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Abstract. We give proofs of the PBW and duality theorems for the
quantum Kac-Moody algebras and quantum current algebras, relying on
Lie bialgebra duality. We also show that the classical limit of the quantum
current algebras associated with an untwisted affine Cartan matrix is the
enveloping algebra of a quotient of the corresponding toroidal algebra; this

quotient is trivial in all cases except the A
(1)
1 case.

Introduction

The purpose of “quantum algebra” is to study deformations of various commutative
(or cocommutative) algebras (or Hopf algebras). They are usually presented by
generators and relations. Then a natural problem arises: to show that the deformed
algebras have the same size as their undeformed counterparts. The first instance
of such a result is the Poincaré-Birkhoff-Witt (PBW) theorem, which says that
if g is a Lie algebra over a field of characteristic zero, then the symmetrization
map S•(g) → U(g) is a linear isomorphism. In that case, U(g) is viewed as a
quantization of the Poisson algebra S•(g).

The problem of comparing the size of an algebra presented by generators
and relations with that of the classical algebra is called with PBW problem. A
useful tool for solving this problem is Bergman’s combinatorial “diamond” lemma
([4]). It was used in the quantum situation by several authors (notably Berger in [3]
and Rosso in [26]). Another approach to the PBW problem involves constructing
“enough” representations of the deformed algebra. For instance, Lusztig’s PBW
result (Corollary 33.1.5 of [22]) relies on the study of integrable modules over
quantized Kac-Moody algebras. A last, direct approach involves realizing the
deformed algebra structure on some model space. The original PBW result can be
proved in this way, by explicitly constructing a star-product on S•(g) ([5]). This
is also the approach followed in the present paper in the case of quantum groups
and quantum current algebras. In this situation, these algebras are realized as
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(functional) shuffle algebras. We also use in an essential way the Hopf algebra
structures.

1. Outline of results

1.1. Quantum Kac-Moody algebras.

Let A = (aij)1≤i,j≤n be a symmetrizable Cartan matrix. Let (di)1≤i≤n be
the coprime positive integers such that the matrix (diaij)1≤i,j≤n is symmetric. Let
r be the rank of A ; we assume that the matrix (aij)n−r+1≤i,j≤n is nondegenerate.

Let g be the Kac-Moody Lie algebra associated with A ; let n+ be its posi-
tive pro-nilpotent subalgebra and (ēi)1≤i≤n be the generators of n+ corresponding
to the simple roots of g .

Let C[[~]] be the formal series ring in ~ . Let U~n+ be the quotient of
the free algebra with n generators C[[~]]〈ei, i = 1, . . . , n〉 by the two-sided ideal
generated by the quantum Serre relations

1−aij∑
k=0

(−1)k
[

1− aij
k

]
qdi
eki eje

1−aij−k
i = 0, (1)

where
[
m
p

]
q

=
[m]!q

[p]!q [m−p]!q
, [k]!q = [1]q · · · [k]q , [k]q = qk−q−k

q−q−1 , and q = e~ ([9, 17]).

We will show:

Theorem 1.1. U~n+ is a free C[[~]]-module, and the map ei 7→ ēi defines an
algebra isomorphism of U~n+/~U~n+ with Un+ .

This Theorem may be derived from the Poincaré-Birkhoff-Witt (PBW)
results of Lusztig’s book [22]; in the case g = sln , it can also be derived from
those of Rosso ([26]), and in the cases when g is semisimple or untwisted affine,
from those of [21].

The proof presented here is based on the comparison of U~n+ with a quan-
tum shuffle algebra, Lie bialgebra duality and the Deodhar-Gabber-Kac theorem.

As a corollary of this proof, we show

Corollary 1.1. The map p~ defined in Lemma 2.3 is an algebra isomorphism
from U~n+ to the subalgebra 〈V 〉 of the shuffle algebra Sh(V ) defined in sect. 2..

This result was proved in [27]; it can also be derived from the results of
[28]. Rosso’s proof uses the nondegeneracy of the pairing between opposite Borel
quantum algebras ([22], Corollary 33.1.5; see also Theorem 1.2). Schauenburg
shows that 〈V 〉 is isomorphic to the quotient of the free algebra generated by the
ei by the radical of a braided Hopf pairing. Together with [22], Corollary 33.1.5,
this implies Corollary 1.1.

Define U~n− as the algebra with generators fi , i = 1, . . . , n , and the same
defining relations as U~n+ (with ei replaced by fi ). Define a grading on U~n±
by (±N)n by deg(ei) = εi , deg(fi) = −εi , where εi is the ith basis vector of Nn ,
and define the braided tensor products U~n±⊗̄U~n± as the algebras isomorphic to
U~n± ⊗C[[~]] U~n± as C[[~]]-modules, with mutiplication rule

(x⊗ y)(x′ ⊗ y′) = q−〈deg(x′),deg(y)〉(xx′ ⊗ yy′); (2)
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we set 〈εi, εj〉 = diaij .

Then U~n± are endowed with braided Hopf algebra structures, defined by
∆+(ei) = ei ⊗ 1 + 1⊗ ei , and ∆−(fi) = fi ⊗ 1 + 1⊗ fi .

In [8], Drinfeld showed that there exists a unique pairing 〈 , 〉U~n± of U~n+

and U~n− with values in C((~)) = C[[~]][~−1] , defined by

〈ei, fi′〉U~n± =
1

~

d−1
i δii′ , (3)

〈x, yy′〉U~n± =
∑
〈x(1), y〉U~n±〈x(2), y′〉U~n± , (4)

and

〈xx′, y〉U~n± =
∑
〈x, y(1)〉U~n±〈x′, y(2)〉U~n± (5)

for x, x′ in U~n+ and y, y′ in U~n− , and ∆±(z) =
∑
z(1) ⊗ z(2) (braided Hopf

pairing axioms).

As a direct consequence of Corollary 1.1, we show:

Theorem 1.2. The pairing 〈 , 〉U~n± between U~n+ and U~n− is nondegener-
ate.

This result can be found in Lusztig’s book ([22], Corollary 33.1.5, Def. 3.1.1
and Proposition 3.2.4); it relies on the construction of dual PBW bases. Another
argument using Lusztig’ results on integrable modules is in [29], and an argument
using irreducible Verma modules is in [25].

We also show:

Proposition 1.1. For any α in Nn , let U~n±[±α] be the part of U~n± of degree
±α, and let P [α] be the element of U~n+[α]⊗U~n−[−α] induced by 〈 , 〉U~n± . Let
∆+ be the set of positive roots of g (the εi are the simple roots). Let (ēα,i)α∈∆+ and
(f̄α,i)α∈∆+ be dual Cartan-Weyl bases of n+ and n− , and let eα,i, fα,i be lifts of the
ēα,i, f̄α,i to U~n± . Then, if k is the integer such that α belongs to k∆+\(k−1)∆+ ,
we have

P [α] =
~
k

k!

∑
α1,...,αk∈∆+|

∑
i
αi=α;ij

eα1,i1 · · · eαk,ik ⊗ fα1,i1 · · · fαk,ik + o(~k).

The fact that P [α] has ~-adic valuation equal to k was stated by Drinfeld in [8].

•The case of a generic deformation parameter

It is easy to derive from the above results, PBW and nondegeneracy results in the
case where the parameter q = e~ is generic.

Corollary 1.2. Let q′ be an indeterminate, and let Uq′n+ be the algebra over
C(q′) with generators e′i , i = 1, . . . , r , and relations (1), with ei and q = e~

replaced by e′i and q′ . We have for any α in Nn

dimC(q′) Uq′n+[α] = dimC(q′) Uq′n+[α].
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Let (ēν)ν∈I be a basis of homogeneous elements of n+ . Let

ēν =
∑

ij∈{1,...,n}
Cν;i1,...,ik ēi1 · · · ēik

be expressions of the ēν in terms of the generators ē1, . . . , ēn .

Let Cν;i1,...,ik(q
′) be rational functions of q′ , such that

Cν;i1,...,ik(1) = Cν;i1,...,ik ,

and set e′ν =
∑
ij∈{1,...,n}Cν;i1,...,ik(q

′)ei1 · · · eik . Then the family (
∏
ν e

nν
ν ), where the

nν are in N and vanish except for a finite number of them, forms a basis of Uq′n+

(over C(q′)).

Corollary 1.3. Let Uq′n− be the C(q′)-algebra with generators f ′i , 1 ≤ i ≤
n, and relations (1), with ei replaced by f ′i . Define the braided tensor squares
Uq′n±⊗̄Uq′n± using (2). We have a braided Hopf pairing 〈 , 〉C(q′) between Uq′n+

and Uq′n− , defined by (3), (4) and (5). The pairing 〈 , 〉C(q′) is nondegenerate.

1.2. Quantum current and Feigin-Odesskii algebras.

Our next results deal with quantum current algebras. Assume that the
Cartan matrix A is of finite type. Let Ln+ be the current Lie algebra n+⊗C[t, t−1] ,
endowed with the bracket [x⊗ tn, y ⊗ tm] = [x, y]⊗ tn+m .

•Quantum affine algebras

Let A be the quotient of the free algebra C[[~]]〈ei[k], i = 1, . . . , n, k ∈ Z〉 by
the two-sided ideal generated by the coefficients of monomials in the formal series
identities

(qdiaijz − w)ei(z)ej(w) = (z − qdiaijw)ej(w)ei(z), (6)

Symz1,...,z1−aij

1−aij∑
k=0

(−1)k
[

1− aij
k

]
qdi
ei(z1) . . . ei(zk)ej(w)ei(zk+1) . . . ei(z1−aij) = 0,

(7)
where ei(z) is the generating series ei(z) =

∑
k∈z ei[k]z−k , and q = e~ .

Let U~Ln+ be the quotient A/(∩N>0~
NA).

Define Ã as the quotient of the free algebra C[[~]]〈ei[k]Ã, i = 1, . . . , nk ∈ Z〉
by the two-sided ideal geberated by the coefficients of monimials of (6) and

1−aij∑
k=0

(−1)k
[

1− aij
k

]
qdi

(ei[0]Ã)kej[l]
Ã(ei[0]Ã)1−aij−k = 0, (8)

for any i, j = 1, . . . , n and l integer. Define Ũ~Ln+ as the quotient Ã/(∩N>0~
NÃ).

Theorem 1.3. 1) U~Ln+ is a free C[[~]]-module, and the map ei[n] 7→ ēi⊗ tn
defines an algebra isomorphism from U~Ln+/~U~Ln+ to ULn+ .

2) Let U~Lntop+ be the quotient of C〈ei[k], i = 1, . . . , n, k ∈ Z〉[[~]] by the
~-adically closed two-sided ideal generated by the coefficients of monomials in
relations (6) and (7). Then U~Lntop+ is a topologically free C[[~]]-module; it is
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naturally the ~-adic completion of U~Ln+ , and the map ei[n] 7→ ēi⊗ tn defines an
algebra isomorphism from U~Lntop+ /~U~Lntop+ to ULn+ .

3) There is a unique algebra map from Ũ~Ln+ to U~Ln+ , sending each

ei[k]Ã to ei[k]; it is an algebra isomorphism.

4) Let Ũ~Lntop+ be the quotient of C〈ei[k]Ã, i = 1, . . . , n, k ∈ Z〉[[~]] by
the ~- adically closed two-sided ideal generated by the coefficients of monomials in

relations (6) and (8). Then ei[k]Ã 7→ ei[k] defines an algebra isomorphism between
Ũ~Lntop+ and U~Lntop+ .

The statements 1) and 2) of this Theorem can be derived from the results
of [2].

