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Abstract. For any Lie algebra g , the bracket
[x⊗ y, a⊗ b] := [x, [a, b]]⊗ y + x⊗ [y, [a, b]]

defines a Leibniz algebra structure on the vector space g ⊗ g . We let g⊗g be
the maximal Lie algebra quotient of g ⊗ g . We prove that this particular Lie
algebra is an abelian extension of the Lie algebra version of the nonabelian tensor
product g� g of Brown and Loday [1] constructed by Ellis [2], [3]. We compute
this abelian extension and Leibniz homology of g ⊗ g in the case, when g is a
finite dimensional semi-simple Lie algebra over a field of characteristic zero.

0. Introduction

Let g be a Lie algebra. We define the following bracket

[x⊗ y, a⊗ b] := [x, [a, b]]⊗ y + x⊗ [y, [a, b]] (1)

on g ⊗ g . It turns out that g ⊗ g equipped with this bracket is not in general
a Lie algebra but only a Leibniz algebra. Let us recall that Leibniz algebras are
non-anti-commutative generalization of Lie algebras [10], [11]. More precisely a
Leibniz algebra h is a vector space equipped with a bracket

[−,−] : h⊗ h→ h,

satisfying the Leibniz identity:

[x, [y, z]] = [[x, y], z]− [[x, z], y]. (2)

Clearly any Lie algebra is a Leibniz algebra, and conversely any Leibniz algebra h

with property [x, x] = 0, x ∈ h is a Lie algebra.

Any Leibniz algebra h gives rise to a Lie algebra hLie , which is obtained as
the quotient of h by the relation [x, x] = 0. For a Lie algebra g we put

g⊗g := (g⊗ g)Lie.

We prove that there exist a central extension of Lie algebras

0→ γ(g)→ g⊗g→ g� g→ 0,
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where g� g is the Lie algebra version of the nonabelian tensor product of Brown
and Loday [1] constructed by Ellis [2], [3].

Among other things, we prove that the dimension of the abelian Lie algebra
γ(g) is equal to dimUgHom(g, g) provided g is a finite dimensional semi-simple Lie
algebra over a field of characteristic zero. In this case we also compute the Leibniz
homology of g⊗ g .
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1. Preliminaries on Leibniz algebras

All vector spaces are defined over a field K . We write ⊗ instead of ⊗K .

It follows from the Leibniz identity (2) that in any Leibniz algebra one has

[x, [y, y]] = 0, [x, [y, z]] + [x, [z, y]] = 0. (3)

Let g be a Leibniz algebra. A subspace h ⊂ g is called left (resp. right) ideal if
for any a ∈ h and x ∈ g one has [x, a] ∈ h (resp. [a, x] ∈ h). If h is both left and
right ideal, then h is called two-sided ideal. For a Leibniz algebra g one puts

Zr(g) = {a ∈ g | [x, a] = 0, x ∈ g}.

Moreover, we let gann be the subspace of g spanned by elements of the form [x, x] ,
x ∈ g . Clearly for any x, y ∈ g one has

ann(x, y) := [x, y] + [y, x] ∈ gann.

By (3) one has also
gann ⊂ Zr(g).

Lemma 1.1. Zr(g) and gann are two-sided ideals of g. Moreover

[Zr(g), g] ⊂ gann.

Proof. Since gann ⊂ Zr(g) and [g,Zr(g)] = 0 it suffices to show only the last
inclusion. To prove this one observes that for any u ∈ Zr(g) and x ∈ g by
definition one has [x, u] = 0 and so

[u, x] = [u, x] + [x, u] = ann(u, x) ∈ gann.

It is clear that the quotient

gLie := g/gann

is a Lie algebra, which satisfies the following universal property: any Leibniz
homomorphism g→ h into a Lie algebra h factors trough gLie. Since gann ⊂ Zr(g)
we see that

gLie := g/Zr(g)
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is also a Lie algebra. Thus by definition one has a central extension of Lie algebras

0→ ga → gLie → gLie → 0,

where ga = Zr(g)/gann .

The lower central series or descending central series of g is the sequence

· · · ⊂ Cng ⊂ · · · ⊂ C2g ⊂ C1g

of two-sided ideals of g defined inductively as follows

C1g = g and Cn+1g = [Cng , g], n > 0.

