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1. The Lie Algebra of Abelian Topological Groups

Let G be an abelian topological group. The set of all one–parameter–subgroups

L(G) := {λ : R→ G : λ is a continuous homomorphism}

is called the Lie algebra of G . We define addition pointwise and scalar multiplica-
tion by the following formula

R× L(G)→ L(G), (s, λ) 7→ (s · λ : t 7→ λ(st)).

It is topologized with the compact–open topology. We use the notation P (K,U) :=
{f : X → Y : f(K) ⊆ U} for sets X, Y and subsets K ⊆ X and U ⊆ Y . If
no confusion can arise, we will use the same notation P (·, ·) for sets of continuous
functions, respectively, continuous homomorphisms. The system of neighbour-
hoods of the neutral element 0 of an abelian topological group G is denoted by
UG(0). We set G∗ := {χ : G → T : χ is a continuous homomorphism} where
T is the compact group of complex numbers of modulus 1. With multiplication
defined pointwise and endowed with the compact–open topology, G∗ is an abelian
topological group, named dual group of G . We introduce the canonical homomor-
phism

αG : G→ G∗∗, x 7→ (χ 7→ χ(x)).

The famous Pontryagin van–Kampen duality theorem states that if G is a
locally compact abelian (LCA) group then αG is a topological isomorphism.
[A proof can be found in [3], p. 351 or [4], p.378 or [7], p.84.]

Lemma 1.1. αG is continuous if and only if every compact subset of G∗ is
equicontinuous.

If G is metrizable (more generally, a k–space) then αG is continuous.
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[A proof of these well known facts can be found in [1] (5.10) and (5.12).]

If ϕ : G → H is a continuous homomorphism between abelian topological
groups, we define the dual homomorphism ϕ∗ in the usual way:
ϕ∗ : H∗ → G∗, χ 7→ χ◦ϕ . The polar of a subset A ⊆ G (G an abelian topological
group) is defined by A0 := {χ ∈ G∗| ∀x ∈ A : Reχ(x) ≥ 0 } . The set A
is called quasi–convex if for every x ∈ G \ A there exists χ ∈ A0 such that
Reχ(x) < 0. The group G is named locally quasi–convex if the neutral element
has a neighbourhood basis consisting of quasi–convex sets. This generalizes the
setting of local convexity; more precisely, a Hausdorff topological vector space is
locally convex if and only if it is a Hausdorff locally quasi–convex group. (See e.g.
(2.4) in [2].)

It is easy to verify that αG is injective for every locally quasi–convex
Hausdorff group G .

Proposition 1.2. (i) For every abelian topological group G the associated Lie
algebra L(G) is a topological vector space.

(ii) If G is a Hausdorff space, so is L(G).

(iii) If G is a locally quasi–convex Hausdorff group then L(G) is a locally convex
vector space.

Proof. i) See e.g. [3] Proposition (7.36), p. 334.

ii) For λ1 6= λ2 ∈ L(G) there exist t ∈ R such that λ1(t) 6= λ2(t) and
disjoint open neighbourhoods Ui ∈ U(λi(t)) of λi(t) (i = 1, 2). Hence the sets
P ({t}, Ui) form disjoint neighbourhoods of the λi .

iii) According to Proposition (2.4) in [2], it is sufficient to show that L(G)
is a locally quasi–convex group. Therefore, we will prove that the neighbourhood
basis {P (K,U) : K compact, U ∈ UG(0) quasi–convex} consists of quasi–convex
sets. To this end, take λ0 /∈ P (K,U) and pick t0 ∈ K such that λ0(t0) /∈ U . By
the quasi-convexity of U , there exists χ ∈ U0 such that Reχ(λ0(t0)) < 0.

Since one–point sets are compact, the point evaluations L(G) → G, λ →
λ(t) are continuous and hence X : L(G) → T, λ 7→ χ(λ(t0)) is a character of
L(G). It is obvious that X ∈ P (K,U)0 and that ReX(λ0) < 0.

Proposition 1.3. Let ϕ : H → G be a continuous homomorphism between
abelian topological groups. Then the induced mapping ϕ∗ : L(H) → L(G), λ 7→
ϕ ◦ λ is a continuous linear mapping. Moreover, if ϕ is an embedding, so is ϕ∗ .

Proof. A straightforward calculation shows that ϕ∗ is a linear mapping. The
assertion follows from the fact that ϕ∗(P (K,ϕ−1(U)) = P (K,U) ∩ imϕ∗ (for
K ⊆ R compact and U ∈ UG(0)).