In [13, 14], Feigin and Odesskii defined the algebra FO, which may be
viewed as a functional version of the shuffle algebra. FO is defined as

FO = ⊕k∈NnFOk, (9)

where if k = (ki)1≤i≤n , we set

FOk =
1∏

i<j
1≤α≤ki
1≤β≤kj

(t
(i)
α − t(j)β )

C[[~]][(t
(i)
j )±1, i = 1, . . . , n, j = 1, . . . , ki]

Sk1
×···×Skn ,

where the product of symmetric groups acts by permutation of variables of each
group of variables (t

(i)
j )1≤j≤ki . FOk therefore consists of rational functions in

the t
(i)
j , symmetric in each group (t

(i)
j )1≤j≤ki , regular except for poles when the

variables go to 0 or infinity, and simple poles when variables of different “colors”
collide. (9) defines a grading of FO by Nn . The product on FO is also graded,
and we have, for f in FOk and g in FOl (l = (li)1≤i≤n ) ,

(f ∗ g)(t
(i)
j )1≤i≤n,1≤j≤ki+li = Sym{t(1)

j }
. . . Sym{t(n)

j }
(10)

(
∏

1≤i≤N

∏
N+1≤j≤N+M

q〈ε(i),ε(j)〉ti − tj
ti − tj

f(t1, . . . , tN)g(tN+1, . . . , tN+M)),

where N =
∑n
i=1 ki and M =

∑n
i=1 li ; we set for any s ,

tk1+···+ks−1+1 = t
(s)
1 , . . . , tk1+···+ks = t

(s)
ks
, tN+l1+···+ls−1+1 = t

(s)
ks+1, . . . ,

tN+l1+···+ls = t
(s)
ks+ls

;

we also define ε(i) = εk if ti = t
(k)
l for some l ; as before, 〈εi, εj〉 = diaij for

i, j = 1, . . . , n .

In the right side of (10), each symmetrization can be replaced by a sum over

shuffles, since the argument in symmetric in each group of variables (t
(s)
1 , . . . , t

(s)
ks

)

and (t
(s)
ks+1, . . . , t

(s)
ks+ls

).

In Proposition 3.2, we define a topological braided Hopf structure on FO.

In [11], we showed:
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Proposition 1.2. There is a unique algebra morphism i~ from U~Ln+ to FO,

such that i~(ei[n]) is the element (t
(i)
1 )n of FOεi .

Let us denote by LV the direct sum ⊕ni=1FOεi and let 〈LV 〉 be the sub-
C[[~]]-algebra of FO generated by LV . As a corollary of the proof of Theorem
1.3, we prove:

Corollary 1.4. i~ is an algebra isomorphism between U~Ln+ and 〈LV 〉.
U~Ln+ is also endowed with a topological braided Hopf structure (the

Drinfeld comultiplication); it is then easy to see that i~ is compatible with both
Hopf structures.

Define T (LV±) as the free algebras C[[~]]〈ei[k](T ), 1 ≤ i ≤ n, k ∈ Z〉 and
C[[~]]〈fi[k](T ), 1 ≤ i ≤ n, k ∈ Z〉 . We have a pairing 〈 , 〉T (LV±) between T (LV+)
and T (LV−) defined by

〈ei1 [k1](T ) · · · eip [kp](T ), fj1 [l1](T ) · · · fjp′ [lp′ ]
(T )〉T (LV±)

= δpp′
1

~
p

∑
σ∈Sp

resz1=0 · · · reszp=0

(
∏

s>t,σ−1(s)<σ−1(t)

q(εis ,εit )zs − zt
zs − q(εis ,εit )zt

p∏
s=1

1

djs
δiσ(s),js

p∏
s=1

zks+lsi

p∏
s=1

dzs
zs

) (11)

where the ratios q
(εis ,εit

)
zs−zt

zs−q(εis ,εit
)
zt

are expanded for zt � zs .

Let U~Ln− be the quotient of T (LV−) by the homomorphic image of the
ideal defining U−~Ln+ by the map ei[k](T ) 7→ fi[k](T ) .

Proposition 1.3. (see [11]) This pairing induces a pairing 〈 , 〉U~Ln± between
U~Ln+ and U~Ln− .

We then prove:

Theorem 1.4. The pairing 〈 , 〉U~Ln± is nondegenerate.

•The form of the R-matrix

Let us set A± = U~Ln± . Let a and b be two integers. Define I+
≥a and I+

≤a , as the
right, resp. left ideals of A+ generated by the ei[k], k ≥ a , resp. the ei[k], k ≤ a .
The ideals I+

≥a and I+
≤a are graded; for α in (±N)n , denote by I+

≥a[α] and I+
≤a[α]

their component of degree α .

Proposition 1.4. For any α in Nn , for any integers a and b, (I+
≤a+I+

≥b)
⊥[−α]

and [A+/(I
+
≤a + I+

≥b)
⊥⊥][α] are free finite-dimensional C[[~]]-modules. The pairing

between A+ and A− induces a nondegenerate pairing between them. Moreover,
the intersection ∩a,b(I+

≤a + I+
≥b)
⊥⊥ is zero.

Denote by Pa,b[α] the corresponding element of

[A+/(I
+
≤a + I+

≥b)
⊥⊥][α]⊗ (I+

≤a + I+
≥b)
⊥[−α][~−1].

Pa,b[α] defines an element of lim←a,bA+/(I
+
≤a + I+

≥b)
⊥⊥ ⊗C[[~]] A−[~−1].
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Let (ēβ,i)β∈∆+ and (f̄β,i)β∈∆+ be dual Cartan-Weyl bases of n+ and n− . Let
eβ,i[p] and fβ,i[p] be lifts to U~Ln± of ēβ,i⊗ tp and f̄β,i⊗ tp . Then if α belongs to
k∆+ − (k − 1)∆+ , P [α] has the form

P [α] =
~
k

k!

∑
α1,...,αk∈∆+,

∑
i
αi=α;ij

∑
p1,...,pk∈Z

eα1,i1 [p1] . . . eαk,ik [pk]⊗ fα1,i1 [−p1] . . . fαk,i1 [−pk] + o(~k)

(all but a finite number of elements of this sum belong to
(I+
≤a + I+

≥b)
⊥⊥ ⊗C[[~]] A−[~−1].)

Let (h′i)i=1,...,n be the basis of h , dual to (hi)i=1,...,n . Set

K = exp(
n∑
i=1

hi[0]⊗ h′i[0] +
∑
p>0

hi[p]⊗ h′i[−p]).

Then the elements R[α] = KP [α] of lim←N(U~Lb+⊗U~Lb−)/I
b±,(2)
N , where I

b±,(2)
N

is the ideal generated by the hi[p]⊗ 1, ei[p]⊗ 1, p ≥ N , and the 1⊗ fi[p], p ≥ N ,
satisfy the R-matrix identity∑

γ∈Nn,β∈(±N)n,β+γ=λ

R[γ]∆(x)(β,α−β) =
∑

γ∈Nn,β∈(±N)n,β+γ=λ

∆′(x)(β,α−β)R[γ],

for any λ ∈ Zr and x in the double U~Lg of U~Lb+ of degree α (the sums
over the root lattice are obviously finite, and each product makes sense in
lim←N(U~Lg⊗U~Lg)/I

g,(2)
N , where I

g,(2)
N is the left ideal generated by the x[p]⊗1

and 1⊗ x[p], p ≥ N , x = ei, hi, fi ).

•Yangians

Let us describe how the above results are modified in the case of Yangians. Let
Arat be the quotient of the free algebra C[[~]]〈ei[k]rat, i = 1, . . . , n, k ∈ Z〉 by the
two-sided ideal generated by the coefficients of the relations

(z − w + ~aij)ei(z)ratej(w)rat = (z − w − ~aij)ej(w)ratei(z)rat, (12)

Symz1,...,z1−aij
ad(ei(z1)rat) · · · ad(ei(z1−aij)

rat)(ej(w)rat) = 0, (13)

where we set ei(z)rat =
∑
k∈Z ei[k]ratz−k−1 , and let us set
U rat
~
Ln+ = Arat/ ∩N>0 ~

NArat .
Define also Ãrat as the quotient of the free algebra C[[~]]〈ei[k]Ã

rat
, i =

1, . . . , n, k ∈ Z〉 by the two-sided ideal generated by the coefficients of the relations
(12) and

ad(ei[0]Ã
rat

)1−aijej[l]
Ãrat = 0, (14)

for any i, j = 1, . . . , n and integer l .

Theorem 1.5. 1) U~Ln+ is a free C[[~]]-module. There is a unique algebra
isomorphism from U rat

~
Ln+/~U

rat
~
Ln+ to ULn+ , sending the class of ei[k]rat to

ēi ⊗ tk .
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2) There is a unique algebra morphism from Ũ~Ln+ to U~Ln+ , sending

ei[k]rat to ei[k]Ã
rat

; it is an isomorphism between these algebras.

3) Let U~Lnrat,top+ and Ũ~Lnrat,top+ be the quotients of

C〈ei[k]rat, i = 1, . . . , n, k ∈ Z〉[[~]] and C〈ei[k]Ã
rat

, i = 1, . . . , n, k ∈ Z〉[[~]]

by the ~-adically closed two-sided ideals generated by the coefficients of monomials

in relations (12) and (13), resp. (12) and (14). Then ei[k]Ã
rat 7→ ei[k]rat defines

an algebra isomorphism between U~Lnrat,top+ and Ũ~Lnrat,top+ . U~Lnrat,top+ is the
~-adic completion of U~Lnrat+ ; it is a topologically free C[[~]]-module.

Define FOrat as the graded space FO, endowed with the product obtained
from (10) by the replacement of each qλz− qµw by z−w+ ~(λ− µ). FOrat is an
associative algebra and we have

Theorem 1.6. There is a unique algebra map irat
~

from U~Lnrat+ to FOrat ,
sending each ei[k]rat to ei ⊗ tk . i~ is an isomorphism between U~Lnrat+ and its
subalgebra 〈LV 〉rat generated by the degree one elements.

Define a pairing 〈 , 〉T (LV±),rat between T (LV+) and T (LV−) by the formula
(11), where each qλz − qµw is replaced by z − w + ~(λ− µ). Let U~Lnrat− be the
quotient T (LV−) by the homomorphic image of the ideal defining U~Lnrat+ by the
map ei[k](T ) 7→ fi[k](T ) .

Theorem 1.7. 〈 , 〉T (LV±),rat induces a nondegenerate pairing 〈 , 〉U~Ln±,rat

between U~Lnrat± . Define I±,rata as the right, resp. left ideals of U~Lnrat± generated
by the ei[k]rat , k ≥ a, resp. by the fi[k]rat , k ≥ a. Then for any α in N

n ,
I+,rat
a [α] ∩ (I−,ratb [−α])⊥ is a space of finite codimension in (I−,ratb [−α])⊥ . Let
P [α]rat be the corresponding element of

lim←a,b(U~Lnrat+ /I+,rat
a )[α]⊗ (U~Lnrat− /I−,ratb )[−α][~−1].

Let eβ,i[p]
rat be lifts to U~Ln± of the ēβ,i[p]. Then if α belongs to k∆+−(k−1)∆+ ,

P [α]rat has the form

P [α]rat =
~
k

k!

∑
α1,...,αk∈∆+,

∑
i
αi=α;ij

∑
p1,...,pk∈Z

eα1,i1 [p1]rat . . . eαk,ik [pk]
rat ⊗ fα1,i1 [−p1 − 1]rat . . . fαk,i1 [−pk − 1]rat + o(~k).

The proofs of the statements of this section are analogous to those of the
quantum affine case and will be omitted.

1.3. Quantum current algebras of affine type (toroidal algebras) .

Assume that A is an arbitrary symmetrizable Cartan matrix. Define U~Ln+

and Ũ~Ln+ as in sect. 1..

Proposition 1.5. 1) Let F̃+ be the Lie algebra with generators x̃+
i [k],

1 ≤ i ≤ n, k ∈ Z, and relations given by the coefficients of monomials in

(z − w)[x̃+
i (z), x̃+

j (w)] = 0, ad(x̃+
i (z1)) · · · ad(x̃+

i (z1−aij))(x̃
+
j (w)) = 0,
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where for x any x̃+
i , x(z) is the generating series

∑
k∈Z x[k]z−k . If we give degree

εi to x̃+
i [k], F̃+ is graded by set ∆+ of the roots of n+ .

