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Abstract. We study the actions of the Lie algebra nsl(2,C) of SL(2,C)n and
the associated Casimir operator on the space of pseudodifferential operators of n
variables. We describe the effect of the Casimir operator on a pseudodifferential
operator in connection with the symbol map and construct an nsl(2,C)-invariant
lifting of the symbol map.

1. Introduction

It is well-known that pseudodifferential operators of a single variable play an im-
portant role in the theory of nonlinear integrable partial differential equations,
also known as soliton equations, as well as in conformal field theory. The algebra
of pseudodifferential operators generalizes the algebra of differential operators and
admits various other important algebraic structures (see e.g. [6]). In a recent paper
[3] (see also [14]), Cohen, Manin and Zagier investigated connections among pseu-
dodifferential operators, modular forms, and formal power series called Jacobi-like
forms. Among other things, given a discrete subgroup Γ of SL(2,R) acting on the
Poincaré upper half plane H as usual, they constructed a natural correspondence
between Γ-invariant pseudodifferential operators on H and sequences of modular
forms for Γ. Since the product of two Γ-invariant pseudodifferential operators are
again Γ-invariant, such a correspondence determines a family of noncommutative
products of modular forms known as the Rankin-Cohen brackets (cf. [2], [12]).
The construction of the Rankin-Cohen brackets can also be extended to the case
of Siegel modular forms as was done in [1] and [4]. On the other hand, in [10] Olver
and Sanders studied highly interesting connections of the Rankin-Cohen brackets
for modular forms with various topics in pure and applied mathematics including
transvectants, the Heisenberg group, solitons, Hirota operators and coherent states
(see also [8], [9]).

Pseudodifferential operators of several variables were systematically intro-
duced recently by Parshin in [11], where he discussed some of their algebraic struc-
tures as well as their role in soliton theory. As is expected, the close link between
pseudodifferential operators and modular forms can be extended to the case of sev-
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eral variables. Indeed, the group SL(2,C)n acts on the space of pseudodifferential
operators of n variables, and a pseudodifferential operator on the n-fold product
Hn of the Poincaré upper half plane H invariant under the action of a discrete
subgroup Γn ⊂ SL(2,R)n can be identified with a sequence of Hilbert modular
forms for Γn , and the Rankin-Cohen brackets for Hilbert modular forms can also
be constructed (see [7]).

In this paper we study the actions of the Lie algebra nsl(2,C) of the Lie
group SL(2,C)n and the associated Casimir operator on the space of pseudodiffer-
ential operators of n variables. We describe the effect of the Casimir operator on
a pseudodifferential operator in connection with the symbol map, which associates
the coefficient of the highest order term to each pseudodifferential operator. We
also construct an nsl(2,C)-equivariant lifting of the symbol map.

2. Pseudodifferential operators of several variables

In this section we review some of the properties of pseudodifferential operators of
several variables introduced by Parshin [11]. Let (z1, . . . , zn) be the standard co-
ordinate system for Cn , and let ∂1, . . . , ∂n be the associated partial differentiation
operators given by

∂1 =
∂

∂z1

, . . . , ∂n =
∂

∂zn
.

We denote by F the ring of complex-valued C∞ functions f(z) = f(z1, . . . , zn)
on Cn .

For convenience we often use the multi-index notation throughout the paper.
Thus, given α = (α1, . . . , αn) ∈ Zn and u = (u1, . . . , un) ∈ Cn , we have

∂α = ∂α1
1 · · · ∂αnn , uα = uα1

1 · · ·uαnn . (1)

If β = (β1, . . . , βn) ∈ Zn+ with Z+ denoting the set of nonnegative integers, we
write

β! = β1! · · · βn!,

(
α

β

)
=

(
α1

β1

)
· · ·
(
αn
βn

)
,

where for 1 ≤ i ≤ n we have(
αi
0

)
= 1,

(
αi
βi

)
=
αi(αi − 1) · · · (αi − βi + 1)

βi!

for βi > 0. Furthermore, for µ = (µ1, . . . , µn), ν = (ν1, . . . , νn) ∈ Zn we write
µ ≤ ν if µi ≤ νi for each i = 1, . . . , n , and also write c = (c, . . . , c) ∈ Zn if c ∈ Z .

