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Abstract. There may exist many non-isomorphic complete filtered Lie al-
gebras with the same graded algebra. In [6], we found elements in the Spencer
cohomology that determined all complete filtered Lie algebras having certain
graded algebra provided that obstructions do not exist in the cohomology at
higher levels. In this paper we use the Spencer cohomology to classify all graded
and filtered algebras over a real vector space of dimension two.

1. Introduction

Closed transitive Lie algebras are subalgebras of the Lie algebra D(Kn) of formal
vector fields. If K a field of characteristic zero, X is a formal vector field in D(Kn)
if

X =
∑
i

Xi(x1, . . . , xn)
∂

∂xi
,

where Xi in K[[x1, . . . , xn]] . The vector space D(Kn) is a Lie algebra under the
usual bracket operation

[X, Y ] =
∑
i,j

{
X i∂Y

j

∂xi
− Y i∂X

j

∂xi

}
∂

∂xj
.

If Dk(Kn) is the set of X ∈ D(Kn) such that each X i has no terms of degree k
or less, then D(Kn) has a natural filtration

D(Kn) ⊃ D0(Kn) ⊃ D1(Kn) ⊃ D2(Kn) ⊃ · · · .

Guillemin and Sternberg studied local geometries by examining Lie algebras
of formal vector fields [3]. More specifically, if we choose a coordinate system and
replace each infinitesimal automorphism (which is a vector field) with its Taylor
series expansion about the origin, we obtain a subalgebra L of D(Kn). Letting
Lk = Dk(Kn) ∩ L , we have

L ⊃ L0 ⊃ L1 ⊃ L2 ⊃ · · ·
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with [Li, Lj] ⊂ Li+j . Guillemin and Sternberg limited their study to transitive
geometries. That is, for any two points there exists a local transformation that
takes one point to other. In infinitesimal terms, there exists an X ∈ L such that
X(0) = v for each v ∈ Kn . We also demand that L be closed. If X ∈ D(Kn) and
there exists an Xi ∈ L such that X and Xi agree on terms of up to order i for
i = 1, 2, . . . , then X ∈ L . A subalgebra L ⊂ D(Kn) satisfying these properties is
a closed transitive Lie algebra. Two such algebras are isomorphic when they are
equivalent by a formal change of coordinates.

A complete filtered Lie algebra over a field K of characteristic zero is a Lie
algebra with a decreasing sequence of subalgebras L = L−1 ⊃ L0 ⊃ L1 ⊃ · · ·
satisfying the following conditions.

1.
⋂
i Li = 0.

2. [Li, Lj] ⊂ Li+j (by convention L−2 = L).

3. dimLi/Li+1 <∞ .

4. If x ∈ Li for i ≥ 0 and [L, x] ⊂ Li , then x ∈ Li+1 .

5. Whenever {xi} is a sequence in L such that xi − xi+1 ∈ Li for i ≥ 0, then
there exists an x ∈ L such that x− xi ∈ Li .

Every complete filtered Lie algebra is isomorphic to a closed transitive subalgebra
of D(Kn) [3].

A graded Lie algebra is a Lie algebra
∏∞

p=−1 Gp that satisfies the following
conditions.

1. [Gi, Gj] ⊂ Gi+j (by convention G−2 = 0).

2. dimGi <∞ .

3. If x ∈ Gi for i ≥ 0 and [G−1, x] = 0, then x = 0.

Any graded Lie algebra is a complete filtered Lie algebra if we let Li = Gi×Gi+1×
· · · . Conversely, if L is a complete filtered Lie algebra, then the bracket operation
on L induces a bracket operation on

GL =
∞∏

p=−1

Lp/Lp+1.

We refer to GL as the associated graded algebra of L . An isomorphism of two
complete filtered Lie algebras is a Lie algebra isomorphism preserving the filtration.
Similarly, an isomorphism of two graded Lie algebras is a Lie algebra isomorphism
preserving the gradation.

There may exist many non-isomorphic complete filtered Lie algebras with
the same graded algebra. Given a graded Lie algebra

∏
Gp , it is an interesting

problem to try to reconstruct all complete filtered Lie algebras L whose associated
graded algebras are isomorphic to

∏
Gp . One of the primary tools for analyzing

this problem has been the Spencer cohomology. A complete filtered Lie algebra is
isomorphic to its graded algebra provided certain cohomology groups vanish [3,
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7, 9, 12]. It is more difficult to determine the complete filtered Lie algebras
that are not isomorphic to their graded algebras. Many of the known results
have hypothesis that are difficult to verify. In [6] we outlined a theory, where
certain elements in the Spencer cohomology determine all the complete filtered
Lie algebras having a certain graded algebra provided that obstructions do not
exist in the cohomology at a higher level. In this paper we use the theory to
classify all graded and filtered algebras over a real vector space of dimension two.
Cartan first classified these algebras as pseudogroups on R2 [1].

2. Graded Algebras with dimG−1 = 2

If
∏
Gp is a graded Lie algebra, then V = G0 is a linear Lie algebra acting

faithfully on G−1 by [G0, G−1] ⊂ G−1 . For p ≥ 0, we may consider Gp to be a
subspace of V⊗Sp+1(V ∗). If X ∈ Gp and v0, . . . , vp ∈ V , define X ∈ V⊗Sp+1(V ∗)
by

X(v0, . . . , vp) = [· · · [[X, v0], v1], · · · vp].

Since [G−1, G−1] = 0, the Jacobi identity implies that X(v0, . . . , vp) is symmetric
in v0, . . . , vp . The bracket operation on

∏
Gp then becomes

[X, Y ](v0, . . . , vp+q) =
1

p!(q + 1)!

∑
X(Y (vj0 , . . . , vjq), vjq+1 , . . . , vjp+q)

− 1

(p+ 1)!q!

∑
Y (X(vk0 , . . . , vkp), vkp+1 , . . . , vkp+q).

In particular, if X ∈ Gp with p > 0 and v ∈ G−1 , then

[X, v](v1, . . . , vp) = X(v, v1, . . . , vp).

Conversely, given a sequence V = G−1, G0, G1, . . . in V ⊗ Sp+1(V ∗), we know
that

∏
Gp is a graded algebra under the bracket operation described above if

[Gp, Gq] ⊂ Gp+q .

Given a finite sequence V = G−1, G0, G1, . . . , Gn−1 with Gp ⊂ V⊗Sp+1(V ∗)
and [Gp, Gq] ⊂ Gp+q with p , q , and p + q all less than n , we wish to impose
conditions on subspaces Gi ⊂ V ⊗Si+1(V ∗) with i ≥ n that will allow

∏
Gp to be a

graded algebra. Define the first prolongation Λ1P of a subspace P ⊂ V ⊗Sp+1(V ∗)
to be the subspace of maps T ∈ V ⊗ Sp+2(V ∗) such that for all fixed v ∈ V ,
T (v, v1, . . . , vp) ∈ P . The k -th prolongation is defined inductively by Λ1Λk−1P .
Thus, Gn ⊂ Λ1Gn−1 and [Gn, G0] ⊂ Gn . Hence, Gn must be an invariant subspace
under this representation. Since [Gp, Gq] ⊂ Gn whenever p < n , q < n , and
p+ q = n , we must not choose Gn to be too small. If such a Gn can be selected,
then we are guaranteed a graded algebra containing Gn .

