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Moore—Penrose Inverse, Parabolic Subgroups,

and Jordan Pairs
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Abstract. A Moore-Penrose inverse of an arbitrary complex matrix A
is defined as a unique matrix AT such that AATA = A, ATAAT = AT
and AAt, AT A are hermitian matrices. We show that this definition has
a natural generalization in the context of shortly graded simple Lie algebras
corresponding to parabolic subgroups with aura (abelian unipotent radical)
in simple complex Lie groups, or equivalently in the context of simple
complex Jordan pairs. We give further generalizations and applications.

Introduction

The nice notion of a generalized inverse of an arbitrary matrix (possibly singular
or even non-square) has been discovered independently by Moore [Mo| and
Penrose [Pe]. The following definition belongs to Penrose (Moore’s definition
is different but equivalent):

Definition. A matrix A% is called a MP-inverse of a matrix A if
AATA=A, ATAAT = AT,
and AAT, AT A are Hermite matrices.

It is quite surprising but a MP-inverse always exists and is unique.
Since the definition is symmetric with respect to A and AT it follows that
(AT)T = A. If A is a non-singular square matrix then A™ coincides with an
ordinary inverse matrix A~!. The theory of MP-inverses and their numerous
modifications becomes now a separate subfield of Linear Algebra [CM| with
various applications. The aim of this paper is to demonstrate that this notion
quite naturally arises in the theory of shortly graded simple Lie algebras. To
explain this connection let us first give another definition of a MP-inverse.

Equivalent definition of a MP-inverse. Suppose that A € Maty, ., (C).
Then a matrix AT € Maty, ,(C) is called a MP-inverse of A if there exist
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Hermite matrices By € Maty, ,(C) and By € Mat,, m (C) such that the following
matrices form an sly-triple in sl, ., (C):

{0 A _(By 0 {0 0
p=(5 o) #=(% 5) #=(a+ o)

Remark. By an sly-triple (e, h, f) in a Lie algebra g we mean a collection of
(possibly zero) vectors such that

le, fl]=h, [h,e]=2e, [h,[f]=-2f.

In other words, an sl;-triple is a homomorphic image of canonical generators of
sly with respect to some homomorphism of Lie algebras sl; — g.

This definition admits an immediate generalization. In the sequel we
shall use various facts about shortly graded simple Lie algebras without specific
references to original papers, the reader may consult, for example, papers [RRS],
[Pa], or [MRS] for explanations and further references. All necessary facts about
complex and real Lie groups, Lie algebras, and algebraic groups can be found
in [VOJ.

Suppose that g is a simple complex Lie algebra, G is a corresponding
simple simply-connected Lie group. Suppose further that P is a parabolic
subgroup of G with abelian unipotent radical (with aura). Then g admits a
short grading

g=9-1D 90D g1

with only three nonzero parts. Here p = go @ g1 is a Lie algebra of P and exp g1
is the abelian unipotent radical of P. Let €, be a compact real form of gg.

Remark. In this paper we shall permanently consider compact real forms of
reductive subalgebras of simple Lie algebras. These subalgebras will always be
Lie algebras of algebraic reductive subgroups of a corresponding simple complex
algebraic group. Their compact real forms will always be understood as Lie
algebras of compact real forms of corresponding algebraic groups. For example,
a Lie algebra of an algebraic torus has a unique compact real form.

Suppose now that e € g;. It is well-known that there exists a homoge-
neous sly-triple (e, h, f) such that h € go and f €g_1.

Definition. An element f € g_; is called a MP-inverse of e € g; if there exists
a homogeneous sly-triple (e, h, f) with h € i#y.

MP-inverses of elements f € g_; are defined in the same way. It is clear
that if f is a MP-inverse of e then e is a MP-inverse of f.

Example. Suppose that ¢ = SL,4+,, and P C G is a maximal parabolic

subgroup of block triangular matrices of the form

(%1 é ) , where B; € Mat,, ,, A € Mat, ,, Ba € Mat,, n,.
2
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The graded components of the correspondent grading consist of matrices of the
following form:

(0 0 _(B; 0 (0 A
g-1= AI 0 ) go = 0 B2 3 g1 = 0 0 3

where A’ € Maty,,, B1 € Mat,, ,, By € Mat,, ,,, and A € Mat, . One
can take €y to be a real Lie algebra of block diagonal skew-Hermite matrices
with zero trace. Then £y is a vector space of block diagonal Hermite matrices
with zero trace. Therefore in this case we return to the previous definition of a
Moore-Penrose inverse.

Our first result is the following
Theorem 1. For any e € g1 there exists a unique MP-inverse f € g_1.

It obviously follows that for any non-zero f € g_; there exists a unique
MP-inverse e € g;. So taking a MP-inverse is a well-defined involutive operation.
In general, it is not equivariant with respect to a Levi subgroup L C P with Lie
algebra g, but only with respect to its maximal compact subgroup Ky C L.

Theorem 1 will be proved in §1 by a general argument, without using
case-by-case considerations. But the classification of parabolic subgroups with
aura in simple groups is, of course, well-known. We have tried to give an intrinsic
description of the Moore-Penrose inverse in all arising cases. The calculation
of Moore-Penrose inverses arising from short gradings of classical simple Lie
algebras is quite straightforward, so we shall give here only the summary of
these calculations and avoid proofs.

Linear maps. This is, of course, the classical Moore-Penrose inverse. Let us
recall its intrinsic description. Suppose that C* and C™ are vector spaces
equipped with standard Hermite scalar products. For any linear map F' : C* —
C™ its Moore-Penrose inverse is a linear map FT : C™ — C" defined as follows.
Let KerF' ¢ C* and ImF C C™ be the kernel and the image of F. Let
Ker'F ¢ C* and ImF c C™ be their orthogonal complements with respect
to the Hermite scalar products. Then F' defines via restriction a bijective linear
map F : Ker'F — ImF. Then Ft: C™ —» C" is a unique linear map such
that Ft|,cp = 0 and Ft|pp = F~!. This MP-inverse corresponds to short
gradings of sl .

Symmetric and skew-symmetric bilinear forms. Suppose that V = C"
is a vector space equipped with a standard Hermite scalar product. For any
symmetric (resp. skew-symmetric) bilinear form w on V its Moore-Penrose
inverse is a symmetric (resp. skew-symmetric) bilinear form w* on V* defined
as follows. Let Kerw C V be the kernel of w. Then w induces a non-degenerate
bilinear form @ on V/Kerw. Let Ann(Kerw) C V* be an annihilator of Kerw.
Then Ann(Kerw) is canonically isomorphic to the dual of V/Kerw. Therefore
the form @~! on Ann(Kerw) is well-defined. The form w™ is defined as a unique
form such that its restriction on on Ann(Kerw) coincides with @~! and its kernel
is Ann(Kerw)', the orthogonal complement with respect to a standard Hermite
scalar product on V*. This MP-inverse corresponds to the short grading of sp,,,
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(resp. 02, ) which can be described as follows. go = gl(V) =V @V*, g1 = S2V
(resp. g1 = A%V), g1 = S?V* (resp. g1 = A?V*). Commutators coincide (up to
a sign) with obvious tensor contractions.

