This contradicts
Posner’s theorem. Hence for any g ∈ B there exists m such that gm acts trivially
on L .
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Let us consider an arbitrary finitely generated subgroup W ⊂ B . Suppose
that the action of W on L is faithful. Then our argument implies that the
generating elements of W are of finite order. In view of the structure of B we
conclude that W is finite. Now we consider the ring R0 = U(L)#K[W ] and apply
one result on the smash products of type A#H , where H is a finite dimensional
Hopf algebra [10, p. 55]. Namely, A#H is a prime ring if and only if A is a faithful
left and right A#H -module and the invariant subring AH is prime. Of course,
in our case U(L)K[W ] is prime. Let us check the conditions of faithful action. If
H = K[W ] then the left and right actions are defined by

(a#g) · b = a(g ∗ b), a, b ∈ A, g ∈ W ;

a · (b#g) = g−1 ∗ (ab), a, b ∈ A, g ∈ W.

Suppose that a nonzero element

a1g1 + · · ·+ amgm, 0 6= ai ∈ U(L), gi ∈ W, (3)

acts trivially on the left on U(L). Let m be taken minimal among nonzero
elements (3) that act trivially on U(L). Then

a1(g1 ∗ x) + · · ·+ am(gm ∗ x) = 0, x ∈ U(L). (4)

We replace x by xy and multiply (4) by g1 ∗ y on the right. Here we also use the
commutativity of U(L).

a1(g1 ∗ x)(g1 ∗ y) + · · ·+ am(gm ∗ x)(gm ∗ y) = 0, x, y ∈ U(L);

a1(g1 ∗ x)(g1 ∗ y) + · · ·+ am(gm ∗ x)(g1 ∗ y) = 0, x, y ∈ U(L);

a2((g2 − g1) ∗ y)(g2 ∗ x) + · · ·+ am((gm − g1) ∗ y)(gm ∗ x) = 0, x, y ∈ U(L).

Since U(L) has no zero divisors and by the choice of m in (3) we conclude that
(g2− g1) ∗ y = 0 for all y ∈ U(L), contradicting to the fact that W acts faithfully
on L . We can check that the right action is faithful in the same way.

Now we can apply Posner’s theorem. The same computation (2) shows that
the center C of R is contained in U(L).

Let Q be the field of fractions for C . Again all elements g ∈ W are linearly
independent over Q in the ring of quotients RQ for R . Let d be the degree of
a nontrivial polynomial identity satisfied by the smash product U(L)#K[G] . By
Posner’s theorem |W | ≤ dimQRQ ≤ [d/2].

Let now W be an arbitrary finitely generated subgroup of B . We set
StW L = {w ∈ W |w ∗x = x, x ∈ L} . Then by the above arguments |W : StW L| ≤
s = [d/2]. Consider A1 = StB L = {b ∈ B|b ∗ x = x, x ∈ L} . We claim that
|B : A1| ≤ s . By way of contradiction suppose that |B : A1| > s , then we
can take elements g1, . . . , gs+1 ∈ B lying in different left classes modulo A1 . We
consider the subgroup W generated by g1, . . . , gs+1 . Then these elements belong
to different cosets of StW L ⊂ A1 , proving |W : StW L| > s , a contradiction with
the above. Thus we should have |B : A1| ≤ s and by construction A1 acts trivially
on L .

To finish the proof it is enough to choose a normal subgroup of finite index
A ⊂ A1 .
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3. Polynomial identities in the smash products u(L)#K[G]

The main goal of this paper is to prove the following result.

Theorem 3.1. Suppose that a group G acts by automorphisms on a Lie p-
algebra L. Then u(L)#K[G] is a PI-algebra if and only if

1. there exist G-invariant restricted subalgebras Q ⊂ H ⊂ L with

(a) dimL/H <∞, dimQ <∞;

(b) [H,H] ⊂ Q;

(c) Q is abelian with a nilpotent p-mapping.

2. there exists a subgroup A ⊂ G with

(a) |G : A| <∞;

(b) the commutator subgroup A′ is a finite abelian p-group;

3. A acts trivially on H/Q.

We remark that K[G] and u(L) are the subrings of u(L)#K[G] and we
can apply Theorems 1.1 and 1.3. This gives us the structure of G and L described
in the first two claims except for the fact that H,Q are G-invariant. But the most
difficult here is the third claim about the action of G on L .

While studying polynomial identities for u(L), a crucial example is the
infinite-dimensional Heisenberg algebra. By δij we mean the Kronecker symbol.

Example 3.2. ([15, 16, 3]) We consider the infinite-dimensional Heisenberg Lie
algebra

L = 〈x1, x2, . . . , y1, y2, . . . , z|[xi, yj] = δijz, [xi, z] = [yj, z] = 0, i, j ∈ N〉K .

Then the existence of a nontrivial identity for u(L) depends on the value of the
p-map on the central element z

1. if z[p] = 0, then u(L) satisfies a nontrivial identity (XY − Y X)p ≡ 0;

2. if z[p] = z , then u(L) does not satisfy any nontrivial identity.

Let us illustrate our main result by examples. These examples are similar to
the Heisenberg algebra, we only need to remember that G acts by automorphisms
on L .

Example 3.3. Let L = 〈y, xj, x[p]
j , . . . , x

[pk]
j , . . . |j = 1, 2, . . . ; y[p] = 0〉K be an

abelian restricted Lie algebra and the group G = (Zp)
N acts on L as

gi ∗ xj = xj + δijy; gi ∗ x[pk]
j = x

[pk]
j , k ≥ 1; gi ∗ y = y;

where gi = (0, . . . , 0, 1, 0, . . . ), with 1 on i -th place, i ∈ N . We consider the
smash product R = u(L)#K[G] . Then

1. R satisfies the identity (XY − Y X)p ≡ 0;

2. G acts faithfully on L .
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Proof. We have [g, xj] = gxj − xjg = (g ∗ xj − xj)g = λyg , λ ∈ K , g ∈ G .
Remark that all other pairs of generating elements for R commute. Therefore,
any commutator [a, b] , a, b ∈ R contains as a factor the central element y . Recall
that yp = 0, therefore R satisfies the claimed identity.

Let us check the second claim. For g = (n1, n2, . . . , ni, . . . ) ∈ G one has
g ∗ xj = xj + njy , so that G acts faithfully on L .

This example fits into the wording of the theorem by setting A = G , H = L ,
Q = 〈y〉K . This example shows that the action of A on Q may be nontrivial.
Moreover, one can check that we cannot avoid this by taking a somewhat smaller
subgroup A1 ⊂ A of finite index and a subalgebra H1 ⊂ H of finite codimension.

Let us change the p-mapping on y in the previous example.

Example 3.4. Let L = 〈y, xj, x[p]
j , . . . , x

[pk]
j , . . . |j = 1, 2, . . . , y[p] = y〉K be an

abelian restricted Lie algebra and the group G = (Zp)
N act on L by

gi ∗ x[pk]
j = x

[pk]
j + δijy, k ≥ 0; gi ∗ y = y.

Then R = u(L)#K[G] does not satisfy any nontrivial identity.

Proof. If R is PI then it must satisfy the identity given below in Lemma 4.2
and so we have

F2(x1, . . . , xn, g1, . . . , gn) =
∑
π∈Sn

απ(g1 − 1) ∗ xπ(1) · · · (gn − 1) ∗ xπ(n) = yn 6= 0,

because only the summand for the identity permutation is nontrivial. This con-
tradiction proves that R is not PI.

The same argument applies also for the following example.

Example 3.5. Let L = 〈y, e1, e2, . . . |e[p]
j = ej, j ∈ N; y[p] = y〉K be an abelian

restricted Lie algebra and the group G = (Zp)
N act on L by

gi ∗ ej = ej + δijy, gi ∗ y = y.

Then R = u(L)#K[G] does not satisfy any identity.