Proposition 1.4. Let H be an abelian locally quasi–convex Hausdorff group
such that αH is continuous. Then

Φ : L(H)→ Homco(H
∗,R∗), λ 7→ λ∗

is an embedding.
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Proof. It is easily verified that Φ is a group homomorphism. Since H is a
locally quasi–convex Hausdorff group, αH is injective, and from this fact it is
straightforward that Φ is also injective. For every compact subset K ⊆ R and
every quasi–convex neighbourhood U ∈ UH(0) we have

Φ(P (K,U)) = im(Φ) ∩ P (U0, K0). (∗)

[Proof of ⊆ : Let λ ∈ P (K,U), χ ∈ U0 , and x ∈ K . Then we obtain Φ(λ)(χ)(x) =
λ∗(χ)(x) = χ(λ(x)). Since Reχ(λ(x)) ≥ 0 for every χ ∈ U0 , we get λ(x) ∈ U .

Proof of ⊇ : Let λ∗ ∈ P (U0, K0), x ∈ K , and χ ∈ U0 . It follows from λ∗(χ) ∈ K0

that Reχ(λ(x)) = Reλ∗(χ)(x) ≥ 0. Since U is quasi–convex, this yields λ(x) ∈ U .]

By assumption, αH is continuous, hence the sets {U0 : U ∈ UH(e)} form
a cobasis for the compact subsets of H∗ (1.1). So the assertion follows from (∗).

2. The Lie algebra of a nuclear group

The class of nuclear groups was introduced by Banaszczyk in [2]. It is a Hausdorff
variety consisting of abelian groups which contains all LCA groups and all locally
convex nuclear vector spaces and which is closed with respect to forming arbitrary
products, subgroups and Hausdorff quotient groups. (See e.g. section 7 in [2].)

Here we use a technical description making use of the Kolmogoroff–diame-
ters whose original setting is in the context of locally convex spaces.

Let V be a vector space. For symmetric and convex subsets X, Y ⊆ V we
define

dk(X, Y ) := inf{c > 0| ∃Lc ≤ V : dimLc < k and X ⊆ c · Y + Lc}.

As usual, inf Ø = ∞ . The number dk(X, Y ) is called the k–th Kolmogoroff–
diameter of X with respect to Y .

A locally convex vector space V is called a nuclear vector space if for every
symmetric and convex neighbourhood U of 0 there exists W , another symmetric
and convex neighbourhood of 0, such that dk(W,U) ≤ k−1 for all k ∈ N . Roughly
speaking, W is considerably smaller than U .

Next, we wish to define the Kolmogoroff–diameters for groups.

Let W,U be subsets of a group G . We set (dk(W,U)) ≤ (ck) ((ck) a
sequence of real numbers) if there exist: a vector space V , symmetric and convex
subsets X,Y ⊆ V which satisfy dk(X, Y ) ≤ ck for all k ∈ N , a subgroup H of V ,
and a homomorphism ϕ : H → G which fulfills W ⊆ ϕ(X∩H) and ϕ(H∩Y ) ⊆ U .

An abelian Hausdorff topological group G is called a nuclear group if for
every neighbourhood U of the neutral element 0, for every c > 0, and every
m ∈ N , there exists a neighbourhood W of 0 which satisfies (dk(W,U)) ≤ (c·k−m).

Lemma 2.1. Let G be a nuclear group such that αG is continuous. Then for
every compact subset K ⊆ G∗ , every c > 0, and every m ∈ N there exists a
compact subset S ⊆ G∗ which satisfies (dk(K,S))k∈N ≤ (c · k−m)k∈N .
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Proof. Fix a compact subset K ⊆ G∗ , c > 0, and m ∈ N .

Since αG is continuous, there exists U ∈ UG(0) such that K ⊆ U0 (1.1). By
assumption, G is a nuclear group, hence we can find a neighbourhood W ∈ UG(e)
such that (dk(W,U)) ≤ c̃k−m̃ for c̃ = c

γm̃
and m̃ = m+ 5. (As usual, γm̃ denotes

the universal constant defined in (2.14) in [2].) According to (16.4) in [2], we get
(dk(U

0,W 0)) ≤ (c̃γm̃ · k−m̃+5) = (c · k−m).

Since S := W 0 is compact ((3.5) in [1]) and K ⊆ U0 we get (dk(K,S)) ≤
(c · k−m) and hence the assertion follows.

Theorem 2.2. Let G be a nuclear group such that αG is continuous. Then
Homco(G

∗,R) is a nuclear group, too.

Proof. For K ⊆ G∗ compact, c > 0, and m ∈ N we put:

m̃ := m+ 4 und c̃ < min(
c

2γm+4γm+2

,

√
6

2πγm+4

).

According to the Lemma 2.1, there exists a compact subset S ⊆ G∗ which
satisfies (dk(K,S)) ≤ (c̃k−m̃). Thus there exist a vector space V , a subgroup H ≤
V , two symmetric and convex subsets X, Y ⊆ V which satisfy dk(X, Y ) ≤ c̃k−m̃

for all k ∈ N , and a homomorphism ϕ : H → G∗ such that K ⊆ ϕ(X ∩H) and
ϕ(Y ∩H) ⊆ S .

