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Abstract. We give proofs of the PBW and duality theorems for the
quantum Kac-Moody algebras and quantum current algebras, relying on
Lie bialgebra duality. We also show that the classical limit of the quantum
current algebras associated with an untwisted affine Cartan matrix is the
enveloping algebra of a quotient of the corresponding toroidal algebra; this
quotient is trivial in all cases except the Agl) case.

Introduction

The purpose of “quantum algebra” is to study deformations of various commutative
(or cocommutative) algebras (or Hopf algebras). They are usually presented by
generators and relations. Then a natural problem arises: to show that the deformed
algebras have the same size as their undeformed counterparts. The first instance
of such a result is the Poincaré-Birkhoff-Witt (PBW) theorem, which says that
if g is a Lie algebra over a field of characteristic zero, then the symmetrization
map S°*(g) — U(g) is a linear isomorphism. In that case, U(g) is viewed as a
quantization of the Poisson algebra S*(g).

The problem of comparing the size of an algebra presented by generators
and relations with that of the classical algebra is called with PBW problem. A
useful tool for solving this problem is Bergman’s combinatorial “diamond” lemma
([4]). It was used in the quantum situation by several authors (notably Berger in [3]
and Rosso in [26]). Another approach to the PBW problem involves constructing
“enough” representations of the deformed algebra. For instance, Lusztig’s PBW
result (Corollary 33.1.5 of [22]) relies on the study of integrable modules over
quantized Kac-Moody algebras. A last, direct approach involves realizing the
deformed algebra structure on some model space. The original PBW result can be
proved in this way, by explicitly constructing a star-product on S*(g) ([5]). This
is also the approach followed in the present paper in the case of quantum groups
and quantum current algebras. In this situation, these algebras are realized as
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22 ENRIQUEZ

(functional) shuffle algebras. We also use in an essential way the Hopf algebra
structures.

1. Outline of results

1.1. Quantum Kac-Moody algebras.

Let A = (aj)1<ij<n be a symmetrizable Cartan matrix. Let (d;)i1<i<n be
the coprime positive integers such that the matrix (d;a;;)1<;j<n is symmetric. Let
r be the rank of A; we assume that the matrix (a;;)n—r+1<ij<n is nondegenerate.

Let g be the Kac-Moody Lie algebra associated with A; let n, be its posi-
tive pro-nilpotent subalgebra and (€;)1<;<, be the generators of n, corresponding
to the simple roots of g.

Let C[[h]] be the formal series ring in h. Let Upny be the quotient of
the free algebra with n generators C|[h]|(e;,i = 1,...,n) by the two-sided ideal
generated by the quantum Serre relations

1—a;;

S ([T kel =, (1)
k=0 g
m m]! k_,—k
where {p L = W: K], = [Ug- - [Klg, [Klq = 1=, and ¢ = el ([9, 17)).
We will show:
Theorem 1.1.  Upny is a free C[[h]]-module, and the map e; — €; defines an

algebra isomorphism of Upny /hUpn, with Un, .

This Theorem may be derived from the Poincaré-Birkhoff-Witt (PBW)
results of Lusztig’s book [22]; in the case g = sl,, it can also be derived from
those of Rosso ([26]), and in the cases when g is semisimple or untwisted affine,
from those of [21].

The proof presented here is based on the comparison of Uzn, with a quan-
tum shuffle algebra, Lie bialgebra duality and the Deodhar-Gabber-Kac theorem.

As a corollary of this proof, we show

Corollary 1.1. The map pr defined in Lemma 2.3 is an algebra isomorphism
from Upn, to the subalgebra (V') of the shuffle algebra Sh(V') defined in sect. 2..

This result was proved in [27]; it can also be derived from the results of
[28]. Rosso’s proof uses the nondegeneracy of the pairing between opposite Borel
quantum algebras ([22], Corollary 33.1.5; see also Theorem 1.2). Schauenburg
shows that (V') is isomorphic to the quotient of the free algebra generated by the
e; by the radical of a braided Hopf pairing. Together with [22], Corollary 33.1.5,
this implies Corollary 1.1.

Define Upn_ as the algebra with generators f;, ¢ =1,...,n, and the same
defining relations as Upny (with e; replaced by f;). Define a grading on Upny
by (£N)™ by deg(e;) = €;, deg(f;) = —e¢;, where ¢; is the ith basis vector of N™,
and define the braided tensor products Urni®Uxrny as the algebras isomorphic to
Upny ®cyry) Upne as C[[A]]-modules, with mutiplication rule

(r@y)(@ @y) = g ‘s (12 @ yy'); (2)
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we set (€, €;) = d;a;;.

Then Upn. are endowed with braided Hopf algebra structures, defined by
A+(€i) =¢ 1+1 ®€i7 and A_(fz) = fz® 1+1 ®fz

In [8], Drinfeld showed that there exists a unique pairing (, )y, n,. of Upny
and Upn_ with values in C((h)) = C[[A]][h™"], defined by

1

(€is fi)Upnse = ﬁdfl@z‘u (3)
@,y ) opne = DD v (2@, 1 ) vpns (4)

and
<(L’.T,, y>Uhn:|: = Z<ZE, y(1)>Uﬁni <[L‘/, y(2)>Unl‘1:t (5)

for z,2' in Upn, and y,y in Upn_, and As(z) = ¥ 20 @ 2 (braided Hopf
pairing axioms).
As a direct consequence of Corollary 1.1, we show:

Theorem 1.2.  The pairing (, )u,n,. between Upny and Upn_ is nondegener-
ate.

This result can be found in Lusztig’s book ([22], Corollary 33.1.5, Def. 3.1.1
and Proposition 3.2.4); it relies on the construction of dual PBW bases. Another
argument using Lusztig’ results on integrable modules is in [29], and an argument
using irreducible Verma modules is in [25].

We also show:

Proposition 1.1.  Forany « in N™, let Upni[£a] be the part of Upny of degree
+a, and let Pla] be the element of Upny o] @ Upn_|—a] induced by (, )u,n. - Let
AL be the set of positive roots of g (the €; are the simple roots). Let (€q;)aca, and
(fai)aca, be dual Cartan-Weyl bases of ny and n_, and let eq;, fa: be lifts of the
Covis fai to Upny. Then, if k is the integer such that o belongs to kA \ (k—1)AL,
we have

hk

Pla] 1

Z Caqir " Cay,ig ® fa1,i1 e fak,ik + O(hk)'

at,..., O‘kEA"'lZi =0t

The fact that P[a] has h-adic valuation equal to k was stated by Drinfeld in [8].

e The case of a generic deformation parameter

It is easy to derive from the above results, PBW and nondegeneracy results in the
h

case where the parameter ¢ = e" is generic.
Corollary 1.2.  Let ¢’ be an indeterminate, and let Uyny be the algebra over
C(¢') with generators €,, i = 1,...,r, and relations (1), with e; and q = "

replaced by e, and q¢'. We have for any o« in N"

dim(c(q/) Uq/n+ [Oz} = dim(c(q/) Uq/ﬂ+ [O{]
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Let (€,),er be a basis of homogeneous elements of ny . Let

€, = Z Ou;il ..... ikéil e ézk

be expressions of the €, in terms of the generators €y, ..., é,.
Let C,.,...i.(q') be rational functions of ¢', such that

Cl/;il ,,,,, ik<1):CV;i1 ,,,,, ik

and set e, = >iseftyn} Cuiin.. i (@)eqy - - e, . Then the family (IT, e), where the

.....

n, are in N and vanish except for a finite number of them, forms a basis of Uyn,

(over C(q") ).

Corollary 1.3.  Let Uyn_ be the C(¢')-algebra with generators f/, 1 < i <
n, and relations (1), with e; replaced by f!. Define the braided tensor squares
Ugns®@Ugny using (2). We have a braided Hopf pairing ( , oy between Ugpn
and Ugn_, defined by (3), (4) and (5). The pairing ( , )c(g) is nondegenerate.

1.2. Quantum current and Feigin-Odesskii algebras.

Our next results deal with quantum current algebras. Assume that the
Cartan matrix A is of finite type. Let Ln, be the current Lie algebra n, ®C[t, t71],
endowed with the bracket [z ® t",y ® t"'] = [z, y] @ "™,

e Quantum affine algebras

Let A be the quotient of the free algebra C[[A]|{e;[k],i = 1,...,n,k € Z) by
the two-sided ideal generated by the coefficients of monomials in the formal series
identities

(qd““jz —w)e;(2)ej(w) = (2 — qdi“ijw)ej(w)ei(z), (6)
Symzl,...,zl_a“ :J(_l)k [1 _kaij} . ei(zl) R Gi(Zk)6j<w)6i(Zk+1) R ei(zl_aij) = 0,

(7)
where e;(z) is the generating series e;(2) = Y e, €i[k]z7%, and ¢ = €".
Let UpLn, be the quotient A/(Nysoh™A).
Define A as the quotient of the free algebra C[[h]](e;[k]A,i = 1,...,nk € Z)

by the two-sided ideal geberated by the coefficients of monimials of (6) and

1—ay; _ _

S D[] o A e o, ®

k=0

forany i,7 = 1,...,n and [ integer. Define Uy Ln, as the quotient A/(Ny=ohVA).

Theorem 1.3. 1) UpLn, is a free C[[h]]-module, and the map e;[n] — &; @ t"
defines an algebra isomorphism from UpLn, [AUrLn, to UlLn, .

2) Let UpLn? be the quotient of Cle[k],i = 1,...,n,k € Z)[[A]] by the
h-adically closed two-sided ideal gemerated by the coefficients of monomials in
relations (6) and (7). Then UpLn'?’ is a topologically free C[[h]]-module; it is
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naturally the h-adic completion of UpLn, , and the map e;[n] — & @t defines an
algebra isomorphism from UpLn'? JhUR In'? to ULn,. .

N 3) There is a unique algebra map from (7th+ to UpLn,, sending each
ei[k]” to e;lk]; it is an algebra isomorphism.

4) Let UpLn'? be the quotient of Cle;[k]*i = 1,...,n,k € Z)[[h] by
the h- adically closed two-sided ideal generated by the coefficients of monomials in
relations (6) and (8). Then e;[k]* — e;[k] defines an algebra isomorphism between
UnLn'? and UpLn'? .

The statements 1) and 2) of this Theorem can be derived from the results
of [2].

In [13, 14], Feigin and Odesskii defined the algebra FO, which may be
viewed as a functional version of the shuffle algebra. FO is defined as

FO = @rennFOx, (9)

where if k = (k;)1<i<n, We set

1 i .
FO = R OING) C[[h]”(é))il’z =1...,n,5=1, ’k,']lex XGkn»
[T i< (ta t/@ )
1<a<k;
1<8<k;

where the product of symmetric groups acts by permutation of variables of each
group of variables (tgz))lgjgki. FOy therefore consists of rational functions in

the téi), symmetric in each group (tgz))lgjgk” regular except for poles when the
variables go to 0 or infinity, and simple poles when variables of different “colors”
collide. (9) defines a grading of FO by N". The product on FO is also graded,

and we have, for f in FOy and ¢ in FO; (1 = (1;)1<i<n) ,

(f * g)(t§i))1gi§n,1§j§ki+zi = Sym{tgl)} . Sym{t;m} (10)
(@<, — t;
( H H t—t. f(t17"‘7tN)g(tN+17”'7tN+M));
1<i<N N+1<j<N+M i U

where N ="  k; and M =", [;; we set for any s,

_ 49 _ 4 _ 4
tk1+-"+k3—1+1 - tl ) 7tk1+---+ks - tks ) tN+11+---+ls—1+1 - tks+17 BRI

_ 4
ENG el = By

we also define €(i) = ¢ if ¢; = tl(k) for some [; as before, (,€¢;) = d;a;; for
h,j=1,...,n.
In the right side of (10), each symmetrization can be replaced by a sum over

shuffles, since the argument in symmetric in each group of variables (tgs), e ,t,ﬁj’)

and (1, 1,).

In Proposition 3.2, we define a topological braided Hopf structure on FO.
In [11], we showed:
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Proposition 1.2. There is a umque algebra morphism iy from UpLn, to FO,
such that ip(e;[n]) is the element (t3 ¢ )" of FO,,

Let us denote by LV the direct sum @ileOEi and let (LV) be the sub-
C[[Rh]]-algebra of FO generated by LV. As a corollary of the proof of Theorem
1.3, we prove:

Corollary 1.4. in 1s an algebra isomorphism between UpLn, and (LV).

UpLn, is also endowed with a topological braided Hopf structure (the
Drinfeld comultiplication); it is then easy to see that iy is compatible with both
Hopf structures.

Define T(LVy) as the free algebras C[[h]](e;[k],1 < i < n,k € Z) and
Cl[A){f:[k]™,1 <i < n,k € Z). We have a pairing (, )(rv,) between T(LV, )
and T(LV_) defined by

(€i, Uﬁ]( e k)™, £ )T )T v
Z res;,— - - TeS; —o
UEGP
(€ig-€iy) P P P d
q tZs — ksl Zs
( H €i. € H_ as'-HZis SH_) (11)
s>to—1(s)<o-1(t) 75 T gl i)z 5 dy, 0 s=1 ~s
(€igr€iy)
where the ratios % are expanded for z; < z,.
s—q 577 2t

Let UpLn_ be the quotient of T'(LV_) by the homomorphic image of the
ideal defining U_pLn, by the map e;[k]") s f;[k]T)

Proposition 1.3.  (see [11]) This pairing induces a pairing { , )u,Ln. between
Upln, and Upln_.

We then prove:

Theorem 1.4.  The pairing {, Yu,n. is nondegenerate.

e The form of the R-matrix

Let us set Ax = UpLn.. Let a and b be two integers. Define I3, and I, as the
right, resp. left ideals of A, generated by the e;[k],k > a , resp. the e;[k], k < a.
The ideals I3, and IZ, are graded; for a in (£N)", denote by I3 [a] and IZ [a]
their component of degree «. - -

Proposition 1.4.  For any a in N", for any integers a and b, (IZ,4+13,)"[—o]
and [Ay /(IL,+ 13,) ] [a] are free finite-dimensional C[[h]] modules The pairing
between A, and A_ induces a nondegenerate pairing between them. Moreover,
the intersection Ngp(I12, + I3,)* is zero.

Denote by P,u[a] the corresponding element of

[Ay/ (T2, + I2,) o] ® (14, + I2) " [—a][n71].