A Leibniz algebra g is called nilpotent if Cng = 0 for some n . Let n be the
smallest integer such that Cng = 0. Then n− 1 is called class of nilpotency of g .
It is clear that g is nilpotent of class n− 1 iff for any x1, · · · , xn ∈ g one has

[x1, [x2, · · · , [xn−1, xn] · · · ] = 0.

In this case [· · · [x1, x2], x3], · · · , xn] = 0 as well.

The derived series of a Leibniz algebra g is the sequence

· · · ⊂ Dng ⊂ · · · ⊂ D2g ⊂ D1g

of two-sided ideals of g defined inductively as follows

D1g = g and Dn+1g = [Dng ,Dng].

It is clear that, then Dmg ⊂ Cm(g) for any m . A Lie algebra g is called solvable
if Dng = 0 for some n .

Example 1.2. As was observed in [12] if g is a Lie algebra, M is a (right)
g-module and

f : M → g

is a g-homomorphism from M to the adjoint representation of g , then

[m1,m2] := [m1, f(m2)], m1,m2 ∈M (4)

defines a Leibniz algebra structure on M . We let Le(f) be this particular Leibniz
algebra. One observes that Le(f) is a Lie algebra iff

[x, f(y)] + [y, f(x)] = 0, x, y ∈M.

Here we assume that Char(K) 6= 2. In this case M is called crossed g-module. It
is easy to check that this definition is equivalent to the original one due to Kassel
and Loday [7].

We recall also (see [12]) that in this way one gets any Leibniz algebra. More
precisely, by (3) the bracket

[−,−] : g⊗ g→ g,
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factors through the map
[−,−] : g⊗ gLie → g,

and hence yields a gLie -module structure on g . Thus the projection p : g → gLie

is a gLie -homomorphism and it follows that one has an isomorphism of Leibniz
algebras g ∼= Le(p). We also recall that (see [11]) the class ch(g) of the extension

0→ gann → g→ gLie → 0

in Ext1
U(gLie)(gLie, g

ann) = H1(gLie,Hom(gLie, g
ann)) is called the characteristic ele-

ment of g . Here U(gLie) is the classical universal enveloping algebra of the Lie
algebra gLie and H∗ denotes the Lie algebra cohomology. It follows that the triple
(gLie, g

ann, ch(g)) characterizes g completely.

Let g be a Leibniz algebra. We let δn : g⊗n → g⊗n−1 be the linear map
given by

δn(x1 ⊗ · · · ⊗ xn) =
∑
i<j

(−1)n−jx1 ⊗ · · · ⊗ [xi, xj]⊗ · · · ⊗ x̂j ⊗ · · · ⊗ xn.

For any n ≥ 0 the vector space g⊗n has a natural gLie -module structure, which is
defined by

[x1 ⊗ · · · ⊗ xn, x] =
∑
i

x1 ⊗ · · · ⊗ [xi, x]⊗ · · · ⊗ xn.

One observes that δn is a gLie -homomorphism (see also [10]). Note that
δ3 : g⊗ g⊗ g→ g⊗ g is given by

δ3(x⊗ y ⊗ z) = −[x, y]⊗ z + [x, z]⊗ y + x⊗ [y, z]

and δ2 = [−,−] : g⊗ g→ g . By [10] δn−1δn = 0. So one has the complex

· · · → g⊗n
δn−→ g⊗n−1 → · · · → g⊗ g→ g→ k.

Homology of this complex is called Leibniz homology of g and it is denoted by
HL∗g . If g is a Lie algebra, then clearly HL1g = H1g .

Let us return to the homomorphism f : M → g of g-modules. Then one
has the inclusions:

Le(f)ann ⊂ Ker(f) ⊂ Zr(Le(f)).

Thus
0→ Ker(f)/Le(f)ann → Le(f)Lie → Im(f)→ 0

and
0→ Zr(Le(f))/Ker(f)→ Im(f)→ Le(f)Lie → 0

are central extensions of Lie algebras. One observes that

Zr(Le(f)) = {a ∈M | [x, fa] = 0, x ∈M}.