Definition 2.1. A pseudodifferential operator of n variables is a formal series
of the form

L =
∑
α≤ν

fα(z)∂α (2)

for some ν ∈ Zn , where z = (z1, . . . , zn) ∈ Cn and fα ∈ F for all α ≤ ν . We
shall denote by ΨDO the complex vector space consisting of all pseudodifferential
operators of n variables.
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Definition 2.2. (i) The order of an element L ∈ ΨDO, denoted by ord(L), is
the smallest integer r such that L =

∑
i≤r ai∂

i
n with ar 6= 0.

(ii) The highest term of L ∈ ΨDO, denoted by HT(L), is the term in L
defined inductively by

HT(L) = (HT(ar))∂
r
n

for L =
∑

i≤r ai∂
i
n with ord(L) = r .

If the highest term of L is of the form HT(L) = f(z)∂η1

1 · · · ∂ηnn , then we
set

ν(L) = (η1, . . . , ηn) ∈ Zn.
We denote by ≺ the lexicographic type of order on Zn such that

ν(L) = (η1, . . . , ηn) ≺ 0

if and only if

ηn < 0, or ηn = 0 and ηn−1 < 0, or . . . , etc.

and use � to mean ≺ or =. Given an element ω = (ω1, . . . , ωn) ∈ Zn , we consider
the subspaces ΨDOω and ΨDO∗ω of ΨDO defined by

ΨDOω = {L ∈ ΨDO | ν(L) � ω}, ΨDO∗ω = {L ∈ ΨDO | ν(L) ≺ ω}.

Let Ξω be the symbol map sending a pseudodifferential operator L ∈ ΨDOω to
the coefficient of its highest term, that is, Ξω(L) = fω(z) if HT(L) = fω(z)∂ω .
Then we see that the kernel of Ξω is ΨDO∗ω , and therefore we obtain a short exact
sequence

0→ ΨDO∗ω → ΨDOω
Ξω−→ F → 0 (3)

of complex vector spaces.

3. Casimir operators

Let sl(2,C) be the Lie algebra of the Lie group SL(2,C), and let {X,Y,H} be
the standard basis for sl(2,C) given by

X =

(
0 1
0 0

)
, Y =

(
0 0
1 0

)
, H =

(
1 0
0 −1

)
(4)

satisfying
[H,X] = 2X, [H, Y ] = −2Y, [X, Y ] = H.

We denote by nsl(2,C) the direct sum of n copies of sl(2,C), which is the Lie
algebra of SL(2,C)n . For 1 ≤ i ≤ n let

εi : sl(2,C)→ nsl(2,C) (5)

be the natural inclusion map sending an element of sl(2,C) to the i-th component
of nsl(2,C), and set

Xi = εi(X), Yi = εi(Y ), Hi = εi(H).
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Then we see that the set

{Xi, Yi, Hi | 1 ≤ i ≤ n} (6)

is a basis for nsl(2,C). Let End(ΨDO) be the space of complex linear endomor-
phisms of ΨDO, and define the complex linear map σ : nsl(2,C) → End(ΨDO)
by

σ(Xi) =
√
−1z2

i ∂i, σ(Yi) =
√
−1∂i, σ(Hi) = 2zi∂i (7)

for 1 ≤ i ≤ n . As usual End(ΨDO) has the structure of a complex Lie algebra
whose bracket operation is given by

[ψ1, ψ2] = ψ1ψ2 − ψ2ψ1

for all ψ1, ψ2 ∈ ΨDO. We denote this Lie algebra by gl(ΨDO).

Lemma 3.1. The linear map σ given by (7) determines a Lie algebra homo-
morphism from nsl(2,C) to gl(ΨDO).

Proof. It suffices to check the condition for the basis elements for nsl(2,C) in
(6). Using (7), for each i we obtain

[σ(Hi), σ(Xi)] = [2zi∂i,
√
−1z2

i ∂i]

= 2
√
−1(zi(2zi∂i + z2

i ∂
2
i )− z2

i (∂i + zi∂
2
i ))

= 2
√
−1z2

i ∂i = 2σ(Xi) = σ([Hi, Xi]),

[σ(Hi), σ(Yi)] = [2zi∂i,
√
−1∂i]

= 2
√
−1(zi∂

2
i − ∂i − zi∂2

i )

= −2
√
−1∂i = −2σ(Yi) = σ([Hi, Yi]),

[σ(Xi), σ(Yi)] = [
√
−1z2

i ∂i,
√
−1∂i]

= −(z2
i ∂

2
i − 2zi∂i − z2

i ∂
2
i )

= 2zi∂i = σ(Hi) = σ([Xi, Yi]),

and hence the lemma follows.

