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Abstract. There may exist many non-isomorphic complete filtered Lie al-
gebras with the same graded algebra. In [6], we found elements in the Spencer
cohomology that determined all complete filtered Lie algebras having certain
graded algebra provided that obstructions do not exist in the cohomology at
higher levels. In this paper we use the Spencer cohomology to classify all graded
and filtered algebras over a real vector space of dimension two.

1. Introduction

Closed transitive Lie algebras are subalgebras of the Lie algebra D(K"™) of formal
vector fields. If K a field of characteristic zero, X is a formal vector field in D(K")

if
0
X: Xz goee ydin 5
; (21 x)axi

where X; in K[[z1,...,2,]]. The vector space D(K") is a Lie algebra under the
usual bracket operation

YT 90X 9
[X,Y]:Z{X 7. —-Y o, }8—%.

,J

If D¥(K") is the set of X € D(K") such that each X’ has no terms of degree k
or less, then D(K™) has a natural filtration

D(K™) > D°(K") > D*(K") > D*(K") D --- .

Guillemin and Sternberg studied local geometries by examining Lie algebras
of formal vector fields [3]. More specifically, if we choose a coordinate system and
replace each infinitesimal automorphism (which is a vector field) with its Taylor
series expansion about the origin, we obtain a subalgebra L of D(K"). Letting
Ly = D*(K") N L, we have

LDLoDLlDLQD"'
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with [L;, L;] C L;;. Guillemin and Sternberg limited their study to transitive
geometries. That is, for any two points there exists a local transformation that
takes one point to other. In infinitesimal terms, there exists an X € L such that
X(0) = v for each v € K". We also demand that L be closed. If X € D(K") and
there exists an X; € L such that X and X, agree on terms of up to order i for
i=1,2,...,then X € L. A subalgebra L C D(K") satisfying these properties is
a closed transitive Lie algebra. Two such algebras are isomorphic when they are
equivalent by a formal change of coordinates.

A complete filtered Lie algebra over a field K of characteristic zero is a Lie
algebra with a decreasing sequence of subalgebras L = L1 D Ly D Ly D ---
satisfying the following conditions.

1. N, Li = 0.

2. [L;,L;] C Liy; (by convention L_o = L).

3. dim Li/Lis1 < 0.

4. f x € L; for i >0 and [L,z| C L;, then z € L;1;.

5. Whenever {z;} is a sequence in L such that z; — x;,; € L; for i > 0, then
there exists an x € L such that x — z; € L;.

Every complete filtered Lie algebra is isomorphic to a closed transitive subalgebra
of D(K™) [3].

A graded Lie algebra is a Lie algebra H;i_1 G that satisfies the following
conditions.

1. [G;,Gj] C Giyj (by convention Gy = 0).
2. dimG; < 00.
3. If x € G; for i >0 and [G_1,2] =0, then = =0.

Any graded Lie algebra is a complete filtered Lie algebra if we let L; = G; X G;11 X
-+« . Conversely, if L is a complete filtered Lie algebra, then the bracket operation
on L induces a bracket operation on

We refer to G as the associated graded algebra of L. An isomorphism of two
complete filtered Lie algebras is a Lie algebra isomorphism preserving the filtration.
Similarly, an isomorphism of two graded Lie algebras is a Lie algebra isomorphism
preserving the gradation.

There may exist many non-isomorphic complete filtered Lie algebras with
the same graded algebra. Given a graded Lie algebra [[G,, it is an interesting
problem to try to reconstruct all complete filtered Lie algebras L whose associated
graded algebras are isomorphic to [[G,. One of the primary tools for analyzing
this problem has been the Spencer cohomology. A complete filtered Lie algebra is
isomorphic to its graded algebra provided certain cohomology groups vanish [3,
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7,9, 12]. Tt is more difficult to determine the complete filtered Lie algebras
that are not isomorphic to their graded algebras. Many of the known results
have hypothesis that are difficult to verify. In [6] we outlined a theory, where
certain elements in the Spencer cohomology determine all the complete filtered
Lie algebras having a certain graded algebra provided that obstructions do not
exist in the cohomology at a higher level. In this paper we use the theory to
classify all graded and filtered algebras over a real vector space of dimension two.
Cartan first classified these algebras as pseudogroups on R? [1].

2. Graded Algebras with dimG_; =2

If [[G, is a graded Lie algebra, then V = Gy is a linear Lie algebra acting
faithfully on G_; by [Go,G_1] C G_1. For p > 0, we may consider G, to be a
subspace of V@SPH(V*). If X € G, and vy, ... ,v, € V, define X € V@SPT(V*)
by

X(vo, ..., vp) = [ [[X,v0], v1], - - - vp).

Since [G_1,G_1] = 0, the Jacobi identity implies that X (v, ... ,v,) is symmetric
in vg,...,v,. The bracket operation on [[ G, then becomes

_ 1 _
[Xay](UO:'-' 7UP+Q) = mZX(Y(UJO7'-- vvjq)vvjq+17"- ,'Ujp+q)

1 o
— mZY<X(UkO, ,vkp),vkp+l,... ,Ukp+q>.

In particular, if X € G, with p > 0 and v € G_;, then

(X, 0] (v, ... ,0,) = X(v,01,...,0,).