For a given Lie algebra G0 ⊂ gl(V ) acting on a vector space V = G−1 , it is
often possible to compute all graded algebras arising from G−1 and G0 . Suppose
that dimV = 2 and G0 is a subalgebra of gl(V ). The prolongation Λ1G0 of G0

consists of T ∈ V ⊗ S2(V ∗) such that for v ∈ G−1 , T (v) ∈ G0 . We can represent
elements T ∈ V ⊗ S2(V ∗) using matrices(

a1
11 a1

12 a1
22

a2
11 a2

12 a2
22

)
,
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where
T (ei, ej) = a1

ije1 + a2
ije2,

if {e1, e2} is a fixed basis for V . Hence, T is in Λ1G0 if and only if the matrix is
in G0 whenever the first or the last column of the matrix is deleted. In general,
we shall write (

a1
11···1 a1

1···12 · · · a1
12···2 a1

22···2
a2

11···1 a2
1···12 · · · a2

12···2 a2
22···2

)
for an element in ΛnG0 .

Proposition 2.1. Let V be a real vector space with dimV = 2. The following
subalgebras G0 are the only subalgebras of gl(V ) up to conjugation.

1. dimG0 = 1 and λ ∈ R,(
0 a
0 0

)
,

(
a 0
0 λa

)
,

(
a a
0 a

)
,

(
λa −a
a λa

)
.

2. dimG0 = 2 and λ ∈ R,(
a 0
0 b

)
,

(
a b
0 a

)
,

(
a −b
b a

)
,

(
λa b
0 (λ+ 1)a

)
.

3. dimG0 = 3, (
a b
0 c

)
, sl(V ).

4. dimG0 = 4, gl(V ).

A complete determination of Lie algebras of dimension less than or equal
to three can be found in Jacobson [5]. To construct the faithful representations of
these algebras in gl(V ) up to conjugation, see [4, 5].

Proposition 2.2. Let V be a real vector space of dimension two. The prolon-
gations of G0 ⊂ gl(V ) are the algebras (1), (3), (4), (6)–(8), (11), (14), (16),
(21), (25), (35), and (37) in Table 1.

As an example, we will compute the prolongations in (7) and (21). Let e1 ,
e2 be a basis for V and recall that we can represent elements T ∈ V ⊗ S2(V ∗)
using matrices (

a1
11 a1

12 a1
22

a2
11 a2

12 a2
22

)
,

where
T (ei, ej) = a1

ije1 + a2
ije2.

Since T is in Λ1G0 if and only if the matrix is in G0 whenever the first or the last
column of the matrix is deleted, the first prolongation of (7) must be zero. On the
other hand, the first prolongation of (21) is(

a1 a2 a3

0 0 0

)
.

Continuing, we see that the nth prolongation is(
a1 a2 · · · an+1 an+2

0 0 · · · 0 0

)
.

For a more in depth treatment of prolongation, see [3, 12].
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Theorem 2.3. Table 1 is a complete list of all graded algebras up to isomor-
phism with V , a real vector space of dimension two, and G0 ⊂ gl(V ).

Table 1e. Graded Algebras
∏
Gp with G0 ⊂ gl(2,R)

1.

(
0 a
0 0

)
−
(

0 0 a
0 0 0

)
−
(

0 0 0 a
0 0 0 0

)
− · · ·

2. Gk = 0 for k > n(
0 a
0 0

)
−
(

0 0 a
0 0 0

)
− · · · −

(
0 · · · 0 a
0 · · · 0 0

)
− (0)− · · ·

3. λ 6= 0(
a 0
0 λa

)
− (0)− · · ·

4. (
a 0
0 0

)
−
(
a 0 0
0 0 0

)
−
(
a 0 0 0
0 0 0 0

)
− · · ·

5. Gk = 0 for k > n(
a 0
0 0

)
−
(
a 0 0
0 0 0

)
− · · · −

(
a 0 · · · 0
0 0 · · · 0

)
− (0)− · · ·

6. (
a a
0 a

)
− (0)− · · ·

7. λ ∈ R(
λa −a
a λa

)
− (0)− · · ·

8. (
a 0
0 b

)
−
(
a 0 0
0 0 b

)
−
(
a 0 0 0
0 0 0 b

)
− · · ·

9. (
a 0
0 b

)
−
(
a 0 0
0 0 b

)
−
(
a 0 0 0
0 0 0 0

)
− · · ·

or(
a 0
0 b

)
−
(
a 0 0
0 0 b

)
− (0)− · · ·

10. Gk = 0 for k > n(
a 0
0 b

)
−
(
a 0 0
0 0 0

)
− · · · −

(
a 0 · · · 0
0 0 · · · 0

)
− (0)− · · ·

11. (
a b
0 a

)
−
(

0 a b
0 0 a

)
−
(

0 0 a b
0 0 0 a

)
− · · ·

12. (
a b
0 a

)
−
(

0 a b
0 0 a

)
−
(

0 0 0 b
0 0 0 0

)
−
(

0 0 0 0 b
0 0 0 0 0

)
− · · ·

or(
a b
0 a

)
−
(

0 a b
0 0 a

)
− (0)− · · ·
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13. Gk = 0 for k > n(
a b
0 a