Then U~Ln+/~U~Ln+ and Ũ~Ln+/~Ũ~Ln+ are both isomorphic to the
enveloping algebra U(F̃+).

2) There is a unique Lie algebra morphism j+ : F̃+ → Ln+ , such that
j+(ẽ+

i [k]) = ēi ⊗ tk . j+ is graded and surjective. The kernel of j+ is contained in
⊕α∈∆+,α imaginaryF̃+[α].

Let us assume now that A is untwisted affine. n+ is the isomorphic to
a subalgebra of the loop algebra ḡ[λ, λ−1] , with ḡ semisimple. Define t+ as the
direct sum Ln+ ⊕ (⊕k>0,l∈ZCKkδ[l]), and endow it with the bracket such that the
Kkδ[l] are central, and

[(x⊗ tl, 0), (y ⊗ tm, 0)] = ([x⊗ tl, y ⊗ tm], 〈x̄, ȳ〉ḡ(lk′′ −mk′)K(k′+k′′)δ[l +m])

for x 7→ x̄ ⊗ λk′ , y 7→ ȳ ⊗ λk′′ by the inclusion n+ ⊂ ḡ[λ, λ−1] , where 〈 , 〉ḡ is an
invariant scalar product on ḡ .

Then t+ is a Lie subalgebra of the toroidal algebra t , which is the universal
central extension of Lg ([20, 23]). In what follows, we will set x[k]t = (x⊗ tk, 0).

Proposition 1.6. 1) When A is of affine Kac-Moody type, the kernel of j+ is
equal to the center of F̃+ , so that F̃+ is a central extension of Ln+ .

2) We have a unique Lie algebra map j′ from t+ to F̃+ such that

j′(ēi ⊗ tn) = ẽi[n]. This map is an isomorphism iff A is not of type A
(1)
1 . If

A is of type A
(1)
1 , j′ is surjective, and its kernel is ⊕n∈ZCKδ[n].

In Remark 4.3, we discuss possible generalizations of Theorem 1.3 to the
case of affine quantum current algebras, and the connection of Proposition 1.5 with
the results of [15].

The basic idea of the constructions of the two first parts of this work
is to compare the quantized algebras defined by generators and relations with
quantum shuffles algebras. The idea to use shuffle algebras to provide examples
of Hopf algebras dates back to Nichols ([24]). Later, Schauenburg ([28]) and
Rosso ([27]) showed that the positive part U~n+ of the Drinfeld-Jimbo quantized
enveloping algebras are isomorphic to the subalgebra Sh(V ) of quantum shuffle
Hopf algebras generated in degree 1. Their results rely on Lusztig’s PBW or
duality (nondegeneracy of Drinfeld’s pairing) results. A nonabelian generalization
of Schauenburg’s result can be found in [1].

In sect. 2., we show that applying Drinfeld’s theory of Lie bialgebras to
Sh(V ) yields at the same time proofs of these results (PBW for U~n+ and iso-
morphism of U~n+ with Sh(V ), and nondegeneracy of the pairing as a simple
consequence), when the deformation parameter is formal or generic.

In sect. 3., we apply the same idea to quantum current algebras. These
algebras, also know as “new realizations” algebras, depend on the datum of a
Cartan matrix. In that situation, the proper replacement of shuffle algebras are
the functional shuffle algebras introduced by Feigin and Odesskii ([13, 14]). We
show that when the Cartan matrix is of finite type, the ideas of sect. 2. allow
to complete the results of [11] on comparison of the quantum current algebras
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and the Feigin-Odesskii algebras. However, there are still some open problems in
this direction, see Remark 3.16. We hope that the ideas of this section will help
generalize the results of [12] from sl2 to arbitrary semisimple Lie algebras. For
this one should, in particular, find analogues of the quantum Serre relations for
the algebras in genus ≥ 1.

In sect. 4., we consider the classical limit of the quantum current algebras
in the case of an affine Kac-Moody Cartan matrix. We show that this classical
limit is the enveloping algebra of a Lie algebra F̃+ , which is a central extension
of the Lie algebra Ln+ of loops with values in the positive subalgebra n+ of the
affine Kac-Moody algebra. F̃+ is graded by the roots of n+ , and its center is
contained in the part of imaginary degrees. We show that in all affine untwisted
cases, except the A

(1)
1 case, F̃+ is isomorphic to a subalgebra t+ of the toroidal

algebra t introduced and studied in [23, 16, 30]. In the A
(1)
1 case, we identify F̃+

with a quotient of t+ .

In the quantum case, the center of U~Ln+ seems closely connected with the
central part of the affine elliptic algebras constructed in the recent work of Feigin
and Odesskii ([15]). We hope that a better understanding of this center will enable
to extend to toroidal algebras the results of sect. 3..

This paper grew from the notes of the DEA course I taught at univ.
Paris 6 in february-april 1999. I would like to thank P. Schapira for giving me
the opportunity to give this course and its participants, notably C. Grunspan,
O. Schiffmann and V. Toledano Laredo, for their patience and attention.

I also would like to thank N. Andruskiewitsch and B. Feigin for valuable
discussions. In particular, the idea that quantum shuffle algebras could be a tool
to construct quantizations of Lie bialgebras is due to N. Andruskiewitsch; it is
clear that this idea plays an important role in the present work. I also would like
to thank N. Andruskiewitsch for his kind invitation to the univ. of Córdoba in
August 1998, where these discussions took place.

2. Quantum Kac-Moody algebras (proofs of the results of sect. 1.)

2.1. PBW theorem and comparison with shuffle algebra (proofs of The-
orem 1.1 and Corollary 1.1).

•Definition of Sh(V ) and 〈V 〉
Let us set V = ⊕ni=1Cvi . Let εi be the ith basis vector of Nn . Define the grading of
V by Nn by deg(vi) = εi . Let Sh(V ) be the quantum shuffle algebra constructed
from V and the braiding V ⊗ V → V ⊗ V [[~]] , vi ⊗ vj 7→ q−diaijvj ⊗ vi . That
is, Sh(V ) is isomorphic, as C[[~]]-module, to ⊕i≥0V

⊗i[[~]] . Denote the element
z1 ⊗ · · · ⊗ zk as [z1| · · · |zk] . The product is defined on Sh(V ) as follows:

[z1| · · · |zk] [zn+1| · · · |zk+l]

=
∑

σ∈Σk,l

q
−
∑

1≤i<j≤k+l,σ(i)>σ(j)
〈deg(zi),deg(zj)〉[zσ(1)| · · · |zσ(k+l)],

if the zi are homogeneous elements of V , and where Σk,l is the subset of the
symmetric group Sk+l consisting of shuffle permutations σ such that σ(i) < σ(j)
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if 1 ≤ i < j ≤ k or k + 1 ≤ i < j ≤ k + l ; the bilinear form on Nn is defined by
form 〈εi, εj〉 = diaij .

Lemma 2.1. 〈V 〉 is the direct sum of its graded components, which are free
C[[~]]-modules. It follows that 〈V 〉 is a free C[[~]]-module.

Proof. That 〈V 〉 is the direct sum of its graded components follows from its
definition. These graded components are C[[~]]-submodules of finite-dimensional
free C[[~]]-modules (the graded components of Sh(V )). Each graded component
is therefore a finite-dimensional free module over C[[~]] . The Lemma follows.

•Crossed product algebras V and S
Define linear endomorphisms h̃i, i = 1, . . . , n and D̃j, j = 1, . . . , n− r of V by the
formulas

h̃i(vj) = aijvj, D̃j(vi) = δijvi.

Extend the x̃ , x ∈ {hi, Dj} to linear endomorphisms of Sh(V ) by the formulas

x̃([x1| · · · |xn]) =
n∑
k=1

[x1| · · · |x̃(xk)| · · · |xn].

It is clear that the x̃ define derivations of Sh(V ). These derivations preserve 〈V 〉 .
Define V and S as the crossed product algebras of 〈V 〉 and Sh(V ) with the

derivations h̃i, D̃j . More precisely, V and S are isomorphic, as C[[~]]-modules,
to their tensor products 〈V 〉 ⊗C[[~]] C[hVi , D

V
j ][[~]] and Sh(V )⊗C[[~]] C[hVi , D

V
j ][[~]]

with ~-adically completed polynomial algebras in n + r variables. The products
on V and S are then defined by the rules

(x⊗
2n−r∏
s=1

(XVs )αs)(y ⊗
2n−r∏
s=1

(XVs )βs)

=
∑
(is)

2n−r∏
s=1

(
αs
is

)(
x

2n−r∏
s=1

X̃ is
s (y)

)
⊗
(

2n−r∏
s=1

(XVs )αs+βs−is
)
,

where we set Xs = hs for s = 1, . . . , n , and Xs = Ds−n for s = n+ 1, . . . , 2n− r .
In what follows, we will denote x ⊗ 1 and 1 ⊗ Xs simply by x and Xs , so that
x⊗∏s(X

V
s )αs will be x

∏
s(X

V
s )αs .

S is then endowed with a Hopf C[[~]]-algebra structure (that is, all maps
of Hopf algebra axioms are C[[~]]-module maps, and the tensor products are
completed in the ~-adic topology), defined by

∆V(hV) = hV ⊗ 1 + 1⊗ hV for h ∈ {hi, Dj},

∆V([vi1| · · · |vim ]) =
m∑
k=0

[vi1| · · · |vik ]⊗ exp(~
k∑
j=1

dijh
V
ij

)[vik+1
| · · · |vim ]).

V is then a Hopf subalgebra of S .

Assign degrees 0 to the elements hVi , D
V
j , and εi to vi . V is then the direct

sum of its homogeneous components, which are free finite-dimensional modules
over C[hVi , D

V
j ][[~]] ; the grading of V is compatible with its algebra structure.

•Hopf co-Poisson and Lie bialgebra structures

Define V0 as V/~V .
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Lemma 2.2. V0 is a cocommutative Hopf algebra.

Proof. Define ∆′V as ∆V composed with the permutation of factors. We
have to show that for x in V , we have

(∆V −∆′V)(x) ⊂ ~(V ⊗C[[~]] V). (15)

For x one of the h̄i, D̄j , (15) is clearly satisfied. On the other hand, if (15) is
satisfied for x and y in V , then (∆V −∆′V)(xy) is equal to (∆V −∆′V)(x)∆V(y) +
∆′V(x)(∆V −∆′V)(y) and therefore belongs to ~(V ⊗C[[~]] V). It follows that (15)
holds for any x in V .

Lemma 2.3. 1) There exists a unique surjective Hopf algebra morphism p~
from U~b+ to V , such that p~(hi) = hVi and p~(x

+
i ) = [vi].

2) The map Dj 7→ D̄j, hi 7→ h̄i, x
+
i 7→ x̄+

i extends to an isomorphism from
U~b+/~U~b+ to Ub+ .

3) p~ induces a surjective cocommutative Hopf algebra morphism p from
U~b+ = Ub+ to V/~V = V0 .

Proof. That the quantum Serre relations are satisfied in Sh(V ) by the [vi]
follows from [27], Lemma 14 (the proof relies on q -binomial coefficients identities,
which are proved by induction); this proves the first part of the Lemma.

Let us show that U~b+/~U~b+ is isomorphic Ub+ . U~b+/~U~b+ is equal
to the quotient of C〈hi, Dj, x

+
i , i = 1, . . . , n, j = 1, . . . , 2n − r〉[[~]] by the sum of

~C〈hi, Dj, x
+
i 〉[[~]] and the closed ideal generated by the relations [hi, ej] = aijej ,

[Di, ej] = δijej and the quantum Serre relations (1). This sum is the same as that of
~C〈hi, Dj, x

+
i 〉[[~]] and the closed ideal generated by [hi, ej] = aijej , [Di, ej] = δijej

and the classical Serre relations. The quotient of C〈hi, Dj, x
+
i 〉[[~]] by this last

space is equal to Ub+ . This proves the second part of the Lemma.