By Lemma 3.1 the composition of σ with the adjoint representation of the
Lie algebra gl(ΨDO) determines a representation of the Lie algebra nsl(2,C) in
the complex vector space ΨDO. The associated Casimir element C is given by

C =
n∑
i=1

(σ(Hi)
2/2 + σ(Xi)σ(Yi) + σ(Yi)σ(Xi)) (8)

(see e.g. [5, §6.2]). For 1 ≤ i ≤ n and 1 ≤ j ≤ 3 we set

Li,j = zj−1
i ∂i, (9)

which we regard as operators acting on ΨDO by commutation. Then by (7) and
(8) we see that the Casimir operator can be written in the form

C =
n∑
i=1

(2L2
i,2 − Li,1Li,3 − Li,3Li,1) (10)

and that C(ΨDOη) ⊂ ΨDOη for each η ∈ Zn .
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Theorem 3.2. Given an element ψ =
∑

ν≥0 fν∂
η−ν ∈ ΨDOη with

η = (η1, . . . , ηn) ∈ Zn

we have

Ξη(Cψ) = 2
n∑
i=1

ηi(ηi + 1)Ξη(ψ),

where Ξη is the symbol map in (3).

Proof. First, we consider an element of the form h∂ω ∈ ΨDO with ω =
(ω1, . . . , ωn). Then for each i ∈ {1, . . . , n} we have

Li,1(h∂ω) = [∂i, h∂
ω] = ∂i(h∂

ω)− h∂ω∂i
= (∂ih)∂ω + h∂ω+ei − h∂ω+ei = (∂ih)∂ω

Li,2(h∂ω) = [zi∂i, h∂
ω] = zi∂i(h∂

ω)− h∂ω(zi∂i)

= zi(∂ih)∂ω + zih∂
ω+ei − hzi∂ω+ei − ωih∂ω = (zi(∂ih)− ωih)∂ω

Li,3(h∂ω) = [z2
i ∂i, h∂

ω] = z2
i ∂i(h∂

ω)− h∂ω(z2
i ∂i)

= z2
i (∂ih)∂ω + z2

i h∂
ω+ei − h(z2

i ∂
ω+ei + 2ωizi∂

ω + ωi(ωi − 1)∂ω−ei)

= (z2
i (∂ih)− 2ωizih)∂ω − ωi(ωi − 1)h∂ω−ei ,

where ei denotes the element of Zn with 1 in the i-th entry and 0 elsewhere. Thus
we see that

L2
i,2(h∂ω) = zi(∂i(zi(∂ih)− ωih))∂ω − ωi(zi(∂ih)− ωih)∂ω

= zi((∂ih) + zi(∂
2
i h)− ωi(∂ih))∂ω − ωizi(∂ih)∂ω + ω2

i h∂
ω

= zi(∂ih)∂ω + z2
i (∂

2
i h)∂ω − ωizi(∂ih)∂ω − ωizi(∂ih)∂ω + ω2

i h∂
ω,

Li,1Li,3(h∂ω) = (∂i(z
2
i (∂ih)− 2ωizih))∂ω − ωi(ωi − 1)(∂ih)∂ω−ei

= (2zi(∂ih) + z2
i (∂

2
i h)− 2ωih− 2ωizi(∂ih))∂ω

− ωi(ωi − 1)(∂ih)∂ω−ei ,

Li,3Li,1(h∂ω) = (z2
i (∂

2
i h)− 2ωizi(∂ih))∂ω − ωi(ωi − 1)(∂ih)∂ω−ei .

Using these relations and (10), it follows that

C(h∂ω) = 2
n∑
i=1

(
ωi(ωi + 1)h∂ω + ωi(ωi − 1)(∂ih)∂ω−ei

)
.

Thus, if ψ =
∑

ν≥0 fν∂
η−ν ∈ ΨDOη , we have

Cψ − 2
n∑
i=1

ηi(ηi + 1)ψ = 2
∑
ν≥0

n∑
i=1

(
(ηi − νi)(ηi − νi + 1)− ηi(ηi + 1)

)
fν∂

η−ν

+ 2
∑
ν≥0

n∑
i=1

(ηi − νi)(ηi − νi − 1)(∂ifν)∂
η−ν−ei

= 2
n∑
i=1

∑
ν≥ei

νi(νi − 2ηi − 1)fν∂
η−ν

+ 2
∑
ν≥0

n∑
i=1

(ηi − νi)(ηi − νi − 1)(∂ifν)∂
η−ν−ei .
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Hence we obtain

Ξη

(
Cψ − 2

n∑
i=1

ηi(ηi + 1)ψ
)

= 0,

and therefore the theorem follows.