Conversely, given a sequence V = G_1,Go,Gy,... in V@ SPTHV*), we know
that [[G, is a graded algebra under the bracket operation described above if
[GP7 Gq] C Gp+q :

Given a finite sequence V = G_, Gy, Gy, ... ,G,_1 with G, C V@SPTH(V*)
and [Gp, G,] C G,y with p, ¢, and p + ¢ all less than n, we wish to impose
conditions on subspaces G; C V@S (V*) with ¢ > n that will allow [][ G, to be a
graded algebra. Define the first prolongation A'P of a subspace P C V ® SPTH(V*)
to be the subspace of maps T € V ® SPT(V*) such that for all fixed v € V,
T(v,v1,...,v,) € P. The k-th prolongation is defined inductively by A'A*1P.
Thus, G, C A'G,_; and [G,,, Go] C G,,. Hence, G,, must be an invariant subspace
under this representation. Since [G,,G,] C G, whenever p < n, ¢ < n, and
p + q = n, we must not choose GG,, to be too small. If such a G,, can be selected,
then we are guaranteed a graded algebra containing G, .

For a given Lie algebra Gy C gl(V') acting on a vector space V = G_1, it is
often possible to compute all graded algebras arising from G_; and Gy. Suppose
that dimV = 2 and Gy is a subalgebra of gl(V'). The prolongation A'Gy of Gy
consists of T € V ® S*(V*) such that for v € G_;, T(v) € Gy. We can represent
elements T € V ® S?(V*) using matrices

1 1 1
)
ayp Gip Qo9
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where

T(ei,e;) = agjel + a?jeg,
if {e1,eo} is a fixed basis for V. Hence, T is in A'Gy if and only if the matrix is
in GGy whenever the first or the last column of the matrix is deleted. In general,

we shall write ) . ) .
(allml ay..1o 0 Q1o..9 a22~..2)

2 2 2 2
a11...1 A1.12 "t Q199 G399
for an element in A"GY.

Proposition 2.1.  Let V' be a real vector space with dimV = 2. The following
subalgebras Gy are the only subalgebras of gl(V') up to conjugation.

1. dimGy=1 and A € R,

(05) (6 ) (6 n)- ()

2. dimGyg=2 and A € R,

(00)-( o) G 2) (5 o)

3. dim Gy = 3,

4. dim Gy =4, gl(V).

A complete determination of Lie algebras of dimension less than or equal
to three can be found in Jacobson [5]. To construct the faithful representations of
these algebras in gl(V') up to conjugation, see [4, 5].

Proposition 2.2.  Let V' be a real vector space of dimension two. The prolon-
gations of Gy C gl(V') are the algebras (1), (3), (4), (6)-(8), (11), (14), (16),
(21), (25), (35), and (37) in Table 1.

As an example, we will compute the prolongations in (7) and (21). Let ey,
es be a basis for V' and recall that we can represent elements T € V @ S?(V*)

using matrices
(ail aiQ aéz)
)
ayp Qip Gy

T(ei,e;) = a}jel + a?jeg.
Since T is in A'Gy if and only if the matrix is in Gy whenever the first or the last
column of the matrix is deleted, the first prolongation of (7) must be zero. On the

other hand, the first prolongation of (21) is

ay a2 as
o 0 o0 /°

Continuing, we see that the nth prolongation is

a; az -+ QApy1 Apy2
o 0 --- 0 0 '

For a more in depth treatment of prolongation, see [3, 12].

where
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Theorem 2.3. Table 1 is a complete list of all graded algebras up to isomor-
phism with V', a real vector space of dimension two, and Go C gl(V).
Table le. Graded Algebras [[ G, with Gy C gl(2,R)

L (0 ay_ (00 a\_(000a)_
~\0 0 000 0000

2. G, =0 for k>n

(8 8)_(8 8 8)""‘(8 8 8)—(0)_...

3. AA0

a 0
@90
4- a O _ a 0 0 _ a O O 0 -
00 000 0000
5. G =0 for k >n

R R (R

o 2
o O
> O
|
VN
o Q
o O
o O
> O
N——
|

o 2
o O
S O

)
)
(394 )-0-
10. Gy =0 for k >n
(6 8)-Go 06 o oo
CGD-GEn-Gae-
R R R RS
G265 a)-o-
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13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

JUDSON
G,=0for k>n
a b _ 0 0 b o 0O --- 0 b —0)— -
0 a 0 00 0O --- 00
a —b _[a -b —a _(a -b —a b o
b «a b a —b b a —-b —a

Gr,=0for k>n

e e R B RO
A# -1
(Aoa (Afl)a)_<8 Aoa (Af1)a)_'”

A# —1 and Gy =0 for k >n

(o olue) (00 o)== (0 0 0)-o-
(o olue) (00 o)== 0 o)~

A# -1

(Aoa (/\—fl)a)_<8 Aoa (/\fl)a)_(g 8 8 8)‘
=1

v e (0 0 L) @

=—n+1)/(n—1),n=2,3,... and G, =0 for k >n

A b\ (00X b ) (000 0b\
0 A+1)a) \0 0 (A+1a) 0000

|
VRN
o O
o O
o o
_
|
—~
o
N—
|

ab_abc_Oabc_”__OOa
00 0 00 00 00 000

o o>

o o

N—
|



24.

25.

26.

27.

28.

29.

30.