)
−
(

0 0 b
0 0 0

)
− · · · −

(
0 · · · 0 b
0 · · · 0 0

)
− (0)− · · ·

14. (
a −b
b a

)
−
(
a −b −a
b a −b

)
−
(
a −b −a b
b a −b −a

)
− · · ·

15. Gk = 0 for k > n(
a −b
b a

)
−
(
a −b −a
b a −b

)
− · · · −

(
a −b −a · · ·
b a −b · · ·

)
− (0)− · · ·

16. λ 6= −1(
λa b
0 (λ+ 1)a

)
−
(

0 λa b
0 0 (λ+ 1)a

)
− · · ·

−
(

0 · · · 0 λa b
0 · · · 0 0 (λ+ 1)a

)
− · · ·

17. λ 6= −1 and Gk = 0 for k > n(
λa b
0 (λ+ 1)a

)
−
(

0 0 b
0 0 0

)
− · · · −

(
0 · · · 0 b
0 · · · 0 0

)
− (0)− · · ·

or(
λa b
0 (λ+ 1)a

)
−
(

0 0 b
0 0 0

)
− · · · −

(
0 · · · 0 b
0 · · · 0 0

)
− · · ·

18. λ 6= −1(
λa b
0 (λ+ 1)a

)
−
(

0 λa b
0 0 (λ+ 1)a

)
−
(

0 0 0 b
0 0 0 0

)
− · · ·

19. λ = 1(
λa b
0 (λ+ 1)a

)
−
(

0 λa b
0 0 (λ+ 1)a

)
− (0)− · · ·

20. λ = −(n+ 1)/(n− 1), n = 2, 3, . . . and Gk = 0 for k > n(
λa b
0 (λ+ 1)a

)
−
(

0 λa b
0 0 (λ+ 1)a

)
−
(

0 0 0 b
0 0 0 0

)
− · · ·

−
(

0 · · · 0 b
0 · · · 0 0

)
− (0)− · · ·

21. (
a1 a2

0 0

)
−
(
a1 a2 a3

0 0 0

)
−
(
a1 a2 a3 a4

0 0 0 0

)
− · · ·

22. (
a b
0 0

)
−
(
a b c
0 0 0

)
−
(

0 a b c
0 0 0 0

)
− · · · −

(
0 0 a b c
0 0 0 0 0

)
− · · ·

23. dimGk = 1 for k > n(
a b
0 0

)
−
(

0 a b
0 0 0

)
− · · · −

(
0 · · · 0 a b
0 · · · 0 0 0

)
−
(

0 · · · 0 b
0 · · · 0 0

)
− · · ·
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or(
a b
0 0

)
−
(

0 a b
0 0 0

)
− · · · −

(
0 · · · 0 a b
0 · · · 0 0 0

)
− · · ·

24. Gk = 0 for k > n(
a b
0 0

)
−
(

0 0 b
0 0 0

)
− · · · −

(
0 · · · 0 b
0 · · · 0 0

)
− (0)− · · ·

25. (
a1 a2

0 b

)
−
(
a1 a2 a3

0 0 b

)
−
(
a1 a2 a3 a4

0 0 0 b

)
− · · ·

26. Gk = 0 for k > n(
a b
0 c

)
−
(

0 0 b
0 0 0

)
− · · · −

(
0 · · · 0 b
0 · · · 0 0

)
− (0)− · · ·

27. dimGk = 1 for k > n(
a b
0 c

)
−
(

0 a b
0 0 0

)
− · · · −

(
0 · · · 0 a b
0 · · · 0 0 0

)
−
(

0 · · · 0 b
0 · · · 0 0

)
− · · ·

or(
a b
0 c

)
−
(

0 a b
0 0 0

)
− · · · −

(
0 · · · 0 a b
0 · · · 0 0 0

)
− · · ·

28. (
a b
0 c

)
−
(

0 0 b
0 0 c

)
−
(

0 0 0 b
0 0 0 c

)
− · · ·

or(
a b
0 c

)
−
(

0 0 b
0 0 c

)
−
(

0 0 0 b
0 0 0 0

)
− · · ·

29. (
a b
0 c

)
−
(

0 a b
0 0 c

)
−
(

0 0 a b
0 0 0 0

)
− · · ·

or(
a b
0 c

)
−
(

0 a b
0 0 c

)
−
(

0 0 a b
0 0 0 c

)
− · · ·

30. (
a1 a2

0 b

)
−
(
a1 a2 a3

0 0 0

)
−
(
a1 a2 a3 a4

0 0 0 0

)
− · · ·

or(
a1 a2

0 b

)
−
(
a1 a2 a3

0 0 0

)
−
(

0 a1 a2 a3

0 0 0 0

)
− · · ·

31. (
a1 a2

0 b

)
−
(
a1 a2 a3

0 0 b

)
−
(

0 a1 a2 a3

0 0 0 0

)
− · · ·

or(
a1 a2

0 b

)
−
(
a1 a2 a3

0 0 b

)
−
(
a1 a2 a3 a4

0 0 0 0

)
− · · ·

or(
a1 a2

0 b

)
−
(
a1 a2 a3

0 0 b

)
−
(

0 a1 a2 a3

0 0 0 b

)
− · · ·
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32. λ 6= 0(
a b
0 c

)
−
(

0 λa b
0 0 a

)
−
(

0 0 λa b
0 0 0 a

)
− · · ·

or(
a b
0 c

)
−
(

0 λa b
0 0 a

)
−
(

0 0 0 b
0 0 0 0

)
− · · ·

33. λ = 1/2(
a b
0 c

)
−
(

0 λa 0
0 0 a

)
− (0)− · · ·

34. λ = (n− 1)/2, n = 3, 4, . . . , and Gk = 0 for k > n(
a b
0 c

)
−
(

0 λa b
0 0 a

)
−
(

0 0 0 b
0 0 0 0

)
− · · · −

(
0 · · · 0 b
0 · · · 0 0

)
− (0)− · · ·

35. sl(2,R)− Λ1sl(2,R)− Λ2sl(2,R)− · · ·

36. sl(2,R)− (0)− · · ·

37. gl(2,R)− Λ1gl(2,R)− Λ2gl(2,R)− · · ·

38. gl(2,R)− (0)− · · ·
or
gl(2,R)− Λ1sl(2,R)− Λ2sl(2,R)− · · ·
or

gl(2,R)−
(

2a b 0
0 a 2b

)
− (0)− · · ·

For the proof of (35)–(38) refer to Singer and Sternberg [12]. Koch proved
(25)–(34) in [10]. It remains to show that (1)–(24) are the only possible graded
algebras with dimG0 = 1 or 2. We will calculate the Lie brackets on a basis for
each graded algebra obtained from the prolongation of G0 with dimG0 ≤ 2 in the
following lemmas. The proof of the theorem follows directly from the following
lemmas and the fact that [Gp, Gq] ⊂ Gp+q . For the remainder of the paper we
shall let {e1, e2} be a canonical basis for V = G−1 .

Lemma 2.4. Let {e1, e2, A0, A1, . . . } be a basis for (1), where

A0 =

(
0 1
0 0

)
, A1 =

(
0 0 1
0 0 0

)
, . . . .

Then the only nonzero bracket relations are [A0, e2] = e1 and [Ai, e2] = Ai−1 ,
where i ≥ 1.

Proof. Clearly, these relations hold as well as the relations [e1, e2] = 0 and
[Ai, e1] = 0 for i ≥ 0. It remains to show that [Ai, Aj] = 0. For j > 0 and k = 1
or 2, we have

[[A0, Aj], ek] = [A0, [Aj, ek]] + [Aj, [A0, ek]].
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If k = 1, the righthand expression is zero. If k = 2, then

[[A0, Aj], e2] = [A0, Aj−1] = 0

by induction on j ; hence, [A0, Aj] = 0. Similarly, if we fix j and induct on i , then
[Ai, Aj] = 0.

The proofs of the following lemmas are similar.

Lemma 2.5. Let {e1, e2, A0, A1, . . . } be a basis for (4), where

A0 =

(
1 0
0 0

)
, A1 =

(
1 0 0
0 0 0

)
, . . . .

The only nonzero bracket operations are [A0, e1] = e1 and [Ai, e1] = Ai−1 for
i ≥ 1.

Lemma 2.6. Let {e1, e2, A0, A1, . . . , B0, B1, . . . } be a basis for (8), where

A0 =

(
1 0
0 0

)
, A1 =

(
1 0 0
0 0 0

)
, . . . ,

and

B0 =

(
0 0
0 1

)
, B1 =

(
0 0 0
0 0 1

)
, . . . .

The nonzero bracket operations are

[A0, e1] = e1, [Ai, e1] = Ai−1,
[B0, e2] = e2, [Bi, e2] = Bi−1,

for i ≥ 1, and

[Ai, Aj] =
(i− j)(i+ j + 1)!

(i+ 1)!(j + 1)!
Ai+j,

[Bi, Bj] =
(i− j)(i+ j + 1)!

(i+ 1)!(j + 1)!
Bi+j.

Lemma 2.7. Let {e1, e2, A0, A1, . . . , B0, B1, . . . } be a basis for (11) where

A0 =

(
1 0
0 1

)
, A1 =

(
0 1 0
0 0 1

)
, . . .

and

B0 =

(
0 1
0 0

)
, B1 =

(
0 0 1
0 0 0

)
, . . . .

The nonzero bracket operations are

[A0, e1] = e1, [Ai, e1] = Bi−1,
[A0, e2] = e2, [Ai, e2] = Ai−1,
[B0, e2] = e1, [Bi, e2] = Bi−1,

for i ≥ 1, and

[Ai, Aj] =
(i− j)(i+ j + 1)!

(i+ 1)!(j + 1)!
Ai+j,

[Ai, Bj] =
(i− j)(i+ j + 1)!