Pyl defines an element of im_qp Ay /(IZ, + I3,)*+ @cyry A-[h1].
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Let (e5:)pen, and (fzi)pea, be dual Cartan-Weyl bases of ny andn_. Let
eaq[p] and faz;[p] be lifts to UpLny of eg; @tP and fg; @tP. Then if o belongs to
kA, — (k—1)Ay, Pla] has the form

P[Q]ZE > >

T, OAkGA+,Zi Q;=a;ij Pl PLEZL

Car,it [D1] - - - €apip [PE] @ farin[=p1) - -+ forin[—Pr] + o(R¥)

(all but a finite number of elements of this sum belong to
(T + I2)* ®cqry A-[P7])
Let (Rh})i=1.. . be the basis of b, dual to (h;)i=1. .. Set

----------

n

K = exp(>_ hi[0] @ Bi0] + 3~ hilp] @ hi[—p)).

=1 p>0

Then the elements R[a] = KP[a] of lim._y(UpLbs @UszLb_)/I55  where 15+®
is the ideal generated by the h;[p] ® 1,e;[p] ® 1,p > N, and the 1 ® f;[p],p > N,
satisfy the R-matrix identity

> RIVA(Z)Ba-p) = > AN'(z)3a-p R[N
~veEN" Be(£N)™ B+y=A ~vEN" Be(£N)™ B+y=)

for any A € Z" and x in the double UyLg of UpLb, of degree o (the sums
over the root lattice are obviously ﬁmte and each product makes sense in
lim. n(UpLg®UnLg)/I%® | where ]N 2 is the left ideal generated by the z[pl®1
and 1®@z[pl,p> N, z = ez,hz,fz)

e Yangians

Let us describe how the above results are modified in the case of Yangians. Let
A" be the quotient of the free algebra C[[h]]{(e;[k]"™,i =1,...,n,k € Z) by the
two-sided ideal generated by the coefficients of the relations

(z = w+ hag)ei(2) ™ ej (W)™ = (z — w = hay;)e;(w) e (2)™, (12)

Sym ad(e;(z1)™") - - -ad(e;(21-a,,)" ") (e;(w)™") = 0, (13)

Zlv---vzl—aij

where we set e;(2)" = 3,z ei[k]" 271 and let us set
Ugath+ — Arat/ N0 hNArat'
Define also A" as the quotient of the free algebra C[[A]](e;[k]"" i =

1,...,n,k € Z) by the two-sided ideal generated by the coefficients of the relations
(12) and

ad(e 0 ) e (4 = 0, (14)
for any 4,5 = 1,...,n and integer [.
Theorem 1.5. 1) UpLn, is a free C[[h]]-module. There is a unique algebra

isomorphism from Ur™Ln, /hUF*™Ln, to UlLn, , sending the class of e;[k]™ to
& @ th.
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2) There is a unique algebra morphism from UpLn, to UsLn,, sending

e[k to e;[k]A" it is an isomorphism between these algebras.
3) Let UpLn™' and UpIn """ be the quotients of

Cle[k]™,i=1,...,n,k € Z)[[h]] and C(ei[k]“zm,i =1,...,n,k € Z)[[A]]

by the h-adically closed two-sided ideals generated by the coefficients of monomials
in relations (12) and (13), resp. (12) and (14). Then e;[k]A"" — e;[k]"™ defines
an algebra isomorphism between Up L™ and UpLn "' . UpLn'™' is the
fi-adic completion of UpLn’ ; it is a topologically free C[[h]]-module.

Define FO™ as the graded space FO, endowed with the product obtained
from (10) by the replacement of each ¢*z — ¢"w by z —w + h(A — i). FO™ is an
associative algebra and we have

Theorem 1.6.  There is a unique algebra map 5™ from UpLn’® to FO™,

sending each e;[k]™™ to e; @ th. iy is an isomorphism between UthTt and its

subalgebra (LV)™* generated by the degree one elements.

Define a pairing ( , )r(Lvi)ret between T'(LV,) and T(LV_) by the formula
(11), where each ¢*z — ¢*w is replaced by z —w + A(\ — p). Let UpLn™ be the
quotient T'(LV_) by the homomorphic image of the ideal defining Uy Ln’* by the
map ei[k](T) = fi[k](T)'

Theorem 1.7. (» Yrva)ra induces a nondegenerate pairing { , Yu,inirat
between UpLn"™. Define I as the right, resp. left ideals of UpLn™ generated
by the e;[k]"™, k > a, resp. by the fi[k]"*, k > a. Then for any « in N,
IFratla] N (I, [—a))* is a space of finite codimension in (I, "[—a])*. Let
Pla]™ be the corresponding element of

lin_ o (Un L L) 0] @ (Up L /1, 7).
Let egi[p]™™ be lifts to UpLny of the ég,[p]. Then if a belongs to kA, —(k—1)A,,
Pla]™ has the form

hk

P[a]rat _ H Z Z

€Ca,iv [pl]rat - Cay g [pkrat ® fal’il [_pl - 1]rat s fak’z'l [_pk - 1]rat + 0<hk)

The proofs of the statements of this section are analogous to those of the
quantum affine case and will be omitted.

1.3. Quantum current algebras of affine type (toroidal algebras) .
_ Assume that A is an arbitrary symmetrizable Cartan matrix. Define UpLn,
and UpLn, as in sect. 1..

Proposition 1.5. 1) Let F, be the Lie algebra with generators % [k],
1<i<n, ke€Z, and relations given by the coefficients of monomials in

(z = w)[F(2), 7} (w)] =0, ad(Z (21)) - - - ad(T] (21-a,,)) (T} (w)) = O,

i g i i
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where for x any T}, x(2) is the generating series Y ey k]2 7. If we give degree
e to T [k|, F. is graded by set A, of the roots of n, .

Then UpLn, /hUsLn, and UpLn, /hUpLn, are both isomorphic to the
enveloping algebra U(F.).

2) There is a unique Lie algebra morphism j, : F’+ — Iny, such that
ji(etlk) = ® E’“ j+ 18 graded and surjective. The kernel of j, is contained in
@a€A+,a imaginaryF+ [05] .

Let us assume now that A is untwisted affine. n, is the isomorphic to
a subalgebra of the loop algebra g[A\, A\™!], with g semisimple. Define t, as the
direct sum Ln, & (Br>01ezCKys[l]), and endow it with the bracket such that the
Kys[l] are central, and

(e ®t,0), (y @ ¢™,0)] = ([0 @ty @ 7], (7, 7)g (K" — mk') K o ssonsll + m])

for ¥ — 7 ® M,y — g ® A" by the inclusion n, C g[A, A7!], where (, )5 is an
invariant scalar product on g.

Then t, is a Lie subalgebra of the toroidal algebra t, which is the universal
central extension of Lg (20, 23]). In what follows, we will set z[k]' = (z ® t*,0).

Proposition 1.6. 1) When A is of affine Kac-Moody type, the kernel of j, is
equal to the center of Fy, so that F 1is a central extension of Ln, .

2) We have a unique Lie algebra map j' from ty to ]:Ir such that
j'(e; @ t") = én]. This map is an isomorphism iff A is not of type Agl). If
A is of type Agl), J' is surjective, and its kernel is @,czCKsn].

In Remark 4.3, we discuss possible generalizations of Theorem 1.3 to the
case of affine quantum current algebras, and the connection of Proposition 1.5 with
the results of [15].

The basic idea of the constructions of the two first parts of this work
is to compare the quantized algebras defined by generators and relations with
quantum shuffies algebras. The idea to use shuffle algebras to provide examples
of Hopf algebras dates back to Nichols ([24]). Later, Schauenburg ([28]) and
Rosso ([27]) showed that the positive part Upny of the Drinfeld-Jimbo quantized
enveloping algebras are isomorphic to the subalgebra Sh(V') of quantum shuffle
Hopf algebras generated in degree 1. Their results rely on Lusztig’s PBW or
duality (nondegeneracy of Drinfeld’s pairing) results. A nonabelian generalization
of Schauenburg’s result can be found in [1].

In sect. 2., we show that applying Drinfeld’s theory of Lie bialgebras to
Sh(V') yields at the same time proofs of these results (PBW for Uxn, and iso-
morphism of Uxn, with Sh(V), and nondegeneracy of the pairing as a simple
consequence), when the deformation parameter is formal or generic.

In sect. 3., we apply the same idea to quantum current algebras. These
algebras, also know as “new realizations” algebras, depend on the datum of a
Cartan matrix. In that situation, the proper replacement of shuffle algebras are
the functional shuffle algebras introduced by Feigin and Odesskii ([13, 14]). We
show that when the Cartan matrix is of finite type, the ideas of sect. 2. allow
to complete the results of [11] on comparison of the quantum current algebras
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and the Feigin-Odesskii algebras. However, there are still some open problems in
this direction, see Remark 3.16. We hope that the ideas of this section will help
generalize the results of [12] from sly to arbitrary semisimple Lie algebras. For
this one should, in particular, find analogues of the quantum Serre relations for
the algebras in genus > 1.

In sect. 4., we consider the classical limit of the quantum current algebras
in the case of an affine Kac-Moody Cartan matrix. We show that this classical
limit is the enveloping algebra of a Lie algebra Z:E, which is a central extension
of the Lie algebra Ln, of loops with values in the positive subalgebra n, of the
affine Kac-Moody algebra. F+ is graded by the roots of n,, and its center is
contained in the part of imaginary degrees. We show that in all affine untwisted
cases, except the Agl) case, F, is isomorphic to a subalgebra t, of the toroidal
algebra t introduced and studied in [23, 16, 30]. In the Agl) case, we identify ]ﬁ
with a quotient of t,.

In the quantum case, the center of Uy Ln, seems closely connected with the
central part of the affine elliptic algebras constructed in the recent work of Feigin
and Odesskii ([15]). We hope that a better understanding of this center will enable
to extend to toroidal algebras the results of sect. 3..

This paper grew from the notes of the DEA course I taught at univ.
Paris 6 in february-april 1999. I would like to thank P. Schapira for giving me
the opportunity to give this course and its participants, notably C. Grunspan,
O. Schiffmann and V. Toledano Laredo, for their patience and attention.

I also would like to thank N. Andruskiewitsch and B. Feigin for valuable
discussions. In particular, the idea that quantum shuffle algebras could be a tool
to construct quantizations of Lie bialgebras is due to N. Andruskiewitsch; it is
clear that this idea plays an important role in the present work. I also would like
to thank N. Andruskiewitsch for his kind invitation to the univ. of Cérdoba in
August 1998, where these discussions took place.

2. Quantum Kac-Moody algebras (proofs of the results of sect. 1.)

2.1. PBW theorem and comparison with shuffle algebra (proofs of The-
orem 1.1 and Corollary 1.1).

e Definition of Sh(V) and (V)

Let usset V = @} ;Cuv;. Let ¢; be the ¢th basis vector of N". Define the grading of
V by N" by deg(v;) = ¢;. Let Sh(V') be the quantum shuffle algebra constructed
from V' and the braiding V@V — V @ V[[A]], v; ® v; — ¢ %%iv; ® v;. That
is, Sh(V) is isomorphic, as C[[A]]-module, to @;>oV®[[A]]. Denote the element
21 @+ ® 2z as [z1] -+ |zk]. The product is defined on Sh(V') as follows:

21 R - B MY R )
_ Z v Z1§i<j§k+z,a(i)>a(j)<deg(zi)’deg(2:j)> I:Zg'(l)‘ L ’ZU(kH)]’
UEEkﬂl

if the z; are homogeneous elements of V', and where Xj;; is the subset of the
symmetric group &4, consisting of shuffle permutations o such that o(i) < o(j)
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ifl<i<j<kork+1<i<j<k+1I; the bilinear form on N” is defined by
form <€7;,€j> = diaij.

Lemma 2.1. (V') is the direct sum of its graded components, which are free
C[[R]] -modules. It follows that (V') is a free C[[h]]-module.

Proof. That (V') is the direct sum of its graded components follows from its
definition. These graded components are C|[h]]-submodules of finite-dimensional
free C[[h]]-modules (the graded components of Sh(V')). Each graded component
is therefore a finite-dimensional free module over C[[%]]. The Lemma follows. =

e Crossed product algebras V and S
Define linear endomorphisms Ei,i =1,...,n and Ej,j =1,...,n—r of V by the
formulas B -
hi(vj) = aijuj,  Dj(vi) = bijvi.
Extend the 2, z € {h;, D;} to linear endomorphisms of Sh(V') by the formulas

n

Z([za] -+ - |n]) le\ ).

It is clear that the T define derivations of Sh(V'). These derivations preserve (V).

Define V and S as the crossed product algebras of (V) and Sh(V') with the
derivations h;, D;. More precisely, V and S are isomorphic, as C[[R]]-modules,
to their tensor products (V) ®cyy C[hY, DY][[R] and Sh(V') @cymy) ClRY, DY][[A]
with h-adically completed polynomial algebras in n + r variables. The products
on V and § are then defined by the rules

2n—r 2n—r

(e [T (X)) e [T (X))
s=1 s=1
2n—r o 2n—r . 2n—r . ]
_ Z H (Zs> (x H X;S(y)> ® (H (Xs )aerBszs) 7
(is) s=1 s s=1 s=1
where we set X, =h, for s=1,...,n,and X, =D,_,, for s=n—+1,...,2n—r.

In what follows, we will denote * ® 1 and 1 ® X, simply by =z and X, so that
@ [[,(XY)* will be z [ ,(XY)*.

S is then endowed with a Hopf C[[A]]-algebra structure (that is, all maps
of Hopf algebra axioms are C][h]]-module maps, and the tensor products are
completed in the fi-adic topology), defined by

Ap(hY)=h @1+ 1@ hY for h € {h;, D;},

m

Av([vi,] - vi,]) = D oi |-+ - g, ] @ exp( thz] i) Vi i)
k=0

V is then a Hopf subalgebra of S.

Assign degrees 0 to the elements hY, D}/, and ¢; to v;. V is then the direct
sum of its homogeneous components, which are free finite-dimensional modules
over C[hY, DY][[h]]; the grading of V is compatible with its algebra structure.

e Hopf co-Poisson and Lie bialgebra structures
Define V, as V/hV.
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Lemma 2.2. Vo is a cocommutative Hopf algebra.