Vectors in a vector space with scalar product. Let V = C" be a vector
space with standard bilinear scalar product (-,-). For any vector v € V its
Moore-Penrose inverse vT is again a vector in V defined as follows:

2v .
’U,’U)’ lf(’l),’l))#()

v = v : —
7,0)’ if (v,v) =0, v#0

(
0, ifv=0.

|

Here v denotes the complex conjugate vector. This MP-inverse corresponds to
the short grading of g = s0,, 12 defined as follows: g_; = g1 =V, go = so(V)aC.
The commutators have the following form. For £ = (A, \) € go, n = v € g1 we
have [£,n] = Av+Av. For £ = (A, \) € go, ( = u € g_1 we have [¢,(] = Au—u.
For n=v € g1, ( =u € g_1 we have [1,{] = ((u,")v — (v, "), (u,v)).

The short gradings of exceptional Lie algebras Fg and E7 deserve more
detailed considerations. This is done in §3. It is well-known that the theory of
shortly graded simple Lie algebras is equivalent to the theory of finite-dimensional
simple Jordan pairs. It turns out that the Moore—Penrose inversion has a very
simple interpretation in this alternative language. We describe this connection
also in §3.

In §2 we consider shortly graded real simple Lie algebras. It turns out
that the analogue of Theorem 1 is also true in this case.

It is quite natural to ask whether it is possible to extend the notion of the
Moore-Penrose inverse from parabolic subgroups with aura to arbitrary parabolic
subgroups. It is also interesting to consider the “non-graded” situation. Let us
start with it. Suppose G is a simple connected simply-connected Lie group with
Lie algebra g. We fix a compact real form € C g.

Definition. A nilpotent orbit O C g is called a Moore—Penrose orbit if for any
e € O there exists an sly-triple (e, h, f) such that h € it.

It turns out that it is quite easy to find all Moore-Penrose orbits. Recall
that the height ht(O) of a nilpotent orbit O = Ad(G)e is equal to the maximal
integer k such that ad(e)® # 0. Clearly ht(O) > 2.

Theorem 2. O is a Moore—Penrose orbit if and only if ht(O) = 2. In this case
for any e € O there exists a unique sly-triple (e, h, f) such that h € it.

This theorem will be proved in §1. It is worthy to mention here the
following result of Panyushev [Pal]: ht(Q) < 3 if and only if O is a spherical G-
variety (that is, a Borel subgroup B C G has an open orbit in Q). Therefore, all
Moore—Penrose orbits are spherical. If G = SL,, or G = Sp,, then the converse
is also true.

Now let us turn to the graded situation. Suppose that g is a Z-graded
simple Lie algebra, g = k®Z gr- Let P C G be a parabolic subgroup with the

€
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Lie algebra p = @ gi. Let L C P be a Levi subgroup with Lie algebra go. We
k>0

choose a compact real form €, of go. Suppose now that e € gi. It is well-known
that there exists a homogeneous sly-triple (e, h, f) with h € go and f € g_.

Definition. Take any k£ > 0 and any L-orbit O C gr. Then O is called a
Moore-Penrose orbit if for any e € O there exists a homogeneous sly-triple
(e, h, f) such that h € ity. In this case f is called a MP-inverse of e. A grading
is called a Moore—Penrose grading in degree k > 0 if all L-orbits in gz are Moore-
Penrose. A grading is called a Moore—Penrose grading if it is a Moore—Penrose
grading in any positive degree. A parabolic subgroup P C G is called a Moore—
Penrose parabolic subgroup if there exists a Moore-Penrose grading g = kEEZ Ok

such that p = @ gi is the Lie algebra of P.
k>0

One should be careful comparing graded and non-graded situation: if
O C gx is a Moore-Penrose L-orbit then Ad(G)O C g is not necessarily a
Moore-Penrose G-orbit. Let us give a criterion for an L-orbit to be Moore—
Penrose. Suppose O = Ad(L)e C gi. Take any homogeneous sly-triple (e, h, f).
Then h defines a grading g = @ g¢", such that ad(h)|g» =n-Id. Since h € go,
neZ
in fact we get a bigrading g= & gj.
n,kEZ
Theorem 3. O is a Moore—Penrose orbit if and only if ad(e)gy = 0 for any

n > 0. In this case for any e’ € O there erists a unique homogeneous sls -triple
(eI, f') such that W' € it .

This Theorem will be proved in §1. It gives a characterization of Moore—
Penrose orbits independent on the choice of a compact form and also provides
an algorithm for checking the Moore-Penrose property. For example, for a
homogeneous sly-triple (e, h, f), e € gk, the orbit Le is Moore—Penrose iff
ad(e)gg = 0 for any n > 0 (Theorem 3) iff gf = 0 for any n > 2 (sly-theory)
iff g_ = 0 for any n > 2 (non-degeneracy of the Killing form) iff ad(f)g," =0
for any n > 0 (again sly-theory) iff the orbit Lf is Moore—Penrose (again
Theorem 3). In particular, a grading is Moore-Penrose in degree k iff it is
Moore-Penrose in degree —k.

It is easy to see that in the graded situation a Moore-Penrose orbit is
not necessarily spherical. However, some interesting orbits are both spherical
and Moore-Penrose. Let us give several examples.

Example 1. If P is a parabolic subgroup with aura then all L-orbits in g;
are Moore—Penrose by Theorem 1. It is well-known that all of them are also
spherical. More generally, take any grading of g and suppose that d is equal to
the maximal k such that gr # 0 (the height of grading). Then all L-orbits in
gr are both spherical and Moore-Penrose for k > d/2. This fact easily follows
from the previous remark. (Consider the short-graded Lie algebra g_ @ go ® gk -
Of course it is not necessarily simple but this is not essential.)

Example 2. Suppose that G is a simple group of type Go. We fix a root
decomposition. There are two simple roots «; and «as such that «; is short and
a2 is long. There are 3 proper parabolic subgroups: Borel subgroup B and two
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maximal parabolic subgroups P; and P, such that a root vector of «; belongs to
a Levi subgroup of P;. Then the following is an easy application of Theorem 3.
B is a Moore-Penrose parabolic subgroup (actually Borel subgroups in all simple
groups are Moore—Penrose parabolic subgroups with respect to any grading). P;
is not Moore-Penrose, but it is a Moore-Penrose parabolic subgroup in degree
2 (with respect to the natural grading of height 2). P, is a Moore—Penrose
parabolic subgroup.

