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Abstract. We present a new description of the moment polytope associated
with a complex projective variety acted on by a reductive group. We apply this to
give a short proof of certain inequalities due to Manivel and Strassen concerning
the decomposition of (inner) tensor products of irreducible representations of the
symmetric group, and to exhibit, in a concrete example, a complete system of
inequalities.

1. Introduction

Let G be a connected reductive linear algebraic group over the complex numbers,
V' a finite-dimensional rational G-module, and X an irreducible closed G-stable
subvariety of the projective space PV . We are interested in the G-module struc-
ture of the homogeneous coordinate ring C[X], as encoded in the moment polytope
of X.

Choose a Borel subgroup B of G and a maximal torus 7" C B, and denote
by X(T) its character group. Let D be the (rational) positive Weyl chamber
in £ = X(T)®z Q with respect to B. For each x € X(T) N D we choose a simple
G-module V() with highest weight x. For rational G-modules V;, V, we write
Vi* for the dual of V;, and V; < V, to mean that some G-module isomorphic to V;
is a submodule of V5.

The moment polytope of the projective G-variety X is defined by

Ps(X) :{%:nz 1,V < C[X]n} c D.
It is indeed a polytope (see Mumford [9], Brion [3], or the theorem below). Note
that Pg(X), like C[X], depends on the embedding of X in projective space. The
description of moment polytopes by linear inequalities has been a subject of recent
research, for example by Sjamaar [11], Brion [4], and Berenstein-Sjamaar [1].

Let I'(V) denote the set of weights of V' with respect to 7. We write
v = @D, erv) vy for the decomposition of v € V into weight vectors. The sup-
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port suppz of a point = [v] € X is the set of all v € I'(V') such that v, # 0,
and conv(supp z) is its rational convex hull in E. Set

P(z) = ﬂ conv (supp uzx),

ueU~—

where U~ denotes the unipotent radical of the Borel subgroup B~ opposite to B.
Note that P(z) is a polytope and that there are only finitely many of them as
x ranges over X, simply because I'(V) and hence also the number of possible
supports is finite.

Theorem 1.1. Forall x € X,
Po(X) 2 P(z) D,

with equality for all x in a non-empty Zariski open subset of X .

The proof of the theorem appears in the next section. In the subsequent
sections we demonstrate its usefulness by applying it to the decomposition of
tensor products of irreducible representations of symmetric groups. Manivel [§]
and Strassen (unpublished) have proven inequalities imposing restrictions on the
possible decompositions. Explicitly, they studied for m € N linear inequalities
satisfied by the set

T 70
P(m) = {(Zl ;’“) n>1m () <mg,[n] <[me o [wk]},
where 7 F n denotes a partition of n with length [(7) and corresponding isomor-
phism class [r] of simple S,,-modules. P(m) is in fact a moment polytope, which
enables us to employ the above theorem. That does not only lead to a simple and
transparent proof of Manivel’s and Strassen’s inequalities, but also opens up the

way to further ones. We show this by giving a complete system of inequalities
defining P(3,3,3).

Acknowledgements. The author thanks Volker Strassen for introducing him to
this problem, for access to his unpublished notes, and for helpful discussions,
furthermore him, Annette A’Campo-Neuen, Jiirgen Hausen, and the referee for
their valuable comments on earlier versions of this paper. Finally, use of the
beautiful LiE program [5] is gratefully acknowledged.

2. The moment polytope

Recall that a vector 0 # v € V or a point [v] € PV is called unstable (with respect
to G) if 0 lies in the closure of the orbit Gwv, and semistable otherwise. The
unstable vectors in V' together with 0 are precisely the elements of the null cone
of V', i.e., the subvariety defined by all non-constant homogeneous G-invariant
polynomials on V.

The following lemma appears more or less explicit in [10], Lemma 3.8, and
in [12], §2.

Lemma 2.1. A point x € X is semistable if and only if 0 € P(z).



FrANZ 541

Proof.  We denote the set of one-parameter subgroups of an algebraic group H
by 9(H). According to the Hilbert-Mumford criterion, x is unstable with respect
to G if and only if it is unstable with respect to some A € Y(G). We may even
assume \ = g 'pg for some p € Y(T) and some g € U~. Let us recall the
argument: The intersection of B~ with the parabolic subgroup

PA)={geqG: %in& At)gA(t)™" exists in G}
-

contains a maximal torus 7" of both groups (cf. [2], Cor. 14.13 or [13], Cor. 8.3.10).
Since any two maximal tori of a linear algebraic group are conjugated, it follows
that A is conjugated in P(\) to some v € YP(T"), and v to some p € YP(T)
in BT =U~ x T, hence even by some g € U~. This proves the claim because z
is also unstable with respect to v, as one readily verifies.