By ωK[G] we denote the augmentation ideal of the group ring ωK[G] =
{
∑

i αigi|
∑

i αi = 0;αi ∈ K, gi ∈ G} . If L is a Lie p-algebra then by ωu(L) we
denote also the augmentation ideal of the restricted enveloping algebra ωu(L) =
u(L)L = Lu(L).

Next we prove the sufficiency in Theorem 3.1.

Proof. We set R = u(L)#K[G] , R1 = u(H)#K[A] , R0 = u(Q)#K[A′] .

Let I be the subring of R0 generated by Q and {h − 1|h ∈ A′} ; this is
an ideal of codimension 1 in R0 . First, let us prove that I is nilpotent. We have
(ωu(Q))q = 0 for some q since Q is abelian finite dimensional with a nilpotent
p-mapping. Also (ωK[A′])t = 0 for some number t because A′ is an abelian finite
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p-group. Thus Q = Q0 ⊃ Q1 ⊃ · · · ⊃ Qt = 0, where Qi = (ωK[A′])iQ . Now let
us look at the commutators of the nilpotent elements of ωu(Q) and ωK[A′] .

(h−1)z = hzh−1h−z = (h∗z)h−z = ((h−1)∗z+z)h−z = z(h−1)+((h−1)∗z)h,

where h ∈ A′ and z ∈ Qi , in this case (h−1)∗ z ∈ Qi+1 . This relation yields that
these two commutative nilpotent subrings generate a nilpotent subring. Indeed,
consider a product consisting of zi ∈ Q and (hj − 1) where hj ∈ A′ . By the
above relation the number of z ’s is bounded by s1 = q − 1. Also, the number of
factors (hj − 1) is bounded by s2 = (t − 1) + (t − 1)(q − 1). Hence, Is = 0 for
s = 1 + s1 + s2 = qt .

Second, we claim that R1 is a PI-algebra. We consider the left ideal
J = R1I = R1(Q+ωK[A′]). The following commutator relations hold for arbitrary
x ∈ H , z ∈ Q , g ∈ A , and h ∈ A′

zx = xz + [z, x], [z, x] ∈ Q;

zg = gg−1zg = g(g−1 ∗ z), g−1 ∗ z ∈ Q;

(h− 1)g = g(g−1hg − 1), g−1hg ∈ A′;
(h− 1)x = h(x− h−1xh) + x(h− 1)

= h((1− h−1) ∗ x) + x(h− 1), (1− h−1) ∗ x ∈ Q,

the latter relation being true because A acts trivially on H/Q . These relations
describe the commutators of all possible products of the form u · v where u, v
are the generating elements of subrings I and R1 , respectively. It follows that
IR1 ⊂ R1I . By symmetry we have a two-sided ideal J = R1I = IR1 / R1 and
Js = (R1I)s ⊂ R1I

s = 0. Next we use the fact that R1/J ∼= u(H/Q)#K[A/A′] .
By assumption of the theorem this is a commutative algebra. Therefore, R1

satisfies the identity (XY − Y X)s ≡ 0.

Let f1, . . . , fk form a basis of L modulo H . Let g1, . . . , gk0 be the right
coset representatives of A in G . Now R1R is a free R1 -module with the finite
basis {fα1

1 · · · f
αk
k gj|0 ≤ αt < p, 1 ≤ j ≤ k0} , the rank being r = pkk0 . Indeed,

suppose that we have a relation∑
αj

rαjf
α1
1 · · · f

αk
k gj = 0, rαj ∈ R1. (5)

Let A = {aλ|λ ∈ Λ} , then

∑
αj

(∑
λ

uαjλaλ

)
fα1

1 · · · f
αk
k gj = 0, uαjλ ∈ u(H);

∑
jλ

(∑
α

uαjλ(aλ ∗ f1)α1 · · · (aλ ∗ fk)αk
)
aλgj = 0;∑

α

uαjλ(aλ ∗ f1)α1 · · · (aλ ∗ fk)αk = 0. (6)

Since H is G-invariant the elements {aλ∗f1, . . . , aλ∗fk} form a basis of L modulo
H . We apply PBW-Theorem to (6) and obtain that uαjλ = 0. Hence, (5) is trivial.
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If we identify any x ∈ R with the right multiplication by x we obtain an
embedding of R into a matrix ring over the PI-ring R1 :

R ⊂ End(R1R) ∼= Mr(R1) ∼= Mr(K)⊗K R1.

By Regev’s Theorem on the tensor product of PI-rings [17] we conclude that
R = U(L)#K[G] is a PI-ring.

4. Useful identities

We start with constructing a special identity. It is similar to the identities used in
the study of identical relations of restricted enveloping algebras [3].

Lemma 4.1. Suppose that R is a PI-algebra over an arbitrary field. Then it
satisfies a nontrivial identity of the form

F (X1, . . . , Xn, Y1, . . . , Yn) =
∑
π∈Sn

απY1Xπ(1) · · ·YnXπ(n) ≡ 0, απ ∈ K, αe = 1.

Proof. Let A = A(X1, . . . , Xm, . . . , Y1, . . . , Ym, . . . , ) be the free associative
algebra. For any permutation π ∈ Sn we define a monomial

fπ = Y1Xπ(1) · · ·YnXπ(n) ∈ A. (7)

We denote by Pm(Z1, . . . , Zm) the subspace of all multilinear polynomials in m
variables Z1, . . . , Zm in the free associative algebra Ā = Ā(Z1, . . . , Zm, . . . ) in
a countable set of variables Z1, . . . , Zm, . . . . By P ′m(Z1, . . . , Zm) we denote the
subspace of elements in Pm(Z1, . . . , Zm) that are the left hand sides of identities
for R . Let R satisfy a nontrivial identity of degree d . The following estimate is
well-known [1]

dimPm(Z1, . . . , Zm)/P ′m(Z1, . . . , Zm) < d2m, m ∈ N. (8)

Let us apply this estimate to A . We consider the subspace P2n(X1, . . . , Xn, Y1, . . . ,
Yn) ⊂ A of multilinear polynomials of degree 2n depending on the variables
X1, . . . , Xn, Y1, . . . , Yn . This subspace contains n! monomials of the form (7)
which are linearly independent. We apply (8)

dimP2n(X1, . . . , Xn, Y1, . . . , Yn)/P ′2n(X1, . . . , Xn, Y1, . . . , Yn) < d4n, n ∈ N.

If n! > d4n then fπ , π ∈ Sn are linearly dependent modulo P ′2n(X1, . . . , Xn, Y1, . . . ,
Yn), thus yielding the desired identity. Since n! > (n/e)n > (n/3)n , the number
n = 3d4 is sufficiently large, and the result follows.

Next we construct some special weak identities for the smash products. A
relation is called a weak identity of an algebra R if it vanishes whenever the selected
indeterminates are replaced by the elements from the selected subsets of R . Let Ã
be the free associative algebra generated by the set of symbols {zi ∗Xj|i, j ∈ N} .
We consider weak identities as the elements from Ã . We say that a weak identity
is nontrivial if it is a nonzero element of Ã .
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Lemma 4.2. Let R = u(L)#K[G] be a PI-algebra. Then it satisfies the
following weak identities

1. F1(X1, . . . , Xn, z1, . . . , zn)

=
∑
π∈Sn

απ(z1 ∗Xπ(1)) · · · (zn ∗Xπ(n))

≡ 0;X1, . . . , Xn ∈ u(L); z1, . . . , zn ∈ K[G].

2. F2(X1, . . . , Xn, g1, . . . , gn)

=
∑
π∈Sn

απ(g1 ∗Xπ(1) −Xπ(1)) · · · (gn ∗Xπ(n) −Xπ(n))

≡ 0; X1, . . . , Xn ∈ u(L); g1, . . . , gn ∈ G.

where απ ∈ K , and αe = 1.