31.

or

ab_Oab
0 0 0 0

Gp,=0for k>n
a b\ (00
0 0 0 0
ap a2\ (ai
0 b 0

Gr,=0for k>n

(60

dim G =1 for k

()

or

JUDSON

)_..._<8

o
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32. A #£0
ab_O)\ab_OO)\ab_“.
0 c 0 0 a 00 0 a
or
a b _ 0 Xa b B 0 00 b _
0 ¢ 0 0 a 0 00O
33. A=1/2
a b 0 Xa O
(0 c)_<0 0 a)_(o)_
3. A=(n—-1)/2,n=3,4,...,and G, =0 for k >n
a b (0 Aa b (0 00 b o 0O --- 0 b —(0) -
0 ¢ 0 0 a 0000 0O --- 00

35. sl(2,R) — A'sl(2,R) — A%s[(2,R) — - - -
36. sl(2,R)

(
(
37. gl(
(

2,R) — Algl(2,R) — A%gl(2,R) —
38. gl(2,R) — (0) —
or
gl(2,R) — Als(2,R) — A25[(2,R) — - -
or

ser - (50 5)-0-

For the proof of (35)—(38) refer to Singer and Sternberg [12]. Koch proved
(25)—(34) in [10]. It remains to show that (1)—(24) are the only possible graded
algebras with dim Gy = 1 or 2. We will calculate the Lie brackets on a basis for
each graded algebra obtained from the prolongation of Go with dim Gy < 2 in the
following lemmas. The proof of the theorem follows directly from the following
lemmas and the fact that [G,, G,] C Gpi,. For the remainder of the paper we
shall let {e;,es} be a canonical basis for V = G_;.

Lemma 2.4.  Let {e,e9, Ag, Ay, ...} be a basis for (1), where

0 1 0 01
e (0 )= (000

Then the only nonzero bracket relations are [Ao,es] = e and [A;ea] = Ai-q,
where 1 > 1.

Proof.  Clearly, these relations hold as well as the relations [e;,es] = 0 and
[A;,e1] =0 for ¢ > 0. It remains to show that [A;, A;] =0. For 7 >0 and k =1
or 2, we have

[[Ao, Ajl, ex] = [Ao, [A, exl] + [Aj, [Ao, ex]]-
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If k=1, the righthand expression is zero. If £ =2, then
[[Ao, Aj], €2] = [Ag, Aj1] =0

by induction on j; hence, [Ay, A;] = 0. Similarly, if we fix j and induct on i, then
[Aia Aj] =0. |

The proofs of the following lemmas are similar.
Lemma 2.5.  Let {e1, e, Ag, Ay, ...} be a basis for (4), where

10 1 00
()30

The only nonzero bracket operations are [Ag,e1] = ey and [Aj,e1] = A;_q for
1> 1.

Lemma 2.6.  Let {e1,e9, Ag, A1,... , By, B1,...} be a basis for (8), where

10 1 00
P T A T
0 0 0 0O
b () m (00 ).

The nonzero bracket operations are

[A()a 61] = €1, [A”M 61] - Ai—l)
[Bo,ea] = e, [Bi,es] = Bi_1,

and

fori>1, and
=G+ + 1) o
[Ai,Aj] = <Z+1)'(j+1)' 1+7
=+ + 1) N
(B By = (i +1)I(G+1)! Bits.

Lemma 2.7.  Let {e,e9, Ao, A1, ..., By, By,...} be a basis for (11) where

10 010
AO:(O 1)"41:(0 0 1)
0 1 001
n= (0 ) m= (00 )

The nonzero bracket operations are
[Ao,e1] = e,  [Ajel] = By,

[Ao,ez] = €, [Ai7€2] = Ai—la
[30762] = €1, [Bi7€2] = Biflv

and

fori>1, and

((—HE+i+D!,
G+ DIG+1
=D+,
4 Bi] = i+ DG+ 1)! Biss-
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Lemma 2.8.  Let {e1,e3, Ag, A1, ... ,Bo,B1,...} be a basis for (14), where

10 -1 0 -1
(3 (30 )
0 -1 0 -1 0
P (s W (A

Then there exist nonzero bracket operations

and

[Ah Ai] = 04Ai+1;
[Ah Bi] = ﬁBi+17
[B1,Bi] = ~Ais,

where 1 =2,3,... and «, 3,7 # 0.

Lemma 2.9.  Suppose A # —1, and let {ey,es, Ao, A1,... ,Bo, By,...} be a
basis for (16), where

A0 0x 0
AO_(O )\+1)’A1_(0 0 >\+1)""

0 1 0 0 1
b (0o (00 1)

The nonzero bracket operations are

and

[A07 el] = )\617 [Alv 61] = /\Biflu
[Ag,ea] = (A4 1)eq, [Aiyea] = A,
[Bo,ea] = ey, [Bi,es] = Bi_1,

fori>1, and

QNG
AG—J)—G+D)E+j+1)
Gt DI+ 1)

[Ai, Bj]

Bi;.

The proofs of (1) through (18) follow directly from the lemmas. The proof
of (19) and (20) are special cases of Lemma 2.9. To prove (21) through (24), the
following lemma is required.

Lemma 2.10.  Consider the basis {e1, ey, AL, By} for (21), where

0 0 00 0
BO:(O 1)’Blz<o 0 1)
o (1 0y , (01
Al_(oo 7A2_ 00 )
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L {100\ ,, (010 L (001
Al_(o O O 7.A.2_ O 0 0 7-..A3_ O O 0 g e e e o

Then Gy has basis {A¥, . .. 7A£+27 By}. The nonzero relations for this algebra are
[A(1)7 61] = [Ag, 62] = €1,
and for k>1
[Af,e)] = AP 1<i<k+1,
[AF 6] = AF)D 2<i<k+2,

E+DE+7+D!
@+ )G+
[A},A;‘l] = aA;-, for some a # 0.