Proof. Define A}, as Ay composed with the permutation of factors. We
have to show that for x in V, we have

(Ay = A})(@) C AV @cymy V). (15)

For z one of the h;, D;, (15) is clearly satisfied. On the other hand, if (15) is
satisfied for  and y in V, then (Ay —A})(zy) is equal to (Ay —AL)(z)Ay(y) +
AL (z)(Ay — A})(y) and therefore belongs to h(V ®cyry V). It follows that (15)
holds for any x in V. [ ]

Lemma 2.3. 1) There exists a unique surjective Hopf algebra morphism pp,
from Ugpb, to V, such that pp(h;) = hY and pp(z}) = [vi].

2) The map D; — Dj, hi — h,xf — T} extends to an isomorphism from
th+/hth+ to Ub, .

3) pr induces a surjective cocommutative Hopf algebra morphism p from
Urby =Uby to V/RY =V).

Proof. That the quantum Serre relations are satisfied in Sh(V') by the [v;]
follows from [27], Lemma 14 (the proof relies on g-binomial coefficients identities,
which are proved by induction); this proves the first part of the Lemma.

Let us show that Upby /hURb, is isomorphic Ub, . Uxb, /AULb, is equal
to the quotient of C(h;, Dj,z;,i=1,...,n,5=1,...,2n — r)[[A]] by the sum of
hC(h;, D;,z;)[[h]] and the closed ideal generated by the relations [h;, ;] = a;je;,
[D;, €] = 0;je; and the quantum Serre relations (1). This sum is the same as that of
RC(hi, D;, z;)[[h]] and the closed ideal generated by [h;, e;] = aije;, [Di, e;] = dize;
and the classical Serre relations. The quotient of C(h;, D;, z})[[h]] by this last
space is equal to Ub, . This proves the second part of the Lemma.

The third part is immediate. u

Proposition 2.1.  Let | be a Lie algebra and let J be a two-sided ideal of Ul
such that Ay(J) CUI® J+J QUL Then j = JNUI is an ideal of the Lie algebra
[ and we have J = (Ul)) =;(UT).

Proof. We first show:

Lemma 2.4.  Let | be a Lie algebra and let J be a left ideal of Ul such that
Ayi(J) C J@UI+UL® J. Letj be the intersection [N J. Then J is equal to
(UD)j.

Proof of Lemma. Denote by (Ul), the subspace of Ul spanned by the
monomials in elements of [ of degree < n. Let us set Ay((z) = Api(r) — 2 ®
1 —-1®z. We have Ay(UL)n) C X 50p1qen(UD)p ® (Ul),. Denote by J, the
intersection JN(UT),,. Then we have Ay((J,) C 32 40ptq=n @ (U1 +(UL),@J,.

Let us show by induction that J,, is contained in (Ul),_1j. This is clear if
n = 1; assume it is true at order n — 1. Let = be an element of .J,,. Then AU[(x)
is contained in Y, ;<0 p1q=n(UD)p—1i ® (UD)g + (Ul), @ (Ul)g-1j-
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Let Z be the image of = in (Ul),/(Ul),—1. (U1),/(Ul),—1 is isomorphic
to the nth symmetric power S™[. Let Ag; be the coproduct of the symmetric
algebra SI, for which elements of degree 1 are primitive, and set Ag((Z) = Ag((Z)—
T®1—1®z. Then A(z) is contained in Y, 4=0 1 qen (ST @ ST+ SPIR (ST11)j.
It follows that Z belongs to (S"'l)j. The difference of = with some element of
(U1),,—1j therefore belongs to (Ul),_1, so that it belongs to J,,_; and by hypothesis
to (Ul)n_2j. Therefore, z belongs to (UT),_1j. This proves the Lemma. (]

Let us prove Proposition 2.1. Lemma 2.4 implies that J = (Ul)j and
its analogue for right Hopf ideals implies that J = j(Ul). Therefore, we have
(U)j) = j(Ul). Let us fix z in [ and j in j, then [z, j] belongs J; since it also
belongs to [, [z, ] belongs to j. Therefore j is an ideal of I. [

Let J be the kernel of the cocommutative Hopf algebras morphism p defined
in Lemma 2.3, 3). Let us set j = JN b, and a = b, /j. prop. 2.1 then implies

Lemma 2.5. The Lie algebra structure on b, induces a Lie algebra structure
on a. Moreover, Vy is isomorphic with Ua, and p can be identified with the
quotient map Ub, — Ua.

Define dy, as Ang," mod A. Jy, is a linear map from V), to the antisym-
metric part of its tensor square A?V,. It obeys the rules

(Ay, @id) oy, = (65,2 4 05,7'%) 0 Ay, (16)
Alt((svo & ’Ld) o 5V0> = O,

I (2y) = Oy () Ay (y) + Ay, ()dy, (y) for z,y in Vy,

if dyo(y) =2y, @yl weset 0P (z@y) =22 @y, @y, and 65, Pz @y) =
>yt ®@x @y . These rules are the co-Leibnitz, co-Jacobi and Hopf compatibility
conditions; they mean that (Vy,dy,) is a Hopf co-Poisson algebra (see [8]).

Lemma 2.6.  §y, maps a to N%a.

Proof. Let a be an element of a and set dy,(a) =3, x; ® y;, where (y;) is
a free family. Then (16) implies that Ay, (z;)®@y; = > 2, ® 1Ry + 1 @ x; ®y;, S0
that each x; is primitive and therefore belongs to a. So dy,(a) belongs to a® V.
Since dy,(a) is also antisymmetric, it belongs to A%a. ]

Call §, the map from a to A?a defined as the restriction of dy, to a. (a,dq)
is then a Lie bialgebra, which means that 4 is a 1-cocyle of a with values in the
antisymmetric part of the tensor square of its adjoint representation, satisfying the
co-Jacobi identity Alt(dq ® id)dq = 0.

Remark 2.7.  The Hopf co-Poisson algebra and Lie bialgebra axioms were in-
troduced by Drinfeld in [8]. Drinfeld showed that the quantization of a cocom-
mutative Hopf algebra lead to such structures. He also stated that there is an
equivalence of categories between the category of Hopf co-Poisson algebras and
that of Lie bialgebras. Lemma 2.6 can therefore be viewed as the proof of one part
of this statement (from Hopf co-Poisson to Lie bialgebras). It is also not difficult
to prove the other part (from Lie bialgebras to Hopf co-Poisson).
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e Kac-Moody Lie algebras
Let g be the Kac- Moody Lie algebra associated with A. g has generators Z:, h;,

1=1,. nandD j=1,...,n—r, and relations
[h, 1] = 0if h, W € {h;, D;}, (17)
[hi, 7] = *aw®s, [D;, 17| = 6,7, (18)
ad(zF)'~ “(7; ) =0, (19)
[z, %] = Swhy, forallii' =1,...,n,j=1,...,n—r.

Let h and n. be the subalgebras of g generated by {h;, D;} and {zi}.
Then g has the Cartan decomposition g =n, &hdn_. Let usset by =h P n..
ny and by are the Lie algebras with generators {z;} and {h;, D;, 7} and
relations (19) for ny and (17), (18) and (19) for by. g is endowed with a
nondegenerate bilinear form ( , )4, which is determined by (h;, hi)q = d; Yo,
(5, 27)g = d; "0, (hiy Dj)g = d;'0;;, and that its values for all other pairs of
generators is zero (see [6, 19]).

e Hopf algebras Upby

Define Upb. as the algebras with generators hi, DjE and z, and relations
[h;‘:, Ly ] iaii’m?’:v [D;t7 ;t] :I:(sisz‘ )

and relations (1), with e; replaced by z. It is easy to see that the maps e; — ;"

and f; — x; define algebra inclusions of Upny in Uzb.. We have Hopf algebra
structures on Uzb, and Uxb_, defined by

Ar(hE)=h*@1+1@h* for h € {h;, D;}, As(ai) =af @ il aF

e Comparison lemmas
Recall that V is the direct sum of its graded components. Its component of
degree zero is C[h}, DY][[h]]. Let h{,D§ be the images of hY,D} in Vy. We
have an inclusion of C[h{, D§] in V. It follows that the hf and D“ are linearly
independent and commute to each other.

On the other hand, as the elements hY and D}} are primitive in V, the A}
and D{ are also primitive; it follows that they belong to a, and we have

p(hi) = hi,p(D;) = D§,  da(h{) = 8a(D§) = 0. (20)

The degree €; component of V is C[h;, D;|[[A]] - [v;], and the map = — z[v;]
is a C[[h]]-module isomorphism from Cl[h;, D;][[h]] to this component. Therefore,
[v;] has a nonzero image in V/hY = V. Since we have

Ay([v)]) = [v)] ® "M +1 @ [,

[v;] mod h is primitive in Vy. Therefore, [v;] mod h belongs to a; call v this
element of a. It is clear that

da(vl) = divl A B (21)
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On the other hand, ps(Z;") = [v;] implies that
p(a) = v} (22)

Recall that we have a Lie bialgebra structure on b, ; it consists in a map
dp, from by to A%by, which is uniquely determined by the conditions dy, (7)) =
diz A hi, 0y, (h;) = 86, (D;) = 0 and that it satisfies the 1-cocycle identity.

Lemma 2.8.  p is also a Lie bialgebra morphism from (by,0p.) to (a,dq).

Proof.  This means that
(A’p) 0 6p, (z) = 0q 0 p(x), for z in by. (23)

For z equal to h; and D;, (23) follows from (20). It follows from (21) and
(22) that

8o 0 p(Z)) = 64(v}) = div® A hE = (A*p)(diz A hi) = A*p(6a(Z)),

so that (23) is also true for x = z; .

Since p is a Lie algebra morphism, both sides of (23) are 1-cocycles of b
with values in the antisymmetric part of the tensor square of (a, adqop). Therefore,
(23) holds on the subalgebra of b, generated by the h;, D; and Z; , which is b,

itself. n

Denote by b, the subspace of a spanned by the A and D?; it forms an
abelian Lie subalgebra of a.

Since pp(h;) = hY and pp(D;) = DY, the restriction of p to the Cartan
subalgebra h of b, is a Lie algebra isomorphism from § to b

Define, for a in h*, the root subspace a[a] associated with a by

ala] = {z € a|[p(h),z] = a(h)x, for all h in h},

and as usual

by la] = {z € by|[h,z] = a(h)x, for all h in h}.

Lemma 2.9. a is the direct sum of its root subspaces ala], where o belongs to
the set Ay U {0} of roots of by . Fach ala] is finite dimensional. §q is a graded
map from a to N%a, therefore the graded dual a* of a, defined as ®qa[a]*, has a
Lie bialgebra structure.

Proof. For any a in h*, p maps b [a] to a[a]. It follows that a is the sum of
the root subspaces a[a], where o belongs to the set of roots of b, . That this sum
is direct is proved as in the case of by : let ; be the root such that Z; belongs
to byfay]. Then ay,...,q, form a basis of h* (they are the simple roots of g).
Let (Hi,...,H,) be the basis of h dual to (a1,...,a,). Then for any family z,
of a[a] such that 3, x, = 0, we have, by applying ad(p(H;))* to this equality,
> (ns)eNn n’f:vzi nia; = 0, which gives for any integer a1, 3=, ennjn; =a, TS nias = 0;
applying ad(p(H2))*, we get 3 (n)eNn|ni=ar.no—as TS na, = 05 finally each zq
vanishes. 1

That §, is graded follows from the fact that its restriction to b, vanishes
and from the cocycle identity. [ |
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Lemma 2.10.  p is a Lie bialgebra isomorphism.

Proof. Tt follows from Lemma 2.8 that p* is an injective Lie bialgebra
morphism from a* in the graded dual b7 of b, . Recall that b% is isomorphic, as
a Lie algebra, to b_ = h & n_; this relies on the nondegeneracy of the invariant
pairing between b, and b_, itself a consequence of [6] (in what follows, we will
denote by h_ the Cartan subalgebra h of b_). We will show that the image of p*
contains a generating family of b_.

Let us denote by bhe« the space of forms on a, which vanish on all the
ala],a # 0. The duality beween b, and b_ identifies h_ with the space of the
forms on by which vanish on n, = @axby[a]. We have p(b.[a]) C a[a] for any
«, therefore

P*[(@azoa(a])7] C (azobila])™,

which means that p*(hq+) C h_. Since p* is injective and b« and h_ have the
same dimension, p* induces an isomorphism between hy« and h_. It follows that
the image of p* contains f_.

Since T belongs to b, [a;], the element v? of a defined before Lemma 2.8
belongs to afa;]. We have seen that v is nonzero.

Let & be the element of a* whichis 1 on v{ and zero on each afa], a # «;.
For z in by|a], o # a;, (p*(&), )b, x6- = (&, P(T))axa = 0 because & vanishes
on afa]. It follows that p*(§;) has weight —«; in b_. On the other hand, p*(¢;)
is nonzero, because p* is injective, so it is a nonzero constant times z; .

Since the image of p* contains h_ and the z; , p* is an isomorphism. =

Lemma 2.11.  pp mod h restricts to an isomorphism of N"-graded algebras
from Uny to (V)/R(V).

Proof. 1t follows from Lemma 2.10 that py mod A induces an isomorphism
from Ub, = Uxb, /hULby to Vo = V/hY. Therefore it induces an isomorphism
from Un, to its image in V,. Since Un, coincides with the image of Upn, by
the projection Uzb, — Upb, /hULb, = Ub, , this image coincides with that of the
composed map

Uy — Upby =V — V. (24)

The image of the composed map Upn, — Upby — V is equal to (V). We
have a C[[h]]-module isomorphism of V with (V) ®cymy C[hY, DY][[A]], so that
VY N (V) = k(V). It follows that the image of (V) by V — V; is (V)/R(V).
Therefore the image of (24) is (V)/A{V). n

Proof of Theorem 1.1. Assign degree ¢; to the generator e; of Upn,. Then
Upn, is the direct sum of its homogeneous components (Uxn,)[a], o € N* which
are finitely generated C[[h]]-modules. As a C[[A]]-module, (Upn, )[e] is therefore
isomorphic to the direct sum @I, C[[h]]/ (h”ga)) @ C[[h]]P> of its torsion part with
a free module (see Lemma Al).