Example 3. Suppose G = SL,,. We fix positive integers di,...,d; such
that n = dy + ...+ dx. Any (n X n)-matrix A has the block decomposition
A = (Aij)ij=1..k, where A;; is a (d; x d;)-matrix. We consider the parabolic
subgroup P(di,...,dr) C SL, that consists of all upper-triangular block ma-
trices. We take the standard grading of g such that A € g, iff A4;; = 0 for
j—1t # p. Then g; is identified with the linear space of all tuples of linear maps

{fh"' 7fk}a

ch JLd B2 g

g_1 is identified with the linear space of all tuples of linear maps {g1,...,9x},
ch 2y cde 2y T
and Levi subgroup L(dy,...,dy) is just a group of all k-tuples
(A1,...,A) € GLg, x...x GLy, such that det(A4;)-...-det(Ag) =1,

acting on these spaces of linear maps in an obvious way. The most important
among L-orbits are varieties of complexes. To define them, let us fix in addition
non-negative integers my, ..., mg_1 such that m;_; +m; < d; (we set mgy =
my = 0), and consider the subvariety of all tuples {f;..., fx—1} as above such
that rkf; = m; and f;_10f; =0 for any ¢. These tuples form a single L-orbit O
called a variety of complexes. It is well-known that O is spherical. For any tuple
{fi,---, fr_1} € O consider the tuple {f;",... ,f,;"_l} € g_1, where f;' is a
classical “matrix” Moore-Penrose inverse of f;. The reader may check that this
new tuple is again a complex, moreover, this complex is a Moore—Penrose inverse
(in our latest meaning of this word) of an original complex. In particular, orbits
of complexes are Moore—Penrose orbits.

From the first glance only few parabolic subgroups are Moore—Penrose.
But this is scarcely true. For example, we have the following Theorem:

Theorem 4. Any parabolic subgroup in SL, is Moore—Penrose.

This Theorem will be proved in §4. We shall also describe an algorithm
there which shows that in order to find all Moore-Penrose parabolic subgroups
in some simple group G it is sufficient to determine all Moore-Penrose maximal
parabolic subgroups in simple components of Levi subgroups of G'. In particular
in order to find all Moore—Penrose parabolic subgroups in classical simple groups
it suffices to do this job only for maximal parabolic subgroups. We shall do this
also in §4.
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To explain our interest in Moore-Penrose parabolic subgroups let us
reproduce a conjecture from [Te|]. Suppose once again that G is a simple
connected simply-connected Lie group, P is its parabolic subgroup, p C g are
their Lie algebras. We take any irreducible G-module V. There exists a unique
maximal proper P-submodule My of V. We have the inclusion ¢ : My — V|
the projection 7 : V — V/My and the map Ry : g — End(V) defining the
representation. Therefore we have a linear map Ry : g — Hom(My,V/My),
namely Ry (z) = 7o Ry(z)oi. Clearly p C KerRy . Therefore, we finally have
a linear map ¥y : g/p — Hom(My,V/My).

Conjecture. There exists an algebraic stratification g/p = .Cll X; such that for
1=

any V the function rkVUy (-) is constant along each X .

These stratifications were used in [Te] in order to solve some geometric
problems similar to the classical problem of determining the maximal dimension
of a projective subspace contained in a generic hypersurface of a given degree in
a projective space.

It is clear that all functions rk Wy (-) are P-invariant. Therefore if P has
finitely many orbits in g/p then the conjecture is true. By Pyasetsky theorem
[P] this holds if and only if P has finitely many orbits in the dual module (g/p)*,
or, equivalently, in the unipotent radical of P. All parabolic subgroups with this
property are now completely classified [HR]. There are not too many of them. It
turns out that there is another case when the conjecture is true.

Theorem 5. Suppose that a grading g = @ gr is a Moore—Penrose grading
k€EZ

in all positive degrees except at most one. Then the Conjecture is true for the
corresponding parabolic subgroup P .

This Theorem is proved in §5. For example, combining Theorem 4,
Theorem 5, and Example 2 we get the following corollary. The proof of the
Conjecture for other simple groups will be given elsewhere.

Corollary. The conjecture is true for any parabolic subgroup in SL, or Gs.

This paper was written during my stay in the Mathematical Institute
in Basel. I would like to thank prof. H. Kraft for the warm hospitality. 1 am
grateful to the referee for various corrections and improvements. The research
was supported by the grant INTAS-OPEN-97-1570 of the INTAS foundation.

§1. Moore—Penrose orbits in periodically graded simple Lie algebras

In this section we shall derive Theorems 1, 2, and 3 from the more general
theorem, which describes Moore—Penrose orbits in periodically graded simple
Lie algebras.
Suppose that A is either the group of integers Z or the group Z,, of
residues modulo m. Let g be an A-graded simple Lie algebra, g = kEBA gk, and
€

let G be a corresponding simple simply-connected group. L C G is a connected
reductive subgroup with the Lie algebra gy, £y is a compact real form of go.
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We fix k € A, let O C gr be a nilpotent L=orbit. It is well-known
(see [Vi]) that for any e € O there exists a homogeneous sl -triple (e, h, f). Then
O is called a Moore-Penrose orbit if for any e € O there exists a homogeneous
sly-triple (e, h, f) such that h € ity.

Let us give a criterion for a nilpotent L-orbit O = Ad(L)e C gx to be
Moore—Penrose. Take any homogeneous sly-triple (e, h, f). Then h defines a
grading go = HGEZ g0, such that ad(h)|gn = n - Id. Denote n€>90 gy by ny and

@ g5 by n_.
n<0

Theorem 6. O is a Moore-Penrose orbit if and only if ad(e)ny = 0. In this
case for any €' € O there ezists a unique homogeneous sly -triple (€', h', ') such
that h' € 1t .

We shall need a few lemmas. Let £ — Z denotes the complex conjugation
in gg with respect to the compact form €. Therefore z = 7z iff x € €, and
x = —T iff z € ity. Let B(z,y) = Trad(z)ad(y) be the Killing form of g.
Finally, let H(z,y) = —B(z,y) be a positive-definite Hermite form on gg.

Lemma 1.1. We fix a nilpotent element e € gi. Suppose that (e,h, f) is a
homogeneous sly -triple such that h € ity. Then for any other homogeneous sl -
triple {e,h’, f') we have H(h,h) < H(hW',h'). In particular, if there exists an
sly -triple (e, h, f) with h € ity then the sly-triple with this property is unique.

Proof. Recall that if (e, h, f) is an sly-triple then h is called a characteristic
of e. Consider the subset H C go consisting of all possible homogeneous
characteristics of e. It is well-known that H is an affine subspace in g¢ such that
the corresponding linear subspace is precisely the unipotent radical 3¢ (e) of the
centralizer 34,(e) in go of the element e. Since H(h',h’) is a strongly convex
function on #, there exists a unique element hy € H such that H(hg, ko) <
H(KW,h') for any h' € H, h' # hy. We need to show that hy = h. It is clear
that an element ho € H minimizes H(h',h') on H iff H(ho,35,(e)) = 0 iff
B(Eo,ago(e)) =0.If h € HNiky then h = —h and we have

B(h, 35, (e)) = —=B(h, 35, (¢)) = =B(le, [, 35, (€)) = B(f, e, 35, (e)]) = 0.

Therefore h = hyg. [

Lemma 1.2. If ad(e)ny =0 then O = Ad(L)e is a Moore—Penrose orbit.