[A;rl’ A§+2] =

3. The Spencer Cohomology

For any graded algebra [[G,, define C*/ to be the space of skew-symmetric
multilinear maps ¢: A’ G_; — G;_1. If we define the coboundary operator

9:0% — -ttt

by
@) (w1, .y vj1) = > (=DFe(vr, - By vj50), vk,

k

then 02 = 0. The resulting cohomology groups are known as the Spencer coho-
mology groups, which we will denote by H® for 4,5 > 0. For A € G define a
map ¢ ¢ from C™ to itself by

Avg, .. ,v5) = [Ac(vr, ... ,v5)] —Zc(vl,... A vk, - g).
k

Then (dc)* = d(c?). Consequently, Gy acts on H™ | which we shall denote by
€ &1 An element € € HY is invariant if ¢4 = 0 for all A € Gy. The

set of invariant elements of a cohomology group H*/ is denoted by (H“/)!. If
n € Hom(G;, C') and & € CHLF | define € - € CHFFL by

5 ' 77(1}17 s 7vl+l)

1
= W Z (sgn J)n(g(vg(l), e ,Ua(k)))(vg(k+1), ce ,Ua(k+l)).

UESk+l

In [6] it was shown that & -7 € HI*H
The following proposition is due to Kobayashi and Nagano [7].

Proposition 3.1.  Let G = [[ G, be a graded Lie algebra. Then the following
statements are true.

1. HO’O:Gfl.
2. H® =0 fori>1.
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3. HO' = gl(G_1)/Gy.

4. H' = AN'G;_1/G; for i > 1. In particular, H** = 0 if and only if
AlGi,1 - Gz

Let L, = G, X Gpy1 X ..., and [, | be the usual Lie bracket on a graded
algebra [[G,. An n-bracket on [[ G, is a skew-bilinear map

[, ];Z:HGPXHGP_)HGP
satisfying the following conditions.
1. For XeL;,,YeL;[X,)Y], —[X,Y] € Litj1.
2. It X, Y, Ze]]Gp, then

[X, [Y7 Z];L];L + [Y7 [Z7 X];L];L + [Z7 [X7 Y];]LL € Ln—l‘

If [X,)Y], —[X,Y]e€ L, for X,Y e][G,, then [, |/

' is a flat n-bracket.

If [, ] is O-bracket, we can define an element ¢ in C%? by
¢(u,v) = [u,v] mod Ly,

for u,v € G_;. By definition C~%% = 0; therefore, 9¢ = 0. We will let ¢ € H%?
be the element in cohomology represented by ¢. Similarly, if we are given a flat
n-bracket with n > 1, we can define elements ¢ € H™? and n; € Hom(G;, H™!)
for i =0,...,n— 1. We now state several theorems from [6].

Theorem 3.2.  Let [, | be a 0-bracket on [[ G, and suppose that

2. ce (H™)

If HM' = H*? = H*3 = 0 for k > 0, then there exists a complete filtered Lie
algebra L with Lie algebra bracket [, | on [[ G, extending [, | such that [[G,
under the usual graded bracket is the associated graded algebra of L.

Theorem 3.3.  Let [, | be a n-bracket on [[ G, with n > 1, and suppose that
the following equations are satisfied.

1. no[A, B] = no(B)* —no(A)B for A, B € Gy.

2. nilA, B = ni(B)* for A€ Gy, BEG; withi=1,... ,n—1.
3. ;i[A,B] =0 for Ae G,, Be G, withp+q=1, p,qg>1.
4. A =ny(A) - -1 for A€ Gy.

5. Cc M1 =0.

6. 0A-1,.1=0 for Ae@G,.
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7. 0A - = —ni(A) -y for A€ Gy, where i =1,... ,n—1.

If H' = H%? = H*3 = (0 for k > n, then there exists a complete filtered Lie
algebra L with Lie algebra bracket |, | on [[ G, extending [, ] such that [[ G,
under the usual graded bracket is the associated graded algebra of L.

Let L and M be complete filtered Lie algebras with associated graded
algebras isomorphic to [[ G, and denote the bracket operations on L and M by
[, |o and [, ], respectively. An n-isomorphism or m-map is a linear map
v L — M such that

L 9(Ly) C My;

2. L, +, M, — M,/M,., = G, is the map L, — L,/L,11 = Gp;

3. [W(X), v(V)]m — ([X,Y]r) € M, for XY € L.
If an n-map [[G, — L exists, we can define ¢ € H™? and 7 € Hom(G;, H™?).
These elements satisfy the structure equations in either Theorem 3.2 or Theo-

rem 3.3 depending on whether n =0 or n > 1.
If « € GL(G_4), then «a acts on G, via

A%y, ... v,) = aA(a vy, .. a7 ) for A€ G, and v; € Gy
which results in an automorphism of [[G,. Hence, there is a natural action
of Aut(J[]G,) on the cohomology groups H® that sends invariant elements to
invariant elements. We denote this action by a, for o € Aut([[ G,). Furthermore,

if n € Hom(G,, H"*7), then the induced action o* on 7 is a*(n)(A4) = a.n(a'A)
for A € G,.

Theorem 3.4.  Let L and M be complete filtered Lie algebra with graded alge-
bra [[G, and let ¢ : L — M be an n-map satisfying the following conditions.

1. (HE)I =0 for k>n.
2. For k>n,

{n: Go— A" A, Bl = n(B)* —n(A)"} _
{n:Gy— HFL:n(A) = €A for some € € HR1}

3. Homg, (Gy, H*Y) =0 forn <k and 1 <i < k.

If n =0 and there exists an o € Aut([][ G,) such that a.cb = cM | then L= M.
If n > 1 and there exist n-maps ¢ : [[G, — L and ¢p = [[G, — M, and for
some a € Aut([][G,), awct =M and a*nt = nM for i =0,... ,n —1, then
L=M.
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4. The Group of n-maps

The n-maps from [[G, to itself act on the cohomological elements ¢ and 7;.
These n-maps form a group H. There exists a series of subgroups of H

H=HoDHiD- - DH,,

where 7 € ‘H; whenever 7(v) = v+ 7;(v) + 741 (v) + - -+ and 7, € Hom(G_4,G,).
In addition, H;; is normal in H;. Let c® nk,... ,nk | be the elements in
cohomology defined by the n-map ¢ : [[G, — L. The group H acts on c~
and nF via the n-map ¢o and gives elements (cX)? and (n’)°, where o € H.