The third part is immediate.

Proposition 2.1. Let l be a Lie algebra and let J be a two-sided ideal of U l

such that ∆Ul(J) ⊂ U l⊗ J + J ⊗U l. Then j = J ∩ l is an ideal of the Lie algebra
l and we have J = (U l)j = j(U l).

Proof. We first show:

Lemma 2.4. Let l be a Lie algebra and let J be a left ideal of U l such that
∆Ul(J) ⊂ J ⊗ U l + U l ⊗ J . Let j be the intersection l ∩ J . Then J is equal to
(U l)j.

Proof of Lemma. Denote by (U l)n the subspace of U l spanned by the
monomials in elements of l of degree ≤ n . Let us set ∆̄Ul(x) = ∆Ul(x) − x ⊗
1 − 1 ⊗ x . We have ∆̄Ul((U  L)n) ⊂ ∑

p,q>0,p+q=n(U l)p ⊗ (U l)q . Denote by Jn the
intersection J∩(U l)n . Then we have ∆̄Ul(Jn) ⊂ ∑p,q>0,p+q=n Jp⊗(U l)q+(U l)p⊗Jq .

Let us show by induction that Jn is contained in (U l)n−1j . This is clear if
n = 1; assume it is true at order n− 1. Let x be an element of Jn . Then ∆̄Ul(x)
is contained in

∑
p,q>0,p+q=n(U l)p−1j⊗ (U l)q + (U l)p ⊗ (U l)q−1j .
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Let x̄ be the image of x in (U l)n/(U l)n−1 . (U l)n/(U l)n−1 is isomorphic
to the nth symmetric power Snl . Let ∆Sl be the coproduct of the symmetric
algebra Sl , for which elements of degree 1 are primitive, and set ∆̄Sl(x̄) = ∆Sl(x̄)−
x̄⊗1−1⊗ x̄ . Then ∆̄(x̄) is contained in

∑
p,q>0,p+q=n(Sp−1l)j⊗Sql+Spl⊗(Sq−1l)j .

It follows that x̄ belongs to (Sn−1l)j . The difference of x with some element of
(U l)n−1j therefore belongs to (U l)n−1 , so that it belongs to Jn−1 and by hypothesis
to (U l)n−2j . Therefore, x belongs to (U l)n−1j . This proves the Lemma.

Let us prove Proposition 2.1. Lemma 2.4 implies that J = (U l)j and
its analogue for right Hopf ideals implies that J = j(U l). Therefore, we have
(U l)j = j(U l). Let us fix x in l and j in j , then [x, j] belongs J ; since it also
belongs to l , [x, j] belongs to j . Therefore j is an ideal of l .

Let J be the kernel of the cocommutative Hopf algebras morphism p defined
in Lemma 2.3, 3). Let us set j = J ∩ b+ and a = b+/j . prop. 2.1 then implies

Lemma 2.5. The Lie algebra structure on b+ induces a Lie algebra structure
on a. Moreover, V0 is isomorphic with Ua, and p can be identified with the
quotient map Ub+ → Ua.

Define δV0 as
∆V−∆′V
~

mod ~ . δV0 is a linear map from V0 to the antisym-
metric part of its tensor square ∧2V0 . It obeys the rules

(∆V0 ⊗ id) ◦ δV0 = (δ2→23
V0

+ δ2→13
V0

) ◦∆V0 , (16)

Alt(δV0 ⊗ id) ◦ δV0) = 0,

δV0(xy) = δV0(x)∆V0(y) + ∆V0(x)δV0(y) for x, y in V0,

if δV0(y) =
∑
i y
′
i ⊗ y′′i , we set δ2→23

V0
(x⊗ y) =

∑
i x⊗ y′i ⊗ y′′i , and δ2→13

V0
(x⊗ y) =∑

i y
′
i ⊗ x⊗ y′′i . These rules are the co-Leibnitz, co-Jacobi and Hopf compatibility

conditions; they mean that (V0, δV0) is a Hopf co-Poisson algebra (see [8]).

Lemma 2.6. δV0 maps a to ∧2a.

Proof. Let a be an element of a and set δV0(a) =
∑
i xi ⊗ yi , where (yi) is

a free family. Then (16) implies that ∆V0(xi)⊗ yi =
∑
i xi⊗ 1⊗ yi + 1⊗xi⊗ yi , so

that each xi is primitive and therefore belongs to a . So δV0(a) belongs to a⊗V0 .
Since δV0(a) is also antisymmetric, it belongs to ∧2a .

Call δa the map from a to ∧2a defined as the restriction of δV0 to a . (a, δa)
is then a Lie bialgebra, which means that δa is a 1-cocyle of a with values in the
antisymmetric part of the tensor square of its adjoint representation, satisfying the
co-Jacobi identity Alt(δa ⊗ id)δa = 0.

Remark 2.7. The Hopf co-Poisson algebra and Lie bialgebra axioms were in-
troduced by Drinfeld in [8]. Drinfeld showed that the quantization of a cocom-
mutative Hopf algebra lead to such structures. He also stated that there is an
equivalence of categories between the category of Hopf co-Poisson algebras and
that of Lie bialgebras. Lemma 2.6 can therefore be viewed as the proof of one part
of this statement (from Hopf co-Poisson to Lie bialgebras). It is also not difficult
to prove the other part (from Lie bialgebras to Hopf co-Poisson).
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•Kac-Moody Lie algebras

Let g be the Kac-Moody Lie algebra associated with A . g has generators x̄±i , h̄i ,
i = 1, . . . , n and D̄j, j = 1, . . . , n− r , and relations

[h, h′] = 0 if h, h′ ∈ {h̄i, D̄j}, (17)

[h̄i, x̄
±
i′ ] = ±aii′x̄±i′ , [D̄j, x̄

±
i ] = ±δijx̄±i , (18)

ad(x̄±i )1−aij(x̄±j ) = 0, (19)

[x̄+
i , x̄

−
i′ ] = δii′h̄i, for all i, i′ = 1, . . . , n, j = 1, . . . , n− r.

Let h and n± be the subalgebras of g generated by {h̄i, D̄j} and {x̄±i } .
Then g has the Cartan decomposition g = n+ ⊕ h⊕ n− . Let us set b± = h⊕ n± .
n± and b± are the Lie algebras with generators {x̄±i } and {h̄i, D̄j, x̄

±
i } and

relations (19) for n± and (17), (18) and (19) for b± . g is endowed with a
nondegenerate bilinear form 〈 , 〉g , which is determined by 〈h̄i, h̄i′〉g = d−1

i′ aii′ ,
〈x̄+

i , x̄
−
i′ 〉g = d−1

i δii′ , 〈h̄i, D̄j〉g = d−1
i δij , and that its values for all other pairs of

generators is zero (see [6, 19]).

•Hopf algebras U~b±

Define U~b± as the algebras with generators h±i , D
±
j and x±i , and relations

[h±i , x
±
i′ ] = ±aii′x±i′ , [D±j , x

±
i ] = ±δijx±i ,

and relations (1), with ei replaced by x±i . It is easy to see that the maps ei 7→ x+
i

and fi 7→ x−i define algebra inclusions of U~n± in U~b± . We have Hopf algebra
structures on U~b+ and U~b− , defined by

∆±(h±) = h± ⊗ 1 + 1⊗ h± for h ∈ {h̄i, D̄j}, ∆±(x±i ) = x±i ⊗ e±~dih
±
i + 1⊗ x±i .

•Comparison lemmas

Recall that V is the direct sum of its graded components. Its component of
degree zero is C[hVi , D

V
j ][[~]] . Let ha

i , D
a
j be the images of hVi , D

V
j in V0 . We

have an inclusion of C[ha
i , D

a
j ] in V0 . It follows that the ha

i and Da
j are linearly

independent and commute to each other.

On the other hand, as the elements hVi and DVj are primitive in V , the ha
i

and Da
j are also primitive; it follows that they belong to a , and we have

p(h̄i) = ha
i , p(D̄j) = Da

j , δa(ha
i ) = δa(Da

j ) = 0. (20)

The degree εi component of V is C[hi, Dj][[~]] · [vi] , and the map x 7→ x[vi]
is a C[[~]]-module isomorphism from C[hi, Dj][[~]] to this component. Therefore,
[vi] has a nonzero image in V/~V = V0 . Since we have

∆V([vi]) = [vi]⊗ e~dih
V
i + 1⊗ [vi],

[vi] mod ~ is primitive in V0 . Therefore, [vi] mod ~ belongs to a ; call va
i this

element of a . It is clear that

δa(va
i ) = div

a
i ∧ ha

i . (21)
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On the other hand, p~(x̄
+
i ) = [vi] implies that

p(x̄+
i ) = va

i . (22)

Recall that we have a Lie bialgebra structure on b+ ; it consists in a map
δb+ from b+ to ∧2b+ , which is uniquely determined by the conditions δb+(x̄+

i ) =
dix̄

+
i ∧ h̄i , δb+(h̄i) = δb+(D̄j) = 0 and that it satisfies the 1-cocycle identity.

Lemma 2.8. p is also a Lie bialgebra morphism from (b+, δb+) to (a, δa).

Proof. This means that

(∧2p) ◦ δb+(x) = δa ◦ p(x), for x in b+. (23)

For x equal to h̄i and D̄j , (23) follows from (20). It follows from (21) and
(22) that

δa ◦ p(x̄+
i ) = δa(va

i ) = div
a
i ∧ ha

i = (∧2p)(dix̄
+
i ∧ h̄i) = ∧2p(δa(x̄+

i )),

so that (23) is also true for x = x̄+
i .

Since p is a Lie algebra morphism, both sides of (23) are 1-cocycles of b+

with values in the antisymmetric part of the tensor square of (a, ada◦p). Therefore,
(23) holds on the subalgebra of b+ generated by the h̄i, D̄j and x̄+

i , which is b+

itself.

Denote by ha the subspace of a spanned by the ha
i and Da

j ; it forms an
abelian Lie subalgebra of a .

Since p~(hi) = hVi and p~(Dj) = DVj , the restriction of p to the Cartan
subalgebra h of b+ is a Lie algebra isomorphism from h to ha .

Define, for α in h∗ , the root subspace a[α] associated with α by

a[α] = {x ∈ a|[p(h), x] = α(h)x, for all h in h},

and as usual
b+[α] = {x ∈ b+|[h, x] = α(h)x, for all h in h}.

Lemma 2.9. a is the direct sum of its root subspaces a[α], where α belongs to
the set ∆+ ∪ {0} of roots of b+ . Each a[α] is finite dimensional. δa is a graded
map from a to ∧2a, therefore the graded dual a∗ of a, defined as ⊕αa[α]∗ , has a
Lie bialgebra structure.

Proof. For any α in h∗ , p maps b+[α] to a[α] . It follows that a is the sum of
the root subspaces a[α] , where α belongs to the set of roots of b+ . That this sum
is direct is proved as in the case of b+ : let αi be the root such that x̄+

i belongs
to b+[αi] . Then α1, . . . , αn form a basis of h∗ (they are the simple roots of g).
Let (H̄1, . . . , H̄n) be the basis of h dual to (α1, . . . , αn). Then for any family xα
of a[α] such that

∑
α xα = 0, we have, by applying ad(p(H̄1))k to this equality,∑

(ni)∈Nn n
k
1x
∑

i
niαi

= 0, which gives for any integer a1 ,
∑

(ni)∈Nn|n1=a1
x∑

i
niαi

= 0;

applying ad(p(H̄2))k , we get
∑

(ni)∈Nn|n1=a1,n2=a2
x∑

i
niαi

= 0; finally each xα
vanishes.