Let us also note that

0→ Ker(f)→ Le(f)→ Im(f)→ 0

is an abelian extension of Leibniz algebras. Moreover [Le(f),Ker(f)] = 0, in other
words Ker(f) is an antisymmetric representation of Im(f) in the sense of [11].
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2. Elementary properties of g⊗ g

Let g be a Lie algebra. As was mentioned in the previous section g ⊗ g is a
g-module via

[a⊗ b, x] = [a, x]⊗ b+ a⊗ [b, x].

Then one easily observes that the commutator map

[−,−] : g⊗ g→ g

is g-linear. Thus by the previous section the tensor product g⊗g carries a Leibniz
algebra structure. One observes that this structure is nothing else but the one given
by (1).

Lemma 2.1. The map given by

x⊗ y 7→ −y ⊗ x
is an automorphism of the Leibniz algebra g⊗ g.

The proof is obvious.

Lemma 2.2. Let g be a nilpotent Lie algebra, then g⊗ g is a nilpotent Leibniz
algebra. More precisely, if the class of nilpotency of g is ≤ 2n, then the class of
nilpotency of g⊗ g is ≤ 2n− 1.

Proof. Clearly

[Cig⊗ Cjg, Ckg⊗ Clg] ⊂ Ci+k+lg⊗ Cjg + Cig⊗ Cj+k+lg.

It follows that [Cig⊗Cjg, g⊗ g] ⊂ Ci+2g⊗Cjg + Cig⊗Cj+2g. By induction we get

Cm(g⊗ g) ⊂
∑

i+j=m−1

C2i+1g⊗ C2j+1g.

If C2n+1g = 0 and i + j = 2n − 1, then 2i + 1 ≥ 2n + 1 or 2j + 1 ≥ 2n + 1 and
therefore C2n(g⊗ g) = 0.

Lemma 2.3. Let g be a solvable Lie algebra of class m, then g⊗g is a solvable
Leibniz algebra of class m. More generally, if f : M → g is a g-homomorphism
into the adjoint representation of a Lie algebra g with property f(M) ⊂ Dkg and
Dng = 0. Then Dn+2−k(Le(f)) = 0.

Proof. The first part indeed follows from the second one. One needs to take
M = g ⊗ g , k = 2 and f to be the commutator map. Since f : Le(f) → g is a
homomorphism of Leibniz algebras and f(Le(f)) ⊂ Dkg we have f(Dm(Le(f)) ⊂
Dk+m−1g . Hence

f(Dn−k+1Le(f)) ⊂ Dng = 0.

By definition we have

Dn+2−k(Le(f)) = [Dn+1−k(Le(f)),Dn+1−k(Le(f))] =

= [Dn−k+1(Le(f)), f(Dn−k+1Le(f))] = 0.

Remark 2.4. We leave as an exercise to the interested reader to show that, if
g is a Leibniz algebra, then the bracket (1) still makes g⊗ g into Leibniz algebra,
as well as the facts that Lemma 2.1, Lemma 3.1, Lemma 3.2, Corollary 3.3 and
the fact that sequence (5) is exact are still true in this generality.
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3. Relation with nonabelian tensor product

Lemma 3.1. The image of the map δ3 : g ⊗ g ⊗ g → g ⊗ g is an abelian
two-sided ideal in g⊗ g. Moreover Im(δ3) ⊂ Zr(g⊗ g).

Proof. Im(δ3) is a right ideal because δ3 is a g-homomorphism. The inclusion
Im(δ3) ⊂ Zr(g⊗g) follows from the fact that [−,−]◦ δ3 = 0. This equality implies
that Im(δ3) is also a left ideal.

Thanks to 3.1 the vector space

g ∗ g = Coker(δ3 : g⊗ g⊗ g→ g⊗ g)

has the Leibniz algebra structure. We let x ∗ y be the image of x⊗ y ∈ g⊗ g into
g ∗ g . Since [x, y] ∗ z = [x, z] ∗ y + x ∗ [y, z] , we see that

[x ∗ y, a ∗ b] = [x, y] ∗ [a, b].

By the definition of Leibniz homology one has an exact sequence of Leibniz algebras

0→ HL2g→ g ∗ g
[−,−]−→ g→ HL1g→ 0. (5)

Here HL2g and HL1g are abelian Lie algebras. Moreover one can show that HL2g

is a central subalgebra of g ∗ g . Therefore g ∗ g is a variation of the ”non-abelian
Leibniz tensor product” given in [6]: the both operations gives the same result for
perfect Leibniz algebras but not for abelian Lie algebras.