Proposition 4.1.  Let ¢ : [[G, — L be an n-map that defines cohomological
elements c* and nt fori=0,... ,n—1. If 0 € H,,, then the following statements
are true.
1. If o(v) =v+o0o(v)+0o1(v)+---, ve Gy and o, € Hom(G_4,G;), then
n—1
(CL)U = —I—CL + ng . 7715'
k=0

2.If0<p<n—-1and A€ G,, then

n—1

()7 (A) = g (A) + 0y (A) + D 1 (0n(A)),

k=p+1
where 0(A) = A+ 0p11(A) + 0pi2(A) + -+, 0:(A4) € Gi.
The action of H,, on the elements ¢/ and nF is trivial. Let
o) =v+ 0o, 1(v)+on(v)+---

be a representative for @ € ‘H,,_1 /H,, where o; € Hom(G_4,G;). Since do,,_1 =0,
there is a well-defined natural map 6 : H,_1/H, — H™'. Furthermore, 0 is
surjective.

Proposition 4.2.  Let 7,7 in H,_1/H, have representatives o,7 € H,_1,
respectively. If 0(c) = 0(F), then o and T act the same on the elements ct
and nF, 0 <i<n—1. In addition, if & induces o, 1 € Hn_1, then

1 (e = ct +[oo,00] +0 -0k, n=1
' N cL+an_1-7]7LL,1, n > 2;

2. (ng)7(A) = oy + 115 (A);
3. (nf)7(A)=ni(A),i=1,...,n—1.
The action of the groups H,_1/H, on c& nk ... nk for 1 <p<nis

partially determined by the adjoint map Adx : [[G, — [[ G, defined by

AdyY =Y +[X,Y] + %[X, (X, Y]] + %[x X XY+

where X € GG, p > 1. The map Adx is both an n-map and an automorphism of
[IGp. The set Adg, of all Adx where X € G, is a subgroup of ‘H,_;, and the
subgroup (H, U Adg,) of H,_, generated by H,, and Adg, is normal in H,_;.
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Proposition 4.3. Let X €G,, p=1,... ,n—1. Then

L ()2 (A) = nf(A) fori=1,...,n—1;

2. () 4 (A) = g (A) + 1y (X)%
3. (M)A =k 40X - nk .

Define a map 6 : H,_1/H, — (H?*)! for p=1,... ,n—1 as follows. Let
o(v) =v+ 0,1+ -+ be a representative for ¢ € H,_1/H,, then do,_1 = 0. Let
7,1 € (HPY)! be the element in cohomology represented by o,.

Proposition 4.4. Forp=1,... ,n—1
0:Hy,_1/(H,UAdx) — (HPH!

1S an injection.

The map 6 : H,_1/(H, U Adx) — (HP')! is generally not surjective;
however, an element £ € (HP!)! is the image of some element in H,,_;/(H,UAdx)
under the map 6 exactly when & is given by an n-derivation on [[G,. An
n-deriation is a linear map D : [[G, — [[ G, such that

1. D(Gz) C Gi+1 X GH_Q X oeees

2. DX,Y] — [DX,Y] — [X,DY] € Gp_y X Gy x -+, for X,Y € [[G,.
Suppose 0 € H; (0<i<n—1)and o(v) =v+0;(v)+0;11(v)+---. Then there
exists an m-derivation D such that D(v) = o;(v). Conversely, the map exp D

is an n-map. The following theorem gives a method of calculating the action of
n-maps on [[ G, [6].

Theorem 4.5.  An element D € (HP')! is the image of some element in

under the map

0 : Hp_1/<Hp U Adx> — (Hp’l)l

exactly when D induces an n-derivation on [[Gp.

5. Algebras with dimG_; =2

We are now ready to classify all complete filtered Lie algebras L with graded
algebra [[G, and dim G_; = 2. We first decide the cases where L is flat; i.e,
L = []G,. The following propositions shall prove useful. The proofs of the
propositions can be found in Koch’s paper [9].
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Proposition 5.1. Koch Let L be a complete filtered Lie algebra with graded
algebra 1] Gy such that the following conditions are satisfied.

1. (H*)' =0 fori>0.
2. For 5 >0,

{n:Go— H :q[A, B] =n(B)" —n(A)"}
{n: Gy — Hil:n(A) = €A for some € € HI1}

3. Homg, (G, H*') =0 for 1 <i<j.

Then L=1]G,.

Proposition 5.2. Gunning Let L be a complete filtered Lie algebra with graded
algebra 1] G where Gy contains the identity map, then L = [[G,.

Proposition 5.3.  If (H**)! =0 and H*' =0 for i > 1, then L= []G,.
The algebras (3) (A = 1), (8)—(15), (25)—(34), (37), and (38) have no
complete filtered Lie algebras that are not isomorphic to their associated graded
algebras since in each algebra Gq contains the identity. Singer and Sternberg [12]
proved that (35) and (36) are flat. To analyze the remaining cases, it is necessary

to compute the cohomology groups of each graded algebra in question. We remark
here that H*3 =0 for ¢ > 0 since dimG_; = 2.