The lemma now follows from the fact that gz is semistable with respect to
all A € Y(T) if and only if 0 € conv(supp gz). u

Proof of Theorem 1.1. Let n > 1 and x € X(T) N D. Denote by z~
the point in PV}, with suppz™ = {—x}, and by C, its (closed) G-orbit. As
observed by Mumford [9], v = x/n € Pg(X) if and only if ¥ = ¢,(X) x C, C
P(Sym"V & V&)) has semistable points, where ¢,: PV < P Sym"V is the
Veronese embedding.

Let S, be the set of all z € X such that (¢(z),z~) € Y is semistable. The
null cone of a G'-module is Zariski closed, so S, is Zariski open, and only empty
if Y has no semistable points. Hence, if we look for semistable points of Y, it
suffices to test those of the form (p,(z),z7). Any v € U~ fixes ~, and

conv (supp u(ps(z),27)) = conv (supp (ups(z),27))

= conv (supp ¢n(uz)) — x = nconv(supp uz) — X.

Therefore, the preceding lemma implies that (p,(z),z~) is semistable if and only
if v € P(x), whence
Pa(X)=J P(x)nD.
r€X
If 41, ..., v are the vertices of the finite number of polytopes appearing
in this union, then for all z € S,, N---N S, they are all contained in the
polytope P(z) N D, and finally Pg(X) as well. u

Though in principle the theorem gives a complete description of the moment
polytope, we will use it only as an outer approximation because it is very difficult
to determine the support of ux for all u € U~. Typically, the argument goes as
follows: One shows that for all z in a dense subset of X there is a u € U~ such
that suppuxz C S for a fixed S; then the theorem implies Pg(X) C conv(S)N D.

We finally formulate an inner approximation of the moment polytope which
also appears in [11], Lemma 7.1; it will be used in Section 5. Call a subset S C E
free if no two elements of S differ by a root of G (with respect to 7).

Proposition 2.2.  If S C (V) is free, then conv(S) N D C Pg(PV).
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Proof. @ We begin with a general remark about the moment polytope of a
projective G-variety X C PV: Let K be a compact form of G such that TN K
is a maximal torus of K, and denote the Lie algebras of G, T', and K by g, t,
and ¢, respectively. Equip V with a K-invariant Hermitian scalar product. Then,
as shown in [9], the moment polytope Pg(X) is the intersection of D with the
image of the moment map'

{€v, v)
(v, v)

for [u] € X and & € g. Here it* C g* denotes those C-linear forms on g which
assume purely imaginary values on £, and E is considered as a rational subspace
of t* N¢* by identifying characters with their differentials.

Now let x = > sty € conv(S) be some convex combination. Choose
v € V such that [jv,||*> = ¢, for all v € S, and 0 otherwise. We claim that [v] is
a preimage of x under the moment map of PV': For £ € t,

wN)(€) =Y (Evpvy) = Y AE)llwl* =D (Ot = x(©),

7Y

pr X =, p(u])(€) =

and for any root « of g we have SN(S+a) = @ by hypothesis, hence for all £ € g,

p([v]) (&) = Z (€vy,vy) =0,

7Y

which proves the claim. [ ]

3. The symmetric group

Let m be a partition, ¢.e., a non-increasing finite sequence of natural numbers.
We write m F n if 7 partitions the number n € N, and I(r) for the number of
non-zero elements of 7. We will consider 7 as a vector in Q™ for all m > ().
If 7 + n, we denote by [r] the module of the symmetric group S, determined
by m, and by V™ the GL(V)-module determined by 7 if V' is a complex vector
space of finite dimension not less than /(7). (More precisely, [r] and V™ denote
isomorphism classes of such modules.) For example, if 7 = (n), then V™ = Sym™ V'
(for V' #0), and [r] is the one-dimensional trivial S,-module.

For the general linear group GL,, we follow the usual conventions: We
choose the group 7, of diagonal matrices as maximal torus and the upper tri-
angular matrices as Borel subgroup. U, is the group of lower diagonal matrices
with ones on the diagonal. The weights of the standard action of 7,, on C™
are denoted by €1, ..., g,,. We identify the space F with Q™ hence the Weyl
chamber consists exactly of those vectors whose coordinates form a non-increasing
sequence. In addition, we denote by E(i',i,¢) € U, the elementary matrix which
differs from the identity only by the entry ¢ € C at position (¢',4), i’ > i.