Lemma 2.3, 2) implies that Upn[a]/hUpn,[a] = Un,la] so

Pa + Go = dimUn [Oé] (25)
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On the other hand, (V)[a] is a free finite dimensional module over C[[A]], by
Lemma 2.1 above, so it is isomorphic, as a C[[k]]-module, to C[[R]]P>. py restricts
to a surjective C|[[h]]-module morphism from Upni[a] to (V)[a], therefore pp
maps the torsion part of Upny[a] to zero and

Pa = Pl (26)
Moreover,
pl, = dimUn, [a] (27)
by Lemma 2.11. It follows from (25), (26) and (27) that p, = p}, and ¢, = 0.

This means that Upn; has no torsion, and is isomorphic to (V). In view
of Lemma 2.3, 2), this proves Theorem 1.1. This also proves Corollary 1.1. |

2.2. Nondegeneracy of Hopf pairing (proof of Theorem 1.2).

Let (v}) be the basis of V* such that (v},v;) = d;';;. Assign to v} the
degree —¢;. Let T(V*) be the tensor algebra &;(V*)®'[[h]]. Define the braided
tensor product strucutre on the tensor square of 7'(V*) according to (2). T'(V*) is
endowed with the braided Hopf structure defined by Apqy+(vf) = v; @ 1+ 1@,
for any i = 1,...,n. We have a surjective braided Hopf algebra morphism from
T(V*) to Upn_, defined by v} — f;, for i =1,...,n.

Then we have a braided Hopf pairing

(s Ysuvyxrve) : Sh(V) x T(V*) — C((h)),
defined by the rules

1 k
(i |-+~ Jvi, ], &t - '5i2,>5thg_ = ﬁ(skk’ H(Uijugi;>v><v*' (28)
j:

The ideal of T'(V*) generated by the quantum Serre relations is in the
radical of this pairing (see e.g. [22], chap. 1; this is a consequence of g-binomial
identities).

It follows that (, )snv)x7r(v+) induces a braided Hopf pairing

() Ysh(vyxtpn_ : Sh(V) x Upn_ — C((h)).

By Theorem 1.1, Upny is a braided Hopf subalgebra of Sh(V'). The restric-
tion of (, )shv)xuun_ to Upng x Upn_ therefore induces a braided Hopf pairing
between Upny and Upn_; since it coincides on generators with (, )u,n, xvun_, it
is equal to (, )unn,xUpn_ -

View V@ as a subspace of Sh(V). Assign degree 1 to each element of V*
in T(V*); then T(V*) is a graded algebra; we denote by T(V*)*) is homogeneous
component of degree k. The restriction of ( , )shyxrv+) to V®k><T(V*)(k) can be
identified with the natural pairing of V®* with (V*)®*  which is nondegenerate.
Therefore the annihilator of T'(V*) in Sh(V) for ( , )snv)xr(v+) is zero. By
Theorem 1.1, it follows that the annihilator of Uxn_ in Upny for (, )y, is zero.

Since the pairing ( , )u,n, xv,n_ is graded and the graded components of
Upny and Upn_ have the same dimensions (as C[[h]]-modules), the pairing

< 9 >Uhl‘l+><Uhl’1,

is nondegenerate. [ |
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2.3. The form of the R-matrix (proof of Proposition 1.1).

Let us endow Upg = Upb, ® Upn_ with the double algebra structure such
that Upby — Upg, v — x4, ® 1, and Upn_ — Upg, x— — 1 ® z_ are algebra
morphisms and, if ef =¢; @1, fP =1® f;, h¥ = h; ® 1 and D? =D;®1,

d;h? —d;h?
qr o —q
b YV =0 g ma—

I

and
[hfa fjg] = _a'ijfjg7 [D?7f]g] = _5ijfjg-
Ung is endowed with a topological Hopf algebra structure A : Upg +—
Ung®Ung = lim_ N (Upg @ Upg)/h™ (Ung ® Ung), extending A, and A_ ([8]).
Let ty be the element of h ® h corresponding to the restriction of the

invariant pairing of g to h and let R[a] be the element exp(fitg)P|a] of
lim. n(Upg @ Urg) /BN (Urg ® Upg)][R']. Then we have the equalities

Rla—ail(ef © ") + Rlal(1 & f) = (¢ @e?)Rla] + (e © Rla— i, (29

forany 1 =1,...,n.
Lemma 2.12.  For any nonzero o in N, Pla] belongs to hUpny & Upn_.

Proof.  Let us show this by induction on the height of « (we say that the height
of @ = (a;)1<i<n is 10 ;). If a is a simple root «;, Pla] = he! ® fF, so that
the statement holds when deg(a) = 1.

Assume that we know that P[a] belongs to hAUxn, ® Upn_ for any « of
height < v. Let a be of height v. Let v be the h-adic valuation of Pla], and
assume that v < 0. R[a] belongs to A’(Urg@Upg), and since v < 0 the equality
(29) takes place in h¥(Upg®Ung). Let us set R, = h™"R[a] mod h; R, is an
element of Uby ® Ub_. Since h™"R]a — ] is zero mod h, (29) implies that R,
commutes with each 1 ® e;.

Lemma 1.5 of [19] says that if a belongs to n_ and commutes with each e;,
then a is zero. It follows that if x belongs to Un_ and commutes with each ¢;, x
is scalar; and if in addition x has nonzero degree, x is zero. Therefore R, is zero.

It follows that v > 1, which proves the induction. ]

It follows from [8] that the R[a] satisfy the quasi-triangular identities

(A®idR[a]= Y R[BIMWRH®, (30)
B,yeEN™ B+y=a

(ide A)Rla]= > R[BMWRH. (31)
ByeN", B+y=a

Let us set, for o # 0, r[a] = R[a]/h mod h; r|a] belongs to Ub, @ Ub_. Dividing

the equalities (30) and (31) by &, we get (Ayp, ® id)ra] = r[a]®® + r[a]®) and

(id ® App, )r[a] = r[a]1? + r[a]*®. Therefore r[a] belongs to by ®@b_.
Moreover, (29) implies the identity

0(2)(pa-p) = [r[6 —ol,x @ 1] + +[r[0], 1 @ 2]
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for z in gla], where we set (3; % ® Yi) (a,5) = (%) (a) @ (4:)(5) and we denote by
T(o) the degree av component of an element x of Ug.

It follows that r[a] is the element of n [a] ® n_[—a] corresponding to the
invariant pairing of g.

Let us now prove by induction on k that if a belongs to kA, — (k—1)A,,
Pla] belongs to A*Upn, ® Upn_ and

Pla] = — Z rloa] - - rlog] + o(A¥).

Assume that the statement is proved up to order & — 1 and let A belong to
kA, — (k—1)A. Then (30) and the induction hypothesis imply that

~ hk
(B @id)(PN) = > > am (62
o1, ak€A+7Z/I'€:1 ai=\ii; LUS0I4+=k """ °

Car,ir " Cayyiy ® Coyyriter " Capip ® fOé1,i1 e fak,ik’

where A(z) = A(z) —2® 1 —1®x. Let ¢ be any permutation of {1,...,k}.
For any aq,...,a; in A, such that Zle a; = X\, we have

fal,h T fak,ik - fozc,u),ia(l) e fao(k),ig(k> + O(h)

Indeed, the difference of both sides is a sum of products of the [fa, ., fa,i,] With
elements of n,; but ay + ay does not belong to A, by hypothesis on A, so
I:fa57is7 fat,it] = O(h) :
The right side of (32) can the be rewritten as
h* 1
Z Z n card; s

ook €A, S| o=y W0k

Z Ca,1ysio) " Cany o ® Copiyiorty " Coo) ok X foa,il T fak,ikv
X, i

where ¥, is the set of shuffle transformations of ((1,...,0),({+1,...,1+1)).
Therefore the right side of (32) is equal to

R -
A Z Caqsip " Caysig ® fOél;Zd T fak;ik + O(hk)

k!
: k )
at,...,0€EAL, g i1 a;=Aji5

Let v be the h-adic valuation of P[\]. Assume that v < k. Set Pla] =
h~*Pla] mod k. Then if we call A the coproduct of Un, , and we set Ag(z) =
Ao(z) —z®1—1®z, (32) gives (A ® id)(P[a]) = 0, so that Pla] belongs to
n, ® Un_; since P[a] also belongs to Uny[a] ® Un_[—a] and a does not belong
to Ay, Pla] is zero, contradiction. Therefore v > k. Let us set P'[a] = h=*P[a]
mod h; we find that

1

(Bo@id) | Plo] = 3

Z Caryir " Coyii ® fal;il T fak;ik - 07

k .
Ay ak6A+’Z¢:1 o =M\ji;
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so that P’[a] belongs to

1 B B _ _
) Z Carsir " Consiy @ Jansin *+* Jagsiy + 0 @ Un_;

k!
. k .
al"“’ak€A+’Zi:1 Ocz':)\;lj

as ny[a] is zero, P'la] is equal to
'R Z éal;il T éak;ik ® fa1;i1 T fak-;ik-v
which proves the induction. [ ]

2.4. The generic case (proof of Corollaries 1.2 and 1.3).

We have the equality Upn; ®cpn C((h)) = Uyny ®cey C((R)), therefore
the graded components of Uyn; have the same dimension as those of Upny.
Corollaries 1.2 and 1.3) follow.

3. Quantum current algebras of finite type (proofs for Sections 1.)

3.1. PBW theorem and comparison with Feigin-Odesskii algebra (proofs
of Theorem 1.3 and Corollary 1.4).

e [dentification of algebras generated by the classical limits of quantum currents
relations

Recall that A is now assumed of finite type. Define Lb, as the Lie subalgebra
(b C[t7']) ® (ny @ C[t,t7Y]) of g® C[t,t71].

Proposition 3.1.  Define UpLb, and ﬁhLb+ as the algebra with generators
hikl,i=1,...,n,k <0 and x;[k],i=1,...,n,k € Z, and relations

_ ¢ —g

2hkd,;

x;’[k—i-l],

and relations (6) and (7) among the x[k] (with e; replaced by ;" ), resp. (6) and
(8). There are algebra isomorphisms from UpLb, /AU Lb, and UpLb, /hULb_,.
to ULby, sending h;[k] to h; @ t* and z}[k] to z7 @ t".

Proof. UnLb, /hUxLb, is the algebra with generators h[k], &[l],1 <i,j <
n,k <0,l € Z and relations

[halk], &:[l]] = ayeilk +1],

and
(z — w)lei(2), &(w)] = 0, (33)
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where €;(z) = Yjezéilk]lz™*. Tt follows from (33) with ¢ = j that we have
[eiln], e;lm]] = 0 for all n,m. Therefore, ad(e;(z1))---ad(€i(21-q,;,))(€;j(w)) is
symmetric in the z;, so that the last equation is equivalent to

ad(€i(z1)) - - - ad(€i(z1-a;,)) (€5(w)) = 0. (34)
On the other hand, U,Lb, / hU,Lb. is the algebra with generators
hilk] &ll),1<i,j <nk<0,l€Z

and relations

[hilk]', &[l)'] = aizéslk + 11,
and

(z —w)lei(z)', & (w)'] = 0, (35)

and
(ade[0])') " “ie;[k] = 0. (36)

The algebras presented by the pairs of relations (33) and (34) on one hand, and
(35) and (36) on the other, are isomorphic. Indeed, (33) and (35) are equivalent,
and (34) implies (36); on the other hand, (33) implies that [e;[0],e;[k + {]'] =
[ei[k]' e5[1)'], so that [e;[0], [e;[0), 5[k + K"+ I]']] = [e[0), [e:[k]', e5[K" + 1] =
lei[k]', [e:[0)', e;[k" +1)']], because the (33) implies that [e;[0]', e;[k]'] = 0, therefore
le;[0], [e;[0], e[k + K" + 1]']] = [ei[k]', [e;[K'], e;[l]]]; one then proves by induction
that (adei [0]/)p(€j []C+k?1+ . —f-k?p]) = ad@i[kil]/ s adei [k’p]’(ej U{?]) . With p = 1—0/2‘]‘,
this relation shows that the e;[k]’ satisfy (34).

If follows that if 171 is the Lie algebra defined in Proposition 1.5, both
quotient algebras UpLb, /hUnLb, and UxLb, /hUsLb, are isomorphic to the
crossed product of UF, with the derivations h;[k]’, defined by h;[k]'(&[l]) =

It is clear that there is a unique Lie algebra morphism j, from the Lie
algebra F, defined in Proposition 1.5 to n @ C[t,t7'], sending &lk] to Z} @ t*.
Let us prove that it is an isomorphism.

For this, let us define F as the Lie algebra with generators Zf[k], hf[k],
1 <i<n,k €Z, and relations given by the coefficients of the monomials in

(2 —w)[TF(2), 75 (w)] = 0, if =,y € {77},

[hi(2), 5 (w)] = Fay;0(z/w)F5 (w),

L]

(@ (2), &7 (w)] = 6;50(2/w)hi(2),

7

ad(FE(21)) -+ ad(FF (210,)) (F (w)) = 0,

7 J

where we set #(z) = Yyez x[k]z 7" for  in {FF, h;}.
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Lemma 3.1. (In this Lemma, g may be an arbitrary Kac-Moody Lie algebra.)
Let W be the Weyl group of g, and s; be its elementary reflection associated to
the root «;. Then there is a unique action of W on F such that

s (FF[K)) = TF[k),

s(TF ) = ad @ O) TR, i £,
si(BE () = REK] — aggBit K]

Proof of Lemma. The proof follows the usual proof for Kac-Moody Lie
algebras. For example, if j, k are different from i, we have

(2 — w)[s,(FE(2)), s:(F (w))]
— (= — w) ad(E0]) (3 ()), ad (FE0]) (5 ()
— ad(@[0) " (2 — w)[FE (=), B (w)))

because the Serre relations imply that ad(mzjE [0])!%t (%) (u)) = 0 for j = k,l and
u = z,w; therefore (z —w)[s;(T; (2)), s;(Tj; (w))] is zero. n
Lemma 3.2. There is a unique Lie algebra isomorphism j from F to

g ® C[t,t7Y], such that j(Z[k]) = Z @ t*, for any x in {z, h;} and k in Z.

Proof. Let F_ be the Lie algebra with generators z; [k], 1 <i<n,k€Zand
relations (33) and (34), with Z;7[k] replaced by 7; [k], and let H be the abelian
Lie algebra with generators h; [k] 1 <1< n,k €Z. There are unique Lie algebra
morphisms from F. and H to F, sending the ZI[k] to Z[k] and the hik] to
hilk]. These morphisms are injections, so that we will 1ndent1fy F. and H with
their images in F.