Proposition 5.4. Table 2 is a complete list of all nonzero cohomology groups
H®' (i > 1) and H**, (i > 0) together with the generators for each of the
cohomology groups for the graded algebras (1)—(7) and (16)—(24) of Table 1.

We will compute the cohomology for (5) as an example. Using Lemma 2.5,
we may take {ej,es, Ay, ... ,a,} as a basis for this algebra. The nonzero bracket
operations are [Ag,e;] = e; and [A;,e1] = A;—1, where 1 < i < n. Since
dimV =2, H* =0 for j >3, and H*' =0 for i # n+ 1 by Proposition 3.1. To
compute H""1! consider the sequence

Cn+2,0 N CnJrl,l N Cm,2

If £ € C"™1 s the linear map from V to G, defined by £(e;) = aA, and
&(eg) = bA,,, then

d€(e1, e2) = [E(e1), ea] — [§(€2), €1] = —bA, 1.

Hence, the kernel of 0¢ consists of linear maps of the form &(e;) = aA, and
&(ez) = 0. Since C"™20 = 0, A" = R. To see that there are no invariant
elements in H"*1! observe that

1 (er) = [Ao, E(en)] — E([Ap, e1]) = —ad,.
To compute H%?, consider the sequence

o — % 0.
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We may take £ € CM! to be the linear map defined by £(e;) = aAg and &(ep) =

bAy. Then

£%(e1, €2) = [Ag, E(e1, €2)] — £([Ao, e1], €2) — E(en, [Ag, e2]) = —E(er, €2),

d¢(e1, e2) = [E(e1), ea] — [€(e2), e1] = —Des.

Thus, H%? = R with representative (ej,es) — aes. Since

there are no invariant elements in H%?. The computation of H"*%? and (H""12)!
follows in a similar manner.

Table 2. Cohomology Groups of [[ Gg with Gy C gl(2,R).

(3) A#£0

(7)

Cohomology Group

H°? =R
(H0,2>I — H0’2

HO? =R

(HO,Q)I — H0,2
Hn—i—l,l — R
(Hn—i—l,l)[ — Hn—i—l,l
Hn+1,2 =R
(Hn+1,2)1 — Hn+1,2

H'? =R
(H'?)! =0 where X\ # —1

(HY*)! = H'? where \ = —

H°? =R
(HO,2)I =0

(H'?)" =0 where A\ # 0
)

(H"?)! = H'? where A =0

(16) All cohomology groups vanish.

(17) A # —1 and dim Gy =1 for k> 1

H“' =R
(Hl,l)l =0
HY? =R

Generators

(e1,€2) — ae;

(e1,e9) — aey
e1 — 0,e9 — aA,

(e1,e2) — aA,

(e1,€2) — aAy

1

(e1,€2) — aes

(61762) = aesg
e1 +— aA,, ey — 0

(e1,e2) — aA,

(61, 62) — CLAQ

(61, 62) — CLAO

e1 — AaBy, es — aAy

(e1,€2) — aAp

(H'?)! =0 where A # —1/2
(HY*)! = H'? where A = —1/2
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Gr=0for k>1
Hl,lzRQ

(H")! =0 where X # —2
(H')! = R where A = —2
H1,2 — R2

(HI,Q)I =0

n>1and G, =0 for k >n

H"' =R
(HY1)! =0
HY? =R

(H'?)! =0 where X\ # —1/2

e1 — AabBy,
€9 — GAO + bBO

e1 — 0,e0 — bBy
(617 62) — CLAO —|— bBO

e1 — aABy, es — aAy

(e1,e2) — ady

(HY?)! = H'2 where A = —1/2

Hn+1,1 =R
(Hn—l—l,l)] =0

where A\ # —(n+2)/(n+

(Hn-i-l,l)I — Hn-i—l,l

e — 0,e9 — abB,

1)

where A= —(n+2)/(n+1)

Hn+1,2 =R
(Hn+1,2>] =0

(18) H2' =R
(H>1) =0
H>? =R

(H?**)! =0 where \ # —2/3

(e1,e9) — aB,

e1 — aABi, ey — aA;

(e1,€2) — aA;

(H?**)! = H?? where \ = —2/3

(19) H*? =R
(H2,2)I —

(21) All cohomology groups vanish.

(22) H? =R
(HO,Z)I =0
H>' =R
(H2,1)I =0

(23) dimGr =2 H?=R

(e1,€2) — aA;

e1 — aABi, ey — aA;
(e1,e9) — aA
e1 — 0,e9 — abB,

(e1,e) — aB,

(e1,€2) — ae;

e1 — aAles — 0

(e1,€3) — ae;
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(HO,Q)I =0
HY' =R e1 — aAl ey — 0
(Hl,l I _ 0

dimGr=1for k>n>1

Ho,ozz)_IR (e1,e2) — ae;

(H°%)! =0

HUV =R 61’_)6“4(1)’62'_>O
(Hl,l)l =0

il — R er — aAy e aAl L,
(Hn+1,1>1 — grtil

HanfQZIR (e1,e2) — aAl |
(12 =0

(24) dim Gy =1 for k> 1

H%? =R (€1,€2) — ae;
(H0,2)I =0
HY! = R? e1 — aAY + DAY,

€9 H— bA(l]
(H'H! =R e1 — bAY, ey — DAY
HY? =R (e1,€9) > aAf
(H") =0

Gp,=0for k>n>1and dimG,=1,n=1,... .n

H0;)22:I]R (e1,€3) — aeq
(H"*)' =0
H'!' =R? e1 — aAY + bAY,

€9 H— bA(l)
(Hl’l)I =R €1 — bAg,eg — bA(l)
HY? =R (e1,e3) — AT
(Hl,l I _ 0
Hrbl =R e1— 0,6 — aAll,
(Hn—l-l 1) =0
Hth2 =R (e1,e2) = aA] 5

By Proposition 5.3, L = [[ G, for the algebras (3), (A # —1,0), (4), (6),
(7) (A #0), (16), (19), and (21), since the appropriate cohomology groups vanish.
A straightforward but lengthy computation shows that the algebras (5), (20), and
(22) satisfy the hypothesis of Proposition 5.1; therefore, these algebras are also
flat.