Remark 3.3. Given η = (η1, . . . , ηn) ∈ Zn , if ΨDO∗η is as in (3), we have
C(ΨDO∗η) ⊂ ΨDO∗η ; hence the Casimir operator C acts on the quotient space
ΨDOη/ΨDO∗η by

C(ΨDO∗η + ψ) = ΨDO∗η + Cψ (11)

for all ψ ∈ ΨDOη . Using (11) and Theorem 3.2, we see that

C(ΨDO∗η + ψ) = ΨDO∗η + Ξη(Cψ)

= ΨDO∗η + 2
n∑
i=1

ηi(ηi + 1)Ξη(ψ)

= 2
n∑
i=1

ηi(ηi + 1)(ΨDO∗η + ψ),

and therefore it follows that the Casimir operator C acts on ΨDOη/ΨDO∗η as
multiplication by 2

∑n
i=1 ηi(ηi + 1).

4. The lifting map

Since F may be regarded as a subspace of ΨDO, the action of nsl(2,C) on ΨDO
determined by σ in (5) induces an action of nsl(2,C) on F . Relative to such
actions we see easily that the symbol map Ξη : ΨDOη → F with η ∈ Zn is
nsl(2,C)-equivariant, that is,

Ξη(σ(W )ψ) = σ(W )Ξη(ψ)

for all ψ ∈ ΨDOη and W ∈ nsl(2,C). In this section we construct a lifting of the
symbol map Ξη that is nsl(2,C)-equivariant.

Via the inclusion map εi : sl(2,C)→ nsl(2,C) in (5), the representation σ
of nsl(2,C) on ΨDO induces the representation σi = σ◦εi of sl(2,C) in ΨDO for
each i ∈ {1, . . . , n} . If X, Y,H and Xi, Yi, Hi are as in (4) and (6), the Casimir
element Ci associated to σi is given by

Ci = σi(H)2/2 + σi(X)σi(Y ) + σi(Y )σi(X) (12)

= σ(Hi)
2/2 + σ(Xi)σ(Yi) + σ(Yi)σ(Xi)

= 2L2
i,2 − Li,1Li,3 − Li,3Li,1,

where the Li,j are as in (9) for 1 ≤ j ≤ 3.
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Lemma 4.1. Given i ∈ {1, . . . , n}, let Ci be the Casimir operator in (12),
and let ψ =

∑
ν≥0 fν∂

η−ν ∈ ΨDOη with η ∈ Zn . Then we have

(Ci − 2ηi(ηi + 1))ψ = 2
∑
ν≥ei

(
νi(νi − 2ηi − 1)fν

+ (ηi − νi + 1)(ηi − νi)(∂ifν−ei)
)
∂η−ν . (13)

Proof. Let ψ =
∑

ν≥0 fν∂
η−ν ∈ ΨDOη with η ∈ Zn . Using the expressions of

Li,j used in the proof of Theorem (3.2), we see that

Ciψ =
∑
ν≥0

(
2(ηi − νi)(ηi − νi + 1)fν∂

η−ν

+ 2(ηi − νi)(ηi − νi − 1)(∂ifν)∂
η−ν−ei

)
= 2

∑
ν≥0

(ηi − νi)(ηi − νi + 1)fν∂
η−ν

+ 2
∑
ν≥ei

(ηi − νi + 1)(ηi − νi)(∂ifν−ei)∂η−ν

= 2ηi(ηi + 1)
∑
ν≥0

fν∂
η−ν

+ 2
∑
ν≥ei

((ηi − νi)(ηi − νi + 1)− ηi(ηi + 1))fν∂
η−ν

+ 2
∑
ν≥ei

(ηi − νi + 1)(ηi + νi)(∂ifν−ei)∂
η−ν

= 2ηi(ηi + 1)ψ + 2
∑
ν≥ei

(
νi(νi − 2ηi − 1)fν

+ (ηi − νi + 1)(ηi + νi)(∂ifν−ei)
)
∂η−ν .

Hence the lemma follows.