That δa is graded follows from the fact that its restriction to ha vanishes
and from the cocycle identity.



36 Enriquez

Lemma 2.10. p is a Lie bialgebra isomorphism.

Proof. It follows from Lemma 2.8 that p∗ is an injective Lie bialgebra
morphism from a∗ in the graded dual b∗+ of b+ . Recall that b∗+ is isomorphic, as
a Lie algebra, to b− = h ⊕ n− ; this relies on the nondegeneracy of the invariant
pairing between b+ and b− , itself a consequence of [6] (in what follows, we will
denote by h− the Cartan subalgebra h of b− ). We will show that the image of p∗

contains a generating family of b− .

Let us denote by ha∗ the space of forms on a , which vanish on all the
a[α], α 6= 0. The duality beween b+ and b− identifies h− with the space of the
forms on b+ which vanish on n+ = ⊕α 6=0b+[α] . We have p(b+[α]) ⊂ a[α] for any
α , therefore

p∗[(⊕α 6=0a[α])⊥] ⊂ (⊕α 6=0b+[α])⊥,

which means that p∗(ha∗) ⊂ h− . Since p∗ is injective and ha∗ and h− have the
same dimension, p∗ induces an isomorphism between ha∗ and h− . It follows that
the image of p∗ contains h− .

Since x̄+
i belongs to b+[αi] , the element va

i of a defined before Lemma 2.8
belongs to a[αi] . We have seen that va

i is nonzero.

Let ξi be the element of a∗ which is 1 on va
i and zero on each a[α] , α 6= αi .

For x in b+[α] , α 6= αi , 〈p∗(ξi), x〉b+×b− = 〈ξi, p(x)〉a∗×a = 0 because ξi vanishes
on a[α] . It follows that p∗(ξi) has weight −αi in b− . On the other hand, p∗(ξi)
is nonzero, because p∗ is injective, so it is a nonzero constant times x̄−i .

Since the image of p∗ contains h− and the x̄−i , p∗ is an isomorphism.

Lemma 2.11. p~ mod ~ restricts to an isomorphism of Nn -graded algebras
from Un+ to 〈V 〉/~〈V 〉.

Proof. It follows from Lemma 2.10 that p~ mod ~ induces an isomorphism
from Ub+ = U~b+/~U~b+ to V0 = V/~V . Therefore it induces an isomorphism
from Un+ to its image in V0 . Since Un+ coincides with the image of U~n+ by
the projection U~b+ → U~b+/~U~b+ = Ub+ , this image coincides with that of the
composed map

U~n+ → U~b+ → V → V0. (24)

The image of the composed map U~n+ → U~b+ → V is equal to 〈V 〉 . We
have a C[[~]]-module isomorphism of V with 〈V 〉 ⊗C[[~]] C[hVi , D

V
j ][[~]] , so that

~V ∩ 〈V 〉 = ~〈V 〉 . It follows that the image of 〈V 〉 by V → V0 is 〈V 〉/~〈V 〉 .
Therefore the image of (24) is 〈V 〉/~〈V 〉 .

Proof of Theorem 1.1. Assign degree εi to the generator ei of U~n+ . Then
U~n+ is the direct sum of its homogeneous components (U~n+)[α] , α ∈ Nn , which
are finitely generated C[[~]]-modules. As a C[[~]]-module, (U~n+)[α] is therefore

isomorphic to the direct sum ⊕qαi=1C[[~]]/(~n
(α)
i )⊕ C[[~]]pα of its torsion part with

a free module (see Lemma A1).

Lemma 2.3, 2) implies that U~n+[α]/~U~n+[α] = Un+[α] so

pα + qα = dimUn+[α]. (25)
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On the other hand, 〈V 〉[α] is a free finite dimensional module over C[[~]] , by
Lemma 2.1 above, so it is isomorphic, as a C[[~]]-module, to C[[~]]p

′
α . p~ restricts

to a surjective C[[~]]-module morphism from U~n+[α] to 〈V 〉[α] , therefore p~
maps the torsion part of U~n+[α] to zero and

pα ≥ p′α. (26)

Moreover,
p′α = dimUn+[α] (27)

by Lemma 2.11. It follows from (25), (26) and (27) that pα = p′α and qα = 0.

This means that U~n+ has no torsion, and is isomorphic to 〈V 〉 . In view
of Lemma 2.3, 2), this proves Theorem 1.1. This also proves Corollary 1.1.

2.2. Nondegeneracy of Hopf pairing (proof of Theorem 1.2).

Let (v∗i ) be the basis of V ∗ such that 〈v∗i , vj〉 = d−1
i δij . Assign to v∗i the

degree −εi . Let T (V ∗) be the tensor algebra ⊕i(V ∗)⊗i[[~]] . Define the braided
tensor product strucutre on the tensor square of T (V ∗) according to (2). T (V ∗) is
endowed with the braided Hopf structure defined by ∆T (V ∗)(v

∗
i ) = v∗i ⊗ 1 + 1⊗ v∗i ,

for any i = 1, . . . , n . We have a surjective braided Hopf algebra morphism from
T (V ∗) to U~n− , defined by v∗i 7→ fi , for i = 1, . . . , n .

Then we have a braided Hopf pairing

〈 , 〉Sh(V )×T (V ∗) : Sh(V )× T (V ∗)→ C((~)),

defined by the rules

〈[vi1| · · · |vik ], ξi′1 · · · ξi′k′ 〉S×U~b̃−
=

1

~

δkk′
k∏
j=1

〈vij , ξi′j〉V×V ∗ . (28)

The ideal of T (V ∗) generated by the quantum Serre relations is in the
radical of this pairing (see e.g. [22], chap. 1; this is a consequence of q -binomial
identities).

It follows that 〈 , 〉Sh(V )×T (V ∗) induces a braided Hopf pairing

〈 , 〉Sh(V )×U~n− : Sh(V )× U~n− → C((~)).

By Theorem 1.1, U~n+ is a braided Hopf subalgebra of Sh(V ). The restric-
tion of 〈 , 〉Sh(V )×U~n− to U~n+ × U~n− therefore induces a braided Hopf pairing
between U~n+ and U~n− ; since it coincides on generators with 〈 , 〉U~n+×U~n− , it
is equal to 〈 , 〉U~n+×U~n− .

View V ⊗k as a subspace of Sh(V ). Assign degree 1 to each element of V ∗

in T (V ∗); then T (V ∗) is a graded algebra; we denote by T (V ∗)(k) is homogeneous
component of degree k . The restriction of 〈 , 〉Sh(V )×T (V ∗) to V ⊗k×T (V ∗)(k) can be
identified with the natural pairing of V ⊗k with (V ∗)⊗k , which is nondegenerate.
Therefore the annihilator of T (V ∗) in Sh(V ) for 〈 , 〉Sh(V )×T (V ∗) is zero. By
Theorem 1.1, it follows that the annihilator of U~n− in U~n+ for 〈 , 〉U~n± is zero.

Since the pairing 〈 , 〉U~n+×U~n− is graded and the graded components of
U~n+ and U~n− have the same dimensions (as C[[~]]-modules), the pairing

〈 , 〉U~n+×U~n−

is nondegenerate.
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2.3. The form of the R-matrix (proof of Proposition 1.1).

Let us endow U~g = U~b+ ⊗ U~n− with the double algebra structure such
that U~b+ → U~g , x+ 7→ x+ ⊗ 1, and U~n− → U~g , x− 7→ 1 ⊗ x− are algebra
morphisms and, if eg

i = ei ⊗ 1, fg
i = 1⊗ fi , hg

i = hi ⊗ 1 and Dg
j = Dj ⊗ 1,

[eg
i , f

g
j ] = δij

qdih
g
i − q−dih

g
i

qdi − q−di
,

and
[hg
i , f

g
j ] = −aijfg

j , [Dg
j , f

g
j ] = −δijfg

j .

U~g is endowed with a topological Hopf algebra structure ∆ : U~g 7→
U~g⊗̂U~g = lim←N(U~g⊗ U~g)/~N(U~g⊗ U~g), extending ∆+ and ∆− ([8]).

Let t0 be the element of h ⊗ h corresponding to the restriction of the
invariant pairing of g to h and let R[α] be the element exp(~t0)P [α] of
[lim←N(U~g⊗ U~g)/~N(U~g⊗ U~g)][~−1] . Then we have the equalities

R[α−αi](eg
i ⊗ qdih

g
i ) +R[α](1⊗ eg

i ) = (qdih
g
i ⊗ eg

i )R[α] + (eg
i ⊗ 1)R[α−αi], (29)

for any i = 1, . . . , n .

Lemma 2.12. For any nonzero α in Nn , P [α] belongs to ~U~n+ ⊗ U~n− .

Proof. Let us show this by induction on the height of α (we say that the height
of α = (αi)1≤i≤n is

∑n
i=1 αi ). If α is a simple root αi , P [α] = ~eg

i ⊗ f
g
i , so that

the statement holds when deg(α) = 1.

Assume that we know that P [α] belongs to ~U~n+ ⊗ U~n− for any α of
height < ν . Let α be of height ν . Let v be the ~-adic valuation of P [α] , and
assume that v ≤ 0. R[α] belongs to ~v(U~g⊗̂U~g), and since v ≤ 0 the equality
(29) takes place in ~v(U~g⊗̂U~g). Let us set Rα = ~

−vR[α] mod ~ ; Rα is an
element of Ub+ ⊗ Ub− . Since ~−vR[α − αi] is zero mod ~ , (29) implies that Rα

commutes with each 1⊗ ēi .
Lemma 1.5 of [19] says that if a belongs to n− and commutes with each ei ,

then a is zero. It follows that if x belongs to Un− and commutes with each ēi , x
is scalar; and if in addition x has nonzero degree, x is zero. Therefore Rα is zero.

It follows that v ≥ 1, which proves the induction.

It follows from [8] that the R[α] satisfy the quasi-triangular identities

(∆⊗ id)R[α] =
∑

β,γ∈Nn,β+γ=α

R[β](13)R[γ](23), (30)

(id⊗∆)R[α] =
∑

β,γ∈Nn,β+γ=α

R[β](13)R[γ](12). (31)

Let us set, for α 6= 0, r[α] = R[α]/~ mod ~ ; r[α] belongs to Ub+⊗Ub− . Dividing
the equalities (30) and (31) by ~ , we get (∆Ub+ ⊗ id)r[α] = r[α](13) + r[α](23) and
(id⊗∆Ub+)r[α] = r[α](12) + r[α](13) . Therefore r[α] belongs to b+ ⊗ b− .

Moreover, (29) implies the identity

δ(x)(β,α−β) = [r[β − α], x⊗ 1] + +[r[β], 1⊗ x]
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for x in g[α] , where we set (
∑
i xi⊗ yi)(α,β) =

∑
i(xi)(α)⊗ (yi)(β) and we denote by

x(α) the degree α component of an element x of Ug .

It follows that r[α] is the element of n+[α]⊗ n−[−α] corresponding to the
invariant pairing of g .

Let us now prove by induction on k that if α belongs to k∆+− (k− 1)∆+ ,
P [α] belongs to ~kU~n+ ⊗ U~n− and

P [α] =
~
k

k!

∑
α1,...,αk∈∆+,

∑k

i=1
αi=α

r[α1] · · · r[αk] + o(~k).

Assume that the statement is proved up to order k − 1 and let λ belong to
k∆+ − (k − 1)∆+ . Then (30) and the induction hypothesis imply that

(∆̃⊗ id)(P [λ]) =
∑

α1,...,αk∈∆+,
∑k

i=1
αi=λ;ij

∑
l,l′>0,l+l′=k

~
k

l!l′!
(32)

eα1,i1 · · · eαl,il ⊗ eαl+1,il+1
· · · eαk,ik ⊗ fα1,i1 · · · fαk,ik ,

where ∆̃(x) = ∆(x)− x⊗ 1− 1⊗ x . Let σ be any permutation of {1, . . . , k} .
For any α1, . . . , αk in ∆+ , such that

∑k
i=1 αi = λ , we have

fα1,i1 · · · fαk,ik = fασ(1),iσ(1)
· · · fασ(k),iσ(k)

+ o(~).