(i+ 1)!(j + 1)!
Bi+j.
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Lemma 2.8. Let {e1, e2, A0, A1, . . . , B0, B1, . . . } be a basis for (14), where

A0 =

(
1 0
0 1

)
, A1 =

(
−1 0 −1
0 1 0

)
, . . .

and

B0 =

(
0 −1
1 0

)
, B1 =

(
0 −1 0
1 0 −1

)
, . . . .

Then there exist nonzero bracket operations

[A1, Ai] = αAi+1,

[A1, Bi] = βBi+1,

[B1, Bi] = γAi+1,

where i = 2, 3, . . . and α, β, γ 6= 0.

Lemma 2.9. Suppose λ 6= −1, and let {e1, e2, A0, A1, . . . , B0, B1, . . . } be a
basis for (16), where

A0 =

(
λ 0
0 λ+ 1

)
, A1 =

(
0 λ 0
0 0 λ+ 1

)
, . . .

and

B0 =

(
0 1
0 0

)
, B1 =

(
0 0 1
0 0 0

)
, . . . .

The nonzero bracket operations are

[A0, e1] = λe1, [Ai, e1] = λBi−1,
[A0, e2] = (λ+ 1)e2, [Ai, e2] = Ai−1,
[B0, e2] = e1, [Bi, e2] = Bi−1,

for i ≥ 1, and

[Ai, Aj] =
(λ+ 1)(i− j)(i+ j + 1)!

(i+ 1)!(j + 1)!
Ai+j,

[Ai, Bj] =
(λ(i− j)− (j + 1))(i+ j + 1)!

(i+ 1)!(j + 1)!
Bi+j.

The proofs of (1) through (18) follow directly from the lemmas. The proof
of (19) and (20) are special cases of Lemma 2.9. To prove (21) through (24), the
following lemma is required.

Lemma 2.10. Consider the basis {e1, e2, A
j
k, Bk} for (21), where

B0 =

(
0 0
0 1

)
, B1 =

(
0 0 0
0 0 1

)
, . . . ,

A0
1 =

(
1 0
0 0

)
, A0

2 =

(
0 1
0 0

)
,
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A1
1 =

(
1 0 0
0 0 0

)
, A1

2 =

(
0 1 0
0 0 0

)
, . . . A1

3 =

(
0 0 1
0 0 0

)
, . . . .

Then Gk has basis {Ak1, . . . , Akk+2, Bk}. The nonzero relations for this algebra are

[A0
1, e1] = [A0

2, e2] = e1,

and for k ≥ 1

[Aki , e1] = Ak−1
i , 1 ≤ i ≤ k + 1,

[Aki , e2] = Ak−1
i−1 , 2 ≤ i ≤ k + 2,

[Aii+1, A
j
j+2] =

(i+ 1)(i+ j + 1)!

(i+ 1)!(j + 1)!
Ai+ji+j+2,

[A1
1, A

i−1
j ] = αAi

j, for some α 6= 0.

3. The Spencer Cohomology

For any graded algebra
∏
Gp , define Ci,j to be the space of skew-symmetric

multilinear maps c :
∧j G−1 → Gi−1 . If we define the coboundary operator

∂ : Ci,j → Ci−1,j+1

by

(∂c)(v1, . . . , vj+1) =
∑
k

(−1)k[c(v1, . . . , v̂k, . . . , vj+1), vk],

then ∂2 = 0. The resulting cohomology groups are known as the Spencer coho-
mology groups, which we will denote by H i,j for i, j ≥ 0. For A ∈ G0 define a
map c 7→ cA from Ci,j to itself by

cA(v1, . . . , vj) = [A, c(v1, . . . , vj)]−
∑
k

c(v1, . . . , [A, vk], . . . , vj).

Then (∂c)A = ∂(cA). Consequently, G0 acts on H i,j , which we shall denote by
ξ 7→ ξA . An element ξ ∈ H i,j is invariant if ξA = 0 for all A ∈ G0 . The
set of invariant elements of a cohomology group H i,j is denoted by (H i,j)I . If
η ∈ Hom(Gi, C

j,l) and ξ ∈ Ci+1,k , define ξ · η ∈ Cj,k+l by

ξ · η(v1, . . . , vl+l)

=
1

k!l!

∑
σ∈Sk+l

(sgnσ)η(ξ(vσ(1), . . . , vσ(k)))(vσ(k+1), . . . , vσ(k+l)).

In [6] it was shown that ξ · η ∈ Hj,k+l .

The following proposition is due to Kobayashi and Nagano [7].

Proposition 3.1. Let G =
∏
Gp be a graded Lie algebra. Then the following

statements are true.

1. H0,0 = G−1 .

2. H i,0 = 0 for i ≥ 1.
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3. H0,1 = gl(G−1)/G0 .

4. H i,1 = Λ1Gi−1/Gi for i ≥ 1. In particular, H i,1 = 0 if and only if
Λ1Gi−1 = Gi .

Let Lp = Gp × Gp+1 × . . . , and [ , ] be the usual Lie bracket on a graded
algebra

∏
Gp . An n-bracket on

∏
Gp is a skew-bilinear map

[ , ]′n :
∏

Gp ×
∏

Gp →
∏

Gp

satisfying the following conditions.

1. For X ∈ Li , Y ∈ Lj, [X,Y ]′n − [X, Y ] ∈ Li+j+1 .

2. If X , Y , Z ∈
∏
Gp , then

[X, [Y, Z]′n]′n + [Y, [Z,X]′n]′n + [Z, [X, Y ]′n]′n ∈ Ln−1.

If [X, Y ]′n − [X, Y ] ∈ Ln−1 for X , Y ∈
∏
Gp , then [ , ]′n is a flat n-bracket.

If [ , ]′ is 0-bracket, we can define an element c in C0,2 by

c(u, v) = [u, v]′ mod L0,

for u, v ∈ G−1 . By definition C−1,3 = 0; therefore, ∂c = 0. We will let c ∈ H0,2

be the element in cohomology represented by c . Similarly, if we are given a flat
n-bracket with n ≥ 1, we can define elements c ∈ Hn,2 and ηi ∈ Hom(Gi, H

n,1)
for i = 0, . . . , n− 1. We now state several theorems from [6].

Theorem 3.2. Let [ , ]′ be a 0-bracket on
∏
Gp , and suppose that

1. c · c = c2 = 0;

2. c ∈ (H0,2)I .

If Hk,1 = Hk,2 = Hk,3 = 0 for k ≥ 0, then there exists a complete filtered Lie
algebra L with Lie algebra bracket [ , ]L on

∏
Gp extending [ , ]′ such that

∏
Gp

under the usual graded bracket is the associated graded algebra of L.

Theorem 3.3. Let [ , ] be a n-bracket on
∏
Gp with n ≥ 1, and suppose that

the following equations are satisfied.

1. η0[A,B] = η0(B)A − η0(A)B for A, B ∈ G0 .

2. ηi[A,B] = ηi(B)A for A ∈ G0 , B ∈ Gi with i = 1, . . . , n− 1.

3. ηi[A,B] = 0 for A ∈ Gp , B ∈ Gq with p+ q = i, p, q ≥ 1.

4. cA = η0(A) · ηn−1 for A ∈ G0 .

5. c · ηn−1 = 0.

6. ∂A · ηn−1 = 0 for A ∈ Gn .
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7. ∂A · ηn−1 = −ηi(A) · ηn−1 for A ∈ Gi , where i = 1, . . . , n− 1.

If Hk,1 = Hk,2 = Hk,3 = 0 for k > n, then there exists a complete filtered Lie
algebra L with Lie algebra bracket [ , ]L on

∏
Gp extending [ , ]′ such that

∏
Gp

under the usual graded bracket is the associated graded algebra of L.