As usual we let Γ(g) be the subspace of g ⊗ g spanned by the symmetric
tensors x⊗ x , x ∈ g . Clearly x⊗ y + y ⊗ x ∈ Γ(g), x, y ∈ g .

Lemma 3.2. Γ(g) is an abelian two-sided ideal of g ⊗ g. Moreover Γ(g) ⊂
Zr(g⊗ g).

Proof. Take b = a in (1) and use (3) to get [x ⊗ y, a ⊗ a] = 0. This shows
Γ(g) ⊂ Zr(g⊗ g) and hence Γ(g) is a left ideal. If one puts y = x in (1) one gets
that [x⊗ x, a⊗ b] = z ⊗ x+ x⊗ z ∈ Γ(g), where z = [x, [a, b]] .

Corollary 3.3. One has an abelian extension of Leibniz algebras

0→ Γ(g)→ g⊗ g→ g ∧ g→ 0,

where g ∧ g is a Leibniz algebra under the bracket

[x ∧ y, a ∧ b] := [x, [a, b]] ∧ y − [y, [a, b]] ∧ x.

Let Γ̃(g) be the subspace of g ∗ g spanned by the images of the elements

x⊗ [y, z] + [y, z]⊗ x ∈ Γ(g) ⊂ g⊗ g, x, y, z ∈ g

and [u, v]⊗ [u, v] , u, v ∈ g under the homomorphism g⊗ g→ g ∗ g .
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Lemma 3.4. One has inclusions (g ∗ g)ann ⊂ Γ̃(g) ⊂ Zr(g ∗ g). Hence Γ̃(g) is
a two-sided ideal of g ∗ g.

Proof. In g ∗ g we have [x ∗ y, x ∗ y] = [x, y] ∗ [x, y] , which implies the first
inclusion. The second one follows from the previous lemma.

Corollary 3.5. The quotient g� g := (g ∗ g)/Γ̃(g) is a Lie algebra.

Remark 3.6. The Lie algebra g�g is nothing else but the ”non-abelian tensor
product of Lie algebras” as it is defined in [3], while the quotient g∗g by the image
of Γ(g) under the projection g ⊗ g → g ∗ g is nothing else but the ”second non-
abelian exterior power of Lie algebras” as it is defined in [2]. We let gf g be this
quotient.

Summarizing the above statements we have the following

Proposition 3.7. The underlying vector space of the non-abelian tensor prod-
uct g� g is isomorphic to the quotient of the tensor product g⊗ g by the subspace
generated by the elements

x⊗ [y, z] + [y, z]⊗ x, [x, y]⊗ [x, y],

[x, y]⊗ z + [y, z]⊗ x+ [z, x]⊗ y,

where x, y, z ∈ g.

Comparing the definitions one sees that there is a commutative diagram of
Leibniz algebras

g⊗ g −−−→ g ∗ g −−−→ 0y y
g ∧ g −−−→ gf g −−−→ 0,

which implies that the sequence

g ∧ g ∧ g
δ3−→ g ∧ g→ gf g→ 0

is also exact. Thus one has also the following diagram

0 −−−→ HL2g −−−→ g ∗ g
[−,−]−−−→ g −−−→ HL1g −−−→ 0y y ∥∥∥ ∥∥∥

0 −−−→ H2g −−−→ gf g
[−,−]−−−→ g −−−→ H1g −−−→ 0,

compare also with [2] and [3].

Let us also recall that there are exact sequences

0→ Γ(H1g)→ g� g→ gf g→ 0, (6)

HL3g→ H3g
α−−−→ H0(g,Γ(g))→ HL2g→ H2g→ 0.
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The first one is constructed in [3], while the second one in [13]. Let us recall that
the homomorphism α is the dual of the classical homomorphism of Koszul (see
[8])

{Invariant quadratic forms on g} → H3g.

For the further results we refer to [5].

For a Lie algebra g we let g⊗g be the Liezation of g⊗ g , that is

g⊗g := (g⊗ g)Lie.

Since g� g is also a Lie algebra quotient of g⊗ g , we have a canonical surjective
homomorphism

p̄ : g⊗g→ g� g.