Moreover, let Fy be the free Lie algebras with generators zf[k], i =
1,...,n, k integer. Endow F @ H with the Lie algebra structure such that H is
abelian, F. is a Lie subalgebra of Fy @ H, and [h[k], zF [l] | = dag iz [k +1)F

There are unique derivations (I)Ik from Fy to Fy @ H such that

F (z7[l]) = Siihilk +1].

Let I be the ideals of F}. generated by relations (33) and (34); then computation
shows that I{ are preserved by the ®F, . It follows that F' is the direct sum of its

subspaces F. and H.

The rules deg(ZF[k]) = (£, k) and deg(h;[k]) = (0, k) define a Lie algebra
grading of F by Z" x Z, because the relations of F are homogeneous for this
grading. Clearly, dimFy[(4e€;, k)] = 1 for any 7 and k, so that dimF[(£e;, k)] = 1.

Let « be any root on g. Then there is some simple root +¢; an element w of
W such that a = w(%e;). Then F[(£e;, k)] = F[(a, k)] so that dimF|[(a, k)] =

It is clear that the map j defined in the statement of the Lemma defines a
Lie algebra morphism. Define a grading by Z" x Z on g ® C[t,t™!], by the rules
deg(z ® t*) = (deg(x), k), for  a homogeneous (for the root grading) element of
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g. Then j is a graded map. Moreover, if « is in +A, and z is a nonzero element
of g od degree «, then x can be written as a Y A;, ...; [7,[... ,:viip]]; then the

1)

image by j of 3\, .., [xE[0], [ .. xﬂ; [k]] is equal to = ® t*; therefore the map

11 )

induced by j from F[(a, k)] to g @ C[t,t7'][(ov, k)] is nonzero and therefore an

isomorphism.
It follows that Kerj is equal to Y ezn\(a,u{otu—a,))kez ﬁ[(a k)]. Any
element of F[(a, k)] is a linear combination of brackets [ ki), [ 2 [K4]]], with
ielg = «. Assume « is not a root of g and let I’ be the smallest 1nteger such
that Zl *1+¢; is not a root of g. Let us show that each [z i Rl [ 2 zE[k1]]]
vanishes. It follows from the fact that j is an isomorphism when restrlcted to the
parts of degree in A, U (—A,) that we may write each [xlil, (Ko, [ 2 (k1)) as a
linear combination Y, A [:cfl[, (k) (ip)] - - 2 [k (4,)]], where for each s, i +— k(i)
is a map from {1,...,n} to Z, such that k) (iy 1) = ky;1. The defining relations

for ny hold among the zz:li[kf)], ..., o E[k®)], therefore we have Lie algebra maps

rn

from ny to F* sending each zF to zF[k")]. [q:fl[, (K (ip)] - 2[R (31)]] is
the image of zero by one of these maps, and is therefore zero. It follows that

[z P L0 P o 2 [k1]]] vanishes, so that Kerj is zero. ]

End of the proof of the Proposition. The restriction of j to F‘+ coincides with the
map jy define before Lemma 3.1, therefore j, induces an isomorphism between
F+ and I‘l+ ®C[t,t_1] ||

e Crossed product algebras V' and S*
For k£ an integer < 0 and 1 < i < n, define endomorphisms hj[%] of FO by

o n 7 kd,-aij _ q_kdiaij

(R F)7) = | 3030 g )| £tf?) (37)

j=11=1

it f € FOx. The h?[z:] are derivations of FO. These derivations preserve LV,
therefore they preserve (LV').

Define VI and S* as the crossed product algebras of (LV) and FO with
the derivations z[k]: V¥, resp. S* is equal to (LV) ® C[h;[k]Y",k < 0], resp.
FO ® C[h;[k]Y",k < 0]; both spaces are endowed with the products given by
formula (28), where = now belongs to (LV), resp. FFO and the X are replaced
by hilk], k < 0. Define VE and S* as the partial h-adic completions
Clhi[K]*", k < 0] @ (LV) @ca ClAi[0]"][[7)] and
Clhs[k]", k < 0] © FO @cyy Clh:[0]"][[1]].

Lemma 3.3. 1) The rules deg(h;[k]) = 0,deg(t¥) = ¢; define gradings of (LV'),
FO, VL, &, VE and St by N which are compatible with the inclusions. For
X any of these algebras, we denote by Xy its homogeneous component of degree
k. X is therefore the direct sum of the X.

2) For any k, (LV )y is a free C[[h]]-modules with a countable basis.

3) For any k, VL and S* are free C[[h]][hi[k]¥"]-modules; and VI and S*
are free C[[R)][hi[k]¥", k < 0] @cgry C[h:[0]Y ][] -modules.
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Proof. 1) is clear. (LV)y is a C[[h]]-submodule of FOy, and by Lemma
A2, it is a free C[[h]]-module with a countable basis. This shows 2). 3) is a direct
consequence of 2). [

e [deals and completions

Define for N positive integer, Iy as the left ideal of (LV) generated by the
elements (tF) of FO.,, k> N, i=1,...,n. Define Zy and Zy as the left ideals of
VI and V¥ generated by the same family. For s > 0, set ]](\‘;) =h°(InNh(LV)),
and I09 = U0l define 7, 70 and 1, I(OO) in the same way.

For any integer a, define LV=% as the subspace of FO equal to the direct
sum @7 t7C[[R]][t;] and let (LV =) be the subalgebra of FO generated by LV=.
Define 1= as the left ideal of (LVZ%) generated by the t& k > N and IZ°
as the ideal of (LV=%) formed of the elements x such that for some k > 0, h*z
belongs to I0)=*

For any integer ¢ and k in N7, define FO=* as the subspace of FOy
consisting of the rational functions
g1) = !

— f(t8),

SR, LIPS

where the f(t()) have degree > a in each variable tgf) and the total degree of ¢
is > (X, ki)a. Set FOZ* = @yen»FOZ*. Then FOZ is a subalgebra of FO.
Define I(zj\‘;) as the set of elements of FOZ% | where f(¢t?) has total degree

N in the variables t%), and let Z3* be the direct sum @y>nZy"

Lemma 3.4.  For (Jy)n=o a family of left ideals of some algebra A, say that
(JN)n>o has property (x) if for any integer N > 0 and element a in A, there is an
integer k(a, N) > 0 such that Jya C Jy@,ny for any N large enough, and k(N,a)
tends to infinity with N, a being fived. Then the inverse limit im. yA/Jy has
an algebra structure.

Say that Jy has property (xx) if for any integer N > 0 and element a
in A, there is are integer k'(a, N) and k"(a,N) > 0 such that Jya C Jy(,n)
and aJy C Jyian) for any N large enough, and k(N,a) tends to infinity with
N, a being fived. In that case also, the inverse limit lim._yA/Jy has an algebra
structure.

1) The family (I Oo))N>0 of ideals of (LV') has property (x);

2) the family ( )N>0 of ideals of V¥ has property (*);

3) the family ( )N>0 of ideals of V¥ has property (x);

4) the family (I;“)N>0 of ideals of (LV=%) has property (x);

5) the family (Tx*)nso of ideals of FOZ® has property ().

Proof. Set for any a in A and N > 0, k'(a, N) = inf {k|Jya C Ji};
then k'(N,a) tends to infinity with N, a being fixed and we have k'(N,a’) > inf
(k(N,a),p) if o' belongs to a+ J,.

An element of lim. yA/Jy is a family (any)nso, any € A/Jy, such that
any1 + Jy =an. For a = (any)nso and b = (by)nso in lim.yA/Jy, choose [y
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in by and let N'(N,By) be the smallest integer N’ such that &'(N’,Gy) > N;
N'(N, By) is independent of the choice of By, we denote it N'(N,b). Choose
then an in anr(vp); then anBy + Jy is independent of the choice of oy and By ;
one checks that ayi16y+1 + Jv = anfn + Jn, so that (axyfy + Jy)ny=o defines
an element of lim. yA/Jy. The product ab is defined to be this element. The
construction is similar in the case of property (k).

1) The equality

k Il _ _—nd;a;itk—n l4+n —dia;; 4l k
t-*t-—q t; *tj +q th*ti

1)d; —(/ =Vdsaij\gltn’ | gh—n' _ —(n—1)dsaij4l k—
+ Z —(n'+1)d;a;; —q (n )Zazj)tj+n *tz n —q (n ),a”tj+n*ti n,

where n = N — [ and k > 2N — [, implies that if &k > 2N — [, tf * té- belongs to
Iy. It follows that Ioy_;*t} C Iy. Set then k(t;,N) = [5(N +1/2)] +2; for a in
(LV), and any decomposition dec of a as a sum X, 4, /\(ji),(li)té‘ll - -*t?;, define
k(a, N,dec) as the smallest of integers k(té-‘;, : k(tl1 N)); finally, define k(a, N)

J1?
as the largest of all k(a, N,dec). The family (Iy)yso has property (x), with this

function k(a, N). Then for any a in (LV), (In NEVE)a C BSVEN Iy Ny, so that
I](\f)a -y ,E?ZL ny- It follows that we have also I](\, Ja C I,g(a?N), so that the families
(I$ ) n=0 and (I$?)nso have property (x).

2) follows from the fact that Inh;[]]"" C Iy,

3) follows from the fact that for a any element of C[h;[0]V"][[A]], we have
j](voo)a C f](\,oo).

4) is proved in the same Way as 1) ans 2).

5) For k in N, set |[k| = ", k;. Then if f belongs to FOZ*, we have
{ *? T C I Nopalk and T f C I;i |- Therefore the family (Z:")n has property
k) . ]

It follows that the inverse limits
lme n (LVY/ICY) lim y V2 /TS, lime yVE /25

lim. n(LVZ%)/I5* and lim_ yFO=*/Z3"

have algebra structures. Moreover, as we have ZOO N(LV) = I5? and 207 NVE =

I](VOO), we have natural algebra inclusions
lm_n(LV) /IS C lim_y VY /TS C lim y V2 /IS5,

Moreover, there exists a function ¢(k, N), tending to inﬁnity with N, such that
Iﬁiﬂ (LV=%) C I¢(kn Indeed, if the k; are > a and #;" x *tZl belongs to I]%,‘L
(I = |k|), then ky +---+ k; > N so that one of the k; is 2 N/l. The statement
then follows from the proof of the above Lemma, 1). It follows that we have an
algebra inclusion

lim._ y(LVZ9)/I5* C lim_yFO=*/Z3".
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If a family (Jx)nso of left ideals of the algebra A has property (x), and
B is any algebra, the family (Jy ® B)yso also satisfies (x); therefore the inverse
limit lim. y(A ® B)/(Jy ® B) has an algebra structure. It follows that we have

algebra structures on lim_y(LV) ® A/IVY @ A, lim yVE @ A/ @ A and
lim. yVE® A/fj(\,m) ® A for any algebra A.

e Topological Hopf structures on V¥ and S*
For i=1,...,n and [ > 0, define K;[—I] as the element of V¥ (or S)

Ki[—1] = el g _opd k] k < 0),

where Sj(z_1,2_9,...) are the Schur polynomials in variables (z;);<o, which are
determined by the relation exp(3;.0 2it™") = <o Si(zi)t .

Proposition 3.2.  There is unique graded algebra morphism Asc from ST to
lim. (St Qc[[H]] SL)/(I]‘% Qc[r)] StY, such that

Asi(hilk]) = hilk] ® 1+ 1 ® hy[k]

for 1 <i<mn and k <0, and its restriction to Slf is the direct sum of the maps
A};L’k : FOE“ — lim%N(IE,a R[] S@)/[FOE/?N Qc([r]] Slf”]; where k = k' + kK",
defined by

A‘lé‘lil(// (P)
N’ N
= Z Huizp(;<u17"'7u]\7/) & P(;/(UN’+17'"auN)HKe(i)[_pi] ;
1,20 \i=1 i=1
where N' =37 ki, N" =" kl'’, N=N'+N", the arguments of the functions
in FOw and FOwr are respectively (tgz))lgigmlgjgk; and (t;(l))1§i§n7lsj§kgl ; we set
1 1 n n
<u17 s >uk’/1) = (tg )7 e at](g’l))7 LI (uk’1+...+k;71+17 e ;uN’) = (tg )7 e 7tl(<;;L))7
(UN’+17 PN ,UN/+]€/1/> = (tll(l), PN 7t;€(§)), ey

/ !/
(UN’+/€'1'+...+/€;:71+17 s 7UN) = ( l(n)a SR 7tk(,’,?))7
=60, j=1, K,

1 1 n n
(thy b)) = (0, ) (B k- o ) = (87,8,

Uy — Up

= P(tl, R 7tN) (e(l),E(l'»ul/ — ul’

(38)

1<I<N’,N'+1<'<N 4
for lin {1,...,N'}, resp. {N'"+1,...,N}, €(l) is the element of {1,...,n} such
that w; = tg-e(l)) , Tesp. u; = t;(e(l)) for some j;in (38), the ratios are expanded for
U <L Uy .