Proof. We need to prove that for any element e’ € O there exists a homogeneous
sly-triple (e’,h’, f’') such that h’ € ik, where &, is a fized compact real form
of go. Clearly it is sufficient to prove that for an arbitrary compact real form &g
of go there exists a homogeneous sly-triple (e, h, f) with h € ity. Let us start
with an arbitrary homogeneous sly-triple (e, h, f). The space of all homogeneous
characteristics is an affine space h+ 3y (e) = h+n, . Arguing as in the proof of
Lemma 1.1, let us change a characteristic & in such a way that B(h,n.) = 0,
where x — T denotes a complex conjugation in gy with respect to the compact
form €,. It remains to prove that h € ity. Since B is a non-degenerate ad-
invariant scalar product on go it follows that h € q, where q = g5 @ n, . Let o
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be some “standard” compact real form of go such that h € ilyp and ny = n,
where x — Z denotes a complex conjugation in gy with respect to the compact
form [p. Let Q C L be a parabolic subgroup of L with the Lie algebra q, let
H C @ be its Levi subgroup with the Lie algebra g9. There exists g € @ such
that Ad(g)€y = lo. (The conjugation theorem is usually stated only for semi-
simple Lie algebras, while gy is only reductive. But according to our conventions
(see Remark in the Introduction), the conjugation theorem holds for gy as well.)
Therefore

Ad(g)h = Ad(g)h C Ad(g)(q) = g.

We can express g as a product uz, where u € exp(ny), Ad(z)h = h. Then
Ad(g)h = Ad(u)h. If u is not the identity element of G then Ad(u)h = h + &,
where ¢ € ny and ¢ # 0. Therefore Ad(u)h = —h + €. But £ € n_ and hence

Ad(u)h ¢ q, contradiction. Therefore u is trivial and since Ad(z)h = h we
finally get

h=h=—h. n

Lemma 1.3. Suppose that O = Ad(L)e is a Moore-Penrose orbit. Then
ad(e)ny =0.

Proof. We choose a standard compact real form [y as in the proof of the previous
Lemma. Clearly, 34 (e) is a graded subalgebra of ny = @ gk. Suppose, on the
k>0

contrary, that g (e) #ny. Let £ € gh, p> 0, be a homogeneous element that
does not belong to 35 (e). Let u = exp(§). Let ¢’ = Ad(u)e. We claim that
all characteristics of ¢/ don’t belong to ily. Indeed, all characteristics of e’ have
a form Ad(u)h + Ad(u)z, where = € 3; (e). Suppose that for some x we have
Ad(u)h + Ad(u)x € ily. Since h € ily, 1y = ng, and Ad(u)(h +2) — h € ny

it follows that Ad(u)(h+z) =h. In ny modulo & gf we obtain the equation
k>p

[§,h] +2 =0, but [h,&] = p¢ and therefore & € 35 (e). Cotradiction. n

Proof of Theorem 6. Combining Lemma 1.2 and 1.3 we see that O is a Moore-
Penrose orbit if and only if ad(e)gj = 0 for any n > 0. In this case for any ¢’ € O
there exists a unique homogeneous sly-triple (e’,h’, f'} such that h' € ity by
Lemma 1.1. ]

Proof of Theorem 3. This is a particular case of Theorem 6 for Z-gradings. =

Proof of Theorem 1. We should show that the condition ad(e)gy = 0 for any
n > 0 is satisfied always if g = 0 for |k| > 1. Suppose that = € g§, n > 0. If
ad(e)x # 0 then there exists an element y € g; such that ad(h)y = (n + 2)y.
Since ad(e)g; C gi+1 it follows from slp-theory that there exists a non-zero
element z € g1_(n42)- But 1 — (n+2) < —1. Contradiction. [

Proof of Theorem 2. We take the trivial grading g = go. By Lemmas 1.2
and 1.3 we see that a nilpotent orbit O = Ad(G)e C g is a Moore-Penrose
orbit if and only if 33 (e) = ny . It follows from the sl-theory that dimjy(e) =
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dim g' + dim g®. Therefore 3%(e) = n,. if and only if g? = 0 for p > 2. Clearly,
this is precisely equivalent to ht(OQ) = 2. In this case for any e € O there exists
a unique sly-triple (e, h, f) such that h € i€ by Lemma 1.1. [

§2. Shortly graded simple real Lie algebras

Let g=g_1® go D g1 be a real simple shortly graded Lie algebra. We suppose
that g does not admit a complex structure, so its complexification g¢ is a
simple complex Lie algebra. There exists a unique element ¢ € go such that
ad(c)|g, = k-Id. Then ¢ = Rc is a center of go and go = ¢ @ g, where
90 = [90,80]. We fix a maximal compact subalgebra ¢ C g; and a Cartan
decomposition g = €y @ pj. Let po = p; @ ¢. Then we may call go =€ D po a
Cartan decomposition of gg.

Definition. Let e € g;. An element f € g_; is called a Moore-Penrose inverse
of e if there exists an element h € py such that (e, h, f) is an sly-triple in g.

The following is an easy consequence of Theorem 1:
Theorem 7. For any e € g1 its MP-inverse exists and is unique.

Proof. The complexification g of g is a shortly graded complex simple Lie
algebra

g°=9g%, ® gy ® g7, where g = g ® C.

Then & = & & tp is a compact real form of gf. By Theorem 1 there exists a
unique sly-triple (e, h, f) in g¢ such that h € ity = ity D p. It suffices to show
that, in fact, h € p. Indeed, (e, h, f) is an sly-triple such that h € iy @y, where
bar denotes the complex conjugation in g¢ with respect to g. By Theorem 1 it
follows that h = h. Therefore, h € p. ]

The list of shortly graded simple real Lie algebras is well-known. It can
be easily obtained from [D], where it is shown that there exists a bijection of
Z-graded real simple Lie algebras and weighted Satake diagrams with certain
natural restrictions. In the rest part of this section we describe arising Moore—
Penrose inverses. The proofs are quite straightforward, so they are omitted. We
do this job only for classical real Lie algebras. For two real forms of Eg and two
real forms of E7 that admit short gradings the answer is quite similar to one
obtained in §3. We only need to change split complex Cayley numbers to either
split real Cayley numbers Ca(R) or the division algebra of octonions O.

Real and quaternionic linear maps. Suppose that U = R® and V = R™
(resp. U = H® and V = H™) are real vector spaces (resp. right quaternionic
vector spaces) equipped with standard Euclidean scalar products (resp. with stan-
dard Hermite scalar products ), q_gqi, where bar denotes the standard quater-
nionic involution). For any linear map F': U — V its Moore-Penrose inverse is a
linear map F+ : V — U defined as follows. Let KerF' C U and ImF C V be the
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kernel and the image of F'. Let Ker™F C R® and Im™F C R™ be their orthog-
onal complements with respect to the Euclidean scalar products (resp. the Her-
mite scalar products, notice that in this case we shall get right vector subspaces).
Then F' defines via restriction a bijective linear map F: KertF — ImF. Then
F*:V — U is a unique linear map such that F*|;_1 =0 and F*|p,p = F~1.
This MP-inverse corresponds to short gradings of sl ., (R) (resp. sl (H)).