The remaining algebras to be considered are (1)—(3), (7), (17), (18), (23),
and (24). If the cohomological elements ¢, ng....,n,-1 are known modulo the
actions of Aut(][G,) and H, then we may determine all complete filtered Lie
algebras with dim G_; = 2 provided that all higher obstructions vanish.
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Lemma 5.5. There exist exactly two complete filtered Lie algebras L having
graded algebra (1). These algebras are determined by ¢ € H*? with ¢ =0 if L is
graded and ¢ # 0 if L is nongraded.

Proof. The only nonzero cohomology group is H%?. Let ¢ € H®? have
generator c(ej,es) = ae;. The hypothesis of Theorem 3.2 are satisfied; hence,
¢ induces a complete filtered Lie algebra bracket on [[ G,. The group of n-maps
acts trivially on ¢ since H*® = 0 for 4 > 0. An automorphism a on G_; is given
by a matrix of the form
ros
(6 7)

An easy computation yields a.c(er, es) = (a/t)e;. An appropriate choice of o will
send ¢ to any other nonzero element in H%?. Therefore, if ¢ # 0, there exists
exactly one nongraded algebra L. [ |

The proofs of the next two lemmas are similar to the proof of Lemma 5.5.

Lemma 5.6. The two complete filtered Lie algebras having graded algebra (3)
(A= —1) are characterized by ¢ # 0 and ¢ =0 (graded case), where c € H"?.

Lemma 5.7.  For the algebra (7) (A = 0), let ¢ € HY have the generator
c(ey,es) = BAg. Then there are three distinct complete filtered Lie algebras deter-
mined by >0, <0, and =0 (graded case).

Lemma 5.8. The complete filtered Lie algebras having graded algebra (2) are
parameterized by (6-1,...,0n), Bi € R. Furthermore, Lg_, 3, = Ly, . if
there exists a A € R such that

Bty s Ba) = (N1, An).
Proof. Let c € H"™'? and n; € Hom(G;, H"™) for 0 < i < n be given by
cler,en) = P14,
ni(Ai,e1) = 0,
ni(Ai; 62) = [iAn.
One quickly checks that the hypothesis of Theorem 3.3 hold. Applying Proposition
4.2, we see that the n-maps have no effect on the ¢, ng,... , 9,1

It remains to show how Aut([[G,) acts on the ¢,n9,... ,7,-1. Let o be
as in Lemma 5.5. Then

a.cler, e2) = (B-1/t) Ay,
o ni(Anes) = (Bift"V)A,.

Therefore, if L = Lg , . g, is the algebra determined by the ¢ and 7;, then any
other algebra determined by

c(e,e9) = A28 A,
ﬁi(Ai761> = 07
mi(Aie2) = NTHGA,,

for some A € R, must be isomorphic to L. [ |
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Lemma 5.9.  Let [[G, be the graded algebra

Aa b _ 0 0 b _ 00 0 b o
0 (A 1a 0 0O 0000
as i (17). If N 4 —1, 0, —1/2, then || G, is flat. If A = —1/2, then there is
( ) f 7& ’ ’ / ’ H p ﬂ f ’

exactly one nongraded algebra characterized by ¢ # 0, c € HY2. If X =0 there is
ezactly one nongraded algebra characterized by no(By) # 0, 1o € Hom(Go, H).

Proof. Let

c(er, e2) = BAo,

1o(Ao, 1) = AyBo, n0(Ao, e2) = v Ao,

Mo(Bo, e1) = A0 By, 10(Bo, e2) = 0 Ao,
If A = —1/2 and we apply the structural equations of Theorem 3.3, we may
assume that c(eq,eq) = fAg. If A # —1,0, or —1/2, then 1y(Ag, e1) = MyBy and
no(Ag, e2) = yAo. If X = 0, then ng(Ag, e2) = Ao and ng(Bo, e2) = 0Ag. The
actions of the n-maps in the first case show that there are no nongraded algebras
if A # 1,0, or —1/2. If A = —1/2, the n-maps act trivially. If A = 0, we may
assume that 7 = 0. Finally, notice that a € Aut([[G,) is given on G_; by a

matrix of the form
r s
0 t)°

If either A = 0 or —1/2, any nonzero element may be sent to any other nonzero
element by the appropriate choice of «. [ |

(Aoa (A +b 1)a> — -

be as in (17). If X # 0 or —2, then all algebras are graded. If A\ =0, then there
exists one nongraded algebra characterized by no(By) # 0. If X = —2, there is
exactly one nongraded algebra characterized by ny(Ap) # 0.

Lemma 5.10. Let

Proof.  Let
C(ela 62) = aAO + ﬁB(L
M0(Ao, e1) = AyBo, no(Ao, €2) = vAg + 0 By,
no(Bo, e1) = Ao By, no(Bo, e2) = 0 Ag + 7 By.
The equations of Theorem 3.3 allow for two cases. If A = 0, then
no(Ao,e2) = Ao+ 0By,
no(Bo,e2) = oAy +Bo.