Indeed, the difference of both sides is a sum of products of the [fαs,is , fαt,it ] with
elements of n+ ; but αs + αt does not belong to ∆+ by hypothesis on λ , so
[fαs,is , fαt,it ] = o(~).

The right side of (32) can the be rewritten as

∑
α1,...,αk∈∆+,

∑k

i=1
αi=λ;ij

∑
l,l′>0,l+l′=k

~
k

l!l′!

1

cardΣl,l′∑
σ∈Σl,l′

eασ(1),iσ(1)
· · · eασ(l),iσ(l)

⊗ eασ(l+1),iσ(l+1)
· · · eασ(k),iσ(k)

⊗ fα1,i1 · · · fαk,ik ,

where Σl,l′ is the set of shuffle transformations of ((1, . . . , l), (l + 1, . . . , l + l′)).
Therefore the right side of (32) is equal to

~
k

k!
∆̃

 ∑
α1,...,αk∈∆+,

∑k

i=1
αi=λ;ij

eα1;i1 · · · eαk;ik ⊗ fα1;i1 · · · fαk;ik

+ o(~k).

Let v be the ~-adic valuation of P [λ] . Assume that v < k . Set P̄ [α] =
~
−vP [α] mod ~ . Then if we call ∆0 the coproduct of Un+ , and we set ∆̃0(x) =

∆0(x) − x ⊗ 1 − 1 ⊗ x , (32) gives (∆̃0 ⊗ id)(P̄ [α]) = 0, so that P̄ [α] belongs to
n+ ⊗ Un− ; since P̄ [α] also belongs to Un+[α]⊗ Un−[−α] and α does not belong
to ∆+ , P̄ [α] is zero, contradiction. Therefore v ≥ k . Let us set P ′[α] = ~

−kP [α]
mod ~ ; we find that

(∆̃0 ⊗ id)

P ′[α]− 1

k!

∑
α1,...,αk∈∆+,

∑k

i=1
αi=λ;ij

ēα1;i1 · · · ēαk;ik ⊗ f̄α1;i1 · · · f̄αk;ik

 = 0,
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so that P ′[α] belongs to

1

k!

∑
α1,...,αk∈∆+,

∑k

i=1
αi=λ;ij

ēα1;i1 · · · ēαk;ik ⊗ f̄α1;i1 · · · f̄αk;ik + n+ ⊗ Un−;

as n+[α] is zero, P ′[α] is equal to

1

k!

∑
α1,...,αk∈∆+,

∑k

i=1
αi=λ;ij

ēα1;i1 · · · ēαk;ik ⊗ f̄α1;i1 · · · f̄αk;ik ,

which proves the induction.

2.4. The generic case (proof of Corollaries 1.2 and 1.3).

We have the equality U~n+ ⊗C[[~]] C((~)) = Uq′n+ ⊗C(q′) C((~)), therefore
the graded components of Uq′n+ have the same dimension as those of U~n+ .
Corollaries 1.2 and 1.3) follow.

3. Quantum current algebras of finite type (proofs for Sections 1.)

3.1. PBW theorem and comparison with Feigin-Odesskii algebra (proofs
of Theorem 1.3 and Corollary 1.4).

•Identification of algebras generated by the classical limits of quantum currents
relations

Recall that A is now assumed of finite type. Define Lb+ as the Lie subalgebra
(h⊗ C[t−1])⊕ (n+ ⊗ C[t, t−1]) of g⊗ C[t, t−1] .

Proposition 3.1. Define U~Lb+ and Ũ~Lb+ as the algebra with generators
hi[k], i = 1, . . . , n, k ≤ 0 and x+

i [k], i = 1, . . . , n, k ∈ Z, and relations

[hi[k], hj[l]] = 0, [hi[k], x+
j [l]] =

qkdiaij − q−kdiaij
2~kdi

x+
j [k + l],

and relations (6) and (7) among the x+
j [k] (with ei replaced by x+

i ), resp. (6) and

(8). There are algebra isomorphisms from U~Lb+/~U~Lb+ and Ũ~Lb+/~Ũ~Lb+

to ULb+ , sending hi[k] to h̄i ⊗ tk and x+
i [k] to x̄+

i ⊗ tk .

Proof. U~Lb+/~U~Lb+ is the algebra with generators h̄i[k], ēi[l], 1 ≤ i, j ≤
n, k ≤ 0, l ∈ Z and relations

[h̄i[k], ēi[l]] = aij ēi[k + l],

and

(z − w)[ēi(z), ēj(w)] = 0, (33)

Symz1,...,z1−aij

(
ad(ēi(z1)) · · · ad(ēi(z1−aij))(ēj(w))

)
= 0,
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where ēi(z) =
∑
k∈Z ēi[k]z−k . It follows from (33) with i = j that we have

[ēi[n], ēj[m]] = 0 for all n,m . Therefore, ad(ēi(z1)) · · · ad(ēi(z1−aij))(ēj(w)) is
symmetric in the zi , so that the last equation is equivalent to

ad(ēi(z1)) · · · ad(ēi(z1−aij))(ēj(w)) = 0. (34)

On the other hand, Ũ~Lb+/~Ũ~Lb+ is the algebra with generators

h̄i[k]′, ēi[l]
′, 1 ≤ i, j ≤ n, k ≤ 0, l ∈ Z

and relations

[h̄i[k]′, ēi[l]
′] = aij ēi[k + l]′,

and

(z − w)[ēi(z)′, ēj(w)′] = 0, (35)

and

(adei[0]′)1−aijej[k]′ = 0. (36)

The algebras presented by the pairs of relations (33) and (34) on one hand, and
(35) and (36) on the other, are isomorphic. Indeed, (33) and (35) are equivalent,
and (34) implies (36); on the other hand, (33) implies that [ei[0]′, ej[k + l]′] =
[ei[k]′, ej[l]

′] , so that [ei[0]′, [ei[0]′, ej[k + k′ + l]′]] = [ei[0]′, [ei[k]′, ej[k
′ + l]′]] =

[ei[k]′, [ei[0]′, ej[k
′ + l]′]] , because the (33) implies that [ei[0]′, ei[k]′] = 0, therefore

[ei[0]′, [ei[0]′, ej[k + k′ + l]′]] = [ei[k]′, [ei[k
′]′, ej[l]

′]] ; one then proves by induction
that (adei[0]′)p(ej[k+k1+· · ·+kp]) = adei[k1]′ · · · adei[kp]

′(ej[k]). With p = 1−aij ,
this relation shows that the ei[k]′ satisfy (34).

If follows that if F̃+ is the Lie algebra defined in Proposition 1.5, both
quotient algebras U~Lb+/~U~Lb+ and Ũ~Lb+/~Ũ~Lb+ are isomorphic to the
crossed product of UF̃+ with the derivations h̃i[k]′ , defined by h̃i[k]′(ēi[l]) =
aij ēi[k + l] .

It is clear that there is a unique Lie algebra morphism j+ from the Lie
algebra F̃+ defined in Proposition 1.5 to n+ ⊗ C[t, t−1] , sending ēi[k] to x̄+

i ⊗ tk .
Let us prove that it is an isomorphism.

For this, let us define F̃ as the Lie algebra with generators x̃±i [k], h̃±i [k] ,
1 ≤ i ≤ n, k ∈ Z , and relations given by the coefficients of the monomials in

(z − w)[x̃±i (z), x̃±j (w)] = 0, if x, y ∈ {x̃±i },

[h̃i(z), h̃j(w)] = 0,

[h̃i(z), x̃±j (w)] = ±aijδ(z/w)x̃±j (w),

[x̃+
i (z), x̃−j (w)] = δijδ(z/w)h̃i(z),

ad(x̃±i (z1)) · · · ad(x̃±i (z1−aij))(x̃
±
j (w)) = 0,

where we set x̃(z) =
∑
k∈Z x[k]z−k for x in {x̃±i , h̃i} .
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Lemma 3.1. (In this Lemma, g may be an arbitrary Kac-Moody Lie algebra.)
Let W be the Weyl group of g, and si be its elementary reflection associated to
the root αi . Then there is a unique action of W on F̃ such that

si(x̃
±
i [k]) = x̃∓i [k],

si(x̃
±
j [k]) = ad(x̃±i [0])−aij(x̃∓j [k]), if j 6= i,

si(h̃
±
j [k]) = h̃±j [k]− aijh̃±i [k].

Proof of Lemma. The proof follows the usual proof for Kac-Moody Lie
algebras. For example, if j, k are different from i , we have

(z − w)[si(x̃
±
j (z)), si(x̃

±
k (w))]

= (z − w)[ad(x̃±i [0])−aij(x̃±j (z)), ad(x̃±i [0])−aik(x̃±k (w))]

= ad(x̃±i [0])−aij−aik
(
(z − w)[x̃±j (z), x̃±k (w)]

)
because the Serre relations imply that ad(x̃±i [0])1−ail(x̃l(u)) = 0 for j = k, l and
u = z, w ; therefore (z − w)[si(x̃

±
j (z)), si(x̃

±
k (w))] is zero.

Lemma 3.2. There is a unique Lie algebra isomorphism j from F̃ to
g⊗ C[t, t−1], such that j(x̃[k]) = x̄⊗ tk , for any x in {x±i , hi} and k in Z.

Proof. Let F̃− be the Lie algebra with generators x̄−i [k], 1 ≤ i ≤ n, k ∈ Z and
relations (33) and (34), with x̄+

i [k] replaced by x̄−i [k] , and let H̃ be the abelian
Lie algebra with generators h̄i[k], 1 ≤ i ≤ n, k ∈ Z . There are unique Lie algebra
morphisms from F̃± and H̃ to F̃ , sending the x̄±i [k] to x̃±i [k] and the h̄i[k] to
h̃i[k] . These morphisms are injections, so that we will indentify F̃± and H̃ with
their images in F̃ .

Moreover, let F± be the free Lie algebras with generators x±i [k]F , i =
1, . . . , n , k integer. Endow F±⊕ H̃ with the Lie algebra structure such that H̃ is
abelian, F± is a Lie subalgebra of F± ⊕ H̃ , and [h̃i[k], x±i [l]F ] = ±aijx±i [k + l]F

There are unique derivations Φ∓i,k from F± to F± ⊕ H̃ such that

Φ∓i,k(x
±
i′ [l]) = δii′h̃i[k + l].

Let IF± be the ideals of F± generated by relations (33) and (34); then computation

shows that IF± are preserved by the Φ∓i,k . It follows that F̃ is the direct sum of its

subspaces F̃± and H̃ .

The rules deg(x̃±i [k]) = (±εi, k) and deg(h̃i[k]) = (0, k) define a Lie algebra
grading of F̃ by Zn × Z , because the relations of F̃ are homogeneous for this
grading. Clearly, dimF̃±[(±εi, k)] = 1 for any i and k , so that dimF̃ [(±εi, k)] = 1.

Let α be any root on g . Then there is some simple root ±εi an element w of
W such that α = w(±εi). Then F̃ [(±εi, k)] = F̃ [(α, k)] so that dimF̃ [(α, k)] = 1.

It is clear that the map j defined in the statement of the Lemma defines a
Lie algebra morphism. Define a grading by Zr × Z on g ⊗ C[t, t−1] , by the rules
deg(x⊗ tk) = (deg(x), k), for x a homogeneous (for the root grading) element of



Enriquez 43

g . Then j is a graded map. Moreover, if α is in ±∆+ and x is a nonzero element
of g od degree α , then x can be written as a

∑
λi1,···,ip [x

±
i1 , [. . . , x

±
ip ]] ; then the

image by j of
∑
λi1,···,ip [x

±
i1 [0], [. . . , x±ip [k]]] is equal to x ⊗ tk ; therefore the map

induced by j from F̃ [(α, k)] to g ⊗ C[t, t−1][(α, k)] is nonzero and therefore an
isomorphism.