We let γ(g) be the kernel of p̄ . Since γ(g) is contained in the image of

Ker([−,−] : g⊗ g→ g)

under the canonical projection g⊗ g→ g⊗g , we see that

0→ γ(g)→ g⊗g
p̄→ g� g→ 0 (7)

is a central extension of Lie algebras. Here p is the canonical projection g⊗ g→
g� g .

Lemma 3.8. If g is a perfect Lie algebra, then p̄ has a section, thus g⊗g is a
product of g� g and an abelian Lie algebra γ(g).

Proof. If H1g = 0, then (6) shows that g � g ∼= g f g . Thus one has an
universal central extension (compare with [2] and [3])

0→ H2g→ g� g→ g→ 0

and therefore g�g is a super perfect Lie algebra (that is H1(g�g) = H2(g�g) = 0
see [4]) and p̄ has a section.

Let us recall that D2g denotes the commutator subalgebra [g, g] of g .

Lemma 3.9. [Γg,D2g] ⊂ (g⊗ g)ann

Proof. Take a ∈ g and x = [b, c] ∈ D2g . Then

[a⊗ a, x] = [a⊗ a, b⊗ c] =

= [a⊗ a, b⊗ c] + [b⊗ c, a⊗ a] ∈ (g⊗ g)ann.

Lemma 3.10. There is a well-defined homomorphism

H0(D2g,Γg)→ g⊗g.

Moreover, the image of the composite

H0(D2g,ΓD2g)→ H0(D2g,Γg)→ g⊗g

lies in γ(g).
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Proof. Since H0(D2g,Γg) ∼= (Γg)/[Γg,D2g] Lemma 3.9 shows that the com-
posite

Γg→ g⊗ g→ g⊗g

factors trough H0(D2g,Γg) and the expected homomorphism indeed exists. Thanks
to Proposition 3.7 the image of [x, y]⊗ [x, y] into g� g is zero and we obtain the
second part of Lemma.

Thus we obtain the homomorphism

β : H0(D2g,ΓD2g)→ γ(g).

We let

ᾱ : H3(D2g)→ γ(g)

be the composite of αD2g with β . We recall that

αg : H3(g)→ H0(g,Γg)

was defined in (6).

4. g⊗ g for a semisimple Lie algebra g

Lemma 4.1. Let g be a perfect Lie algebra. Then (g⊗ g)ann is a g-submodule
of g⊗ g.

Proof. Let us recall that for any Leibniz algebra h the vector space hann is
a hLie -submodule of h . We take h = g ⊗ g . Then (1) shows that the action
of hLie = g⊗g on g ⊗ g factors trough the commutator map g⊗g → g . By the
assertion the last map is an epimorphism and hence the result.

In the rest of this section we assume that g is a finite dimensional semisimple
Lie algebra over a field of characteristic zero. By the classical results of Whitehead
g is a superperfect Lie algebra, that is H1g = H2g = 0. Thanks to [13] in fact
HLig = 0 for all i > 0. It is a well known fact that the category of finite dimensional
g-modules is a semi-simple abelian category. As a consequence any such module
M has a functorial decomposition M = M t ⊕ Mnt , where M t is a g-module
with trivial g-action, while Mnt is a g-submodule with H0(g,Mnt) = 0. Clearly
M t = H0(g,M).

Lemma 4.2. Let f : M → g be a g-homomorphism from a finite dimensional
g-module to the adjoint representation of a finite dimensional semisimple Lie
algebra g. Then (Le(f))ann ⊂ Mnt . Moreover, if f t is the restriction of f on
M t , then the composite

M t ⊂M → Le(f)Lie

yields an isomorphism from Le(f t) to a central subalgebra of Le(f)Lie.
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Proof. Since gt = 0 and f is a g-homomorphism it follows that f(M t) = 0.
Thus M t ⊂ Zr(Le(f)). Take a, b ∈M and write a = at+ant , b = bt+bnt according
to the decomposition M = M t ⊕Mnt . Then f(a) = f(ant) and f(b) = f(bnt).
Hence

[a, b] + [b, a] = [a, f(b)] + [b, f(a)] = [a, f(bnt)] + [b, f(ant)] =

= [ant, f(bnt)] + [bnt, f(ant)] ∈Mnt.

Since (Le(f))ann is spanned by elements of the form [a, b] + [b, a] we see that
(Le(f))ann ⊂Mnt. Therefore (Le(f))ann ∩M t = 0 and hence the restriction of the
canonical projection Le(f) → Le(f)Lie to M t is a monomorphism and the result
follows.