Let L and M be complete filtered Lie algebras with associated graded
algebras isomorphic to

∏
Gp and denote the bracket operations on L and M by

[ , ]L and [ , ]M , respectively. An n-isomorphism or n-map is a linear map
ψ : L→M such that

1. ψ(Lp) ⊂Mp ;

2. Lp
ψ→Mp →Mp/Mp+1 = Gp is the map Lp → Lp/Lp+1 = Gp ;

3. [ψ(X), ψ(Y )]M − ψ([X, Y ]L) ∈Mn−1 for X, Y ∈ L .

If an n-map
∏
Gp → L exists, we can define cL ∈ Hn,2 and ηLi ∈ Hom(Gi, H

n,1).
These elements satisfy the structure equations in either Theorem 3.2 or Theo-
rem 3.3 depending on whether n = 0 or n ≥ 1.

If α ∈ GL(G−1), then α acts on Gp via

Aα(v1, . . . , vp) = αA(α−1v1, . . . , α
−1vp) for A ∈ Gp and vi ∈ G−1

which results in an automorphism of
∏
Gp . Hence, there is a natural action

of Aut(
∏
Gp) on the cohomology groups H i,j that sends invariant elements to

invariant elements. We denote this action by α∗ for α ∈ Aut(
∏
Gp). Furthermore,

if η ∈ Hom(Gp, H
i,j), then the induced action α∗ on η is α∗(η)(A) = α∗η(α−1A)

for A ∈ Gp .

Theorem 3.4. Let L and M be complete filtered Lie algebra with graded alge-
bra

∏
Gp and let ψ : L→M be an n-map satisfying the following conditions.

1. (Hk,2)I = 0 for k > n.

2. For k > n,

{η : G0 → Hk,1 : η[A,B] = η(B)A − η(A)B}
{η : G0 → Hk,1 : η(A) = ξA for some ξ ∈ Hk,1}

= 0.

3. HomG0(Gi, H
k,1) = 0 for n < k and 1 ≤ i < k .

If n = 0 and there exists an α ∈ Aut(
∏
Gp) such that α∗c

L = cM , then L ∼= M .
If n ≥ 1 and there exist n-maps φL :

∏
Gp → L and φM :

∏
Gp → M , and for

some α ∈ Aut(
∏
Gp), α∗c

L = cM and α∗ηLi = ηMi for i = 0, . . . , n − 1, then
L ∼= M .
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4. The Group of n-maps

The n-maps from
∏
Gp to itself act on the cohomological elements c and ηi .

These n-maps form a group H . There exists a series of subgroups of H

H = H0 ⊃ H1 ⊃ · · · ⊃ Hn,

where τ ∈ Hi whenever τ(v) = v + τi(v) + τi+1(v) + · · · and τp ∈ Hom(G−1, Gp).
In addition, Hi+1 is normal in Hi . Let cL, ηL0 , . . . , η

L
n−1 be the elements in

cohomology defined by the n-map φ :
∏
Gp → L . The group H acts on cL

and ηLi via the n-map φσ and gives elements (cL)σ and (ηLi )σ , where σ ∈ H .

Proposition 4.1. Let φ :
∏
Gp → L be an n-map that defines cohomological

elements cL and ηLi for i = 0, . . . , n−1. If σ ∈ Hn , then the following statements
are true.

1. If σ(v) = v + σ0(v) + σ1(v) + · · · , v ∈ G−1 and σi ∈ Hom(G−1, Gi), then

(cL)σ = cσ + cL +
n−1∑
k=0

σk · ηLk .

2. If 0 ≤ p ≤ n− 1 and A ∈ Gp , then

(ηLp )σ(A) = ησp (A) + ηLp (A) +
n−1∑
k=p+1

ηLk (σk(A)),

where σ(A) = A+ σp+1(A) + σp+2(A) + · · · , σi(A) ∈ Gi .

The action of Hn on the elements cL and ηLi is trivial. Let

σ(v) = v + σn−1(v) + σn(v) + · · ·

be a representative for σ ∈ Hn−1/Hn where σi ∈ Hom(G−1, Gi). Since ∂σn−1 = 0,
there is a well-defined natural map θ : Hn−1/Hn → Hn,1 . Furthermore, θ is
surjective.

Proposition 4.2. Let σ, τ in Hn−1/Hn have representatives σ, τ ∈ Hn−1 ,
respectively. If θ(σ) = θ(τ), then σ and τ act the same on the elements cL

and ηLi , 0 ≤ i < n− 1. In addition, if σ induces σn−1 ∈ Hn−1 , then

1. (cL)σ =

{
cL + [σ0, σ0] + σ · ηL0 , n = 1

cL + σn−1 · ηLn−1, n ≥ 2;

2. (ηL0 )σ(A) = σAn−1 + ηL0 (A);

3. (ηLi )σ(A) = ηLi (A), i = 1, . . . , n− 1.

The action of the groups Hp−1/Hp on cL, ηL0 , . . . , η
L
n−1 for 1 ≤ p < n is

partially determined by the adjoint map AdX :
∏
Gp →

∏
Gp defined by

AdX Y = Y + [X,Y ] +
1

2!
[X, [X, Y ]] +

1

3!
[X, [X, [X, Y ]]] + · · · ,

where X ∈ Gp , p ≥ 1. The map AdX is both an n-map and an automorphism of∏
Gp . The set AdGp of all AdX where X ∈ Gp is a subgroup of Hp−1 , and the

subgroup 〈Hp ∪ AdGp〉 of Hp−1 generated by Hp and AdGp is normal in Hp−1 .
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Proposition 4.3. Let X ∈ Gp , p = 1, . . . , n− 1. Then

1. (ηLi )AdX (A) = ηLi (A) for i = 1, . . . , n− 1;

2. (ηL0 )AdX (A) = ηL0 (A) + ηLp (X)A;

3. (cL)AdX = cL + ∂X · ηLp−1 .

Define a map θ : Hp−1/Hp → (Hp,1)I for p = 1, . . . , n − 1 as follows. Let
σ(v) = v + σp−1 + · · · be a representative for σ ∈ Hp−1/Hp , then ∂σp−1 = 0. Let
σp−1 ∈ (Hp,1)I be the element in cohomology represented by σp .

Proposition 4.4. For p = 1, . . . , n− 1

θ : Hp−1/〈Hp ∪ AdX〉 → (Hp,1)I

is an injection.

The map θ : Hp−1/〈Hp ∪ AdX〉 → (Hp,1)I is generally not surjective;
however, an element ξ ∈ (Hp,1)I is the image of some element in Hp−1/〈Hp∪AdX〉
under the map θ exactly when ξ is given by an n-derivation on

∏
Gp . An

n-derivation is a linear map D :
∏
Gp →

∏
Gp such that

1. D(Gi) ⊂ Gi+1 ×Gi+2 × · · · ;

2. D[X, Y ]− [DX, Y ]− [X,DY ] ∈ Gn−1 ×Gn × · · · , for X, Y ∈
∏
Gp .

Suppose σ ∈ Hi (0 ≤ i < n− 1) and σ(v) = v+σi(v) +σi+1(v) + · · · . Then there
exists an n-derivation D such that D(v) = σi(v). Conversely, the map expD
is an n-map. The following theorem gives a method of calculating the action of
n-maps on

∏
Gp [6].