Given ω ≥ 0 with ω 6= 0 , we define the linear maps Lω : F → ΨDOω ,
L−ω : F → ΨDO−ω , and L0 : F → F by

Lω(f) =
ω!(ω − 1)!

(2ω)!

∑
0≤ν≤ω−1

(2ω − ν)!

ν!(ω − ν)!(ω − ν − 1)!
(∂νf)∂ω−ν , (14)

L0(f) = f, (15)

L−ω(f) =

(
2ω − 1

ω

)∑
ν≥0

(−1)|ν|
(ν + ω)!(ν + ω − 1)!

ν!(ν + 2ω − 1)!
(∂νf)∂−ω−ν , (16)

for all f ∈ F . Then we see easily that

Ξη ◦ Lη(f) = f

for each f ∈ F and η ∈ Zn ; hence Lη is a lifting of Ξη .
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Example 4.2. We consider the case, where n = 2, z1 = z , z2 = w and
ω = (2, 3) ∈ Z2

+ . Then, given f = f(z, w) ∈ F , by (14) we have

Lω(f) =
2!3!1!2!

4!6!

1∑
i=0

2∑
j=0

(4− i)!(6− j)!
i!j!(2− i)!(3− j)!(1− i)!(2− j)!

∂i+jf

∂z6∂wj
(z, w)∂2−i

z ∂3−j
w

= f(z, w)∂2
z∂

3
w +

∂f

∂w
(z, w)∂2

z∂
2
w +

1

5

∂2f

∂w2
(z, w)∂2

z∂w +
1

2

∂f

∂z
(z, w)∂z∂

3
w

+
1

2

∂2f

∂z∂w
(z, w)∂z∂

2
w +

1

10

∂3f

∂z∂w2
(z, w)∂z∂w,

where ∂z = ∂/∂z and ∂w = ∂/∂w . Thus Lω(f) is in fact a differential operator
rather than a pseudodifferential operator. On the other hand, using (16) and(

2ω − 1

ω

)
=

(
(3, 5)

(2, 3)

)
=

(
3

2

)(
5

3

)
= 30,

we see that L−ω(f) is a pseudodifferential operator given by

L−ω(f) = 30
∞∑
i=0

∞∑
j=0

(−1)i+j
(i+ 2)!(j + 3)!i+ 1)!(j + 2)!

i!j!(i+ 3)!(j + 5)!

∂i+jf

∂z6∂wj
(z, w)∂−iz ∂

−j
w .

Theorem 4.3. For each η ∈ Zn the linear map Lη : F → ΨDOη given by (14)
is nsl(2,C)-equivariant, that is,

Lη(σ(W )f) = σ(W )Lη(f) (17)

for all W ∈ nsl(2,C) and f ∈ F , where σ is as in (7).

Proof. We shall show that a lifting Lη of Ξη satisfying (17) must be given
by the formulas (14), (15), and (16). If Lη is such a map, using the embeddings
εi : sl(2,C) → nsl(2,C), we see that Lη is sl(2,C)-equivariant via σi = σ ◦ εi
for each i ∈ {1, . . . , n} . Using Lemma 4.1 and an argument similar to the one
in Remark 3.3, we also see that the Casimir operator Ci operates on the quotient
space ΨDOη/ΨDO∗η as multiplication by 2ηi(ηi + 1). Since F is isomorphic to
ΨDOη/ΨDO∗η , we have

Ci(Lη(f)) = Lη(Cif) = 2ηi(ηi + 1)Lη(f) (18)

for 1 ≤ i ≤ n and f ∈ F . Let ω ≥ 0 with ω 6= 0 , and set

Lω(f) =
∑
ν≥0

fν∂
ω−ν .

If ν ≥ ei , then by (13) and (18) we have

νi(νi − 2ωi − 1)fν + (ωi − νi + 1)(ωi − νi)(∂ifν−ei) = 0.

Hence we obtain

fν = −(ωi − νi + 1)(ωi − νi)
νi(νi − 2ωi − 1)

∂ifν−ei
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for all ν ≥ ei . Thus, if νi ≤ ωi − 1, by iteration we have

fν = (−1)νi
(ωi − νi + 1) · · ·ωi · (ωi − νi) · · · (ωi − 1)

νi!(νi − 2ωi − 1) · · · (−2ωi)
∂νii fν−νiei

=
(ωi!/(ωi − νi)!)((ωi − 1)!/(ωi − νi − 1)!)

νi!(2ωi)!/(2ωi − νi)!
∂νii fν−νiei

=
ωi!(ωi − 1)!