It follows that Kerj is equal to
∑
α∈Zn\(∆+∪{0}∪(−∆+)),k∈Z F̃ [(α, k)]. Any

element of F̃ [(α, k)] is a linear combination of brackets [x±il [kl], [. . . , x
±
i1 [k1]]] , with∑l

s=1±εis = α . Assume α is not a root of g and let l′ be the smallest integer such
that

∑l′+1
s=1 ±εis is not a root of g . Let us show that each [x±il′+1

[kl′+1], [. . . , x±i1 [k1]]]
vanishes. It follows from the fact that j is an isomorphism when restricted to the
parts of degree in ∆+ ∪ (−∆+) that we may write each [x±il′ [kl′ ], [. . . , x

±
i1 [k1]]] as a

linear combination
∑
s λs[x

±
il′

[k(s)(il′)] · · ·x±i1 [k(s)(i1)]], where for each s , i 7→ k(s)(i)

is a map from {1, . . . , n} to Z , such that k(s)(il′+1) = kl′+1 . The defining relations

for n± hold among the x±1 [k
(s)
1 ], . . . , x±n [k(s)

n ] , therefore we have Lie algebra maps

from n± to F̃± sending each x±i to x±i [k
(s)
i ] . [x±il′+1

[k(s)(il′+1)] · · ·x±i1 [k(s)(i1)]] is
the image of zero by one of these maps, and is therefore zero. It follows that
[x±il′ [kl′ ], [. . . , x

±
i1 [k1]]] vanishes, so that Kerj is zero.

End of the proof of the Proposition. The restriction of j to F̃+ coincides with the
map j+ define before Lemma 3.1, therefore j+ induces an isomorphism between
F̃+ and n+ ⊗ C[t, t−1] .

•Crossed product algebras VL and SL

For k an integer ≤ 0 and 1 ≤ i ≤ n , define endomorphisms h̃i[k] of FO by

(h̃i[k]f)(t
(i)
l ) =

 n∑
j=1

kj∑
l=1

qkdiaij − q−kdiaij
2~kdi

(t
(j)
l )k

 f(t
(i)
l ) (37)

if f ∈ FOk . The h̃i[k] are derivations of FO. These derivations preserve LV ,
therefore they preserve 〈LV 〉 .

Define VL and SL as the crossed product algebras of 〈LV 〉 and FO with

the derivations x̃[k] : VL , resp. SL is equal to 〈LV 〉 ⊗ C[hi[k]V
L
, k ≤ 0], resp.

FO ⊗ C[hi[k]V
L
, k ≤ 0]; both spaces are endowed with the products given by

formula (28), where x now belongs to 〈LV 〉 , resp. FO and the Xs are replaced
by hi[k] , k ≤ 0. Define V̂L and SL as the partial ~-adic completions
C[hi[k]V

L
, k < 0]⊗ 〈LV 〉 ⊗C[[~]] C[hi[0]V

L
][[~]] and

C[hi[k]V
L
, k < 0]⊗ FO⊗C[[~]] C[hi[0]V

L
][[~]] .

Lemma 3.3. 1) The rules deg(hi[k]) = 0, deg(tki ) = εi define gradings of 〈LV 〉,
FO, VL , SL , V̂L and ŜL by Nn , which are compatible with the inclusions. For
X any of these algebras, we denote by Xk its homogeneous component of degree
k. X is therefore the direct sum of the Xk .

2) For any k, 〈LV 〉k is a free C[[~]]-modules with a countable basis.

3) For any k, VLk and SL are free C[[~]][hi[k]V
L
]-modules; and V̂Lk and ŜL

are free C[[~]][hi[k]V
L
, k < 0]⊗C[[~]] C[hi[0]V

L
][[~]]-modules.
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Proof. 1) is clear. 〈LV 〉k is a C[[~]]-submodule of FOk , and by Lemma
A2, it is a free C[[~]]-module with a countable basis. This shows 2). 3) is a direct
consequence of 2).

•Ideals and completions

Define for N positive integer, IN as the left ideal of 〈LV 〉 generated by the
elements (tki ) of FOεi , k ≥ N , i = 1, . . . , n . Define IN and ÎN as the left ideals of

VL and V̂L generated by the same family. For s ≥ 0, set I
(s)
N = ~−s(IN ∩~s〈LV 〉),

and I
(∞)
N = ∪s≥0I

(s)
N ; define I(s)

N , I(∞)
N and Î(s)

N , Î(∞)
N in the same way.

For any integer a , define LV ≥a as the subspace of FO equal to the direct
sum ⊕ni=1t

a
iC[[~]][ti] and let 〈LV ≥a〉 be the subalgebra of FO generated by LV ≥a .

Define I
(0),≥a
N as the left ideal of 〈LV ≥a〉 generated by the tki , k ≥ N and I≥aN

as the ideal of 〈LV ≥a〉 formed of the elements x such that for some k ≥ 0, ~kx

belongs to I
(0),≥a
N .

For any integer a and k in N
r , define FO≥a as the subspace of FOk

consisting of the rational functions

g(t(i)α ) =
1∏n

i=1

∏
1≤α≤ki,1≤β≤kj(t

(i)
α −t

(j)
β

)

f(t(i)α ),

where the f(t(i)α ) have degree ≥ a in each variable t(i)α and the total degree of g
is ≥ (

∑
i ki)a . Set FO≥a = ⊕k∈NnFO≥ak . Then FO≥a is a subalgebra of FO .

Define I≥a(N) as the set of elements of FO(≥a) , where f(t(i)α ) has total degree

N in the variables t(i)α , and let I≥aN be the direct sum ⊕k≥NI≥aN .

Lemma 3.4. For (JN)N>0 a family of left ideals of some algebra A, say that
(JN)N>0 has property (∗) if for any integer N > 0 and element a in A, there is an
integer k(a,N) > 0 such that JNa ⊂ Jk(a,N) for any N large enough, and k(N, a)
tends to infinity with N , a being fixed. Then the inverse limit lim←NA/JN has
an algebra structure.

Say that JN has property (∗∗) if for any integer N > 0 and element a
in A, there is are integer k′(a,N) and k′′(a,N) > 0 such that JNa ⊂ Jk′(a,N)

and aJN ⊂ Jk′′(a,N) for any N large enough, and k(N, a) tends to infinity with
N , a being fixed. In that case also, the inverse limit lim←NA/JN has an algebra
structure.

1) The family (I
(∞)
N )N>0 of ideals of 〈LV 〉 has property (∗);

2) the family (I(∞)
N )N>0 of ideals of VL has property (∗);

3) the family (Î(∞)
N )N>0 of ideals of V̂L has property (∗);

4) the family (I≥aN )N>0 of ideals of 〈LV ≥a〉 has property (∗);

5) the family (I≥aN )N>0 of ideals of FO≥a has property (∗∗).

Proof. Set for any a in A and N > 0, k′(a,N) = inf {k|JNa ⊂ Jk} ;
then k′(N, a) tends to infinity with N , a being fixed and we have k′(N, a′) ≥ inf
(k(N, a), p) if a′ belongs to a+ Jp .

An element of lim←NA/JN is a family (aN)N>0 , aN ∈ A/JN , such that
aN+1 + JN = aN . For a = (aN)N>0 and b = (bN)N>0 in lim←NA/JN , choose βN
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in bN and let N ′(N, βN) be the smallest integer N ′ such that k′(N ′, βN) ≥ N ;
N ′(N, βN) is independent of the choice of βN , we denote it N ′(N, b). Choose
then αN in aN ′(N,b) ; then αNβN + JN is independent of the choice of αN and βN ;
one checks that αN+1βN+1 + JN = αNβN + JN , so that (αNβN + JN)N>0 defines
an element of lim←NA/JN . The product ab is defined to be this element. The
construction is similar in the case of property (∗∗).

1) The equality

tki ∗ tlj = q−ndiaij tk−ni ∗ tl+nj + q−diaij tlj ∗ tki

+
n−1∑
n′=1

(q−(n′+1)diaij − q−(n′−1)diaij)tl+n
′

j ∗ tk−n′i − q−(n−1)diaij tl+nj ∗ tk−ni ,

where n = N − l and k ≥ 2N − l , implies that if k ≥ 2N − l , tki ∗ tlj belongs to
IN . It follows that I2N−l ∗ tlj ⊂ IN . Set then k(tlj, N) = [1

2
(N + l/2)] + 2; for a in

〈LV 〉 , and any decomposition dec of a as a sum
∑

(ji),(li) λ(ji),(li)t
l1
j1 ∗· · ·∗t

lp
jp , define

k(a,N, dec) as the smallest of integers k(t
lp
jp , · · · , k(tl1j1 , N)); finally, define k(a,N)

as the largest of all k(a,N, dec). The family (IN)N>0 has property (∗), with this
function k(a,N). Then for any a in 〈LV 〉 , (IN ∩~sVL)a ⊂ ~sVL∩ Ik(a,N) , so that

I
(s)
N a ⊂ I

(s)
k(a,N) . It follows that we have also I

(∞)
N a ⊂ I

(∞)
k(a,N) , so that the families

(I
(s)
N )N>0 and (I

(∞)
N )N>0 have property (∗).

2) follows from the fact that INhj[l]
VL ⊂ IN+l .

3) follows from the fact that for a any element of C[hi[0]V
L
][[~]] , we have

Î(∞)
N a ⊂ Î(∞)

N .

4) is proved in the same way as 1) ans 2).

5) For k in Nn , set |k| =
∑n
i=1 ki . Then if f belongs to FO≥ak , we have

f ∗I≥aN ⊂ I
≥a
N+a|k| and I≥aN ∗f ⊂ I

≥a
N+a|k| . Therefore the family (I≥aN )N has property

(∗∗).

It follows that the inverse limits

lim←N〈LV 〉/I(∞)
N , lim←NVL/I(∞)

N , lim←N V̂L/Î(∞)
N ,

lim←N〈LV ≥a〉/I≥aN and lim←NFO≥a/I≥aN

have algebra structures. Moreover, as we have I(∞)
N ∩〈LV 〉 = I

(∞)
N and Î(∞)

N ∩VL =

I(∞)
N , we have natural algebra inclusions

lim←N〈LV 〉/I(∞)
N ⊂ lim←NVL/I(∞)

N ⊂ lim←N V̂L/Î(∞)
N .

Moreover, there exists a function φ(k, N), tending to infinity with N , such that
I≥aN,k∩〈LV ≥a〉 ⊂ Iφ(k,n) . Indeed, if the ki are ≥ a and tk1

i1 ∗ · · · ∗ t
kl
il

belongs to I≥aN,k
(l = |k|), then k1 + · · · + kl ≥ N so that one of the ki is ≥ N/l . The statement
then follows from the proof of the above Lemma, 1). It follows that we have an
algebra inclusion

lim←N〈LV ≥a〉/I≥aN ⊂ lim←NFO≥a/I≥aN .
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If a family (JN)N>0 of left ideals of the algebra A has property (∗), and
B is any algebra, the family (JN ⊗ B)N>0 also satisfies (∗); therefore the inverse
limit lim←N(A ⊗ B)/(JN ⊗ B) has an algebra structure. It follows that we have

algebra structures on lim←N〈LV 〉 ⊗ A/I
(∞)
N ⊗ A , lim←NVL ⊗ A/I(∞)

N ⊗ A and

lim←N V̂L ⊗ A/Î(∞)
N ⊗ A for any algebra A .

•Topological Hopf structures on VL and SL

For i = 1, . . . , n and l ≥ 0, define Ki[−l] as the element of VL (or SL )

Ki[−l] = e−~dihi[0]V
L

Sl(−2~dihi[k]V
L

, k < 0),

where Sl(z−1, z−2, . . .) are the Schur polynomials in variables (zi)i<0 , which are
determined by the relation exp(

∑
i<0 zit

−i) =
∑
l≤0 Sl(zk)t

−l .