Skew-Hermite matrices (or forms). This example is an analogue of a MP-
inverse of skew-symmetric forms from the Introduction. So for diversity we give a
matrix description. We consider matrices over R, C, or H. The Moore—Penrose
inverse of a skew-Hermite matrix A (with respect to the canonical involution, so
in the real case A is just skew-symmetric) is a unique skew-Hermite matrix A*
such that

AATA=A, ATAAT =AT, [AAT]=0. (%)

This MP-inverse corresponds to the short grading of so,, (real case), su,,
(complex case), sp,, (quaternionic case).

Hermite matrices (or forms). This example is an analogue of a MP-inverse
of symmetric forms from the Introduction. So again we shall give a matrix
description. We consider matrices over R or H. The Moore—Penrose inverse of
a Hermite matrix A is a unique Hermite matrix A1 that satisfies equations ().
This MP-inverse corresponds to the short grading of sp,,(R) (real case), u3,(H)
(quaternionic case).

Vectors in a pseudo-Euclidean space. We take a vector space V = R*t™

with a standard Euclidean scalar product (-,-). Let I = (I((i]" _1(31 ) , where

Id; is an identity matrix from Maty . Let {u,v} = (u,Iv) be a pseudo-
Fuclidean scalar product. The Moore—Penrose inverse takes any vector v € V
to a vector v* defined as follows:

{UMU}, if {v,v}#0
vt = _Tv_ if {v,0} =0, v#0

(v,v)’
0, ifv=0.

This MP-inverse corresponds to the short grading of $0,,1.m+1.

§3. Jordan pairs

A Jordan pair is a pair of vector spaces (V,V_) with trilinear multiplications
Vi@V:{:@Vj: —VL, QYR {myz},

which satisfy the certain set of axioms (see [Lo]). Fortunately, there is no need to
write them down due to the following fundamental observation. V; and V_ form
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a Jordan pair if and only if there exists a shortly graded Lie algebra g_1®go® g1
such that

1
g1=V_, g1= V+a and {.’IJ,y,Z} = 5[[:{3,3}],2]

In fact, this construction provides the bijection of the set of Jordan pairs up to an
isomorphism and the set of short graded Lie algebras up to a certain equivalence
relation. We refer the reader to [Lo] and [Ja] for more details about Jordan pairs
and Jordan algebras used throughout this section.

Example 1. Take V, = Mat,, ,,, V- = Mat,, ,. Then (V},V_) is a Jordan
pair with respect to trilinear maps {ABC} = (ABC + CBA) (matrix multi-
plication). This Jordan pair corresponds to a short grading of sl ., .

Example 2. Suppose that A is a Jordan algebra, that is, an algebra with a
unit such that the bilinear multiplication in A satisfies two axioms

ab = ba (commutativity), ((aa)b)a = (aa)(ba) (Jordan axiom).

For example, we can take any associative algebra and define a new multiplication
by the formula a *b = % (ab+ ba). This will be a (special) Jordan algebra. Any
Jordan algebra A corresponds to a Jordan pair (V,,V_) defined as follows:

Ve=V_=A, {abc} = (ab)c+ (bc)a — (ac)b (Jordan triple product).

Simple Jordan algebras correspond to shortly graded simple Lie algebras such
that the corresponding Hermite homogeneous space G/P (recall that P is a
parabolic subgroup with the Lie algebra go®g; ) has a tube type, or, equivalently,
if there exists an L-invariant hypersurface in g;, where L is a Levi subgroup of
P, or, equivalently, if the action of [L, L] on g; has not an open orbit.

We shall be interested only in Jordan pairs arising from shortly graded
complex simple Lie algebras. It can be shown that these Jordan pairs are precisely
simple complex Jordan pairs. For simplicity we shall use the term ‘Jordan pairs’
only for these pairs.

In the Introduction we defined a MP-inverse for shortly graded simple Lie
algebras. In the language of Jordan pairs a MP-inverse is some map Vi — V= .
The first aim of this section is to define a MP-inverse entirely in terms of trilinear
maps {-,-,-}. First let us give some definitions and lemmas. For any Jordan
pair (V4,V_) we denote the corresponding shortly graded simple Lie algebra

by g=g-19g0®g1-
Definition. A Killing pairing B(-,-) of a Jordan pair is a bilinear map

Vi® Ve — Cgiven by z @ y — Tr{z,y,-}.

Example. Suppose that the Jordan pair corresponds to a Jordan algebra A.
Then

B(z,y) = Tr{z,y,-} = Tr{(ab) - +(b-)a — (a-)b}

= Tr{(ab) - } + Tr{a(b:) — b(a-)} = Tr{(ab) - }.
This is the usual definition of a scalar product in a Jordan algebra (up to a
positive multiple).
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Proposition 3.1. A Killing pairing is symmetric and non-degenerate. It co-
incides up to a positive multiple with a restriction of a Killing form of g on

g—1Dgi1-

Proof. Since g_; and g; are dual go-modules it follows that for any & € gy we
have

TI‘[&, ']|g—1 = —TI'[&, ']|Q1'

Therefore, for any z € Vi, y € V_, we get

B("B7 y) = TI'{.’E,y, } = %TI"[[.’E,y], ']|91

- _%TI‘[[;I;7 y]7 ']‘971 = %TI‘[[y’ .’E], ']‘9—1 = B(y7x)'

This proves symmetry. To show that B is non-degenerate it is sufficient to prove
that B(-,-) coincides up to a positive multiple with a restriction of a Killing form
(-,-) of g on g_1 @& g1. We choose a Cartan subalgebra h C go. Let A be the
corresponding root system. For any root o € A we choose a root vector e, € g in
such a way that [eq, e_q] = hqo, where hy € b is a coroot of a, so for any 8 € A

we have B(hy) = % We have a decomposition A = A_; UAgU Ay, where
a € Ay if and only if e, € gi. We also take a set of simple roots 1Iy C Ay and
a root v € Ay such that the system IIp U {v} is a set of simple roots for A. Let
A(",' be a set of positive roots of Ay corresponding to IIy. Then AT = A(")' UA;
is a set of positive roots for A. It suffices to show that for any o € g1, B € g_1
we have B(eq,eg) = c(eq,ep), where ¢ > 0 does not depend on a and g. If

a+ B # 0 then clearly (eq,eg) = 0. But in this case B(eq,ep) is also equal

to zero, because [[eq, eg], -] is a nilpotent operator. Suppose now that g = —a.
Then (eq,€—_q) = (a2a) . On the other hand,
1 2 ﬂa o 2 p1, &
B(eae-a) = 5 Tr[ha; J|g, = >y (El a)) = ((a a)), where p; = ) 8.
BEA1 ’ ’ BEA1

So it suffices to prove that (pi1, ) is positive and does not depend on the choice
of @ € A;. In fact, the first claim will follow from the second, because then
(p1, ) = ﬁ(pl, p1) > 0. So let us prove the second claim. Any root a € A
is a sum of v and of a positive linear combination of some simple roots from Il .
Therefore we need to prove that for any § € IIy we have (p1,d) = 0. But

pL=p—po, where p= > B, po= > B.