!For a true moment map for the K-action on PV in the sense of symplectic geometry, u
must be scaled as to map to &, the exact factor depending on the symplectic form chosen for PV'.
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We want to describe the decomposition of tensor products [m] ® - - ® [my]
of S, -modules into simple modules in a way which makes the dependence on the
factors [m;] as clear as possible. To make life easier, we will neglect multiplicities
and only ask which simple modules appear in such tensor products. Of course, it
suffices to describe whether the trivial module appears or not.

In order to bring the representation theory of the general linear group into
play, and in particular our theorem, we content ourselves with the study of the fol-
lowing set, which gives an “asymptotic” description of the possible decompositions:
For m € N¥ define the subset

P(m) = {(%, ,%) n 2> 1,7rj|—n,l(7rj) Sm]‘,[n] < [7T1]®®[7Tk]}
of E(m) = Q™ & ---® Q™. (This is equivalent to the definition given in the
introduction since S,-modules are isomorphic to their duals.) Note the symmetry
of P(m), which is due to the commutativity of tensor products: If, say, m; = mao,
then P(m) is stable under the transposition of the first two “components” of
elements of E(m). If all elements of m are equal, then P(m) is stable with
respect to the canonical action of S on the ambient space.

Proposition 3.1. Let m € N*. Then
P(m) == PGLTILIXXGLmk (P(le ® e ® ka)).

In particular, P(m) is a rational polytope.

Proof. This is a trivial corollary of the following well-known fact, which is itself
an easy consequence of the Schur correspondence between representations of the
symmetric and those of the general linear groups (a good reference for this is [7],
in particular Lecture 6):

Let Vi, ..., Vi be finite dimensional complex vector spaces and 7y, ..., 7
partitions of n € N with I(m;) < dimV; for all ¢. Then the multiplicity of
the isomorphism class V" ® --- @ V'* in Sym"(V; ® --- ® V}), considered as
a GL(V}) x --- x GL(V})-module, equals that of the trivial representation of S,
in [m]®---®[mg]. Furthermore, all simple summands of the symmetric power are
of this type. [ ]

Hence, we are led to study the moment polytope of the G-variety PV,
where V =C™ @ ---® C™ and G = GL,,, X --- X GLy,, . The canonical basis
of V' yields a decomposition into weight spaces

‘/v(Eil,...,Eik) == Cezl ® P ® eZk;

we will think of these basis vectors as the integral points in a hypercube (with
different edge lengths), and of v € V as a C-valued function on these points.
By the i-th slice in direction j we mean the collection of the points with j-th
coordinate equal to ¢, and by the column over a point in direction j those points
whose j-th coordinate is greater than that of the given point, all other coordinates
being equal. The action of an element Ej;(i',¢,¢c) € U,,_lj C U~ on v consists in
adding the c-fold values of the i-th slice in direction j to the corresponding values
of the i'-th slice, i > 7, leaving all others constant.
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Figure 1: P(4,4): Support of a generic vector (a) after 6 moves, (b) at the end.

We now want to describe a method to determine sets to which the support
of a generic element of V' can be reduced. Let v € V. Generically (i.e., for all v
in a Zariski open subset), all coordinates v; of v are non-zero. If I and I' are
two positions with I’ in the column over I, say, in direction j, we can therefore
clear the entry at I' by applying the element Ej;(I, I;, —vy/vr) € Un, €U
to v. Generically, all other coordinates are still non-zero, and we can repeat
this for new I and I', unless we are certain that we have already cleared the
I-th coordinate. Note that, if the slice through I’ in direction j contains cleared
coordinates, another elimination step as described above will generically turn them
non-zero again, unless the corresponding coordinates in the slice through I have
been cleared, too. Dropping the word “generically”, we arrive at the following
“algorithm”:

Method 3.2.  We consider a function on the integral points {1,... ,m;}x---X
{1,...,my} in a hypercube; each entry may assume the values “zero” or “non-
zero”. Initially, all entries are non-zero. We are allowed to make an arbitrary,
but finite number of “moves” to eliminate entries, 7.e., to make them zero, at
the cost of turning other, already eliminated entries back to the non-zero state.
More precisely, if the entries at positions I and I’ are non-zero, where I’ is in
the column over I in direction j, one may change the I’'-the entry to zero, but
all zero entries of the slice through I’ in direction j return to non-zero, unless the
corresponding entries in the slice through I are zero as well.

By Theorem 1.1 and the motivation given above, we conclude that after each
move the convex hull of the support of the filled boxes is an outer approximation of
the moment polytope, as is the intersection of the convex hulls of all (with respect
to inclusion) minimal supports which can be obtained this way.