Theorem 4.5. An element D ∈ (Hp,1)I is the image of some element in

Hp−1/〈Hp ∪ AdX〉

under the map

θ : Hp−1/〈Hp ∪ AdX〉 → (Hp,1)I

exactly when D induces an n-derivation on
∏
Gp .

5. Algebras with dimG−1 = 2

We are now ready to classify all complete filtered Lie algebras L with graded
algebra

∏
Gp and dim G−1 = 2. We first decide the cases where L is flat; i.e,

L ∼=
∏
Gp . The following propositions shall prove useful. The proofs of the

propositions can be found in Koch’s paper [9].
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Proposition 5.1. Koch Let L be a complete filtered Lie algebra with graded
algebra

∏
Gp such that the following conditions are satisfied.

1. (H i,2)I = 0 for i ≥ 0.

2. For j > 0,

{η : G0 → Hj,1 : η[A,B] = η(B)A − η(A)B}
{η : G0 → Hj,1 : η(A) = ξA for some ξ ∈ Hj,1}

= 0.

3. HomG0(Gi, H
j,1) = 0 for 1 ≤ i < j .

Then L ∼=
∏
Gp .

Proposition 5.2. Gunning Let L be a complete filtered Lie algebra with graded
algebra

∏
Gp where G0 contains the identity map, then L ∼=

∏
Gp .

Proposition 5.3. If (H i,2)I = 0 and H i,1 = 0 for i ≥ 1, then L ∼=
∏
Gp .

The algebras (3) (λ = 1), (8)–(15), (25)–(34), (37), and (38) have no
complete filtered Lie algebras that are not isomorphic to their associated graded
algebras since in each algebra G0 contains the identity. Singer and Sternberg [12]
proved that (35) and (36) are flat. To analyze the remaining cases, it is necessary
to compute the cohomology groups of each graded algebra in question. We remark
here that H i,3 = 0 for i ≥ 0 since dimG−1 = 2.

Proposition 5.4. Table 2 is a complete list of all nonzero cohomology groups
H i,1 , (i ≥ 1) and H i,2 , (i ≥ 0) together with the generators for each of the
cohomology groups for the graded algebras (1)–(7) and (16)–(24) of Table 1.

We will compute the cohomology for (5) as an example. Using Lemma 2.5,
we may take {e1, e2, A0, . . . , an} as a basis for this algebra. The nonzero bracket
operations are [A0, e1] = e1 and [Ai, e1] = Ai−1 , where 1 ≤ i ≤ n . Since
dimV = 2, H i,j = 0 for j ≥ 3, and H i,1 = 0 for i 6= n+ 1 by Proposition 3.1. To
compute Hn+1,1 , consider the sequence

Cn+2,0 → Cn+1,1 → Cn,2.

If ξ ∈ Cn+1,1 is the linear map from V to Gn defined by ξ(e1) = aAn and
ξ(e2) = bAn , then

∂ξ(e1, e2) = [ξ(e1), e2]− [ξ(e2), e1] = −bAn−1.

Hence, the kernel of ∂ξ consists of linear maps of the form ξ(e1) = aAn and
ξ(e2) = 0. Since Cn+2,0 = 0, Hn+1,1 = R . To see that there are no invariant
elements in Hn+1,1 , observe that

ξA0(e1) = [A0, ξ(e1)]− ξ([A0, e1]) = −aAn.

To compute H0,2 , consider the sequence

C1,1 → C0,2 → 0.
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We may take ξ ∈ C1,1 to be the linear map defined by ξ(e1) = aA0 and ξ(e2) =
bA0 . Then

∂ξ(e1, e2) = [ξ(e1), e2]− [ξ(e2), e1] = −be1.

Thus, H0,2 = R with representative (e1, e2) 7→ ae2 . Since

ξA0(e1, e2) = [A0, ξ(e1, e2)]− ξ([A0, e1], e2)− ξ(e1, [A0, e2]) = −ξ(e1, e2),

there are no invariant elements in H0,2 . The computation of Hn+1,2 and (Hn+1,2)I

follows in a similar manner.

Table 2. Cohomology Groups of
∏
G0 with G0 ⊂ gl(2,R).

Cohomology Group Generators

(1) H0,2 = R (e1, e2) 7→ ae1

(H0,2)I = H0,2

(2) n ≥ 0 H0,2 = R (e1, e2) 7→ ae1

(H0,2)I = H0,2

Hn+1,1 = R e1 7→ 0, e2 7→ aAn
(Hn+1,1)I = Hn+1,1

Hn+1,2 = R (e1, e2) 7→ aAn
(Hn+1,2)I = Hn+1,2

(3) λ 6= 0 H1,2 = R (e1, e2) 7→ aA0

(H1,2)I = 0 where λ 6= −1
(H1,2)I = H1,2 where λ = −1

(4) H0,2 = R (e1, e2) 7→ ae2

(H0,2)I = 0

(5) n ≥ 0 H0,2 = R (e1, e2) 7→ ae2

(H0,2)I = 0
Hn+1,1 = R e1 7→ aAn, e2 7→ 0
(Hn+1,1)I = 0
Hn+1,2 = R (e1, e2) 7→ aAn
(Hn+1,2)I = 0

(6) H1,2 = R (e1, e2) 7→ aA0

(H1,2)I = 0

(7) H1,2 = R (e1, e2) 7→ aA0

(H1,2)I = 0 where λ 6= 0
(H1,2)I = H1,2 where λ = 0

(16) All cohomology groups vanish.

(17) λ 6= −1 and dimGk = 1 for k ≥ 1
H1,1 = R e1 7→ λaB0, e2 7→ aA0

(H1,1)I = 0
H1,2 = R (e1, e2) 7→ aA0

(H1,2)I = 0 where λ 6= −1/2
(H1,2)I = H1,2 where λ = −1/2
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Gk = 0 for k ≥ 1
H1,1 = R2 e1 7→ λaB0 ,

e2 7→ aA0 + bB0

(H1,1)I = 0 where λ 6= −2
(H1,1)I = R where λ = −2 e1 7→ 0, e2 7→ bB0

H1,2 = R2 (e1, e2) 7→ aA0 + bB0

(H1,2)I = 0

n ≥ 1 and Gk = 0 for k > n
H1,1 = R e1 7→ aλB0, e2 7→ aA0

(H1,1)I = 0
H1,2 = R (e1, e2) 7→ aA0

(H1,2)I = 0 where λ 6= −1/2
(H1,2)I = H1,2 where λ = −1/2
Hn+1,1 = R e1 7→ 0, e2 7→ aBn

(Hn+1,1)I = 0
where λ 6= −(n+ 2)/(n+ 1)

(Hn+1,1)I = Hn+1,1

where λ = −(n+ 2)/(n+ 1)
Hn+1,2 = R (e1, e2) 7→ aBn

(Hn+1,2)I = 0

(18) H2,1 = R e1 7→ aλB1, e2 7→ aA1

(H2,1)I = 0
H2,2 = R (e1, e2) 7→ aA1

(H2,2)I = 0 where λ 6= −2/3
(H2,2)I = H2,2 where λ = −2/3

(19) H2,2 = R (e1, e2) 7→ aA1

(H2,2)I = 0

(20) λ = −(n+ 1)/(n− 1)
H2,1 = R e1 7→ aλB1, e2 7→ aA1

(H2,1)I = 0
H2,2 = R (e1, e2) 7→ aA1

(H2,2)I = 0
Hn+1,1 = R e1 7→ 0, e2 7→ aBn

(Hn+1,1)I = 0
Hn+1,2 = R (e1, e2) 7→ aBn

(Hn+1,2)I = 0

(21) All cohomology groups vanish.