For any finite dimensional semisimple Lie algebra g we put

r(g) := dimHomUg(g, g).

The following is well-known

Lemma 4.3. Let g be a finite dimensional semisimple Lie algebra. Then
dimH0(g, g⊗g) = r(g). Moreover, if g is a simple Lie algebra over an algebraically
closed field, then r(g) = 1.

Proof. The Killing form yields an isomorphism g∗ ∼= g of Ug-modules and
hence g⊗ g ∼= Hom(g, g). It follows that

H0(g, g⊗ g) ∼= HomUg(g, g).

The last assertion follows from the Schur lemma, because the adjoint representation
of a simple Lie algebra is a simple g-module.

Lemma 4.4. Let f : M → g be a g-homomorphism to the adjoint representa-
tion of a Lie algebra g. Assume M ∼= M1⊕M2 as g-modules, f(M1) = 0 and the
action of g on M1 is trivial. Then Le(f) as a Leibniz algebra is isomorphic to the
product of the abelian Leibniz algebra M1 and Le(f2), where f2 is the restriction
of f on M2 .

The proof is obvious.

Theorem 4.5. Let g be a finite dimensional semisimple Lie algebra. Then
g ⊗ g is isomorphic as a Leibniz algebra to the direct product of an abelian Lie
algebra of dimension r(g) and a Leibniz algebra h. Moreover hLie

∼= g. Thus one
has an isomorphism of Lie algebras

g⊗g ∼= kr(g) × g.

Proof. The first part is a consequence of Lemma 4.4. Indeed we take f =
[−,−] : g⊗ g→ g to be the commutator map and M1 = (g⊗ g)t , M2 = (g⊗ g)nt .
Since gt = 0, we have f(M1) = 0. Therefore the conditions of Lemma 4.4 hold
and hence

g⊗ g ∼= (g⊗ g)t × h,
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where (g ⊗ g)t is an abelian Lie algebra and h is a Leibniz algebra which is
isomorphic to Le((g ⊗ g)nt → g). By Lemma 4.3 we know that (g ⊗ g)t ∼= kr(g) .
Thus we proved the first part of the theorem. Since g is superperfect, we have
g�g ∼= g and by Lemma 3.8 g⊗g is a product of the Lie algebra g and an abelian
Lie algebra a . We have to prove that a ∼= kr(g) . By Lemma 4.1 g⊗g is a g-module
and the quotient map g ⊗ g → g⊗g is a g-homomorphism. Hence it yields an
epimorphism

(g⊗ g)t → (g⊗g)t,

which is also a monomorphism thanks to Lemma 4.2. It follows from Lemma 4.3
that (g⊗ g)t ∼= kr(g) and hence the result.

Remark. The same proof shows that if g is semisimple, then

(g ∧ g)Lie
∼= g.

Lemma 4.6. Let g be a finite dimensional semisimple Lie algebra. Then
ch(g⊗ g) = 0 and the map

ᾱ : H3(D2g)→ γ(g)

is an isomorphism.

Proof. We know that g ⊗ g ∼= kr(g) × h , with hLie
∼= g . Thus ch(g ⊗ g) is the

pullback of ch(h) along the projection g ⊗ g → h . Since ch(h) ∈ H1(g, hann) = 0
we obtain ch(g⊗ g) = 0 as well. To proof the second assertion, one observes that
for a semisimple Lie algebra g , we have D2g = g and the map α is an isomorphism
thanks to [13], thus the result follows from 4.5.

Corollary 4.7. Let g be a finite dimensional semisimple Lie algebra. Then

HLn(g⊗ g) ∼= kr(g)×n, n > 0.

Proof. We know that g⊗ g ∼= kr(g) × h . By Proposition 4.3 [13] we know that
HLnh = 0 for n > 0 and HL0h ∼= k . Thus the result follows from the Loday-
Künneth theorem for Leibniz homology [9].

Example 4.8. Let g = sln . By Lemma 4.3 r(g) = 1. Hence

HLn(g⊗ g) ∼= kn, n > 0.