BeAt peAd

Therefore

(pl,(S) = (pa 5) - (p076) = (5’ 6) - (57 5) =0. .
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Definition. A pair of antilinear maps w : V3 — Vz is called a Cartan involution
of a Jordan pair if

w?=1d, {w(x),w(y),w()}=w{z,y,z},
Hermite form H(z) = B(z,w(x)) is positive definite on V..

Suppose that @ is a Cartan involution of g (so g” is a compact real
form of g) such that @w(gx) = g_r. Let o € Aut(g) be defined as follows:

Olgo =1d, olg_,@g = —Id.

Clearly, w = ow is an antilinear involution of g. Then @ restricted to g_1®g; is
a Cartan involution w of a corresponding Jordan pair. In particular, any Jordan
pair has a Cartan involution.

Proposition 3.2. The correspondence & — w s bijective.

Proof. The set of commutators [z,y] for = € g1, y € g—1 spans go. Indeed, it
easily follows from the Jacoby identity that the linear subspace g_1®[g—_1, g1]Dg1
is an ideal in g hence it coincides with g since g is simple. Since @([z,y]) =
w(x),w(y)] it follows that this correspondence is injective. Suppose now that
w is a Cartan involution of a Jordan pair. Then we define @ on g_; @ g1 as
—w and we define @ on gg by setting &([z,y]) = [w(z),w(y)]. Let us show that
@ is well-defined. Suppose that & = [x1,y1] + ... + [zk,yx] = 0 for x; € g1,
y; € g_1. We need to show that &, = [w(z1),w(y1)] + ...+ [w(zk),w(yx)] = 0.
The representation of gy on g; is faithful. Therefore it suffices to prove that for
any z € g_1 we have [,,w(z)]=0. But

[&wa ] = 22{‘*‘) mz yz) w = 2260{371,,%,2} = w[&a ] =0.

Therefore @ is well-defined. Clearly ©? = Id and [0(z),0(y)] = @lz,y]. It
remains to prove that the Hermite form H(z) = —(z,&(z)) is positive definite on
g. Since the decomposition g = g_1@go®g: is orthogonal with respect to H and
the restriction of H on g_1 and g; coincides with H up to a positive multiple, H
is positive definite on g_; @ g1. There exists a Cartan involution 7 compatible
with @ and such that 7(go) = go (see [VO]). Then, clearly, 7(g+1) = g=1-
Therefore, 7w is an involution preserving the grading. We need to show that
tw = Id. It is sufficient to show that 7&|y, = Id. Suppose, on the contrary, that
there exists € g1, = # 0, such that 7&(x) = —z. Then &(z) = —7(x) implies
0> (z,w(x)) = —(z,7(x)) > 0. Contradiction. u

Now we are ready to give a new definition of a Moore-Penrose inverse.

Definition. Suppose that (V,V_) is a Jordan pair. Then for any A € V. its
MP-inverse is an element A* € Vz such that

(AATA} = A, {AYAATY} =A™, (%)
{A, AT}, {AT, A, -} are Hermite operators with respect to H. (%)

In fact we shall see later that if one of operators in (xx) is Hermite then
another one is a Hermite operator automatically.
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Example. Suppose that the Jordan pair corresponds to a Jordan algebra A. An
element b € A is called a (usual) inverse of an element a if ab =1, (aa)b = a.
This definition does not look very symmetric, but in fact it is. So automatically
(bb)a = b. Let us show that in this case b coincides with a MP-inverse a™ .
Indeed, {aba} = (ab)a + (ba)a — (aa)b = a + a — a = a. Similarly {bab} = b.
Moreover, one can show that operators (a-) and (b-) commute (see [Ja]), and,
therefore, {ab-} and {ba-} are identity operators and, hence, Hermite operators
with respect to H.

Proposition 3.3. New definition of a MP-inverse coincides with given in the
Introduction. In particular, MP-inverse in Jordan pairs exists and is unique.

Proof. Indeed, conditions (x) mean that (A,[A, AT], AT) is a homogeneous sls-
triple in g. We choose a compact form & in gy such that & = g§. Since the
representations of go in g and g_; are faithful, any of operators in (xx) is
Hermite if and only if [A4, AT] € 4. ]

Now we can describe a MP-inverse arising from short gradings of Fg
and E7. We start with E;. Let Ca denote the algebra of split Cayley numbers
over C. Let @O C Ca be the Cayley division algebra of octonions. Let A be
the Albert algebra of Hermite (3 x 3)-matrices over Ca (with respect to the
canonical anti-involution in Ca). This is a complex Jordan algebra with respect
to the symmetrisation of matrix multiplication. The corresponding Jordan pair
arises from the short grading of F;. Let A(Q) C A be the real subalgebra of
matrices with entries in @. It is well-known that the scalar product Tr((ab)-)
is positive definite on A(Q). Therefore the complex conjugation w of A with
respect to A(Q) is a Cartan involution and we have all the information necessary
to write down equations (x, *x).

The Jordan pair corresponding to the short grading of Fjg is, in fact, ‘a
subpair’ of a previous one. Namely, V; = V_ = Ca @& Ca. We can consider both
of them as matrices from A of the form

0 C1 Co
ct 0 0
ca 0 0

Then the Jordan triple product in A defines the trilinear maps for this Jordan
pair. So the Moore—Penrose inverse in this case is the restriction of a previous
MP-inverse.

§4. Moore—Penrose parabolic subgroups

Though the definition of Moore-Penrose parabolic subgroups given in the Intro-
duction does not depend on the grading, in order to apply this definition, one
has to sort out all gradings compatible with P. Let us give a more transparent
equivalent definition. Suppose that G is a simple simply—connected Lie group,
P C @ is a parabolic subgroup, L C P is a Levi subgroup, Z C L is a con-
nected component of its center. Then a Lie algebra g of G admits a natural
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Z™-grading, where Z™ is a character group of Z. Clearly the Lie algebra [ of
L is just a zero component of this grading. In fact any Z-grading of g “com-
patible” with P can be obtained from this Z™-grading via some homomorphism
Z™ — Z. Moreover, for generic homomorphism non-zero homogeneous compo-
nents will be the same for Z- and Z™-grading. Let €, be a compact real form
of [. It is easy to see that the definition of Moore-Penrose parabolic subgroups
given in the Introduction is equivalent to the following:

Definition. P is called a Moore—Penrose parabolic subgroup if for any e € g4,
a € Z™, a # 0, there exists a Z™-homogeneous sly-triple (e, h, f) such that
h € i€y. In this case f is called a MP-inverse of e.