(22) H0,2 = R (e1, e2) 7→ ae1

(H0,2)I = 0
H2,1 = R e1 7→ aA1

1, e2 7→ 0
(H2,1)I = 0

(23) dimGk = 2 H0,2 = R (e1, e2) 7→ ae1
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(H0,2)I = 0
H1,1 = R e1 7→ aA0

1, e2 7→ 0
(H1,1)I = 0

dimGk = 1 for k > n ≥ 1
H0,2 = R (e1, e2) 7→ ae1

(H0,2)I = 0
H1,1 = R e1 7→ aA0

1, e2 7→ 0
(H1,1)I = 0
Hn+1,1 = R e1 7→ aAnn+1, e2 7→ aAnn+2

(Hn+1,1)I = Hn+1,1

Hn+1,2 = R (e1, e2) 7→ aAnn+1

(Hn+1,2)I = 0

(24) dimGk = 1 for k ≥ 1
H0,2 = R (e1, e2) 7→ ae1

(H0,2)I = 0
H1,1 = R2 e1 7→ aA0

1 + bA0
2 ,

e2 7→ bA0
1

(H1,1)I = R e1 7→ bA0
2, e2 7→ bA0

1

H1,2 = R (e1, e2) 7→ aA0
1

(H1,1)I = 0

Gk = 0 for k > n ≥ 1 and dimGk = 1, n = 1, . . . , n
H0,2 = R (e1, e2) 7→ ae1

(H0,2)I = 0
H1,1 = R2 e1 7→ aA0

1 + bA0
2 ,

e2 7→ bA0
1

(H1,1)I = R e1 7→ bA0
2, e2 7→ bA0

1

H1,2 = R (e1, e2) 7→ bA0
1

(H1,1)I = 0
Hn+1,1 = R e1 7→ 0, e2 7→ aAnn+2

(Hn+1,1)I = 0
Hn+1,2 = R (e1, e2) 7→ aAnn+2

(Hn+1,2)I = 0

By Proposition 5.3, L ∼=
∏
Gp for the algebras (3), (λ 6= −1, 0), (4), (6),

(7) (λ 6= 0), (16), (19), and (21), since the appropriate cohomology groups vanish.
A straightforward but lengthy computation shows that the algebras (5), (20), and
(22) satisfy the hypothesis of Proposition 5.1; therefore, these algebras are also
flat.

The remaining algebras to be considered are (1)–(3), (7), (17), (18), (23),
and (24). If the cohomological elements c, η0. . . . , ηn−1 are known modulo the
actions of Aut(

∏
Gp) and H , then we may determine all complete filtered Lie

algebras with dim G−1 = 2 provided that all higher obstructions vanish.
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Lemma 5.5. There exist exactly two complete filtered Lie algebras L having
graded algebra (1). These algebras are determined by c ∈ H0,2 with c = 0 if L is
graded and c 6= 0 if L is nongraded.

Proof. The only nonzero cohomology group is H0,2 . Let c ∈ H0,2 have
generator c(e1, e2) = ae1 . The hypothesis of Theorem 3.2 are satisfied; hence,
c induces a complete filtered Lie algebra bracket on

∏
Gp . The group of n-maps

acts trivially on c since H i,0 = 0 for i ≥ 0. An automorphism α on G−1 is given
by a matrix of the form (

r s
0 t

)
.

An easy computation yields α∗c(e1, e2) = (a/t)e1 . An appropriate choice of α will
send c to any other nonzero element in H0,2 . Therefore, if c 6= 0, there exists
exactly one nongraded algebra L .

The proofs of the next two lemmas are similar to the proof of Lemma 5.5.

Lemma 5.6. The two complete filtered Lie algebras having graded algebra (3)
(λ = −1) are characterized by c 6= 0 and c = 0 (graded case), where c ∈ H1,2 .

Lemma 5.7. For the algebra (7) (λ = 0), let c ∈ H1,2 have the generator
c(e1, e2) = βA0 . Then there are three distinct complete filtered Lie algebras deter-
mined by β > 0, β < 0, and β = 0 (graded case).

Lemma 5.8. The complete filtered Lie algebras having graded algebra (2) are
parameterized by (β−1, . . . , βn), βi ∈ R. Furthermore, Lβ−1,... ,βn

∼= Lγ−1,... ,γn if
there exists a λ ∈ R such that

(β−1, . . . , βn) = (λn+2γ−1, . . . , λγn).

Proof. Let c ∈ Hn+1,2 and ηi ∈ Hom(Gi, H
n+1,1) for 0 ≤ i ≤ n be given by

c(e1, e2) = β−1An,

ηi(Ai, e1) = 0,

ηi(Ai, e2) = βiAn.

One quickly checks that the hypothesis of Theorem 3.3 hold. Applying Proposition
4.2, we see that the n-maps have no effect on the c, η0, . . . , ηn−1 .

It remains to show how Aut(
∏
Gp) acts on the c, η0, . . . , ηn−1 . Let α be

as in Lemma 5.5. Then

α∗c(e1, e2) = (β−1/t)An,

α∗ηi(Ai, e2) = (βi/t
n−i−1)An.

Therefore, if L = Lβ−1,... ,βn is the algebra determined by the c and ηi , then any
other algebra determined by

c(e1, e2) = λn+2β−1An,

ηi(Ai, e1) = 0,

ηi(Ai, e2) = λn−i+1βiAn,

for some λ ∈ R , must be isomorphic to L .
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Lemma 5.9. Let
∏
Gp be the graded algebra(

λa b
0 (λ+ 1)a

)
−
(

0 0 b
0 0 0

)
−
(

0 0 0 b
0 0 0 0

)
− · · ·

as in (17). If λ 6= −1, 0, −1/2, then
∏
Gp is flat. If λ = −1/2, then there is

exactly one nongraded algebra characterized by c 6= 0, c ∈ H1,2 . If λ = 0 there is
exactly one nongraded algebra characterized by η0(B0) 6= 0, η0 ∈ Hom(G0, H

1,1).

Proof. Let

c(e1, e2) = βA0,

η0(A0, e1) = λγB0, η0(A0, e2) = γA0,

η0(B0, e1) = λδB0, η0(B0, e2) = δA0.

If λ = −1/2 and we apply the structural equations of Theorem 3.3, we may
assume that c(e1, e2) = βA0 . If λ 6= −1, 0, or −1/2, then η0(A0, e1) = λγB0 and
η0(A0, e2) = γA0 . If λ = 0, then η0(A0, e2) = γA0 and η0(B0, e2) = δA0 . The
actions of the n-maps in the first case show that there are no nongraded algebras
if λ 6= 1, 0, or −1/2. If λ = −1/2, the n-maps act trivially. If λ = 0, we may
assume that γ = 0. Finally, notice that α ∈ Aut(

∏
Gp) is given on G−1 by a

matrix of the form (
r s
0 t

)
.

If either λ = 0 or −1/2, any nonzero element may be sent to any other nonzero
element by the appropriate choice of α .

Lemma 5.10. Let (
λa b
0 (λ+ 1)a

)
− (0)− · · ·

be as in (17). If λ 6= 0 or −2, then all algebras are graded. If λ = 0, then there
exists one nongraded algebra characterized by η0(B0) 6= 0. If λ = −2, there is
exactly one nongraded algebra characterized by η0(A0) 6= 0.

Proof. Let

c(e1, e2) = αA0 + βB0,

η0(A0, e1) = λγB0, η0(A0, e2) = γA0 + δB0,

η0(B0, e1) = λσB0, η0(B0, e2) = σA0 + τB0.