Proof. We take the identity of the previous lemma, set Y1 = g1 , Y2 =
g−1

1 g2, . . . , Yn = g−1
n−1gn , gi ∈ G , and multiply on the right by g−1

n . The for
all X1, . . . , Xn ∈ u(L) and g1, . . . , gn ∈ G we get

F1(X1, . . . , Xn, g1, . . . , gn) =
∑
π∈Sn

απ(g1 ∗Xπ(1)) · · · (gn ∗Xπ(n)) ≡ 0.

By linearity we can substitute elements of the group ring for g1, . . . , gn . Thus we
derive the first identity.

We decompose F2(X1, . . . , Xn, g1, . . . , gn), g1, . . . , gn ∈ G , into 2n sum-
mands, each being the result of substitution of the identity element e ∈ G into
F1(X1, . . . , Xn, g1, . . . , gn) on some places 1 ≤ i1 < i2 < · · · < is ≤ n :

F2(X1, . . . , Xn, g1, . . . , gn) =

=
n∑
s=0

∑
1≤i1<i2<···<is≤n

(−1)sF1(X1, . . . , Xn, g1, . . . , gn)|gi1=···=gis=e ≡ 0.

We remark that the following decomposition holds

F1(X1, . . . , Xn, z1, . . . , zn)

=
n∑
i=1

(z1 ∗Xi)Hi(X1, . . . , X̂i, . . . , Xn, z2, . . . , zn); (9)

Hi(X1, . . . , X̂i, . . . , Xn, z2, . . . , zn)

=
∑
π(1)=i

απ(z2 ∗Xπ(2)) · · · (zn ∗Xπ(n)),

where Hi are the polynomials of the same type as F1 . Moreover, if F1 is non-
trivial then some Hi is also nontrivial. Similar decompositions also hold true for
polynomials of type F and F2 .

Suppose that L is a restricted Lie algebra. Fix some basis in L . Then we
have the standard PBW-basis for the restricted enveloping algebra u(L) [6]. Let
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un(L) denote the span of all basis monomials for u(L) of length not greater than
n . Now we have the standard filtration u0(L) ⊂ u1(L) ⊂ · · · ⊂ un(L) ⊂ · · · . It
induces the filtration for R = u(L)#K[G]

R0 ⊂ R1 ⊂ · · · ⊂ Rn ⊂ · · · ; Rn = un(L)K[G], n = 0, 1, 2, . . .

grR =
∞
⊕
i=0

R̄i, R̄i = Ri/Ri−1, i = 0, 1, . . .

Observe that grR ∼= gr{un(L)|n = 0, 1, 2 . . . }#K[G] where the action of G on the
vector space L̄ ∼= u1(L)/u0(L) is the same as the action of G on L . Recall also
that gr{un(L)|n = 0, 1, 2 . . . } is isomorphic to the ring of truncated polynomials.

Lemma 4.3. Let R = u(L)#K[G] be a PI-algebra. Then grR satisfies a weak
identity

F3(X1, . . . , Xn, z1, . . . , zn) =
∑
π∈Sn

απ(zπ(n) ∗Xn) · · · (zπ(1) ∗X1) ≡ 0;

X1, . . . , Xn ∈ u(L), z1, . . . , zn ∈ K[G];

where απ ∈ K , and αe = 1.

Proof. We rewrite F1(X1, . . . , Xn, z1, . . . , zn) using the commutativity of
gru(L).

The nontrivial elements of the form F3 can be also decomposed as

F3(X1, . . . , Xn, z1, . . . , zn)

=
n∑
i=1

(zi ∗Xn)Hi(X1, . . . , Xn−1, z1, . . . ẑi, . . . , zn); (10)

Hi(X1, . . . , Xn−1, z1, . . . ẑi, . . . , zn)

=
∑
π(n)=i

απ(zπ(n−1) ∗Xn−1) · · · (zπ(1) ∗X1),

where Hi are the polynomials of the same type as F3 and some Hi is also
nontrivial.

5. Delta-theory for smash products

Recall that there are some delta-sets inside G and L that have been effectively
used in the study of the inner structure of G and L ; the notation δ , ∆ was used
for these sets in [3], [11], [14]. A definition of delta-sets for Hopf algebras in terms
of their inner actions can be found in [4].

Suppose that a group G acts on a Lie algebra L by automorphisms. In this
section we introduce four more families of delta-sets defined with respect to this
action. We specially reserve the symbol D for the pairing between K[G] and L .

First, we define a series of delta-sets inside L :

Dm,G(L) = {x ∈ L | dimK[G] ∗ x ≤ m}, m ∈ N;

DG(L) =
∞
∪
m=1
Dm,G(L) ⊂ L.
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Another series of delta-sets lives inside G :

Dm,L(G) = {g ∈ G | dim(g − 1) ∗ L ≤ m}, m = 0, 1, 2 . . . ;

DL(G) =
∞
∪
m=0
Dm,L(G) ⊂ G.

Finally, we define families of delta-sets inside the group ring K[G] and the re-
stricted enveloping algebra u(L):

Dm,L(K[G]) = {a ∈ K[G] | dim(a ∗ L) ≤ m}, m = 0, 1, 2, . . . ;

DL(K[G]) =
∞
∪
m=0
Dm,L(K[G]) ⊂ K[G].

Dm,G(u(L)) = {v ∈ u(L) | dimK[G] ∗ v ≤ m}, m ∈ N;

DG(u(L)) =
∞
∪
m=1
Dm,G(u(L)) ⊂ u(L).

In our study of identities in smash products we shall use essentially three
families except those inside u(L). For convenience we often omit subscripts L , G
and simply write, for example, D(L) instead of DG(L).

One can easily check the following properties of these sets.

Lemma 5.1. The sets Di(L) satisfy

1. if x ∈ Di(L), y ∈ Dj(L) then αx + βy ∈ Di+j(L), α, β ∈ K ;

2. if x ∈ Di(L), y ∈ Dj(L) then [x, y] ∈ Di·j(L); and x[p] ∈ Dip(L);

3. Di(L) are G-invariant;

4. D(L) is a restricted G-invariant subalgebra in L.

Proof. For example, let us prove the second claim. In this case K[G] ∗ [x, y] =
〈g ∗ [x, y]|g ∈ G〉K = 〈[g ∗ x, g ∗ y]|g ∈ G〉K ⊂ [K[G] ∗ x,K[G] ∗ y] , so dimK[G] ∗
[x, y] ≤ dim([K[G] ∗ x) · dim([K[G] ∗ y) ≤ ij .

Lemma 5.2. The sets Di(G) satisfy

1. if g ∈ Di(G), h ∈ Dj(G) then gh ∈ Di+j(G);

2. if g ∈ Di(G), then g−1 ∈ Di(G);

3. if g ∈ Di(G), h ∈ G then h−1gh ∈ Di(G);

4. 1 ∈ Di(G) for all i ≥ 0;

5. D(G) is a normal subgroup in G.



382 Bahturin and Petrogradsky

Proof. In order to prove claims 1), 2), and 3) we observe that for arbitrary
g, h ∈ G one has

(gh− 1) ∗ L = ((g − 1)h+ h− 1) ∗ L ⊂ (g − 1) ∗ L+ (h− 1) ∗ L;

(g−1 − 1) ∗ L = g−1 ∗ ((1− g) ∗ L);

(h−1gh− 1) ∗ L = (h−1(g − 1)h) ∗ L ⊂ h−1 ∗ ((g − 1) ∗ L).

Other claims are obvious.

Lemma 5.3. The sets Di(K[G]) satisfy

1. if a ∈ Di(K[G]), b ∈ Dj(K[G]) then αa + βb ∈ Di+j(K[G]), α, β ∈ K ;

2. K[G] · Di(K[G]) ·K[G] ⊂ Di(K[G]);

3. D(K[G]) is a two-sided ideal in K[G].

Proof. Let us check the second claim. Suppose that a ∈ Di(K[G]), so dim(a ∗
L) ≤ i . Then for arbitrary x, y ∈ K[G] we have (xay) ∗ L ⊂ x ∗ (a ∗ L) and
dim((xay) ∗ L) ≤ i . Hence, xay ∈ Di(K[G]).