According to (2.14) in [2], there exist pHsns (pre-Hilbert seminorms) p, q
defined on 〈X〉

R
such that their closed unit balls Bp , respectively Bq , satisfy

X ⊂ Bp , Bq ⊆ Y and dk(Bp, Bq) ≤ γm̃c̃k
−m̃+2 . Without loss of generality ((2.13)

in [2]) we may assume that V = 〈X〉
R

. In particular, we obtain:

K ⊆ ϕ(H ∩Bp) and ϕ(H ∩Bq) ⊆ S. (1)

By L(H), respectively A(H), we denote the free vector space, respectively,
the free abelian group generated by η(H) where η : H 7→ η(H) is a bijection;
further, we introduce the following mappings:

π : L(H)→ V,
∑

λxη(x) 7→
∑

λxx

and
π′ : A(H)→ H,

∑
kxη(x) 7→

∑
kxx.

The compositions p̃ := p ◦ π and q̃ := q ◦ π are pHsns on L(H) whose closed unit
balls satisfy Bp̃ = π−1(Bp) and Bq̃ = π−1(Bq). Since π is surjective, we obtain
((2.8) b) in [2]):

dk(Bp̃, Bq̃) = dk(Bp, Bq) ≤ γm̃c̃k
−m̃+2 (2)

and hence
∑
k∈N

dk(Bp̃, Bq̃)
2 ≤ (γm̃c̃)

2
∑
k∈N

k−2(m̃−2) <
1

4
. Let

X̃ := conv(A(H) ∩Bp̃) and Ỹ := conv(A(H) ∩Bq̃). (3)
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Hence (3.20) in [2] implies dk(X̃, Ỹ ) ≤ 2dk(Bp̃, Bq̃) ≤ 2γm̃c̃k
−m̃+2. Again by (2.14)

in [2], there exist pHsns p′, q′ on 〈X̃〉
R
≤ L(H) which satisfy

X̃ ⊆ Bp′ , Bq′ ⊆ Ỹ , and dk(Bp′ , Bq′) ≤ 2γm̃γm̃−2c̃k
−m̃+4 ≤ c · k−m. (4)

L(H)

A(H)

6

H-
π′

G∗-
ϕ R

-
λ

We define

Ψ : aHom(G∗,R)→ aHom(L(H),R), λ 7→ λ̃ ◦ ϕ, (5)

where λ̃ ◦ ϕ denotes the unique linear extension on L(H) of the mapping λ ◦ ϕ :
H → R and aHom all (not necessarily continuous) homomorphisms. Observe
that the spaces aHom(·) are vector spaces and that Ψ is a linear mapping. As
a consequence of π′(A(H) ∩ Bp̃) = H ∩ Bp , π′(A(H) ∩ Bq̃) = H ∩ Bq , and

λ̃ ◦ ϕ|A(H) = λ ◦ ϕ ◦ π′ , we obtain

Ψ−1(P (Bp′ , [−1, 1])) = {λ ∈ aHom(G∗,R) : λ̃ ◦ ϕ(Bp′) ⊆ [−1, 1]}

(4)

⊆ {λ ∈ aHom(G∗,R) : λ̃ ◦ ϕ(X̃) ⊆ [−1, 1]}

(3)
= {λ ∈ aHom(G∗,R) : λ̃ ◦ ϕ(A(H) ∩Bp̃) ⊆ [−1, 1]}

= {λ ∈ aHom(G∗,R) : λ ◦ ϕ ◦ π′(A(H) ∩Bp̃) ⊆ [−1, 1]}

= {λ ∈ aHom(G∗,R) : λ ◦ ϕ(H ∩Bp) ⊆ [−1, 1]}

(1)

⊆ {λ ∈ aHom(G∗,R) : λ(K) ⊆ [−1, 1]}, and

Ψ−1(P (Bq′ , [−1, 1])) = {λ ∈ aHom(G∗,R) : λ̃ ◦ ϕ(Bq′) ⊆ [−1, 1]}

(4)

⊇ {λ ∈ aHom(G∗,R) : λ̃ ◦ ϕ(Ỹ ) ⊆ [−1, 1]}

(3)
= {λ ∈ aHom(G∗,R) : λ̃ ◦ ϕ(A(H) ∩Bq̃) ⊆ [−1, 1]}

= {λ ∈ aHom(G∗,R) : λ ◦ ϕ ◦ π′(A(H) ∩Bq̃) ⊆ [−1, 1]}

= {λ ∈ aHom(G∗,R) : λ ◦ ϕ(H ∩Bq) ⊆ [−1, 1]}
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(1)

⊇ {λ ∈ aHom(G∗,R) : λ(S) ⊆ [−1, 1]}.