Example 3.3.  Let us see how this method works for P(my, my), m; < may:
Use the first slice in the first direction (i.e., the first column) to clear all other
entries in the first row. Since the entry (1,1) is still non-zero, we may now take
the first slice in the second direction (i.e., the first row) to clear all other entries
in the first column. Cf. Figure 1 (a) for the remaining support. Next we take the
second column resp. row and clear the same way all boxes in them but the first
two. Previously cleared boxes will never turn back to the non-zero state, because
the first box in the second row resp. column is cleared. If we go on like this, the
support will be reduced to the “diagonal”, as shown in Figure 1 (b).



FrANZ 545

From this we conclude (with the canonical identification Q™ C Q™2)

P(my,mg) C conv{(es;6;): 1 < i <m}nD
={06X) X E€EQ™, x1> > Xmy >0, X1+ -+ xm, =1}

In fact, we have equality, as follows directly from the definition of P(m;, my) (and
the selfduality of representations of symmetric groups).

4. Inequalities

As an application of the method described in the previous section, we derive some
inequalities proven by Strassen using a different approach (unpublished).

Proposition 4.1.  Let m € N*, and choose vectors o/ € Q™ , 2 < j < k.
Let b € Q™ be the vector of the my largest elements, in descending order, of the
set {Z] afj td1,... ik}, counted with multiplicities. Then, for every (x';... ;x*)
in the polytope P(m),

(b, x') > Z(a’“,x’“>- ()

In fact, one may always assume that the components of the vectors a’ are
non-increasing, as are those of b, because these inequalities imply all others. The
preference of the first component of m is of course arbitrary; this is just to avoid
a too clumsy notation.

Proof.  Without loss of generality, we may assume that all sums Zj a{j are
distinct. This assumption simplifies the exposition of our proof.

Let I(i) € N* denote the unique index such that b; = > ag(i)j. Obviously,
all weights but those at positions (i1, /(7)) with i; > i satisfy inequality ().
Hence, in terms of our method, we have to show that we can clear all entries
with these coordinates. But this is simple: Start by eliminating the column
over (1,1(1)) in direction 1 with the slice 4y = 1. If you do the same for the
column over (2,1(2)) with the slice i1 = 2, the previously cleared entries remain

untouched. Now continue until all undue boxes are cleared. ]

Note that, while proving a single inequality, we have always eliminated
entries along a fixed direction (as the proposition is stated, the first). That is,
we have only used some subgroup UT;J, of the whole unipotent radical of G. This
hints to the fact that Strassen’s inequalities are far from being complete; we will
give an example of this in the following section.

As a special case, one may choose an r € N* and set

. 1 i<
af:{ LT ()

0 Z>7"J

The corresponding inequalities are due to Manivel [8], Proposition 3.5. They are
strictly weaker than Strassen’s: The point (1/3,1/3,1/6,1/6;2/3,1/3;2/3,1/3,0)
for instance satisfies all inequalities of the form (*x) for P(4,2,3), but violates
(%) for a® = (1,0) and a® = (2,1,0).
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5. An example

In this section we take a closer look at P(3,3,3). Similar to the previous sec-
tions, we will write an element of E(3,3,3) = Q*® Q3 ® Q? as a triple x =
(x%; %% x%). Recall from Section 3 that P(3,3,3) is invariant under the action
of S3 on E(3,3,3) which permutes x*, x?, and x3.

Proposition 5.1. The polytope P(3,3,3) is the convex hull of the points

o= (1/3,1/3,1/3; 1/3,1/3,1/3; 1/3,1/3,1/3),
ve = (1/3,1/3,1/3; 1/3,1/3,1/3; 1/2,1/2, 0),
vs = (1/3,1/3,1/3; 1/3,1/3,1/3; 1, 0, 0),
v =(1/3,1/3,1/3; 1/2,1/2, 0;1/2,1/2, 0),
vs = (1/3,1/3,1/3; 1/2,1/2, 0; 2/3,1/6,1/6),
ve = (1/3,1/3,1/3; 2/3,1/3, 0; 2/3,1/3, 0),
ve=(1/2,1/4,1/4; 1/2,1/2, 0; 3/4,1/4, 0),
v = (1/2,1/2, 0;1/2,1/2, 0;1/2,1/2, 0),
v =(1/2,1/2, 0;1/2,1/2, 0; 1, 0, 0),
yio = (1/2,1/2, 0; 2/3,1/6,1/6; 2/3,1/6,1/6),
ymi=( 1, 0, 0, 1, 0, 0; 1, 0, 0),