5. An example

In this section we consider the case, when g is a Lie algebra of upper triangular
matrices of order n , n ≥ 2. We will assume that char(K) 6= 2. We let Eij denote
the elementary matrice which is zero everywhere except at the place (i, j), where
it is 1. By definition g is spanned on Eij , where 1 ≤ i < j ≤ n . One has
[Eij, Ejk] = Eik and [Eij, Ekm] = 0 provided i 6= m and j 6= k . For n = 2 and
n = 3 the Leibniz algebra g⊗ g is abelian. Therefore we will assume that n ≥ 4.
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It is well known that g is a graded Lie algebra. More precisely, we let gs denote
the subspace of g spanned on Eij with j = i+ s . Then dimgs = n− s ,

g = g1 ⊕ · · · ⊕ gn−1

and [gs, gt] ⊂ gs+t. The goal of this section is to describe the Lie algebra g⊗g . We
set gij = gi ⊗ gj . Then one has

[gij, gst] ⊂ gi+s+t,j ⊕ gi,j+s+t.

We first consider the case n = 4. We claim that the Lie algebra g⊗g is
abelian of dimension 25. To this end, one observes that

(g⊗ g)ann ⊂ [g⊗ g, g⊗ g] ⊂
3⊕
i=1

(gi3 ⊕ g3i).

On the other hand (g⊗g)ann is closed with respect of the involution x⊗y 7→ y⊗x
thanks to 2.1. Furthermore we have

E14 ⊗ E13 = ann(E12 ⊗ E13, E23 ⊗ E34),

E14 ⊗ E14 = ann(E12 ⊗ E14, E23 ⊗ E34),

E14 ⊗ E34 = ann(E12 ⊗ E34, E23 ⊗ E34),

E14 ⊗ E24 = −ann(E12 ⊗ E23, E34 ⊗ E24)

E14 ⊗ E12 = −ann(E34 ⊗ E12, E12 ⊗ E23),

E14 ⊗ E23 = −ann(E34 ⊗ E23, E12 ⊗ E23).

Since g3 is spanned on E14 it follows that

(g⊗ g)ann =
3⊕
i=1

(gi3 ⊕ g3i)

and

[g⊗ g, g⊗ g] = (g⊗ g)ann.

Therefore

g⊗g = (g⊗ g)/(g⊗ g)ann ∼= (g1 + g2)⊗2

is an abelian Lie algebra and hence the claim.

This example lieds to the problem of more close description of Lie algebras
g for which g⊗g is abelian. One easily shows that any such type Lie algebra must
be metaabelian that is D3g = 0.

Now we assume that n ≥ 5. We will prove that as a vector space g⊗g is
isomorphic to

M = (g1 ⊕ g2)⊗2 ⊕ g4 ⊕ · · · ⊕ gn−1.

Moreover, let f : M → g be the linear map, which is the inclusion on ⊕n−1
s=4 gs and

is induced by the commutator map on (g1 ⊕ g2)⊗2 .
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Proposition 5.1. The linear map f : M → g is a crossed module and one has
an isomorphism of Lie algebras

g⊗g ∼= Le(f).

Proof. We set
h =

⊕
i,j

gij

where the sum is taken over all (i, j) such that i > 2 or j > 2. Then

g⊗ g = (g1 ⊕ g2)⊗2 ⊕ h.

It is clear that
(g⊗ g)ann ⊂ [g⊗ g, g⊗ g] ⊂ h.

Hence
g⊗g ∼= (g1 ⊕ g2)⊗2 ⊕ h/(g⊗ g)ann.

We let h : h→ g4⊕· · ·⊕gn−1 be the restriction of the commutator map g⊗g→ g

to h . Since h is surjective, it suffices to show Ker(h) = (g ⊗ g)ann. Since the
inclusion (g⊗g)ann ⊂ Ker(h) is obvious, we have to show that Ker(h) ⊂ (g⊗g)ann .
It is clear that

Eij ⊗ Est ∈ Ker(h), j 6= s, i 6= t,

Eij ⊗ Ejk + Ejk ⊗ Eij ∈ Ker(h),

Eij ⊗ Ejk − Eil ⊗ Elk ∈ Ker(h).

By comparing the dimensions one can show that these elements acually generate
the vector space Ker(h). Thus we have to show that each such elements lie in
(g ⊗ g)ann . The varification of this fact is quite similar to above formulas and
therefore we omit it.
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