Lemma 5.4. The sets Di(u(L)) satisfy

1. if v ∈ Di(u(L)), w ∈ Dj(u(L)) then αv + βw ∈ Di+j(u(L)), α, β ∈ K ;

2. if v ∈ Di(u(L)), w ∈ Dj(u(L)) then vw ∈ Di+j(u(L));

3. D(u(L)) is a subalgebra in u(L).

Proof. is similar to that of Lemma 5.1.

Let us establish the relationship between D(G) and D(K[G]).

Lemma 5.5. 1. 1 + (D(K[G]) ∩ (G− 1)) = D(G);

2. K[G] · ωK[D(G)] = ωK[D(G)] ·K[G] ⊂ D(K[G]).

Proof. The first claim follows directly from definitions. Let us prove the second
one. We consider v = α1g1 + · · ·+ αmgm ∈ ωK[D(G)], αi ∈ K , gi ∈ D(G). Then
α1 + · · ·+ αm = 0 and v = α1(g1 − 1) + · · ·+ αm(gm − 1). There exists a number
s such that {g1, . . . , gm} ⊂ Ds(G). Let w, u ∈ K[G] then

(wvu) ∗ L ⊂ w ∗ ((g1 − 1) ∗ L+ · · ·+ (gm − 1) ∗ L),

and wvu ∈ Dms(K[G]).

But we lack any bounds in this lemma. We only suggest the following
conjecture that would make Theorem 6.5 below unnecessary.

Conjecture Let G = Ds(G) then ωK[G] = Dt(K[G]) for some number t = f(s).

On the other hand, the next example shows that the inclusion in Lemma 5.5
is strict: K[G] · ωK[D(G)] 6= D(K[G]).



Bahturin and Petrogradsky 383

Example 5.6. Let L = 〈x1, x2, . . . , y1, y2, . . . |x[p]
i = y

[p]
i = 0, i ∈ N〉K be

an abelian restricted Lie algebra. We consider the group G = (Zp)
N and set

gi = (0, . . . , 0, 1, 0, . . . ), with 1 on i-th place, i ∈ N . Suppose that G acts on L
by

gi ∗ xj = xj + ξiyj, gi ∗ yj = yj, i, j ∈ N,
where {ξi ∈ K|i ∈ N} are the scalars linearly independent over Zp . We consider
the smash product R = u(L)#K[G] . Then

1. D(G) = {e} ;

2. DL(K[G]) = D0,L(K[G]) and dimK[G]/D(K[G]) = 2;

3. R is not PI;

4. R satisfies some weak identities of the type

F2(X1, . . . , Xn, h1, . . . , hn)

=
∑
π∈Sn

απ(h1 ∗Xπ(1) −Xπ(1)) · · · (hn ∗Xπ(n) −Xπ(n))

≡ 0;X1, . . . , Xn ∈ L, h1, . . . , hn ∈ G.

Proof. Let e 6= g = (n1, n2, . . . ) ∈ G , then (g − 1) ∗ xj = λyj , where
λ =

∑
i niξi 6= 0 by assumption. Now the first claim follows by the definition

of the delta-sets Di,L(G).

To prove the second claim we take z =
∑

i αigi ∈ K[G] and consider

z ∗ xj =
(∑

i

αi

)
xj +

(∑
i

αiξi

)
yj, j ∈ N.

Then z ∈ Dm,L(K[G]) for some m ≥ 0 if and only if
∑

i αi = 0 and
∑

i αiξi = 0.
Hence, DL(K[G]) = D0,L(K[G]) and dimK[G]/DL(K[G]) = 2.

Suppose that R is PI. We apply the first identity of Lemma 4.2 and
substitute the values a1 = x1 , a2 = x2x3 , . . . , an = x(n−1)n/2+1 · · ·xn(n+1)/2 ,
and gi1 , . . . , gin ∈ G :

F1(a1, a2, . . . , an, gi1 , . . . , gin) =
∑
π∈Sn

απ(gi1 ∗ aπ(1)) · · · (gin ∗ aπ(n))

=

(∑
π∈Sn

απξ
π(1)
i1

ξ
π(2)
i2
· · · ξπ(n)

in

)
y1 · · · yn(n+1)/2 + terms with x-s.

Therefore, 0 6= f(X1, . . . , Xn) =
∑

π∈Sn απX
π(1)
1 X

π(2)
2 · · ·Xπ(n)

n ∈ K[X1, . . . , Xn] is
annihilated by any substitution from the countable set of scalars Xi ∈ {ξj|j ∈ N} ,
i = 1, . . . , n . This contradiction proves that R is not PI.

By linearity, the last claim can be checked for the action on x-s only. We
remark that any element h ∈ G acts as the generators gi , namely h∗xi = xi+µhyi ,
µh ∈ K , i ∈ N . Then

F2(x1, . . . , xn, h1, . . . , hn) =
∑
π∈Sn

απ(h1 ∗ xπ(1) − xπ(1)) · · · (hn ∗ xπ(n) − xπ(n))

=

(∑
π∈Sn

απ

)
µ1µ2 · · ·µny1y2 · · · yn.



384 Bahturin and Petrogradsky

If
∑

π∈Sn απ = 0, then we obtain a weak identity.3

Also, this example shows that it is not enough to study the action of G on
L , but we also need to take into account the action of G on u(L) as well (see the
proof of Theorem 6.2 below).

Let us also establish the relationship between D(L) and D(u(L)).

Lemma 5.7. 1. D(u(L)) ∩ L = D(L);

2. ωu(D(L)) ⊂ D(u(L)).

Proof. The first claim follows from definitions. The subalgebra ωu(D(L))
is generated by the elements from D(L). These elements have finite width by
Lemma 5.4.

We suggest to study whether there exists some bounds similar to Conjecture above.
Another interesting question is to investigate if the inclusion in Lemma 5.7 is strict.

6. Structure of delta-sets

In this section we establish crucial facts about the structure of three families of
delta-sets, provided that the smash product R = u(L)#K[G] satisfies a nontrivial
polynomial identity. ¿From now on we assume that the number n is fixed in
Lemma 4.2 (remark that all lemmas of Section 4 fix the same number n).

Let us consider the associated graded algebra grR ∼= (gru(L))#K[G] . It
satisfies the same weak identities of Lemmas 4.2, 4.3. We observe that the action
of G on the space u1(L)/u0(L) ∼= L inside gru(L) remains the same. Therefore,
we may assume that L is abelian with the trivial p-mapping, while studying the
action of G on L in this section.

Let L be a restricted Lie algebra and some basis L = {ei|i ∈ I} be
fixed. Suppose that the decomposition of v ∈ u(L) via the standard basis for
the restricted enveloping algebra depends on the elements ei1 , . . . , eis . Then we
denote the support of v by supp v = {ei1 , . . . , eis} .

Let G be a group and T a subset of G . We say that T has finite index in
G if there exist g1, g2, . . . , gm ∈ G with

G = g1T ∪ g2T ∪ · · · ∪ gmT.

We then define the index |G : T | to be the minimum possible integer m with the
above property[11], [12]. If T is a subgroup of G , then this agrees with the usual
definition of index.

Lemma 6.1. ([11]) Let T be a subset of G with |G : T | ≤ m. We set
T ∗ = T ∪ {1} ∪ T−1 . Then

(T ∗)4m = T ∗ · T ∗ · · · ·T ∗︸ ︷︷ ︸
4m times

is a subgroup of G.

3This example was produced in collaboration with M. Kotchetov
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Theorem 6.2. Let R = u(L)#K[G] be a PI-algebra. Then there exists a
subgroup G0 ⊂ G with |G : G0| < n and G0 ⊂ Dn34n,L(G).