Trivially,

{λ ∈ Hom(G∗,R) : λ(S) ⊆ [−1, 1]} ⊆ Ψ−1(P (Bq′ , [−1, 1])) ∩ Hom(G∗,R)
and

{λ ∈ Hom(G∗,R) : λ(K) ⊆ [−1, 1]} ⊇ Ψ−1(P (Bp′ , [−1, 1])) ∩ Hom(G∗,R).

Since these sets are symmetric and convex, we obtain:

dk({λ ∈ Hom(G∗,R) : λ(S) ⊆ [−1, 1]}, {λ ∈ Hom(G∗,R) : λ(K) ⊆ [−1, 1]})

≤ dk(Ψ
−1(P (Bq′ , [−1, 1]))∩Hom(G∗,R),Ψ−1(P (Bp′ , [−1, 1]))∩Hom(G∗,R))

�
≤ dk(Ψ

−1(P (Bq′ , [−1, 1])),Ψ−1(P (Bp′ , [−1, 1])))

∗
≤ dk(P (Bq′ , [−1, 1]) ∩ im(Ψ), P (Bp′ , [−1, 1]) ∩ im(Ψ))

•
≤ dk(P (Bq′ , [−1, 1]), P (Bp′ , [−1, 1]))

◦
= dk(Bp′ , Bq′)

(4)

≤ c · k−m.

� : Observe that polars of and inverse images under linear mappings of closed unit
balls of pHsns are closed unit balls of pHsns; hence we may apply (2.13) in [2].
∗ is a consequence of (18.5) in [1],
• follows from (2.13) in [2],
◦ is (2.16) in [2].

Corollary 2.3. Let G be a nuclear group such that αG is continuous. Then
Homco(G

∗,R) is a locally convex nuclear vector space.

Proof. According to the above theorem, Homco(G
∗,R) is a nuclear group and,

obviously, a topological vector space. Now (8.9) in [2] implies that it is a nuclear
locally convex vector space.

Remark 2.4. A similar result has been shown in (20.25) in [1], namely: If G
is a nuclear group and αG is continuous then Homco(G

∗,T) is a nuclear group.

This is a rather trivial consequence of the estimate proved in (16.4) in [2].

The problem which prevents us to copy that proof is the following difference
between characters (i.e. continuous homomorphism into T) and real characters
(i.e. continuous homomorphisms into R):

Let H be a subgroup of a nuclear group G . Then every character χ : H →
T can be extended to a character χG : G→ T ((8.3) in [2]).
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The analogous assertion for real characters is not true as the following
example will show:

It is well known that the space of rapidly decreasing sequences s := {(xn)∈N :
(∀m ∈ N) pm((xn)n∈N) < ∞} endowed with the topology induced by the norms
pm((xn)n∈N) := sup{nm|xn| : n ∈ N} is a locally convex nuclear vector space
(see e.g.(6.1.3) in [8]). The subgroup H := 〈ek : k ∈ N〉 where ek = (δn,k)n∈N
is discrete and free. Hence every real sequence (xn) gives rise to a real character
H → R,

∑
knen 7→

∑
knxn .

For a continuous linear form ϕ of s , there exists there exists m ∈ N such
that ϕ(Bpm) is bounded; this implies that (ϕ(en)) = O(nm).

We wish to use the result (2.2) in order to prove that the Lie algebra of a
nuclear group is a nuclear vector space.

Proposition 2.5. Let G =
∏

i∈I Gi , then L(G) is topologically isomorphic to∏
i∈I L(Gi).

Proof. See (7.38) in [3].

Theorem 2.6. If G is a nuclear group then L(G) is a locally convex nuclear
vector space.

Proof. Since we already know that L(G) is a Hausdorff topological vector space
((1.2) i)), because of (8.9) in [2], it is sufficient to show that L(G) is a nuclear
group.

According to (21.3) in [1], G can be embedded into a product of metrizable
nuclear groups Gi . Hence L(G) is topologically isomorphic to a subspace of∏

i∈I L(Gi) (1.3 and 2.5). Since the class of nuclear groups forms a variety, we
may assume that G is metrizable.

By (1.1), the mapping αG is continuous so (1.4) implies that L(G) can be
identified with a subgroup of Homco(G

∗,R∗). According to (23.27) (e) in [4], R∗ is
topologically isomorphic to R , hence the groups Homco(G

∗,R∗) and Homco(G
∗,R)

are topologically isomorphic. Now 2.2 implies that this group is nuclear and hence
the assertion follows.

Note: The question underlying this paper was posed by Helge Glöckner at the
conference “Nuclear Groups and Lie Groups” in September 1999 in Madrid.
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