ENRIQUEZ 47

Proof. Define FO® as the (N")?-graded C|[[h]]-module

FO( ) @k k/’eN" FOk k>

where
1
Moo, @ =t o @l —u)T L, (1 =)
1<a<k; 1§a§k’ 1<a<k;

7 7 . . 16 S,
CORED)E, @) 5 =1, ki =1, kit Ok

where the groups &y, and &/ act by permutation of the variables tg-i) and ugl)
Define on FO®@ | the graded composition map # as follows: for f in FOI(EL and ¢

in FOﬁ; ;

(f*g)(tr, .- tpur, ... upr) = Sym a) - - Symt@)Symug) - Sym, )
J J

H q(€t(i)7€t(j)>ti _ t]. H q<€u(1)7€t( )>u _ t
1<i<N,N+1<j<P ti — 1 1<i<N’,N j Ui — 1
<i<N,N+1<5< <i<N/,N+1<j<P J
H q(et(l)VEH(j)>tz — u] H q<6u(z)’6u(])>uz — u]
1<i<N,N/+1<j<P’ ti — uj 1<i<N',N'+1<j<P’ Wi — Uy

f(tl, e ,tN,ul, . ,UM)g(tN+1, . ,tp,uM+1, e ,UP>> s

where N = Y, ki, N' = Y, ki, M Siliu M = Y, Ul,P = N+ M, P =
N+ M, and (t, ... tyw) = (tﬁ”,...,t,(jllk,l), oy (Boyogbt 1o tp) =
n n 1 1
(Ut tty,_ 415 Upr) = (ugn), e auz(:lz;l)‘

We set e,(a) =1 if z, = x§~i) for some j (x is t or u). It is easy to check that
defines an algebra structure on FO®

Let Apo be the linear map from FO to FO® | which maps FOy to
EBkurkn:kFOl({Z,?k/, as follows

Apo(P)(HY, ..t Y, uly)) = P, t,g) W, ),

k’l’ ) ’

Then it is immediate that Apo defines an algebra morphism.
Consider the (N")?-graded map

1 FO® — U,lim_y(FO=° R[] St /[FOZ" Qc([n]] SH
defined by

pPy= > (Bt Po) @ (P ml—p1] -+ Ke,ovn[=p])

P1ye-P N7 >0
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if P(ty,...,ty,uq,...,un') belongs to FOk v, and we set

t—UI — _
P(ty, ..., un’) II O =N Pultr, . tn)Phlus, ..o une)

€t (1),€u (1 _
1IN i<r <N gleeOreuNt; — uyp

(the expansion is for uy < t;).
Let P, @ belong to FOy; and FOp y. pu(P)u(Q) is equal to

Z (t€1 U t?VNPa(tb T 7tN) ® P0/1<U’17 R 7uP>K€t(1)[_p1] U Ket(N)[_pN]) (39)
a,B

(0  Qulth ) © QU up ) Ky 2]+ Koy 2] )

since
. P L <eu(i),o¢>t
i . Uy — g K
(ZtKa[_q)Q(ul,---,UP):HWCQ up, . up) (YK,
i>0 1 q\ My —t i>0
(39) is equal to
SN (fyltn, i) Y Po(t, -+ ty) @ Po(ua, ..., up)) - (40)

Y a,f

p /
. < £ N Qa(ty, - thy) ® gy(ul, . up) QL (U, . U ) Ky [—p1] - -
Ko,y Ke, ) [-D1] - Ko, ([—Pn]),

with j
, / gl
Zf,y(t17...,tN)g'y(ulv""uP/): H <€u() >u _t

v 1<i<N1<j<p 4

After some computation, one finds that (40) coincides with u(PQ). Therefore u
is an algebra morphism.

It follows that the composition p o App is an algebra morphism. This
composition coincides with Agz, which is therefore an algebra morphism. [ |

Remark 3.5. Aglik// may also be expressed by the formula

Ak/ k”( )
Nl
= Y (I Pl(w,. .. un) Hmlz s - )
P1,..,ppn 20 \i=1
where

Z P! (uy, ..., un )P (unrst, - un)

— P(th, ..., tx) i

ey

1<I<N',N'41<r<ny W — 4
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Corollary 3.1. There is a unique algebra morphism Ay from VE to
lim.x (W ey Y9/ (IR @cim V),
such that
Apr(hik]Y") = k] @ 1+ 1@ k)Y, 1<i<n, k<0,

Apc(tH) =Yt @ K[-l|+1®tf 1<i<n, keZ
>0

Proof.  For each i, Asr maps FO,, to lim. y(V* Q¢ VI NI ®cgag V5),
because IJ%,CL N(LV=%) C Isacn). It follows that Asc maps V¥ to the same space.
Call Ay. the restriction of Age to VL. This restriction is clearly characterized
by its values on h;[k] and t¥. ]

e Construction of a Hopf algebra structure

Recall that we showed in Lemma 3.3 that VI is a free C[[h]]-module. Let us set
Vi =VvE/RVE.

Let Zy be the image of the ideal ZU of VE by the projection from V- to
VI, By Lemma 3.4, 2), and since the map from V¥ to V¥ is surjective, the ideals
Zn have property (*), so that Ny~oZy is a two-sided ideal of VE. Define W, as
the quotient algebra Wy = VI'/ Nywo Zn. We are going to define a Hopf algebra
structure on W.

Since the V¥ @ Iy have property (%), lim_y(VE @ VE)/(VE @ Zy) has an
algebra structure. Moreover, the projection

[limy (V" @cqmy V) (VE @cqn )] ®cymy €
— lim_y(VE @ VE)/ (Vi Iy),

is an algebra isomorphism. Ay induces therefore an algebra morphism AVOL from
VE to ime y(VE@ VE) ) (VE @ ZIN).

On the other hand, the Ty ® V¥ + VI ® Iy have property (), so that
lim. y(VE@VE) )/ (Tn @ VE+VE®Ty) has an algebra structure. The composition
of Ayr with the projection

lim (V@ VE)/(VE © T) — lim(VE © VE)/(Ty @ VE+ Vi @ T)

then yields an algebra morphism p’ o Avo from VL) to
lime y(VE@VE)/(In @VE+VERTN).

We have for any k > N, Ay(t5) € Iy @ V +V @ Ly, therefore Ayr(Zy) C
In Qc[n) V+V Rc([r)] Iy, therefore AVL (In) CIn@Vo+ Vo ®ZIy. It follows
that p’ o Avg maps the intersection Ny-oZy to the kernel of the projection
liIIL_N(Vé/ ® VOL)/(VOL ®TN) — hm(_N(VOL X Vé)/(j]v ® VOL + V({/ ®TN).

We have then an algebra morphism Ay, from W to
lim y(Vy @ Vg)/(In @ V5 + V5 @Iy).
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In Proposition 1.3, we defined a surjective algebra morphism iy from Uy Lb,
to VL. Tt induces an algebra morphism i from ULb, to VI, which is also
surjective.

Let T be the free algebra generated by the h;[k]™) k< 0,i=1,...,n and
eilk]™,i=1,...,n,k € Z. We have a natural projection of 7" on ULb, , sending
each z[k]™) to x ® t*; composing it with ¢, we get a surjective algebra morphism
7 from T to VI.

We have a unique algebra morphism Az : T — T ® T, such that

Ar(z;[K]D) = 2,k D @1+ 1 ® z,[k]D.

Lemma 3.6.  Let my,—w, be the natural projection from Vy to Wy. We have
the identity .

AVVO O TYy—Wo = (V © (WVO"WO ® TrvO"WO)) ° AT? (41)
where v is the natural projection from (VE@VE) to lim_y(VE@VE) /(T @ VE+
VE®Iy).

Proof.  The two sides are algebra morphisms from W, to
lim. y(VE@VE)/(Zn @ VE+VE®Ty). The identity is satisfied on generators of
Wy, therefore it is true. [ |

Let J be the kernel of the projection my,_w, o7 from 7" to Wy. It follows
from (41) that Ar(J) in contained in the kernel of v o (7 ® 7), which is the
preimage by 7@ of Kerv; Kerv is equal to Ny=o(Zy @ VE+VE®Zy), which is
(NN>0Zn) @ VE+VE® (NysoZn). Therefore (7 @ 7) 1(Kerv) is JQT+T ® J.
We have shown that Arp(J) C J®T +T ® J. We have shown:

Proposition 3.3. Ar induces a cocommutative Hopf algebra structure on T'/.J
=Ws.
We will denote by Ay, the coproduct induced by Ar on W .
e Compatibility of Ay, with AVOL
Recall that Ay is an algebra morphism from Vg to lim y (Vi @ V§)/(Zy @ V§).
Let us denote by Ay y the induced map from VE to Vi VE) /(T2 VE). We
have seen that for any integer p > 0, AVOL;N(IP) is contained in the image of
Z,2VE+VE®T, by the projection map VE@VE — (VE@VE)/(Ix @ VE). This
image is
(Zp +ZIn) @ V5 + V5 9L,/ (T @ V).
Therefore, Ayr, ~(Ny=0Z,) is contained in the intersection of these spaces, which
is
[TN ® V(j): + VOL ® (ﬂp>07p)]/(7N ® VOL)‘
It follows that Ayr y induces a linear map Wy — Wo @ W)/ (T n @Ws),
where J y is the image of Zy by the projection map Vo — Wj.
It also induces an algebra morphism Wy — lim. x(Wo @ Wo) /(T n @ Wh).
Then this algebra morphism factors through the coproduct map Ay, de-
fined above. To check this, it is enough to check it on generators z[k] of Wj.
It follows that
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Lemma 3.7. 1) iy induces a map i : ULb, — Wy, which is a surjective Hopf
algebra morphism.

2) Let ay be the Lie algebra of primitive elements of Wy. The restriction
yre, of v to Lby to ap induces a surjective Lie algebra morphism.

Proof. Ay, oi and (i ® i) o Ay, are both algebra morphisms from Ub,
to Wy ® Wy. Their values on the x ® t* coincide, therefore they are equal. This
shows 1).

2) follows directly from 1) and from Proposition 2.1. ]

e Construction of dyy,
Define VE@VE as the tensor product

CLX (0], X, 0] P [[R]] © CLX R D, X[k, k> 0] @ (LV) @cqmy (LV);

endow VEQVE with the unique h-adically continuous algebra structure such that

VE @cpry VP — VEQVE, X[V O s XEY @1, XJEY'? = 10 XEY,

Iz®l—2®1, 1®l®x+— 1®x (where z isin (LV)) is an algebra morphism.
Define in the same way V- ®f](voo) as the tensor product

LXKV, X[k P [[R]] @ (LV) @ I,

where the tensor products are over CI[[A]]. Each 1>L®fj(voo) is then a left ideal of
VEQVE.
Clearly, we have (VL@VE)/A(VEQVE) = VE @ VE. Moreover,

(VEQVE)J(VEQIGN]/R(VEGVE) | (VEQIN)]) = (VE @ VE)/(VE @ Ty).

Then Ay is an algebra morphism from V to lim y(VEQVE) /(ZE V).
We again denote :b(y Aye the COIIAl%)OSitiOI’l of this map with the projection on
limHN(VLé@VL)/(INOO)@VL + VL®IN°°)). Define A}, as AL composed with the
exchange of factors.

We have then

(Aye = A ) (VF) C lim(AVFEVE) [(ZT @VF + VEEIR) n ivtevh.
Since IZ(VOO) is divisible in V¥, we have

IV + VEQICY) N A(VEQYE) = RIS QVE + VEQTEY),

A Al

L— . .
so ——=—2£ is a linear map from V* to

lim(V'&Vh)/(ZR7eV: + VIGIy).

Define I](\P as the image of f](\}) in VI by the projection V¥ — VE.
N

Let us set dyz = —~——¥= mod h. Then Oy Is a linear map from VE to

lir]rvl(VOL @V In@VE+VERIy).
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AL A . .
Moreover, —~——¥£ maps I](\,OO) to the inverse limit

lim (259 &V + VERIEY) (T @VE + VERTY).

Therefore, 0y maps Zy to limey(Zn @ V5 +Vy @ In)/(Tu @ Vg + V5 @ Iu).
Therefore, dy.(N ~ZIy) is zero. Tt follows that dyr induces a map dy, from Wy to
lime y(Wo @ Wo) /(TN @ Wo+Wo @ Tn).

o [dentities satisfied by dyy,

Lemma 3.8. ¢y, satisfies
(A, ®id) 0 Gy, = (65,7 + G %) © Ay, (42)
Alt(dyy, ® id) o dyy,) = 0, (43)
oo (y) = O (2) B (1) + A, (), (y) for z,y in Wh, (44)

where we use the notation of sect. 2.. The two first equalities are identities of maps

from Wy to im  x WS /(TN @ W2+ Wo @ Tn @ Wy + W52 @ T ).

Proof. Ay maps 70 to
lim (Z{&VE + VEQTL) /(I @VE + VERIE)).

Therefore, (Ayr ®id) @ Ay and (id® Ayr) @ Ay both define algebra morphisms
from V= to lim_y (V)O3 /25 & (V)92 4 PLGIEIQVE + (VE)E2QZ$Y). These
morphisms are the restrictions to V¥ of (Agr ®id) ® Age and (id @ Agr) ® Agr,
which coincide, therefore they coincide.

The intersection mN>OI](VOO) is a two-sided ideal of V¥. Define W as the
quotient V¥/ Nyg I](VOO). Let Jn be the image of I](VOO) by the projection of V¥
on W. Define W and Jy in the same way, replacing V% and Z¢® by VX and
f](voo). Then Ay induces an algebra morphism

Aw: W — lim_ y(WEW) /(In@W + WET).

Moreover, (Ay ® id) o Ay and (id ® Ayy) o Ayy define coinciding alge-
bra morphisms from W to lim_y (W) /[Tn@W®? + WRINOW + W2&Ty].
Moreover, W is a free C[[h]]-module, and we have a topological Hopf algebra
isomorphism of W/hW with W,. The usual manipulations then imply the state-
ments of the Lemma. [

The identities of Lemma 3.8 are the topological versions of the co-Leibnitz,
co-Jacobi and Hopf compatibility rules.

e Topological Lie bialgebra structure on ar,

Define a(LN) as the intersection a;, N J y.

Lemma 3.9.  Jy is the left ideal (Uag)a\") of Wy = Uay,. Moreover, a\") is
a Lie subalgebra of ay .
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Proof. Jn is a left ideal of W, therefore Jn is a left ideal of W,. Moreover,
Aw(Jy) is contained in the inverse limit lim. y (Tv@W + WRIn) /(T @W +
W@jM). It follows that Ay, (J ) is contained in Jy @ Wy + Wy @ T -

The first statement of Lemma 3.9 now follows from Lemma 2.4. For x,y in

a(LN), [z,y] = xy — yx belongs to a; and also to (UaL)aS:N), so it belongs to a(LN).
Therefore aE—JN) is a Lie subalgebra of ay,. [
Lemma 3.10. 1) The restriction of dw, to ar defines a map dq, : a, —

limoy(az ® ag)/ (6 @ a, + ap @ ai™).
(N) (N—k(z)) The

2) For any element x of ar, ad(z)(ay"’) in contained in aj,
tensor square of the adjoint action therefore induces a ap-module structure on
- (V) (V) o - :
lim y(ar ®@ag)/(a, ' @ar,+a,®a; ). 04, is a 1-cocycle of ar with values in
this module.