Proof. Let n be the number fixed in Lemma 4.3. Let us prove that |G :

Dn3(G)| < n . We fix arbitrary g1, . . . , gn ∈ G . It suffices to prove that there exist
i 6= j such that g−1

i gj ∈ Dn3(G). We apply the weak identity of Lemma 4.3

F3(X1, . . . , Xn, g1, . . . , gn) =
∑
π∈Sn

απ(gπ(n) ∗Xn) · · · (gπ(1) ∗X1) ≡ 0;

X1, . . . , Xn ∈ u(L).

In the identical relations that follow we denote by X ′s , and Y ′s the variables that
range over some sets of elements inside u(L).

Let us prove by induction on m the following. Suppose that g1, . . . , gm ∈ G
are fixed and satisfy

F3(X1, . . . , Xm, g1, . . . , gm) ≡ 0; Xi ∈ ui(L), i = 1, . . . ,m,

where F3 is nontrivial. Then we claim that there exist i 6= j such that g−1
i gj ∈

Dm3(G).

We consider m = 1, we have g1 ∗ X1 ≡ 0, X1 ∈ L . Then L = 0 and the
assertion is trivial.

Suppose that the statement is valid for m− 1, m > 1. We apply (10):

F3(X1, . . . , Xm, g1, . . . , gm)

=
m∑
i=1

(gi ∗Xm)Hi(X1, . . . , Xm−1, g1, . . . ĝi, . . . , gm)

≡ 0;Xi ∈ ui(L), 1 ≤ i ≤ m. (11)

Without loss of generality we may assume that Hm is a non-trivial polyno-
mial. Now we consider two cases. First, suppose that

Hm(X1, . . . , Xm−1, g1, . . . , gm−1) ≡ 0; Xi ∈ ui(L), i = 1, . . . ,m− 1.

Then by the inductive assumption there exist i 6= j , 1 ≤ i, j ≤ m − 1 such that
g−1
i gj ∈ D(m−1)3(G) ⊂ Dm3(G).

Second, there exist a1 ∈ u1(L), a2 ∈ u2(L), . . . , am−1 ∈ um−1(L) such
that hm = Hm(a1, . . . , am−1, g1, . . . , gm−1) 6= 0. Let {ei|i ∈ I} be an ordered basis
for L . Since Hm is linear in X ′s , we can consider a1, . . . , am−1 to be monomials
in {eα1 , . . . , eαt} , where t ≤ 1 + 2 + · · ·+m− 1 < m(m− 1). We set

V0 = 〈gi ∗ eαj |1 ≤ i ≤ m− 1, 1 ≤ j ≤ t〉K .

Then dimV0 ≤ t(m − 1) ≤ m(m − 1)2 . Now we substitute a1, . . . , am−1 for
X1, . . . , Xm−1 in (11), set X = Xm , and obtain the relation

m∑
i=1

(gi ∗X)hi ≡ 0, X ∈ um(L); (12)

hm 6= 0, supphm ⊂ V0. (13)
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By substituting XY for X we get

m∑
i=1

(gi ∗X)(gi ∗ Y )hi ≡ 0, X ∈ um−1(L), Y ∈ L. (14)

Multiplying (12) by g1 ∗ Y and subtracting from (14) we obtain

m∑
i=2

(gi ∗X)(gi ∗ Y − g1 ∗ Y )hi ≡ 0, X ∈ um−1(L), Y ∈ L. (15)

Here we have two possibilities. First, (gm − g1) ∗ y ∈ V0 for all y ∈ L . Then
(g−1

1 gm − 1) ∗ L ⊂ g−1
1 ∗ V0 , therefore g−1

1 gm ∈ Db(G), where b = dimV0 ≤
m(m− 1)2 < m3 . Second, there exists y0 ∈ L such that (gm − g1) ∗ y0 = v1 /∈ V0 .
We set V1 = V0 + 〈v1〉K and change the basis of L outside V0 so that v1 coincides
with some basis element. We fix Y = y0 in (15), and by the construction of v1

and (13) we obtain

m∑
i=2

(gi ∗X)h
(1)
i ≡ 0, X ∈ um−1(L); (16)

h
(1)
i = (gi ∗ y0 − g1 ∗ y0)hi, i = 2, . . . ,m;

h(1)
m = v1hm 6= 0, supph(1)

m ⊂ V1.

We continue this process further by deleting in (16) the term for i = 2.

m∑
i=3

(gi ∗X)(gi ∗ Y − g2 ∗ Y )h
(1)
i ≡ 0, X ∈ um−2(L), Y ∈ L.

Similarly, either (gm − g2) ∗ L ⊂ V1 and we are done (see below), or there exists
y1 ∈ L such that (gm − g2) ∗ y1 = v2 /∈ V1 . In the latter case we change the
basis of L outside V1 so that v2 is one of the basis elements, set V2 = V1 + 〈v2〉K ,

h
(2)
i = (gi ∗ y1 − g2 ∗ y1)h

(1)
i , i = 3, . . . ,m and obtain the relation

m∑
i=3

(gi ∗X)h
(2)
i ≡ 0, X ∈ um−2(L);

h(2)
m = v2h

(1)
m 6= 0, supph(2)

m ⊂ V2.

This process terminates with the relation

(gm ∗X)h(m−1)
m ≡ 0, X ∈ u1(L); (17)

h(m−1)
m 6= 0;

supph(m−1)
m ⊂ Vm−1 = V0 + 〈v1, . . . , vm−1〉K .

If we substitute X = 1 in (17) then we obtain a contradiction. This contradiction
proves that this process had to stop even before, and the desired relation holds:
g−1
i gm ∈ Dc(G), where c = dimVi−1 ≤ dimVm−1 ≤ m(m− 1)2 +m− 1 ≤ m3 .

If we set T = Dn3(G), then we have proved that |G : T | ≤ n . Remark
that, by Lemma 5.2, 1 ∈ T and T = T−1 . We set G0 = T 4n and conclude that
G0 is a subgroup by Lemma 6.1. Of course, |G : G0| ≤ n and G0 ⊂ Dn34n(G) by
Lemma 5.2.



Bahturin and Petrogradsky 387

Suppose that W is a subset in a vector space V . We say that W has finite
codimension in V if there exist v1, . . . , vm ∈ V with V = W + 〈v1, . . . , vm〉K . If m
is the minimum possible integer with such property then we set dimV/W = m .
We also introduce the notation m ·W = {w1 + · · ·+ wm|wi ∈ W} , m ∈ N .

Lemma 6.3. Let L be a vector space. Suppose that a subset T ⊂ L is stable
under multiplication by scalars and such that dimL/T ≤ m. Then 〈T 〉K = 4m ·T .

Proof. We prove this statement by induction on m . If m = 0 then the assertion
is trivial. Suppose that dimL/T = m . Then there exist h1, . . . , hm such that

L = T + 〈h1, . . . , hm〉K . (18)

If 2·T = T then T is a subspace. Otherwise there exist t1, t2 ∈ T with t1 +t2 /∈ T .
By (18) t1 + t2 = t3 + α1h1 + · · · + αmhm , t3 ∈ T , αi ∈ K , where one of scalars
is nonzero. Let αm 6= 0, then hm ∈ 3 · T + 〈h1, . . . , hm−1〉K . We substitute
in (18) and obtain L = 4 · T + 〈h1, . . . , hm−1〉K . By the inductive assumption
〈4 · T 〉K = 4m−1 · (4 · T ) ⊂ 4m · T . Lemma is proved.

Theorem 6.4. Let R = u(L)#K[G] be a PI-algebra. Then there exists a G-
invariant restricted subalgebra L0 ⊂ L with dimL/L0 < n and L0 ⊂ Dpn4nn5,G(L).

Proof. Let n be the number fixed above. While studying the action of G on
L , we temporarily assumethat L is abelian with the trivial p-mapping. First, let
us prove that dimL/Dn2(L) < n .