(2ωi)!
· (2ωi − νi)!
νi!(ωi − νi)!(ωi − νi − 1)!

∂νii fν−νiei .

If νi > ωi − 1, then we have fν = 0. Hence we obtain

fν =
ω!(ω − 1)!

(2ω)!
· (2ω − ν)!

ν!(ω − ν)!(ω − ν − 1)!
∂νf0

if 0 ≤ ν ≤ ω − 1 , and fν = 0 otherwise. Thus it follows that

Lω(f) =
ω!(ω − 1)!

(2ω)!

∑
0≤ν≤ω−1

(2ω − ν)!

ν!(ω − ν)!(ω − ν − 1)!
(∂νf0)∂ω−ν .

However, since Lω is a lifting of Ξω , we have f0 = Ξω(Lωf) = f , and therefore
we obtain (14). On the other hand, if L−ω(f) =

∑
ν≥0 hν∂

−ω−ν ∈ ΨDO−w , then
by (13) and (18) we have

νi(νi + 2ωi − 1)hν + (ωi + νi − 1)(ωi + νi)(∂ihν−ei) = 0

for 1 ≤ i ≤ n and f ∈ F . Hence we obtain

hν = −(ωi + νi − 1)(ωi + νi)

νi(νi + 2ωi − 1)
∂ihν−ei

for all ν ≥ ei . Thus by iteration we see that

hν = (−1)νi
((νi + ωi)!/ωi!)((νi + ωi − 1)!/(ωi − 1)!)

νi!(νi + 2ωi − 1)!/(2ωi − 1)!
∂νii hν−νiei

= (−1)νi
(

2ωi − 1

ωi

)
(νi + ωi)!(νi + ωi − 1)!

νi!(νi + 2ωi − 1)!
∂νii hν−νiei .

Applying this for each i , we obtain

hν = (−1)|ν|
(

2ω − 1

ω

)
(ν + ω)!(ν + ω − 1)!

ν!(ν + 2ω − 1)!
∂νh0.

Hence it follows that

L−ω(f) =

(
2ω − 1

ω

)∑
ν≥0

(−1)|ν|
(ν + ω)!(ν + ω − 1)!

ν!(ν + 2ω − 1)!
(∂νh0)∂−ω−ν ,

and therefore we obtain (16) by using h0 = Ξ−ω(L−ω(f)) = f . Since a lifting L0

with L0(F) ⊂ F should obviously be the identity map, the proof of the theorem
is complete.
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Remark 4.4. Let Γ be a discrete subgroup of SL(2,C)n . Then for each η ∈ Zn
the exact sequence in (3) induces the short exact sequence

0→ ΨDO∗η
Γ → ΨDOΓ

η

Ξη−→ FΓ → 0, (19)

where (·)Γ denotes the subset of Γ-fixed elements. By Theorem 4.3 the linear map
Lη : F → ΨDOη is also equivariant with respect to the actions of the Lie group
SL(2,C)n of the Lie algebra nsl(2,C) on F and on ΨDOη . Thus it follows that
the short exact sequence (19) splits. If η ≥ 0 , then FΓ is the space of Hilbert
modular forms for Γ of weight −2η , which was considered in [7].

5. Concluding remarks

We have discussed the action of the Lie group SL(2,R)n on pseudodifferential
operators of n variables in terms of the corresponding Lie algebra action. As
was described in the introduction, if Γn is a discrete subgroup of SL(2,R)n , each
Γn -invariant pseudodifferential operators of n variables can be identified with a
sequence of Hilbert modular forms, which are essentially modular forms of several
variables, for Γn . Using this correspondence and the role of pseudodifferential
operators in soliton theory, we see that there is at least an indirect link between
soliton equations and modular forms. In fact, Olver and Sanders [10] also discussed
a connection between the Rankin-Cohen brackets for modular forms and solitons
via Hirota operators. It would be interesting to search for more direct connections
between modular forms and soliton equations and their solutions.

In another direction, we can consider nonholomorphic modular forms. In
a recent monograph [13], Unterberger, among other things, discussed the Rankin-
Cohen brackets for nonholomorphic modular forms and their relation with quan-
tization theory through harmonic analysis. It might be worth studying actions of
SL(2,R)n or its Lie algebra on pseudodifferential operators of n variables with
nonholomorphic coefficients and exploring the possibility of relating them with
nonholomorphic modular forms.
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