3) We have 6uL(a(LN)) C limhM(a(LN)®aL+aL®a(LN))/(a(LM)®aL+aL®a(LM)).
(0q, 0id) o by, therefore defines a map from ar to limHNa%?’/(a(LN) ®af? +a,®

a(LN) ®ag + 05’ ® a(LN)) . 1t satisfies the rule

Alt(8q, ®id) 064, = 0. (45)

Proof.  Let us show 1). &y, induces an map dyy,.n: Wo — W2 /(T n @ Wo +
Wo @ Jn). Let a belong to ar. Let us write dy,.v(a) = 3, a; ® b; mod
IN @ Wy + Wy ® Tn, with (a;); and (b;); finite families of W, such that
(b; mod J y); is a free family of Wy/J n. It follows from (42) that

Z<Awo(ai) -4, 1 -10a)b

i

belongs to Jx @ W24+ Wy @ T n @ Wy + WE? @ T n. Its image by the projection
WS — W2/ (Tn @ Wo +Wo @ Tn)] ® [Wo/T n] its therefore zero. It follows
that each a; is such that Ay, (a;) —a; ®1—1®a; belongs to Ty @Wo+WoR T w -
Reasoning by induction on the degree of a; (for the enveloping algebra filtration of
W), we find that a; belongs to ar+J y. Therefore, dyy,.n(a) belongs to the image
of ap @ Wy in W/ (Tn @Wo +Wo® T n). Since dyy,.n(a) is also antisymmetric,
it belongs to the image of a; ® ay in this space. This shows 1).

Let us show 2). For z en element of a;, and y an element of as-JN),

[z,y] = 2y — yz belongs to Ty + T N—kx) = J N—k(z); Since it also belongs to
ar, [x,y] belongs to a(LN). That &4, is a 1-cocycle then follows from (44).

Let us show 3). Ay (Jn) is contained in (In @ W+ W & Jn)/(Tu @
W+ W ® Ju). It follows that dy,.a(J n) is contained in (JTy @ Wy + Wy @

0IN) /(T @Wo+Wo®0T). Therefore, dq, (a?™) is contained in lim._(a\") ®
ar +0a, & a(LN))/(a(LM) ®ap+ap® u(LM)). (45) in then a consequence of (43). =

Define the restricted dual aj of a; as the subspace of aj composed of the

. N
forms ¢ on ar, such for some N, ¢ vanishes on a(L ).

Lemma 3.11.  The dual map to 4, defines a Lie algebra structure on aj .
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Proof. Let ¢,1 belong to aj. Let N be an integer such that ¢, vanish

on a(LN). For any integer M let da L. be a lift to a@fQ of the map 44,y from ay,

to a%z/(a(LM )®@aL+ap ® a™ induced by day -

Let x belong to a;. Then M > N, the number (¢ ® v, 0q,.0(7)) is
independent of the lift 5%; v and of M it defines a linear form [¢, 1] on ay. The
first statement of Lemma 3.10, 3), implies that [¢, ] actually belongs to aj. It
is clear that (¢,1) — [¢, ] is linear and antisymmetric in ¢ and . (45) implies
that it satisfies the Jacobi identity. [

e Topological Lie bialgebra structure on Lb
Define for any integer N, (Lb, )™ as the Lie subalgebra of Lb,. generated by the
i @th, k>N,i=1,....n

For any z in Lb, , there exists an integer I(x) such that ad(x)((Lby)™)
is contained in (Lb,)N=1®) Tt follows that limHN(Lb+)®2/[(Lb )<N> ® Lb, +
Lb, ® (Lb+)(N ] and lim. n(Lb,)®3/[(Lb )™ @ Lb%2 + Lb, ® (Lb, )™M @ Lb, +
Lb%? @ (Lby)™] have Lb,-module structures.

Lemma 3.12. There is a unique map dpp, from Lby to
lim._n (Lby)®?/[(Lby)™N @ Loy + Loy ® (Lby) ™,

such that dpp, (h; @ t*) =0 and

Sro, (7] @ tF) = diAlt[ (hi®1)® )+ > (B (T @ tF+1)]

>0

and dpe, ts a 1-cocycle. Moreover, drp, maps Lb&N) to limHM(LbSrN) ® Lb, +
Lo, ®Lb(+N))/(Lb(+M) ®Lby+ Lby ®ngrM)), and it satisfies the co-Jacobi identity
Alt((SLEH_ & Zd) o 6Lb+ =0.

Define the restricted dual (Lb;)* to Lb, as the subspace of (Lby)* con-

sisting of the forms on Lb.,, which vanish on some (Lb,)®). The argument of
Lemma 3.11 implies that é.p, induces a Lie algebra structure on (Lby)*.

Lemma 3.13.  Define on g ® C((t)), the pairing ( , )gec(w) as the tensor
product of the invariant pairing on g and (f,g) = reso(fg%). (, )gac(w) an
isomorphism of (Lby)* with the subalgebra Lb_ of Lg defined as h ® C[[t]] &
n_® C((t)). This isomorphism is a Lie algebra antiisomorphism (that is, it is an
isomorphism after we change the bracket of Lb_ into its opposite).

The map ¢rp, defined in Lemma 3.7, 2), maps the generators of ngrN) to

a(LN); since a(LN) is a Lie subalgebra of a; (Lemma 3.9), we have L|Lb+(LbS_N)) C
(N)
ay .

It follows that ¢, induces a linear map ¢* from aj to (Lby)* = Lb_.
Moreover, we have

5‘1L © L|Lb+ = (L%g+) © 5Lb+7 (46)
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because both maps are 1-cocycles of Lb, with values in lim. ya$?/ (a(LN) ®ar +
ar ® u(LN)), and coincide on the generators of Lb,. Equation (46) then implies
that * : a} — Lb_ is a Lie algebra morphism.

Let us set (Lb_)p0 = hQClt™®dn_@Clt,t7']; (Lb_),e is the polynomial

part of Lb_.

Lemma 3.14.  The image of * contains (Lb_), .

Proof. As we have seen, V' is graded by N". Each ideal IJ(VOO)is a graded
ideal, so that W = V/ Ny I](VOO) is also graded by N". Moreover, the degree 0
and ¢; components of ZU° are respectively 0 and @y C[[A]][hi[k]V", k < 0]t¢.
Therefore, the components of N NI](VOO) of degree 0 and ¢; are zero. The components
of W of degrees 0 and ¢; are therefore respectively C[[A]][h;[k],k < 0] and
Dz C[R)[hs[k]"", k < O]t}

Wy is also graded by N" and its components of degrees 0 and ¢; are
Clh[k], k < 0] and @ezClhi[k]"", k < O]t

The primitive part ar of W, is therefore also graded by N" and the
computation of Ay, on Wy[0] and Wyle;] shows that a;[0] = @1<icnr<oChi[k]¥”
and azle;] = PrezCtr.

Define linear forms A, and €}, on a; by the rules that i}, vanishes on
@azoarlal, and the restriction of A7, to ar[0] maps h[I]Y" to 6;0k; and eix
vanishes on @a.,az[a], and the restriction of e}, to agle;] maps ¢} to oy .

It follows from the computation of Z$¥[0] and Z¢[¢;] that the h;, and
e;,, vanish on all the Jn~, resp. on the Jn, N >k, adn therefore on all the a(LN),
resp. on the a(LN), N > k. It follows that the A, and e}, actully belong to aj .

Since the images of h; @ t* and 7} ® t* by yre, are h[k]Y" and ¥, the
images of A}, and e}, by (* are the generators hi@th 1 <i<mnk>0 and
T; @t 1 <i<n,k€Z,of (Lb_).

The statement follows because ¢* is a Lie algebra morphism. ]

Lemma 3.14 implies that the kernel of 15, is contained in contains the
annihilator of (Lb_),y in Lb, . Since this annihilator is zero, ¢, is injective. It
follows that ¢z, is an isomorphism.

Therefore, ¢ : ULb, — W), is also an isomorphism. Recall that ¢ was
obtained from the surjective C[[h]]-modules morphism ¢, = p oip, where p is the
projection of V¥ on W.

We now use:

Lemma 3.15.  Let E and F be Cl[[h]]-modules, such that F is torsion-free and
E is separated (i.e. NysohVE = 0). Let 7 : E — F be a surjective morphism
of C[[h]]-modules, such that the induced morphism my : E/RE — F/hF is an
isomorphism of vector spaces. Then m is an isomorphism.

Proof. Let x belong to Kerp. my(z mod h) is zero, therefore x belongs to
hE. Set x = hxy. hm(xy) is zero; since F is torsion-free, x; belongs to Kerp.
Therefore, Kerp C hKerp. It follows that Kerp C NysohVE, so that Kerp = 0.
It follows that 7 is an isomorphism. [ |
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Recall that UpLn, was defined as the quotient A/(NysohNA). It follows
that UpLn, is separated. The above Lemma therefore shows that p oy is an
isomorphism. Since p and iy are both surjectlve they are both isomorphisms.
Corollary 1.4 follows, together with N N>OI = 0 (from where also follows that
Nn>oZy = 0), and also, by Lemma 3.3, Theorem 1.3, 1).

It is then clear that the map UpLn, — UthJr is injective and that UpLn,’
is the h-adic completion of UpLn, . This proves Theorem 1.3, 2).

top

There is a unique algebra morphism ¢ from U nln, to UpLn,, which sends

each e;[k]” to e;[k]. As we have seen in Proposition 3.1, ¢ induces an isomorphism
between UpLn, /hUpLn, and UyLn, /hUyLn,. Moreover, UpLn, is separated
and by Theorem 1.3, 1), UpLn, is free. Lemma 3.15 then implies that ¢ is an
isomorphism. [

Remark 3.16. Let FO© be the subspace of FO formed of the functions
satisfying f({)) = 0 when t() = qdit() = =q 20 = q, a”t(] for any i, 7.

i aj
We showed in [11] that the image of UpLn, in FO is contained in FOW[r1]. Tt
is natural to expect that this image is actually the subspace of FO® consisting in
the functions such that f(t1,---,tx) = O(R*) whenever k out of the N variables
t; coincide.

3.2. Nondegeneracy of the pairing (, )y, n, (proof of Theorem 1.4).
Let us define T(LV) as the tensor algebra @j>q(LV)®cim®, where LV =
n_ C[[R]][t:;t;"]. Denote in this algebra, the element t\ of LV as f;[I]™

Define a pairing
( >FO><T(LV) :FO x T(LV) — C((h))
as follows: if P belongs to FOy,

(P, fi,[1]T) - fi ] posrv) (47)

=0, <N _ T€Syy—0- " T€Sy —o
k7zj 1 €5 unN b

Uy — I wdur  duy
(P(t17"'7tN)H <eil/,eil> ull...ulg_..._) ,

<1 q Uy — Uy U1 Un
(1) (1)
where we set as usual (t1,...,t,) = (t17,...,t. ), etc.,
(tk1+'"+kn,1+17 s 7tk1+"-+kn) = (tgn)7 cee th:l)%

and u; = tgil), Uy = t ) if 19 # 41 and in general ugy = t,(, J)rl, where v, is the

number of indices ¢ such that ¢t < s and 7, = ;.

Lemma 3.17. The pairing ( , )roxr(Lv) verifies (T(LV))t =0.

Proof. Assume that the polynomial P of FOy is such that (47) vanishes
for any families of indices (ix) and (lz). Fix a family of indices (iy) such that
k = YV ¢,. Since (47) vanishes for any family (I;), the rational function

P(ty, - tn) [L<r k”f‘i;l—:ul vanishes, therefore P is zero. n
q wyr—uy
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Let (, )wvyxrv) be the restriction of ( , )roxr@y) to (LV) x T(LV).
Lemma 3.17 implies that T(LV)+ = 0 for this pairing. Using the isomorphism
of Theorem 1.3 between (LV) and UpLn,, we may view ( , )wvyxr(Ly) as a
pairing (, )u,zn, x7(rv) between UpLn, and T(LV). So again T(LV)* = 0 for
< ) >U5Ln+><T(LV)-

Let p be the quotient map from T'(LV) to UpLn,. Composing

< ) >Uth+ xXT(LV)

with p®id, we get a pairing (, )rv)xryv) between T(LV) and itself. It follows
from (47) and (10) that {, )rvyxrv) is given by formula (11). Moreover, it fol-
lows from [11], Proposition 4.1 (relying on an identity of [18]) that (, )rvyxrv)
induces a pairing (, )u,n, xv,Ln_ between UpLn, and UpLn_

Since (, )upin,xU,Ln_ is induced by the pairing ( , >U5Ln+><T(LV and
the annihilator of T(LV)* for this pairing is zero, we get that (UpLni )t = 0
for (, )unin,xv,Ln_ . Exchanging the roles of UpLn, and UpLn_, we find that
(UpLn_)t = 0. Theorem 1.4 follows. [

Remark 3.18.  This argument is completely similar to the proof of Theorem
1.2, the pairing between UpLn, and FO playing the role of the pairing beween
Upn; and Sh(V).

3.3. The form of the R-matrix (proof of Proposition 1.4).
Let us define A%” as the subalgebra of UpLn, generated by the e;[k],
i=1,....n, a<k<b.

Lemma 3.19. A%’ is a graded subalgebra of UpLn, . We have A%’ + IZ, +
I3, = UpLn, . Moreover, the graded components of A% are finite C[[h]]-modules.

Proof. Let us define AE“ and Aib as the subalgebras of A, generated by
the e;[k], kK < a (resp. kK > b). It follows from Theorem 1.3 that the product
defines a surjective morphism from A$* ® A$* ® A7’ to A, . The Lemma follows.

[

Since I{,[a] + I5,[a] C (IZ,]a] + I£,[a])*, it follows from Lemma 3.19
that (I3,[a] 4+ IZ,[a])*T is a submodule of A, with a complement of finite type.
Moreover, this module is also divisible, so that A, [a]/(IZ,[o]+1,[a])*" is torsion-
free. Since it is finitely generated, it follows that A [a]/(IZ,[a] + IZ,[a])*t is a
free, finite-dimensional C[[A]]-module. - -

On the other hand, (IZ,[a] + If,[a])* is a submodule of

Homcyay (A [04]/(—@@ [a] + ];rb[a])a Cl[Al]),

and is therefore a C[[A]]-module of finite type. It is a submodule of A_[—a], so it
is torsion-free. It follows that (I,[a] + IZ,[a])t is also a free, finite-dimensional
C[[A]]-module. - -

By construction, the pairing induced by (, )y, n. between
(I, [a] + It[a])* and ALfa]/(I3,[a] + I£,[a])* is nondegenerate.
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The fact that P, 4[] defines an element of lim._q3 A4 / (12, + I3,) Q¢
A_[h™1] follows from the following fact: if ' C G is an inclusion of finite dimen-
sional vector spaces, and idr and idg are the identity elements of F ® F™* and
G ® G*, then their images in G ® F* by the natural maps coincide.