and their images under the Ss-action. Dually, P(3,3,3) is the intersection of the
Weyl chamber of GL(3) x GL(3) x GL(3) with the subspace determined by the
equalities x3 + x5+ x3 = 1, j € {1,2,3}, the halfspaces determined by x%3 > 0,
j € {1,2,3}, and the halfspaces determined by the inequalities (h,x) < 0, where
h runs through the vectors

hy =(1,0,0; 1,0,0; —2,—1,-1),
he =(1,1,0; 1,0,0; —2, -2, 1)
hs =(0,1,0; 1,0,0; —1,—2,—1),
hy =(2,0,1; 2,0,1; —4, -2, -3),
hs =(2,0,1; 2,1,0; —4, -3, -2),
he =(1,2,0; 2,0,1; —3,—4,-2),
hy =(1,2,0; 2,1,0; —4, -3, —2),

and their images under Ss. Furthermore, both descriptions are minimal. In all,
P(3,3,3) is a 6-dimensional polytope with 33 wvertices and 45 facets.

Note that only the first two inequalities are covered by the results of the
preceding section.

Proof. That both descriptions are minimal and dual to each other can be
checked with any program for convex hull computations, e.g., the “convex” pack-
age [6]. Granting this, it suffices to show that P(3,3,3) contains the given points
and is itself contained in the second set of halfspaces (the equalities and first
inequalities being obvious).
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Figure 2: Weights satisfying the inequalities determined by hq, ..., A7

We prove the inequalities by the method described in Section 3. Figure 2
shows, for each inequality, to which weights the support of a generic element
of C?® C? @ C? must be reduced. We describe explicitely how this may be done
for the inequality determined by A7, the others being even simpler:

(2,1,1) — (2,1,2), (2,1,1) = (2,1, 3), (1,1,2) —» (1,1, 3)
(1,2,3) — (2,2, 3), (2,1,1) = (2,1, 2).

(Here we have written I — I’ if one clears the box I' with the slice through I in
the direction connecting I and I'.)

As for the points, one possibility is to use the definition of P(3,3,3) and to
show that some tensor product contains a suitable submodule. This may become
quite difficult because the minimal positive integer n for which ny € X(T") does
not always do the trick: For example, we have v, € P(3,3,3), though [3, 3] is not
a submodule of [2,2,2] ® [2,2,2], so one has to calculate at least in Sj5.

Alternatively, one may resort to Proposition 2.2, which reduces the problem
to finding suitable free sets of weights. We content ourselves with displaying v, as
a convex combination of such a set:

67, = 1P Pe1+e9Pea@er+ e3PegPey
+ 81@52@82+62@63@62+83@61@82. | |
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Remark 5.2.  While proving inequality h; by our method we have cleared the
entry (2,1,2) in the first step, refilled it in step 4 and cleared it again at the
end. Though one can proceed differently, there is no sequence of moves such that
the support of the generic vector is non-increasing. This makes searching for all
minimal positions algorithmically much more difficult.

Remark 5.3.  Note that the vertex (1,0,0; 1,0,0; 1,0,0) lies in the interior of
the halfspace determined by A7, though the corresponding facet is not induced by
a wall of the Weyl chamber. This shows that the moment polytope Pg(PV(y)),
Vix) a simple G-module, need not be the intersection of the Weyl chamber and
the cone with apex x generated by the moment polytope.

Remark 5.4. We have seen the efficiency of Proposition 2.2 in proving that
some point belongs to the moment polytope. Unfortunately, this does not always
work: The point v = (1/2,1/2,0; 1/2,1/2,0; 1/2,1/3,1/6) lies in P(3,3,3), but
not in the convex hull of any free set of weights. The second assertion can be seen
as follows: Two weights of C?*® C3*® C? differ by a root if and only if two of their
three components are equal. By looking at the first two components of v we see
that any minimal free set S with v € conv(S) has at most 4 elements, hence we
must have

(1/2,1/2,0; 1/2, 1/2,0) = 01161 DEL T U121 DE2+ Q21 E2DET + Qo0 D €9

for some a11, Q12, A21, G29 € [0, 1] This implies a1 = a9 and 12 = Q21 . But
now there is no way to choose the third component of these weights such that the
above convex combination adds up to v while the weights remain free.

Hence, free sets of weights in general do not suffice to determine the whole
moment polytope. There are probably other examples where even some vertex
fails to be accessible this way.

Further results on moment polytopes of projective spaces of representations
can be found in [11], §7.1, and the references given therein.
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