The equations of Theorem 3.3 allow for two cases. If λ = 0, then

η0(A0, e2) = γA0 + δB0,

η0(B0, e2) = σA0 + γB0.

If λ 6= 0, then

c(e1, e2) =
λγ2

(λ+ 1)2
B0,

η0(A0, e1) = λγB0, η0(A0, e2) = γA0 + δB0,

η0(B0, e1) = 0, η0(B0, e2) =
λ− 1

λ+ 1
γB0.
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Applying Proposition 4.2, we may assume that η0(B0, e2) = σA0 if λ = 0. If
λ 6= 0, the c and the ηi ’s vanish except for the case λ = −2, where η0(A0, e2) =
δB0 . The automorphism group of

∏
Gp sends any nonzero element to any other

nonzero element.

The proofs of the next four lemmas are similar to the proofs above.

Lemma 5.11. Let(
λa b
0 (λ+ 1)a

)
−
(

0 0 b
0 0 0

)
− · · · −

(
0 · · · 0 b
0 · · · 0 0

)
− (0)− · · ·

be the algebra given in (17), where n ≥ 1 and Gk = 0 for k > n. If λ 6=
−(n + 2)/(n + 1), then L ∼=

∏
Gp . If λ = −(n + 2)/(n + 1), then there exists

exactly one nongraded algebra determined by η0(A0) 6= 0.

Lemma 5.12. Algebra (18) is flat if λ 6= −1, 0, or −2/3. If λ = 0 or
λ = −2/3, then there is exactly one nongraded example in each case that is
determined by η0(B0) 6= 0 and c 6= 0, respectively.

We remark that the algebra given by(
a b
0 0

)
−
(

0 a b
0 0 0

)
−
(

0 0 a b
0 0 0 0

)
− · · ·

in (23) is graded by Proposition 5.1.

Lemma 5.13. Let(
a b
0 c

)
−
(

0 a b
0 0 0

)
− · · · −

(
0 · · · 0 a b
0 · · · 0 0 0

)
−
(

0 · · · 0 0 b
0 · · · 0 0 0

)
− · · ·

be the algebra in (23) with dim Gk = 1 for k > n. The nongraded algebras are
parameterized by (β0, . . . βn), βi ∈ R; where Lβ0,...,βn

∼= Lγ0,...,γn if there exists
λ ∈ R such that

(β0, . . . , βn) = (λn+1γ0, . . . , λγn).

Lemma 5.14. Given the algebra(
a b
0 0

)
−
(

0 0 b
0 0 0

)
−
(

0 0 0 b
0 0 0 0

)
− · · ·

in (24), there exists one nongraded algebra determined by η0(A0
1) 6= 0.

Lemma 5.15. Let(
a b
0 0

)
−
(

0 0 b
0 0 0

)
− · · · −

(
0 · · · 0 b
0 · · · 0 0

)
− (0)− · · ·

be as in (24) where Gk = 0 for k > n. The nongraded algebras are parameterized
by (β0, . . . βn), βi ∈ R; and Lβ0,...,βn

∼= Lγ0,...,γn if there exists λ ∈ R such that
(β0, . . . , βn) = (λn+1γ0, . . . , λγn).
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Proof. Let c(e1, e2) = αAn
n+2 , η0(A0, e2) = βAnn+2 , and ηi(Bi, e2) = γiA

n
n+2 for

0 ≤ i < n . Equations (1) through (7) of Theorem 3.3 are satisfied. Let D be the
n-derivation D given by

De1 = A0
2, De2 = A0

1, DA0
1 = 0,

DAii+2 = (i+ 2)Ai+1
i+3 (0 ≤ i < n),

DAnn+2 = 0.

The n-map expD is given by

(expD)(e1) = e1 + A0
2 + · · ·Ann+2,

(expD)(e2) = e2 + A0
1,

(expD)(A0
1) = 0,

(expD)(Aii+2) = Aii+2 + (i+ 2)Ai+1
i+3 +

(i+ 2)(i+ 3)

2!
Ai+2
i+4 + · · · .

The n-maps act on c as in Proposition 4.1, allowing us to assume that c = 0. The
action of the n-maps on Hn+1,1 also allows us to assume that β = 0. Now apply
Aut(

∏
Gp) as in Lemma 5.8.

Theorem 5.16. Table 3 is a complete list of all nongraded algebras for
∏
Gp ,

where dimG−1 = 2.

Table 3. Nongraded Algebras with dimG−1 = 2.

(1) One nongraded algebra.

(2) Nongraded algebras Lβ−1···βn , βi ∈ R where Lβ−1···βn
∼= Lγ−1···γn if there

exists λ ∈ R such that (β−1, . . . , βn) = (λn+2γ−1, . . . , λγn).

(3) One nongraded algebra (λ = −1).

(7) Two nongraded algebras (λ = 0).

(17) One nongraded algebra in each case (λ = −1/2, 0).(
λa b
0 (λ+ 1)a

)
−
(

0 0 b
0 0 0

)
−
(

0 0 0 b
0 0 0 0

)
− · · ·

One nongraded algebra in each case (λ = −2, 0).(
λa b
0 (λ+ 1)a

)
− (0)− · · ·

One nongraded algebra in each case (λ = −(n+ 2)/(n+ 1)) and Gk = 0 for
k > n .(

λa b
0 (λ+ 1)a

)
−
(

0 0 b
0 0 0

)
− · · · −

(
0 · · · 0 b
0 · · · 0 0

)
− (0)− · · ·
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(18) One nongraded algebra in each case (λ = 0,−2/3).

(23) Let
∏
Gp be the algebra(

a b
0 0

)
−
(

0 a b
0 0 0

)
− · · · −

(
0 · · · a b
0 · · · 0 0

)
−
(

0 · · · 0 b
0 · · · 0 0

)
− · · · ,

where dimGk = 1 for k > n . Nongraded algebras Lβ0···βn exist, where
βi ∈ R and Lβ0···βn

∼= Lγ0···γn if there exists λ ∈ R such that

(β0, . . . , βn) = (λn+1γ0, . . . , λγn).

(24) One nongraded algebra for the graded algebra(
a b
0 0

)
−
(

0 0 b
0 0 0

)
− · · · −

(
0 · · · 0 b
0 · · · 0 0

)
− · · ·

For the algebra(
a b
0 0

)
−
(

0 0 b
0 0 0

)
− · · · −

(
0 · · · 0 b
0 · · · 0 0

)
− (0)− · · · ,

where Gk = 0 for k > n , there exist nongraded algebras Lβ0···βn with
βi ∈ R and Lβ0···βn

∼= Lγ0···γn if there exists aλ ∈ R such that (β0, . . . , βn) =
(λn+1γ0, . . . , λγn).

6. Conclusion

Cartan first classified the pseudogroups on R2 in [1] using a different approach,
and Conn treats the structure of transitive Lie algebras in [2]. The methods used
in this paper is that they can reasonably be applied to dimensions higher than two
in many cases. Although the techniques here are useful in constructing examples
of nongraded Lie algebras, they do not allow a complete classification. If higher
obstructions in cohomology exist, then these techniques may fail. Volpert offers
another method using the Spencer cohomology and spectral sequences to obtain
examples of complete filtered Lie algebras in [14, 15]. Finally, complete filtered Lie
algebras are the algebraic objects corresponding to pseudogroups and transitive
differential geometry. The geometric meaning of the c ’s and the ηi ’s are only
partially understood [3, 12, 13].
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