We fix arbitrary a1, . . . , an ∈ L . By Lemma 4.2 we have

F1(a1, . . . , an, g1, . . . , gn) =
∑
π∈Sn

απ(g1 ∗ aπ(1)) · · · (gn ∗ aπ(n)) ≡ 0; g1, . . . , gn ∈ G.

In this theorem gi ’s, g are the variables that range over G . Let us prove by
induction on m the following. Suppose that a1, . . . , am ∈ L are fixed and satisfy
the condition

F1(a1, . . . , am, g1, . . . , gm) =
∑
π∈Sm

απ(g1 ∗ aπ(1)) · · · (gm ∗ aπ(m)) ≡ 0, (19)

g1, . . . , gm ∈ G;

where F1(X1, . . . , Xm, g1, . . . , gm) is some nontrivial polynomial. Then a1, . . . , am
are linearly dependent modulo Dm2(L).

In the case m = 1 we have g1 ∗ a1 ≡ 0, g1 ∈ G . Since G acts by
automorphisms we have a1 = 0 ∈ D1(L).

Suppose that the statement is valid for m−1, m > 1. We apply (9) to (19)

F1(a1, . . . , am, g1, . . . , gm)

=
m∑
i=1

(g1 ∗ ai)Hi(a1, . . . , âi, . . . , am, g2, . . . , gm)

≡ 0; g1, . . . , gm ∈ G. (20)
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Without loss of generality we assume that H1(X2, . . . , Xm, g2, . . . , gm) is a nontriv-
ial polynomial. Now two cases are possible. In the first case H1(a2, . . . , am, g2, . . . ,
gm) ≡ 0 for all g2, . . . , gm ∈ G . Then by the inductive hypothesis a2, . . . , am
are linearly dependent modulo D(m−1)2(L) and we are done. In the second case
there exist h2, . . . , hm ∈ G such that f1 = H1(a2, . . . , am, h2, . . . , hm) 6= 0. We
substitute these values into (20) and set fi = Hi(a1, . . . , âi, . . . , am, h2, . . . , hm),
i = 1, . . . ,m :

m∑
i=1

(g1 ∗ ai)fi ≡ 0, g1 ∈ G.

We discard the summands with fi = 0, set g = g1 , and rewrite our relation as
follows

r∑
i=1

(g ∗ ai)fi ≡ 0, g ∈ G; fi 6= 0, i = 1, . . . , r. (21)

We set V = 〈gi ∗ aj|2 ≤ i ≤ m, 1 ≤ j ≤ m〉K , then dimV < m2 and f1, . . . , fr
belong to the subalgebra of u(L) generated by V . Next we prove by induction on
r that (21) implies linear dependence of a1, . . . , ar modulo Dm2(L).

If r = 1 then

(g ∗ a1)f1 ≡ 0, g ∈ G. (22)

Let us prove that G ∗ a1 ⊂ V , so a1 ∈ Dm2(L). By way of contradiction suppose
that there exists d ∈ G with d ∗ a1 = e0 /∈ V . Choose an ordered basis for L
whose first elements is e0 , followed by a basis of V = 〈v1, . . . , vt〉K . Now f1 is the
sum of products, each product consists of m − 1 factors of the type gi ∗ aj ∈ V .
Using the standard basis of the restricted enveloping algebra we have

f1 =
∑
j

αjvj1 · · · vjm−1 , αj ∈ K. (23)

Multiplying f1 by e0 we obtain a nonzero element. Thus, seting g = d we arrive
at a contradiction with (22).

We consider r > 1. Suppose that G ∗ ar ⊂ V in (21). Then ar ∈ Dm2(L)
and the result follows. So, we assume that e0 = d ∗ ar /∈ V for some d ∈ G .
By analogy with the preceding argument we choose an ordered basis for L . We
set d ∗ aj = αje0 + wj , j = 1, . . . , r − 1, αj ∈ K and each wj being a linear
combination of the basis elements of L except e0 . By setting g = d in (21) we
obtain

e0(α1f1 + · · ·+ αr−1fr−1 + fr) + w1f1 + · · ·+ wr−1fr−1 = 0. (24)

We set f = α1f1 + · · ·+ αr−1fr−1 + fr . Suppose that f 6= 0. By analogy with the
preceding argument, f is of the form (23), which means that the first summand
in (24) has degree m and may be written as

e0f =
∑
j

αje0vj1 · · · vjm−1 , αj ∈ K. (25)



Bahturin and Petrogradsky 389

Other nonzero summands in (24), being written in the form (25), do not
contain e0 as their factor. This is a contradiction. So, f = α1f1 + · · ·+αr−1fr−1 +
fr = 0. We express fr from this relation and substitute into (21):

r−1∑
i=1

(g ∗ (ai − αiar))fi ≡ 0, g ∈ G;

fi 6= 0, i = 1, . . . , r − 1.

By the inductive assumption a1 − α1ar, . . . , ar−1 − αr−1ar are linearly dependent
modulo Dm2(L), therefore a1, . . . , ar are also linearly dependent modulo this set.

Thus we have proved that dimL/Dn2(L) < n . Now we return to the
original structure of a Lie p-algebra on L . By Lemmas 6.3, 5.1 we construct
a subspace W1 = 〈Dn2(L)〉K = 4n · Dn2(L) ⊂ D4nn2(L). We consider the chain
Wi = Wi−1 +[Wi−1,W1] , i = 2, 3 . . . . Due to the finiteness of codimension we have
stabilization ∪∞i=1Wi = Wn and by Lemma 5.1 Wn ⊂ D4nn4(L). By construction,
Wn is a G-invariant subalgebra. To obtain a restricted subalgebra we consider its
p-hull L0 = (Wn)p = 〈w[ps]|w ∈ Wn, s ≥ 0〉K . Again by the codimension argument,
we can assume here that s ≤ n . By Lemma 5.1 we get L0 ⊂ Dpn4nn5(L), also
dimL/L0 < n . The theorem follows.

Theorem 6.5. Let R = u(L)#K[G] be a PI-algebra. Then there exists a two-
sided ideal J ⊂ K[G] with dimK[G]/J < n and J ⊂ D4nn2,L(K[G]).

Proof. Similar to that for the previous theorem. Let n be the number fixed
above. We may assume that L is abelian with the trivial p-mapping. First, let us
prove that dimK[G]/Dn2(K[G]) < n .

We fix arbitrary z1, . . . , zn ∈ K[G] . By Lemma 4.3 we have

F3(a1, . . . , an, z1, . . . , zn) =
∑
π∈Sn

απ(zπ(n) ∗ an) · · · (zπ(1) ∗ a1) ≡ 0; a1, . . . , an ∈ L.

In this theorem ai ’s, a denote the variables that range over L . We prove by
induction on m the following. Let z1, . . . , zm ∈ K[G] be fixed and satisfy the
condition

F3(a1, . . . , am, z1, . . . , zm) =
∑
π∈Sm

απ(zπ(m) ∗ am) · · · (zπ(1) ∗ a1) ≡ 0, (26)

a1, . . . , am ∈ L;

where F3(X1, . . . , Xm, z1, . . . , zm) is some nontrivial polynomial. Then z1, . . . , zm
are linearly dependent modulo Dm2(K[G]).

In the case m = 1 we have z1 ∗ a1 ≡ 0, a1 ∈ L . Then z1 ∈ D0(K[G]) and
the result follows.

Suppose that the statement is valid for m − 1, m > 1. We apply decom-
position (10) to the relation (26)

F3(a1, . . . , am, z1, . . . , zm)

=
m∑
i=1

(zi ∗ am)Hi(a1, . . . , am−1, z1, . . . , ẑi, . . . , zm)

≡ 0; a1, . . . , am ∈ L. (27)
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Without loss of generality we may assume that H1(X1, . . . , Xm−1, z2, . . . , zm) is
a nontrivial polynomial. We have two cases. 1) H1(a1, . . . , am−1, z2, . . . , zm) ≡ 0
for all a1, . . . , am−1 ∈ L . Then by the inductive hypothesis z2, . . . , zm are linearly
dependent modulo D(m−1)2(K[G]) and we are done. 2) There exist b1, . . . , bm−1 ∈
L such that H1(b1, . . . , bm−1, z2, . . . , zm) 6= 0. We substitute these values into (27)
and set fi = Hi(b1, . . . , bm−1, z1, . . . , ẑi, . . . , zm), i = 1, . . . ,m :

m∑
i=1

(zi ∗ am)fi ≡ 0, am ∈ L.