Let  be any product of the f;[k], with ¢ < k < d. Then z is orthogonal to
IZ_ + I3, Tt follows that Ugy(12, 4+ I3,)" = 0, therefore Ny (1<, +I3,)*+ = 0.

The proof of Proposition 1.4 follows then the proof of Proposmon 1.1. =

Remark 3.20. We have in the sl case

P = Z Z ! 11" ®f ’ 727"‘

T < <tpynp>0 [nl]q [n’/‘]q

hn1+"'+nr

for r < 2, this formula is shown in [7], App. B. It would be interesting to obtain
analogous explicit formulas in Yangian or elliptic cases.

4. Toroidal algebras (proofs of Propsositions 1.5, 1.6)

4.1. Proof Proposition 1.5.

1) follows from the argument of the beginning of the proof of Proposition
3.1. The first statements of 2) are obvious.

The proof of Proposition 3.1 then implies that j. induces a surjective Lie
algebra morphism from Z:: to g ® C[t,t7!], which restricts to an isomorphim
between @acia, o reapezF [(, k)] and (Bacta, o readle]) ® C[t,t71], which are
the real roots part of both Lie algebras, and that F.[(a,k)] = 0 if a does not
belong to A, .

It follows that Kerj, is a graded subalgebra of ﬁr, contained in

EBaGA.;,.,a imaginary,kEZF+[(a7 k)]

4.2. Proof of Proposition 1.6.

Let us prove 1). Let us denote by Z(F,) the center of F,. Let us first
prove that Kerj, € Z(F,). Let = belong to Kerj,. We may assume that z is
homogeneous of degree nd. Then any nd + «;, which is a real root. [&][k],z] is
homogeneous of degree nd + «;, which is a real root. Since the restriction of j,
on the subspace of F of degree nd + «; is injective, j, ([é;[k],z]) is nonzero unless
[€i]k], x] is itself zero. But j([é;[k], x]) is equal to [j.(€;[k]), j+ ()], which is zero
because ji(x) = 0. Therefore, [¢;[k],z] is equal to zero.

On the other hand, since j, is surjective and the center of Ln, is zero,
Kerj, = Z(F,). This proves 1).

Let us prove 2). The argument used in the proof of 1) implies that Kerj,
is contained in the center Z (F ) of F.In _the same way, one proves that Kerj_ is
contained in Z(F), therefore Kerj C Z(F). On the other hand, F is perfect.
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It follows that we have a surjective Lie algebra morphism j' : t — F, such
that the composition t — F — Lg is the natural projection of t on Lg. Let g’ be
the restriction of j' to ty. For any i, k, we have 7/, (e;[k]') = &;[k]+k;, with k;j in
Ker(]) Let A be any linear map from t, to Ker(j), such that A(e;[k]") = k. Set
g% =7 —A. Then j! is a Lie algebra map from t, to F. Since j', (e;[k]') = &]k]
and the e;[k]* generate t;, the image of j! is contained in F,.

Moreover, 7 " is graded, and it coincides with j/ on the nonsimple roots
subspace [ty,t;] = ®aca \fo1t+[a] of t;. It follows that the restrictions of j' on
[t.,ty] and [t_,t_] are graded.

Let us show that 5; is surjective. Since the composition of ﬂr with the
projection j : ]:Ir — Ln, is the natural projection, it suffices to show that
any element z of Kerj, is contained in 5;(t+) x belongs to the image of
j', so let us set x = j'(y), with y = yy + y_ + vo, y+ in [tL,tL] and gy in
he @ Bty le;)] @ B t_[—€], where b is the Cartan subalgebra of t (defined
as F)[)\ﬂ] ® Zo, see Remark 4.3). Then j'(y+) belong to [Fy, Fy] and j'(yo)
belongs to H @ & F,[e] © @ F [—¢] © Ker(j). Moreover, the map from
he @ Bty [e;] & @7:1’(,[ €] to H @ ar File| ® @ F_[—¢)] induced by j' is
injective, therefore yo = 0. It follows that y_ = 0 and = = j'(yy) = . (y4),
because j'. coincides with j' on [ty, t,].

Lemma 4.1. 1) Assume that A is not of type Agl). There is a unique Lie
algebra map j" from F, to t, such that j"(&k]) = e[k]t, for any i = 0,...,n
and k integer.

2) Assume that A is the Cartan matriz of type Agl). There is a unique Lie
algebra map j" from F, to t./ @z CK;[l] such that j"(&[k]) = e;[k]t, for any
1t =0,1 and k integer.

Proof.  One should just check that the defining relations of F, are satisfied by
the e;[k]' (in the A" case, by the images of ;]k]' in t/ @cz CK;[l]). This is
the case when A is not of type Agl), because in that case we set e; = z; ® A% and
we always have (fz,@}g =0 for 1 #j.

If A is of type A1 , we have 2o = f ® \, o1 = &, therefore
[zoll], z1[m]] = (=hA @t —m K[l +m)),

so that [xo[l + 1], x1[m]] = [zo[l], z1[m + 1]] holds in t, / @z CK;]l]. ]

Let us now prove Proposition 1.6, 2). The composition 3’+ oj" are Lie algebra
maps from F, — t, — F, (F, — t./ ®pez CK;[k] — F, in the AWM case),
which map the generators €;[k] to themselves. Therefore, F. can be viewed as a
subalgebra of t; (of t;/ @kez CKslk] in the AW case). This subalgebra contains
the elements ¢;[k]' of t, (resp. of t,/ @rez CKs[k]). Since the Lie subalgebra of
t, generated by the e;[k]t is t, itself, the image of F, is equal to t, (resp. to
t./ ®rez CKs[k]). This proves Proposition 1.6, 2). ]
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Remark 4.2.  Proposition 1.6, 1), can also be obtained using the presentation
given in [23] of t. In this paper, one shows that t is isomorphic to the algebra
I with generators ¢X[k], h;[k] and ¢ and relations ad(é;[0]) i (e [k]) = 0,
[k e = 0, (k] el = ayei[k + 10, [eF [k, ¢ [0] = oyhulk + 1] +
i5i+j70<ei,fi>§c, [hz[k}],h][kﬁ“ = k5k+l,0<hi,h]~>§c, ¢ central. It is then clear that
there is a Lie algebra map from t to F. On the other hand, the system of relations
e[k, &F (1)) = ad(é;7[0])' =9 (¢ [k]) = 0 is not a presentation of t,, because the

ideal generated by these relations is not preserved by the analogues of the @fk of
the proof of Lemma 3.2. [ |

Remark 4.3. Toroidal Manin triples. 1t is easy to define an extension of the
Lie algebra t with an invariant scalar product. Recall first ([23, 20]) that if g is the
central extension of the Lie algebra g[A, \7], t is the universal central extension
of g]A*!, u*t]. We have therefore

t= g\ @ Z(¢).
Z(t) is isomorphic to 2} /dA, where A = C[A\*!, u*!]. We have
Z(t) = @ ez Kisl] @ Ce,
with Kps[l] = the class of TAFp!=tdp if k # 0 , Ko[l] = the class of p'%, ¢ = the

)\ bl
class of %’“‘.

Define for k,I in Z, Dyll] as the derivations of glA=! ] equal to
Npt(INOy — kpd,) if k # 0 and to p!Mdy if K = 0, and d as the derivation
p0y, -

Endow C*? with the coordinates (A,p) and consider on this space the
Poisson structure defined by {\,u} = Au. Let Ham(C*?) be the Lie algebra
of Hamiltonian vector fields on C*? generated by the functions Neu!, k,1 € Z2,
log A and logu. For any function f on C*?, denote by V; the corresponding
Hamiltonian vector field. Then Ham(C*?) is a Lie algebra, and the map Vi, —
5k5[l], for (k,1) # (0,0), V1 +— 0, Vigga — 50[0], Viog i — J, defines a Lie algebra
map from Ham(C*?) to Der(g[A\*!, u*l]).

The formula V;(3; a;db;) = Y. {f, ai}db; + a;d{f,b;} defines an action
of Ham(C*?) on Q}/dA, that is on Z(t). Define Dys[l] and d as the fol-
lowing endomorphisms of t: Dys[l](x,0) = (Dys[l](z),0),d(z,0) = (d(x),0),
and Dys[l](0,w) = (0, Viku(w)) for (k,1) # (0,0), Dol0](0,w) = (0, Viega(w)),
d(0,w) = (0, Vipgu(w)). These endomorphisms again define derivations of t, and
we have now a Lie algebra map from Ham(C*?) to Der(t). Let t be the corre-
sponding crossed product Lie algebra of t with Ham(C*?). We denote by Dys|l]
and d the elements of £ implementing the extensions of the derivations Djs[l] and
d to t.

Define for a,b integers, z[a,b] as the element (z ® \%u®) of g[A\*!, p*1.
Define the bilinear form (, ); by

(el b 2'[a’ W) = (2,2 v 0B
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(Drsll]), Kirs[U'])y = Orgw 001410, (ds )y = 1,

and all other pairings of elements z|a, b], Kgs[l], Dys[l'], ¢ and d are zero.

Then (, )7 is an invariant nondegenerate bilinear form on t.

Let us define D as the image of Ham(C*?) in t. Let us set D, D. and
Dy as its subspaces @x>0,1ezCDys(l], Br<01ezCDys[l] and @ezCDy[l] & Cd. We
have then D = D< @& Dy @ D_.. In the same way, define Z.,Z_ and Z, as the
subspaces Br>01ezCKps[l], Drc01czCKis[l] and @1ezCKo[l] & Ce of Z(t). We
have then Z(t) = Z. & Z. & Z.

Recall we defined b as the subalgebra h[A\*!] @ Z, of t. by = b ® Dy is
then a Lie subalgebra of t. In the spirit of the new realizations, we split Bt in two
parts.

Let us set by = B\ @ Zy, b = h[A"'] & Dy; then b, + h_ = b, and
by b is b,

Define ILn, and Ln_ as the linear spans of the z[a,b], a € Z,b>0 (b >0
if € ny), resp. of the z[a,b], a € Z,b <0 (b <0 if x € n_). Lny are Lie
subalgebras of gA=!, y*!]. Lny @ Zy and Lny = Lny & Dy @ Z, are also Lie
subalgebras of t. Set t, = Lng & ha.

Endow t x b with the scalar product ( , Vixp defined by

<(J}, h)7 (ZL'/, h/>>T><5 = <ZL’, x/>T - <h7 h/>6

Let py be the natural projection of t, on . Identify t, as the Lie subalgebras of
{(z,£ps(z)), 2 € t.} of £ x h[A,A7!]. t. are supplementary isotropic subspaces
of £ x [\, A\7!] and define therefore a Manin triple. This Manin triple is a central
and cocentral extension (by Z(t) and D) of the Manin triple

(gA*", ™' x b, Lny @ B[A], Ln_ & h[A ™))

which is a part of the new realizations Manin triple (g[u*'] x b, Lb,, Lb_).
One may also consider “intermediate” Manin triples, for example

(" 1™ @ Z. @ D} x b, Lny @ B @ Zs, In_ @ [\ '] @ D).

It is a natural problem to quantize the corresponding Lie bialgebra struc-
tures on ty. For this, one can think of the following program:

1) to compute the centers of UpLn, and (following [15]) the center of
FO. By duality, these central elements should provide derivations of UpLn_ (and
FO) of imaginary degree. Compute these derivations and relations between them.
One could expect that the algebra generated by the derivations is some difference
analogue of the Lie algebra Ham(C*?).

2) it should then be easy, following Theorem 1.3, to prove that the analogue
of iy is an isomorphism, and to derive from there the quantization of the Lie
bialgebra Lb, .

We hope to return to these questions elsewhere.



62 ENRIQUEZ

A Appendix: Lemmas on C][h]]-modules

Lemma Al. Let E be a finitely generated C[[h]]-module. Let Eiors
{x € E|W*x = 0 for some k > 0} be the torsion part of E. Then Ej. is
isomorphic to a direct sum @®f_,C[[h]]/(h™), where n; are positive integers, and
E is isomorphic to the direct sum of Eys and a free module C[[R]]?".

Proof. As FE is finitely generated, we have a surjective C[[A]]-modules mor-
phism C[[h]]¥ — E. Let K be the kernel of this morphism. Then £ is isomorphic
to C[[n]]V/K .

Let us determine the form of K. Let us set K; = K N A'C[[A]]Y. Then
we have AK; C K;;1. Let us set Ey = CV, and F; = h'K; mod h. Then we
have Fy C F; C --- C Ey. Let p the integer such that Fj, = F), for k > p. We
can then find a basis (v;)1<i<y of Ey such that (vy,...,vamp) is a basis of Fp,
(V1 ..., Vaimp, ) s a basis of Fy, etc., (v1,...,Vdimp,) is a basis of F,. Then K is
the submodule @;(@ r A C[[A]Jvy) of Eo[[h]].

It follows that the quotient Ey[[A]]/K is isomorphic to a direct sum

® Cl[R])/ (™) @ C[R])”"

The statement of the Lemma follows. ]

Corollary A1l.  Any C[[h]]-submodule of a finite-dimensional free C[[h]]-mo-
dule is free.

Proof. This follows from the fact that such a submodule has no torsion and
from the above Lemma. n

We have also

Lemma A2.  Let E be a free C[[h]]-module with countable basis (v;)i>o. Any
countably generated Cl[h]]-submodule of E is free and has a countable basis.

Proof.  We repeat the reasoning of the proof of Lemma Al. Let (w;);>o be a
countable family of £ and let F' be the sub-C[[A]]-module of E generated by the
W .

Set F; = FNKAE and F;, = h7'F mod h. Generating families and bases
for the F; can be constructed inductively as follows.

A generating family for Fy is (w; mod h);>9. We can then construct by
induction a partition of N in subsets (ix) and (ji) such that (w;, mod h)g>o is a
basis of Span (w; mod h);>¢.

Let Apir be the scalars such that wj, — 32 Agww;,, belongs to hE. Set
w,gl) = h7'w;, — X Aeww;,,]. Then a generating family of F is (w;,, w,(:) mod
h). We then construct by induction a partition of N in subsets (ig)) and ( j,gl))

such that (wik,w%)) mod h) is a basis of F}.
ko

@6 .2
‘), W . ..) forms
(2 3

a basis of F'. n

It is clear how to continue this procedure. Then (w;,,w
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