For any a € Z™, «a # 0, let us consider a reductive subalgebra g% =

@ gp. Then g is a Levi subalgebra of g and, clearly, P is a Moore-Penrose
BERa

parabolic subgroup if and only if the maximal parabolic subalgebra & gg
BER >0

of g* is a Moore-Penrose parabolic subalgebra for any «. In particular, in
order to describe all Moore-Penrose parabolic subgroups of G it suffices to find
all Moore-Penrose maximal parabolic subgroups in simple components of Levi
subgroups of G'.

Proof of Theorem 4. All simple components of Levi subgroups of SL,, are again
simple groups of type SLg. All maximal parabolic subgroups in SL; have aura
and therefore are Moore—Penrose parabolic subgroups by Theorem 1. ]

In the rest part of this section we shall find all Moore—Penrose maximal
parabolic subgroups in remaining classical groups SO,, and Sp,. Let G be
one of this groups, P be its maximal parabolic subgroup. We denote their Lie
algebras by g and p. The corresponding grading has a form g = kegz gk - Recall

that L is a Levi subgroup of P such that gq is a Lie algebra of L. It easy to
see that gr = 0 either for |k| > 1 or for |k| > 2. In the first case P has an
aura and therefore is Moore-Penrose by Theorem 1. We take a usual bijection
between maximal parabolic subgroups and simple roots of the corresponding
algebra. In Bourbaki-numbering of simple roots P has an aura if and only if P
corresponds to one of simple roots «y (Byp-case); a, (Cp-case); a1, an_1, ay
(D,,-case). Now let us consider other possibilities. Clearly all L-orbits in go
are Moore-Penrose (see Example 1 in the Introduction). Now we shall classify
all Moore—Penrose L-orbits in g;. But first we shall reformulate the problem in
linear—algebraic terms.

Suppose that U = C*¥, V = C" are complex vector spaces with standard
Hermite scalar products. In the symplectic case we assume that n is even.
We choose a symmetric (resp. skew-symmetric) 2-form w in V with matrix

0 FE
I =F (resp. I = (—E 0
a special orthogonal (resp. symplectic) group corresponding to w. Let g(w)
be a corresponding Lie algebra. Then L, go, g1, g—1 have the following
interpretation:

)), where F is an identity matrix. Let G(w) be

L=SL(U) x G(w) xC*, go=sl(U)®gw)sC,
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g1 = HOHI(U, V), g1 = HOIII(V', U)

The action of SL(U) x G(w) on Hom(U, V) is standard, C* acts by homotheties.
So the action of L on g; has finitely many orbits O(a,b) indexed by a = rk(F)
and b = dimKer w|y,r for F € Hom(U, V). For any F' € Hom(U, V) its Moore—
Penrose inverse (if exists) is defined as a unique G € Hom(V, U) such that

GF, FG — (FG)* are Hermite operators, (%)

2F = 2FGF — (FG)*F, 2G =2GFG —G(FG)*, ()

where for any A € Hom(V, V) we denote by A# its adjoint operator with respect
to w. Now let us prove the following proposition

Proposition. An L-orbit O(a,b) C g1 is Moore—Penrose if and only if either
b=0ora=hab.

Proof. Suppose first that b = 0, F € O(a,b). Then the restriction of w on Im(F')
is non degenerate. Let Im(F)L denote its orthogonal complement with respect
to w. Let Ker(F)* denote the orthogonal complement of Ker(F') with respect to
the Hermite form on U. Let F' € Hom(Ker(F)*,Im(F)) be an operator induced
by F. Let G € Hom(V,U) be an operator defined as follows: G|yt = 0,
Glimr) = 2F~!. Then GF is a Hermite projector on Ker(F)L. Since FG is
an orthogonal projector on Im(F) with respect to w, (FG)# = FG, therefore
FG — (FG)# = 0 is a Hermite operator, now relations (%) are obvious.

Suppose now that b = a, F' € O(a,b). Then the restriction of w on
Im(F) is equal to 0. Let Im(F)° = ITm(F) (recall that I is a matrix of w, bar
denotes the complex conjugation). Then Im(F)NIm(F)° = 0, the restriction of
w on Im(F) @ Im(F)° is non-degenerate and the orthogonal complement V' of
Im(F) ® Im(F)® with respect to w coincides with the orthogonal complement
of Im(F) @ Im(F)° with respect to a Hermite form. Let Ker(F)® denote the
orthogonal complement of Ker(F') with respect to the Hermite form on U. Let
F € Hom(Ker(F)+,Im(F)) be an operator induced by F. Let G € Hom(V,U)
be an operator defined as follows: G|y = Glimry = 0, Glimr) = F~1. Then
GF is a Hermite projector on Ker(F)*. It is clear that FG is equal to 0 on
V' and on Im(F)° and is an identity operator on Im(F'). Therefore its adjoint
operator (FG)# is equalto 0 on V' and on Im(F) and is an identity operator on
Im(F)°. Therefore FG — (FG)# is a Hermite operator since Im(F) is Hermite
othogonal to Im(F)°. Now relations (*x) are obvious.

It remains to prove that if 0 < b < a then O(a,b) is not a Moore—
Penrose orbit. Choose a subspace L C V such that dimL = a, dimKerw|;, =
b, and let Ly = Kerw|r. Let U = Uy @ Uy & Uy be an orthogonal (with
respect to the Hermite form) direct sum of subspaces such that dimU, = b,
dimUy + dimU; = a. Let F € Hom(U,V) be a linear operator such that
Fly, =0, F(Uy) = Ly, F(Uy® U;) = L, F(U;) is not orthogonal to Ly with
respect to the Hermite form. We set L; = F(U;). We claim that F does not
have a Moore—Penrose inverse. Suppose, on the contrary, that G is a Moore—
Penrose inverse of F'. Since GF is Hermite, we see that G(L) C Uy @ U;. If
v € Ly, v' € V then w((FG)#v,v") = w(v, FGv') = 0, because w(Lg, L) = 0.
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Therefore, (FG)#|., = 0. It follows that F|y, = FGF|y,. So, FG|., = E,
GF|y, = E. Since GF is Hermite, it should preserve Uy, therefore G(L;) C U;.
Finally, we see that F'G preserves both Ly and L;. To obtain a contradiction it
suffices to show that FG is a Hermite operator on L (because we know that Ly
and L; are not orthogonal). But since 2F = 2FGF — (FG)#F, it follows that
2FG — (FG)# = 2E on L. Therefore FG = 2E — (FG — (FG)*#) is Hermite,
because we know that FG — (FG)# is Hermite. u

If w is orthogonal then all L-orbits are Moore—Penrose if and only if
either k =1 or n < 2. If w is symplectic then all L-orbits are Moore-Penrose
if and only if either and either £ < 2 or n = 2. Therefore we have the following
Corollary

Corollary. 1) All Moore-Penrose mazimal parabolic subgroups in SO(n) have
aura, except (B, ).

2) Moore—Penrose mazimal parabolic subgroups without aura in Sp(2n)
correspond to simple roots a1, g, Qy_1.

§5. Moore—Penrose inversion and rank stratification

In this section we prove Theorem 5. Let us start with some lemmas.