We omit the summands with fi = 0, denote a = am , and obtain
r∑
i=1

(zi ∗ a)fi ≡ 0, a ∈ L; fi 6= 0, i = 1, . . . , r. (28)

We set V = 〈zi ∗ bj|1 ≤ i ≤ m, 1 ≤ j < m− 1〉K , then dimV < m2 and f1, . . . , fr
belong to the subalgebra of u(L) generated by V . Next we prove by induction on
r that (28) implies linear dependence of z1, . . . , zr modulo Dm2(K[G]).

If r = 1 then

(z1 ∗ a)f1 ≡ 0, a ∈ L. (29)

Let us prove that z1∗L ⊂ V , so z1 ∈ Dm2(K[G]). By way of contradiction suppose
that there exists y ∈ L with z1 ∗ y = e0 /∈ V . We choose an ordered basis for L
whose first element is e0 , followed by a basis of V = 〈v1, . . . , vt〉K . In the standard
basis of the restricted enveloping algebra we have

f1 =
∑
j

αjvj1 · · · vjm−1 6= 0, αj ∈ K.

Multiplying f1 by e0 we obtain a nonzero element. Thus, if we set a = y then (29)
leads to contradiction.

We consider r > 1. Suppose that zr∗L ⊂ V in (28). Then zr ∈ Dm2(K[G])
and the result follows. So, we assume that e0 = zr ∗ y /∈ V for some y ∈ L . By
analogy with the preceding argument we choose an ordered basis for L . We set
zj∗y = αje0+wj , j = 1, . . . , r−1, αj ∈ K and each wj being a linear combination
of the basis elements of L except e0 . By setting a = y in (28) we obtain

e0(α1f1 + · · ·+ αr−1fr−1 + fr) + w1f1 + · · ·+ wr−1fr−1 = 0. (30)

Let us set f = α1f1 + · · ·+ αr−1fr−1 + fr . Suppose that f 6= 0. By analogy with
the preceding theorem the first summand in (30) has degree m and is written in
the standard basis as

e0f =
∑
j

αje0vj1 · · · vjm−1 , αj ∈ K.

Other nonzero summands in (30), being written in the standard basis, have no e0 as
their factor. This is a contradiction. Therefore, f = α1f1 + · · ·+αr−1fr−1 +fr = 0.
We express fr from this relation and substitute into (28):

r−1∑
i=1

((zi − αizr) ∗ a)fi ≡ 0, a ∈ L;

fi 6= 0, i = 1, . . . , r − 1.
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By the inductive assumption z1 − α1zr, . . . , zr−1 − αr−1zr are linearly dependent
modulo Dm2(K[G]), therefore z1, . . . , zr are also linearly dependent modulo this
set.

Thus we have proved that dimK[G]/Dn2(K[G]) < n . By Lemma 6.3, we
form a subspace by J = 〈Dn2(K[G])〉K = 4n · Dn2(K[G]). Due to Lemma 5.3 J is
an ideal and J ⊂ D4nn2(K[G]). Of course, also dimK[G]/J < n . The theorem is
proved.

We can also describe the properties of the delta-sets as follows, but in this
case it is not possible to evaluate the numbers n1 , n2 , n3 below.

Corollary 6.6. Let R = u(L)#K[G] be a PI-algebra and n be the number fixed
above. Then there exist numbers n1, n2, n3 such that

DL(G) = Dn1,L(G), |G : DL(G)| < n;

DG(L) = Dn2,G(L), dimL/DG(L) < n;

DL(K[G]) = Dn3,L(K[G]), dimK[G]/DL(K[G]) < n.

Proof. Let us check the first equality. For T = Dn3(G), we have |G : T | < n
(Theorem 6.2). We consider Ti = (Di(G))4n , i ≥ n3 . By Lemma 6.1, we obtain
the chain of subgroups and Ti ⊂ D4ni(G) by Lemma 5.2. Since |G : Ti| < n ,
this chain must stabilize. In other two cases similar chains also stabilize by the
codimension argument.

Next we are going to use the next result on bilinear maps.

Theorem 6.7. (P. M. Neumann, [1]) Let ϕ : U × V → W be a bilinear map,
where U, V,W are vector spaces over a field K . Suppose that dimϕ(u, V ) ≤ m
for each u ∈ U and dimϕ(U, v) ≤ l for all v ∈ V . Then dim〈ϕ(U, V )〉K ≤ ml .

The goal of three previous theorems has been to establish the following
result.

Theorem 6.8. Let R = u(L)#K[G] be a PI-algebra. Then there exist a G-
invariant restricted subalgebra of finite codimension L0 ⊂ L and a subgroup of
finite index G0 ⊂ G such that dim(ωK[G0] ∗ L0) <∞.

Proof. We apply Theorems 6.2, 6.4, and 6.5. These theorems yield us the
subgroup of finite index G0 ⊂ G , the G-invariant restricted subalgebra L0 with
dimL/L0 < n , and the ideal J /K[G] with dimK[G]/J < n . Also, their elements
have finite width with respect to the action of G on L . Namely,

dim((g − 1) ∗ L) ≤ 4nn3, g ∈ G0;
dim(K[G] ∗ x) ≤ pn4nn5, x ∈ L0;
dim(z ∗ L) ≤ 4nn2, z ∈ J.

(31)

We have dimωK[G0]/(J ∩ ωK[G0]) < n . Hence, there exist g1, . . . , gn ∈ G0 such
that

ωK[G0] = 〈(g1 − 1), . . . , (gn − 1)〉K + J ∩ ωK[G0].

Then
ωK[G0] ∗ L0 ⊂ (g1 − 1) ∗ L0 + · · ·+ (gn − 1) ∗ L0 + J ∗ L0.
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We use the conditions of finite width (31) and apply Theorem 6.7 to the bilinear
mapping ϕ : J × L0 → L0 , ϕ(z, x) = z ∗ x , z ∈ J , x ∈ L0 . Finally, we have

dim(ωK[G0] ∗ L0) ≤ dim(g1 − 1) ∗ L0 + · · ·+ dim(gn − 1) ∗ L0 + dim(J ∗ L0)

≤ n · 4nn3 + 4nn2 · pn4nn5 <∞.

7. Proof of the main result

If H is a subalgebra in a restricted Lie algebra L then by Hp we denote the p-hull.

This is a minimal restricted subalgebra containing H , and in fact Hp = 〈h[pi] |h ∈
H, i = 0, 1, 2, . . . 〉K .

Suppose that Z is a finite-dimensional abelian p-algebra. Then its structure
is determined by the p-mapping, which satisfies the relation

(λ1x1 + λ2x2)[p] = λp1x
[p]
1 + λp2x

[p]
2 , x1, x2 ∈ Z; λ1, λ2 ∈ K.

For shortness we often write xp instead of x[p] . By N (Z) we denote the set
of p-nilpotent elements of Z . Over an algebraically closed field there exists the
following decomposition

Z = 〈e1, . . . , eq|epi = ei〉K ⊕N (Z). (32)

Suppose that a group G acts on a space V and W is a G-invariant subspace.
We set

V G = {v ∈ V |g ∗ v = v, g ∈ G};
V G(modW ) = {v ∈ V |g ∗ v = v(modW ), g ∈ G}.

Proposition 7.1. Let R = u(L)#K[G] be a PI-algebra, L has a finite -
dimensional central restricted ideal Z with [L,L] ⊂ N (Z), and ωK[G] ∗ L ⊂ Z .
Then there exists a subgroup of finite index B ⊂ G such that

dimL/(LB(modN (Z))) <∞.