If A # 0, then
A2
0(61,62) = mBo,
no(Ao, e1) = AyBy, 10(Ao, e2) = vAg + 6By,
A—1
no(Bo,e1) =0, ny(Bo, e2) = vBy.

A+
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Applying Proposition 4.2, we may assume that 79(Bg,e2) = 04y if A = 0. If
A # 0, the ¢ and the 7;’s vanish except for the case A = —2, where 1y(Ayp, €2) =
dBy. The automorphism group of [[ G, sends any nonzero element to any other
nonzero element. [ |

The proofs of the next four lemmas are similar to the proofs above.

Lemma 5.11. Let

Aa b (00 05y (0 - 00D —(0)—
0 (A+1a 000 0O --- 00
be the algebra given in (17), where n > 1 and Gy, = 0 for k > n. If X #

—(n+2)/(n+1), then L 2 [[Gp. If A = —(n+2)/(n+ 1), then there exists
exactly one nongraded algebra determined by ny(Ag) # 0.

Lemma 5.12.  Algebra (18) is flat if A # —1, 0, or —=2/3. If A = 0 or
A = —2/3, then there is ezactly one nongraded example in each case that is
determined by no(By) # 0 and ¢ # 0, respectively.

We remark that the algebra given by

a by (0 a by (00 a b\
0 0 0 00 0000
in (23) is graded by Proposition 5.1.

Lemma 5.13. Let

ab_Oab_“__O---Oab_O---OOb__H
0 ¢ 000 0O --- 000 0O --- 000

be the algebra in (23) with dim Gy =1 for k > n. The nongraded algebras are
parameterized by (Bo,...0n), Bi € R; where Lg, ~n if there exists
A € R such that

~
7777 ﬁn - L’YO?"'7

(607 Ce ,ﬁn) = ()\n+1’}/0, . ,)\’Yn>

Lemma 5.14.  Given the algebra

a b (00 Db) (000 b\
0 0 0 00 0000
in (24), there exists one nongraded algebra determined by ny(A?) # 0.

Lemma 5.15. Let

ab_OOb_'_._O---Ob_(O)_

0 0 000 0O --- 00
be as in (24) where G, =0 for k > n. The nongraded algebras are parameterized
by (Bo,...0Bn), Bi € R; and Lg,,. g, = L.~ if there exists A € R such that

(ﬁo, Ce ,ﬁn) = ()\n+1’}/0, Ce ,)\’)/n) .
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Proof.  Let c(ey,e2) = @Al 5, (Ao, e2) = BAL 5, and 1,(B;, e9) = 1, A%, for
0 < i < n. Equations (1) through (7) of Theorem 3.3 are satisfied. Let D be the
n-derivation D given by

Dey =AY, Dey =A% DAY =0,
DA, = (i+2) At} (0<i<n),
DAy, =0.

The n-map exp D is given by

(eXp D) (61) =e1+ AO + - An+27
(exp D)(eq) = es + Al,
(exp D)(A(f) =0,

L 42 13)

2
A+

The n-maps act on ¢ as in Proposition 4.1, allowing us to assume that ¢ = 0. The
action of the n-maps on H"™b! also allows us to assume that 3 = 0. Now apply
Aut(]] G,) as in Lemma 5.8. ]

Theorem 5.16. Table 3 is a complete list of all nongraded algebras for [[ G,,
where dimG_; = 2.

Table 3. Nongraded Algebras with dimG_; = 2.

(1) One nongraded algebra.

(2) Nongraded algebras Lg ,..3,, B € R where Lg .5, = L, ,..,, if there
exists A € R such that (5_1,...,8,) = A"y 1,..., Mn).

(3) One nongraded algebra (A = —1).
(7) Two nongraded algebras (A = 0).

(17) Ome nongraded algebra in each case (A = —1/2,0).
Aa b (0 0 b)Y (0 0 0 b\
0 (A+1a 000 0000
One nongraded algebra in each case (A = —2,0).

(v m)

One nongraded algebra in each case (A = —(n+2)/(n+1)) and G, =0 for
k>n.

R B i R (R SU
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(18) One nongraded algebra in each case (A =0,—-2/3).
(23) Let [[G)p be the algebra

a by (0 a by (0 - a b\ (0O - 0 by

00 000 O -~ 00 0O -~ 00 ’
where dimG, = 1 for & > n. Nongraded algebras Lg,...3, exist, where
B € R and Lg,...5, = L+,...n, if there exists A € R such that

(ﬁo, e 7/677,) = ()\nJrl’}/O’ Ce ,)\’}/n)

(24) One nongraded algebra for the graded algebra
a by (0 00by (0 - 0 by
0 0 0 00 0O -~ 00

For the algebra
0 --- 0 b
(00 0) -

a b\ (0 0 b\

0 0 0 00
where Gj = 0 for £ > n, there exist nongraded algebras Lg,..5, with
B; € Rand Lg,..5, = L if there exists aA € R such that (G, ... ,0,) =

A"y, A ).

Yo In

6. Conclusion

Cartan first classified the pseudogroups on R? in [1] using a different approach,
and Conn treats the structure of transitive Lie algebras in [2]. The methods used
in this paper is that they can reasonably be applied to dimensions higher than two
in many cases. Although the techniques here are useful in constructing examples
of nongraded Lie algebras, they do not allow a complete classification. If higher
obstructions in cohomology exist, then these techniques may fail. Volpert offers
another method using the Spencer cohomology and spectral sequences to obtain
examples of complete filtered Lie algebras in [14, 15]. Finally, complete filtered Lie
algebras are the algebraic objects corresponding to pseudogroups and transitive
differential geometry. The geometric meaning of the ¢’s and the 7;’s are only
partially understood [3, 12, 13].
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