Suppose that G is a connected reductive group with a Lie algebra g. For
any elements x1,...,z, € g let (z1,...,%)qy denote the minimal algebraic Lie
subalgebra of g that contains x1,...,z,. By a theorem of Richardson [Ril]
(1,...,%r)ag is reductive if and only if an orbit of the r-tuple (z1,...,2z,)
in g" is closed with respect to the diagonal action of G. Suppose now that
hi,...,h, are semi-simple elements of g. Consider the closed variety O =
Ad(G)hy x ++- x Ad(G)h, C g". For any closed G-orbit O C O let us denote
by g(O) the conjugacy class of the reductive subalgebra (z1,...,2,)qy for
(1,-..,2,) € O.

Lemma 5.1. There are only finitely many conjugacy classes g(O).

Proof. We shall use induction on dimg. Suppose that the claim of Lemma 5.1
is true for all reductive groups H with dim H < dimG. Let 3 C g be the center
of g, g C g be its derived algebra. Consider two canonical homomorphisms

g—¢g and gL’>3.

We take any closed G-orbit @ ¢ O. Let (z1,...,2z,) € O, y; = =n(x;)
for ¢ = 1,...,r. Then (y1,...,Yr)arg = 7({®1,... ,%r)alg) and, therefore, is
reductive. Let us consider two cases.

Suppose first, that (y1,...,Yr)alg = ¢'- Then ¢’ is a derived algebra
of (x1,...,%r)alg and, therefore, (x1,...,2p)a1g = (7' (h1),...,7'(hy)) @ ¢ . In
this case we get one conjugacy class.

Suppose now, that (y1,...,Yr)atg # ¢ . Then (y1,...,Yr)ag is con-
tained in some maximal reductive Lie subalgebra of g’. It is well-known (and
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not difficult to prove) that in a semisimple Lie algebra there are only finitely
many conjugacy classes of maximal reductive subalgebras. Let h’ be one of
them, h = 3@ h C g. Let H be a corresponding reductive subgroup of G. It
is sufficient to prove that for any closed G-orbit O of O that meets h" there
are only finitely many possibilities for g(O). It easily follows from Richardson’s
Lemma [Ri] that for any ¢ the intersection Ad(G)h; N b is a union of finitely
many closed H-orbits, say Ad(H)h},...,Ad(H)h;’. It remains to prove that
if for some r-tuple (z1,...,z,) € Ad(H)h¥ x ... Ad(H)hFr the corresponding
subalgebra (z1,...,2,)qg is reductive then there are only finitely many possi-
bilities for its conjugacy class. But this is precisely the claim of Lemma for the
group H, which is true by the induction hypothesis. |

Suppose that £ is a compact real form of g.

Lemma 5.2. If r-tuple (z1,...,z,) belongs to (it)", then its G -orbit is closed
m g’ .

Proof!. Indeed, let B be a non-degenerate ad-invariant scalar product on g,
which is negative-definite on €. Let H(x) = —B(T,x) be a positive-definite £-
invariant Hermite quadratic form on g, where the complex conjugation is taken
with respect to €. Let H" be a corresponding Hermite quadratic form on g".
More precisely, H"(z1,...,z,) = H(z1) + ...+ H(z,). By the Kempf-Ness
criterion [PV] in order to prove that the G-orbit of (z1,...,,) is closed it is
sufficient to prove that the real function H"(-) has a critical point on this orbit.
Let us show that (z1,...,x,) is this critical point. Indeed, for any g € g

—B(%1,[g9,%1]) — ... — B(Z,[g9,2,]) = B(x1,[9,21]) + . .. + B(zr, [g,2+]) = 0. ®

Now let G be a simple simply-connected Lie group, let g be its Lie
algebra with a Z-grading g = & gr. Let r be a maximal integer such that
kEZ

g- # 0. We are going to change slightly our habits and denote the non-positive
part of the grading @ gx by p. Let P C G be a parabolic subgroup with the
k<0

Lie algebra p. We shall identify g/p with @ gr. Let L C G be a connected
k>0

reductive subgroup with Lie algebra go. Let V be an irreducible G-module. 1t is

easy to see that there exists a Z-grading V = kGEBZ Vi such that g;V; C Vi4;. Let

R be a maximal integer such that Vi # 0. It is easy to see that My = & Vj
k<R

(notice that Vg is an irreducible L-module). Now we shall prove Theorem 5.

Proof of Theorem 5. 1t is sufficient to prove that there exists a finite set of points
{z1,...,xzN} C g/p such that for any = € g/p and for any V we have rk Uy (z) =
rk Uy (z;) for some i. Recall that L has finitely many orbits on each g [Ri,Vi].
We pick some L-orbit O; in each g;. Then it is sufficient to find a finite set

LA short alternative proof was suggested by the referee. It is easy to verify that
(Z1,.--sZr)alg = (ix1,...,92)p ® C, where (iri,...,iz,)y is the minimal real algebraic
(or Maléev closed) Lie subalgebra of ¢ containing iz1,...,ix,. Therefore, (21,...,%r)alg
is reductive and Lemma follows from the Richardson’s theorem [Ril].
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of points as above only for points = € g/p of a form = = z1 + ... + x,., where
xz; € O;. For any orbit O; let H; denote the set of all possible homogeneous
characteristics of all elements from ;. Clearly H; is a closed Ad(L)-orbit. Let
O=Hix - xH C go- Then by Lemma 5.1 the set of conjugacy classes of
subalgebras g(O) for closed L-orbits O in O is finite. Let us show that for any
r-tuple (z1,...,z,) € O1X...xXO, there exists an r-tuple (hy,...,h,) € O such
that h; is a homogeneous characteristic of z; and an L-orbit Ad(L)(hq,... ,h,)
is closed. Indeed, after simultaneous conjugation of elements z; by some element
g € L we may suppose that any z; has a homogeneous characteristic h; € iy
(in all degrees except at most one no conjugation is needed because of Moore-
Penrose property, for one degree this is obvious). Then by Lemma 5.2 an orbit

Ad(L)(hi, ..., hy) is closed. Since all functions rk ¥y are L-invariant, we may
restrict ourselves to the points x = ) . z; € g/p such that z; € O;, any z;
has a homogeneous characteristic h;, and a conjugacy class of (h1,...,R)ag

is fixed. We claim that any function rk Uy is constant along the set of these
points. Moreover, we shall prove that

rk Uy (z) = codimv_*R(VfR)<h1""’hr)‘”g. (%)

Indeed,
rk Uy (z) = dim Y ~Im (ad(@s)]v,_,) -

(3

Clearly Vg is ad(h;)-invariant and is killed by ad(z;), therefore from the sl;-
theory we get that Vg = & VJ, where ad(h;)|yx = k - 1d. Moreover,
k>0

Since Vg and V*j, are naturally dual to each other, we get that & V}g =

k>0
Ann((V*3)?). Therefore,
ZIm (ad(z)|vy_;) = Ann (N;(V*E)") = Ann ((V_*‘R)<h1"" ’hr)‘”g) .
i

The formula () follows. u
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