Proof. We suppose that the ground field K is algebraically closed. Let us
factor out N (Z) and for simplicity keep the same notations. By (32) we have

Z = 〈e1, . . . , eq|epi = ei〉K . (33)

Recall that x is called a p-element if xp = x . An easy check shows that there are
only finitely many p-elements in (33), namely {n1e1 + · · ·+nqeq|ni ∈ {0, 1, . . . , p−
1}} . Then Aut(Z) ⊂ Spq . Hence, there exists a subgroup of finite index B ⊂ G
acting trivially on Z .

Let us prove by induction on q = dimZ that dimL/LB < ∞ . Let q = 1,
then Z = 〈e0〉K where ep0 = e0 . We have

g ∗ x = x+ β(g, x)e0, β(g, x) ∈ K, g ∈ B, x ∈ L.

We observe that β : B × L → (K,+) is the mapping into the additive group
of the field, which is K -linear by the second argument. We set L1 = L . If
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β(B,L1) 6= 0 then there exist g1 ∈ B , x1 ∈ L1 such that β(g1, x1) = 1. We
consider L2 = {x ∈ L1|β(g1, x) = 0} , then dimL1/L2 = 1. If again β(B,L2) 6= 0
then there exist g2 ∈ B , x2 ∈ L2 such that β(g2, x2) = 1. Then we define
L3 = {x ∈ L2|β(g2, x) = 0} and dimL2/L3 = 1, etc. Suppose that we can make
n steps. Then we have the elements g1, . . . , gn ∈ B ; x1 ∈ L1 , . . . , xn ∈ Ln such
that

(gi − 1) ∗ xi = e0, i = 1, . . . , n; (gi − 1) ∗ xj = 0, 1 ≤ i < j ≤ n. (34)

We apply identity of Lemma 4.2

F2(x1, . . . , xn, g1, . . . , gn) =
∑
π∈Sn

απ(g1 − 1) ∗ xπ(1) · · · (gn − 1) ∗ xπ(n) = en0 ≡ 0,

(35)

because by (34) the only nontrivial term is given by the identity permutation.

Of course, (35) is a contradiction. This contradiction proves that we cannot
make n steps. Therefore, for some i ∈ {1, . . . , n} we have β(B,Li) = 0. We
remark that Li = LB and dimL/LB < n . Since B acts trivially on Z , we have
Z ⊂ LB ; also we observe that LB is a restricted subalgebra.

Now suppose that dimZ = q > 1. Set D = 〈e2, . . . , eq〉K . We consider

L̃ = L/D , Z̃ = Z/D . We set L1 = LB(modD), by the inductive assumption for
q = 1, we have dimL/L1 < ∞ . Hence, ωK[B] ∗ L1 ⊂ D . We apply inductive
assumption for D ⊂ L1 , where dimD = q − 1, and obtain that dimL1/L

B
1 <∞ .

It remains to remark that LB1 = LB . Now we have proved that if K is algebraically
closed then there exist the subgroup of finite index B ⊂ G and the number l such
that dimL/(LB(modN (Z))) < l .

Now we consider the case of an arbitrary field K . Note that we can extend
K by adjoining finitely many roots of p-polynomials and obtain the decomposi-
tion (32) (see [6]). Let K̄ ⊃ K be such an extension and dimK K̄ = m . Given a
K -space V we set V̄ = K̄ ⊗K V . Then dimK L̄/(L̄

B(modN (Z̄))) < t = lm .
Pick arbitrary x1, . . . , xt ∈ L . Then there exist α1, . . . , αt ∈ K such that
α1x1 + · · ·+ αtxt ∈ L̄B(modN (Z̄)). This means that for any g ∈ B we have

(g − 1) ∗ (α1x1 + · · ·+ αtxt) ∈ N (Z̄) ∩ L ⊂ N (Z).

This relation reads also as dimK L/(L
B(modN (Z))) < t . This concludes the

proof.

Now we come back to the proof Theorem 3.1.

Proof. The sufficiency was proved above. Now suppose that u(L)#K[G] sat-
isfies a nontrivial polynomial identity.

First, let us prove that there exist G-invariant restricted subalgebras Q∗ ⊂
H∗ ⊂ L satisfying conditions 1) of Theorem. We recall the steps of the proof of
Theorem 1.3 in [15] (see also this construction in [16] and [3]).

1) The existence of a nontrivial identity in u(L) implies that for some
number m we have δ(L) = δm(L) and dimL/δ(L) <∞ . We set D = δ(L).

2) We apply Theorem 6.7 on bilinear maps and conclude that the commu-
tator subalgebra D2 = [D,D] is finite dimensional. We set



394 Bahturin and Petrogradsky

C = CD(D2) = {x ∈ D|[x,D2] = 0} .
Then dimD/C <∞ , and C3 = 0.

3) We have dimC2 <∞ and (C2)p is a finitely generated abelian p-algebra.
By the structure of such algebras Q∗ = N ((C2)p) is finite dimensional. Then the
proof shows that H∗ = C(C,Q∗) = {x ∈ C|[x,C] ⊂ Q∗} has finite codimension in
C .

We trace these steps and see by Lemma 2.4 that D , C , Q∗ , and H∗
are restricted invariant subalgebras. Hence, we obtain the required G-invariant
restricted subalgebras Q∗ ⊂ H∗ ⊂ L , where H∗ is nilpotent of step 2.

Second, we apply results of Section 6.. By Theorem 6.8 there exist the G-
invariant restricted subalgebra of finite codimension L0 ⊂ L and the subgroup of
finite index G0 ⊂ G such that dim(ωK[G0] ∗L0) <∞ . Without loss of generality
we may assume that G0 to be normal in G . We set Q0 = Q∗∩L0 , H0 = H∗∩L0 .

Next we consider Q1 = Q0 + ωK[G0] ∗ H0 ⊂ H0 , by this construction
dimQ1 < ∞ . We observe that Q1 is a subalgebra, since [H0, H0] ⊂ Q0 . Let us
check that Q1 is restricted. By the axioms of the p-map [6]

(x+ y)[p] = x[p] + y[p] +

p−1∑
i=1

si(x, y), x, y ∈ H0, (36)

where each si(x, y) is the linear span of commutators in x, y of length p . Since
H0 is nilpotent of step 2, all si(x, y) are equal to zero in the case p > 2 or belong
to Q0 for p = 2. We compute

((g − 1) ∗ x)[p] = (g ∗ x− x)[p] = (g ∗ x)[p] − x[p]

= g ∗ (x[p])− x[p] = (g − 1) ∗ (x[p]), g ∈ G0, x ∈ H0,

where in the case p = 2 we have some additional summands from Q0 . For arbitrary
x ∈ Q1 we treat xp again by (36) and conclude that Q1 is restricted. We also
easily observe that Q1 is G-invariant because H0 , Q0 are G-invariant and G0 is
a normal subgroup of G in which case G · ωK[G0] = ωK[G0] ·G .

We set H1 = CH0(Q1) = {x ∈ H0|[x,Q1] = 0} . Then H1 is G-invariant,
dimH0/H1 <∞ , Q1 is central in H1 , [H1, H1] ⊂ Q0 ⊂ N (Q1), and ωK[G0]∗H1 ⊂
Q1 . Now we can apply Proposition 7.1 to the smash product K[G0]#H1 where
Z = Q1 . We obtain the subgroup of finite index G1 ⊂ G0 and the subalgebras

Q = N (Q1), H = HG1
1 (modQ), (37)

where dimH1/H <∞ . The proof of Proposition 7.1 allows us to assume that G1

is normal in G . The construction (37) shows that Q,H are G-invariant and that
G1 acts trivially on H/Q .

Finally, we use Theorem 1.1 and find the subgroup A ⊂ G1 such that the
conditions 2) of Theorem are satisfied.
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