Proposition 3.2. There is unique graded algebra morphism ∆SL from SL to
lim←N(SL ⊗C[[~]] ŜL)/(ISN ⊗C[[~]] ŜL), such that

∆SL(hi[k]) = hi[k]⊗ 1 + 1⊗ hi[k]

for 1 ≤ i ≤ n and k ≤ 0, and its restriction to SLk is the direct sum of the maps

∆k′,k′′

SL : FO≥ak → lim←N(I≥ak′ ⊗C[[~]] ŜLk′′)/[FO≥ak′,N ⊗C[[~]] ŜLk′′ ], where k = k′ + k′′ ,
defined by

∆k′,k′′

SL (P )

=
∑

p1,...,pN′≥0

N ′∏
i=1

upii P
′
α(u1, . . . , uN ′)

⊗
P ′′α(uN ′+1, . . . , uN)

N ′∏
i=1

Kε(i)[−pi]

 ,
where N ′ =

∑n
i=1 k

′
i , N

′′ =
∑n
i=1 k

′′
i , N = N ′+N ′′ , the arguments of the functions

in FOk′ and FOk′′ are respectively (t
(i)
j )1≤i≤n,1≤j≤k′i and (t

′(i)
j )1≤i≤n,1≤j≤k′′i ; we set

(u1, . . . , uk′1) = (t
(1)
1 , . . . , t

(1)
k′1

), . . . , (uk′1+...+k′n−1+1, . . . , uN ′) = (t
(n)
1 , . . . , t

(n)
k′n

),

(uN ′+1, . . . , uN ′+k′′1 ) = (t
′(1)
1 , . . . , t

′(1)
k′′1

), . . . ,

(uN ′+k′′1 +...+k′′n−1+1, . . . , uN) = (t
′(n)
1 , . . . , t

′(n)
k′′n

),

t
(i)
k′i+j

= t
′(i)
j , j = 1, . . . , k′′i ,

(t1, . . . , tk1) = (t
(1)
1 , . . . , t

(1)
k1

), . . . , (tk1+...+kn−1+1, . . . , tN) = (t
(n)
1 , . . . , t

(n)
kn

),

and ∑
α

P ′α(u1, . . . , uN ′)P
′′
α(uN ′+1, . . . , uN)

= P (t1, . . . , tN)
∏

1≤l≤N ′,N ′+1≤l′≤N

ul′ − ul
q〈ε(l),ε(l′)〉ul′ − ul

, (38)

for l in {1, . . . , N ′}, resp. {N ′+ 1, . . . , N}, ε(l) is the element of {1, . . . , n} such

that ul = t
(ε(l))
j , resp. ul = t

′(ε(l))
j for some j ; in (38), the ratios are expanded for

ul � ul′ .
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Proof. Define FO(2) as the (Nr)2 -graded C[[~]]-module

FO(2) = ⊕k,k′∈NrFO
(2)
k,k′ ,

where

FO
(2)
k,k′ =

1∏
i<j

1≤α≤ki
1≤β≤kj

(t
(i)
α − t(j)β )

∏
i<j

1≤α≤k′
i

1≤β≤k′j

(u
(i)
α − u(j)

β )
∏

i,j
1≤α≤ki
1≤β≤k′j

(t
(i)
α − u(j)

β )
·

·C[[~]][(t
(i)
j )±1, (u

(i)
j′ )±1, j = 1, . . . , ki, j

′ = 1, . . . , k′i]
∏n

i=1
Ski
×Sk′

i ,

where the groups Ski and Sk′i
act by permutation of the variables t

(i)
j and u

(i)
j .

Define on FO(2) , the graded composition map ∗ as follows: for f in FO
(2)
k,k′ and g

in FO
(2)
l,l′ ,

(f ∗ g)(t1, . . . , tP , u1, . . . , uP ′) = Sym
t
(1)
j
· · · Sym

t
(n)
j

Sym
u

(1)
j
· · · Sym

u
(n)
j ∏

1≤i≤N,N+1≤j≤P

q〈εt(i),εt(j)〉ti − tj
ti − tj

∏
1≤i≤N ′,N+1≤j≤P

q〈εu(i),εt(j)〉ui − tj
ui − tj∏

1≤i≤N,N ′+1≤j≤P ′

q〈εt(i),εu(j)〉ti − uj
ti − uj

∏
1≤i≤N ′,N ′+1≤j≤P ′

q〈εu(i),εu(j)〉ui − uj
ui − uj

f(t1, . . . , tN , u1, . . . , uM)g(tN+1, . . . , tP , uM+1, . . . , uP )

)
,

where N =
∑
i ki, N

′ =
∑
i k
′
i,M =

∑
i li,M

′ =
∑
i l
′
i, P = N + M,P ′ =

N ′ + M ′ , and (t1, . . . , tk1+k′1
) = (t

(1)
1 , . . . , t

(1)
k1+k′1

), ..., (tk1+···+k′n−1+1, . . . , tP ) =

(t
(n)
1 , . . . , t

(n)
kn+k′n

), and (u1, . . . , ul1+l′1
) = (u

(1)
1 , . . . , u

(1)
l1+l′1

), etc.,

(ul1+···+l′n−1+1, . . . , uP ′) = (u
(n)
1 , . . . , u

(n)
ln+l′n

).

We set εx(α) = i if xα = x
(i)
j for some j (x is t or u). It is easy to check that

defines an algebra structure on FO(2) .

Let ∆FO be the linear map from FO to FO(2) , which maps FOk to
⊕k′+k′′=kFO

(2)
k′,k′′ as follows

∆FO(P )(t
(1)
1 , . . . , t

(n)
k′n
, u

(1)
1 , . . . , u

(n)
k′′n

) = P (t
(1)
1 , . . . , t

(1)
k′1
, u

(1)
1 , . . . , u

(1)
k′′1
, t

(2)
1 , . . . , u

(n)
k′′n

).

Then it is immediate that ∆FO defines an algebra morphism.

Consider the (Nn)2 -graded map

µ : FO(2) → ∪alim←N(FO≥a ⊗C[[~]] ŜL)/[FO≥aN ⊗C[[~]] ŜL]

defined by

µ(P ) =
∑

p1,...,pN′≥0

(tp1
1 · · · t

pN′
N ′ P̄α)⊗ (P̄ ′αKεt(1)[−p1] · · ·Kεt(N ′)[−pN ′ ])
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if P (t1, . . . , tN , u1, . . . , uN ′) belongs to FO
(2)
k,k′ , and we set

P (t1, . . . , uN ′)
∏

1≤l≤N,1≤l′≤N ′

tl − ul′
q〈εt(l),εu(l′)〉tl − ul′

=
∑
α

P̄α(t1, . . . , tN)P̄ ′α(u1, . . . , uN ′)

(the expansion is for ul′ � tl ).

Let P,Q belong to FOk,l and FOk′,l′ . µ(P )µ(Q) is equal to∑
α,β

(
tp1
1 · · · t

pN
N Pα(t1, · · · , tN)⊗ P ′α(u1, . . . , uP )Kεt(1)[−p1] · · ·Kεt(N)[−pN ]

)
·(39)

·
(
t
′p′1
1 · · · t

′p′
N′

N ′ Qα(t′1, · · · , t′N ′)⊗Q′α(u′1, . . . , u
′
P ′)Kεt′ (1)[−p′1] · · ·Kεt′ (1)[−p′N ′ ]

)
;

since

(
∑
i≥0

tiKα[−i])Q(u1, . . . , uP ) =
P∏
i=1

ui − q〈εu(i),α〉t

q〈εu(i),α〉ui − t
Q(u1, . . . , uP )(

∑
i≥0

tiKα[−i]),

(39) is equal to∑
γ

∑
α,β

(fγ(t1, . . . , tN)tp1
1 · · · t

pN
N Pα(t1, · · · , tN)⊗ P ′α(u1, . . . , uP )) · (40)

·
(
t
′p′1
1 · · · t

′p′
N′

N ′ Qα(t′1, · · · , t′N ′)⊗ gγ(u′1, . . . , u′P ′)Q′α(u′1, . . . , u
′
P ′)Kεt(1)[−p1] · · ·

Kεt(N)[−pN ]Kεt′ (1)[−p′1] · · ·Kεt′ (1)[−p′N ′ ]),

with ∑
γ

fγ(t1, . . . , tN)gγ(u
′
1, . . . , u

′
P ′) =

∏
1≤i≤N,1≤j≤P ′

uj − q〈εu(j),α〉ti
q〈εu(j),α〉uj − ti

.

After some computation, one finds that (40) coincides with µ(PQ). Therefore µ
is an algebra morphism.

It follows that the composition µ ◦ ∆FO is an algebra morphism. This
composition coincides with ∆SL , which is therefore an algebra morphism.

Remark 3.5. ∆k′,k′′

SL may also be expressed by the formula

∆k′,k′′

SL (P )

=
∑

p1,...,pN′≥0

N ′∏
i=1

upii P
′′′
α (u1, . . . , uN ′)

⊗
N ′∏
i=1

Kε(i)[−pi]P ′′′′α (uN ′+1, . . . , uN)

 ,
where ∑

α

P ′′′α (u1, . . . , uN ′)P
′′′′
α (uN ′+1, . . . , uN)

= P (t1, . . . , tN)
∏

1≤l≤N ′,N ′+1≤l′≤N

ul′ − ul
ul′ − q〈ε(l),ε(l′)〉ul

.
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Corollary 3.1. There is a unique algebra morphism ∆VL from VL to

lim←N(VL ⊗C[[~]] V̂L)/(I(∞)
N ⊗C[[~]] V̂L),

such that

∆VL(hi[k]V
L

) = hi[k]V
L ⊗ 1 + 1⊗ hi[k]V

L

, 1 ≤ i ≤ n, k ≤ 0,

∆VL(tki ) =
∑
l≥0

tk+l
i ⊗Ki[−l] + 1⊗ tki 1 ≤ i ≤ n, k ∈ Z.

Proof. For each i , ∆SL maps FOεi to lim←N(VL ⊗C[[~]] V̂L)/(I(∞)
N ⊗C[[~]] V̂L),

because I≥aN,k ∩ 〈LV ≥a〉 ⊂ Iφ(k,n) . It follows that ∆SL maps VL to the same space.
Call ∆VL the restriction of ∆SL to VL . This restriction is clearly characterized
by its values on hi[k] and tki .

•Construction of a Hopf algebra structure

Recall that we showed in Lemma 3.3 that VL is a free C[[~]]-module. Let us set
VL0 = VL/~VL .

Let IN be the image of the ideal I(∞)
N of VL by the projection from VL to

VL0 . By Lemma 3.4, 2), and since the map from VL to VL0 is surjective, the ideals
IN have property (∗), so that ∩N>0IN is a two-sided ideal of VL0 . Define W0 as
the quotient algebra W0 = VL0 / ∩N>0 IN . We are going to define a Hopf algebra
structure on W0 .

Since the VL0 ⊗ IN have property (∗), lim←N(VL0 ⊗VL0 )/(VL0 ⊗ IN) has an
algebra structure. Moreover, the projection

[lim←N(VL ⊗C[[~]] VL)/(VL ⊗C[[~]] I(∞)
N )]⊗C[[~]] C

→ lim←N(VL0 ⊗ VL0 )/(VL0 ⊗ IN),

is an algebra isomorphism. ∆VL induces therefore an algebra morphism ∆VL0 from

VL0 to lim←N(VL0 ⊗ VL0 )/(VL0 ⊗ IN).

On the other hand, the IN ⊗ VL0 + VL0 ⊗ IN have property (∗), so that
lim←N(VL0 ⊗VL0 )/(IN ⊗VL0 +VL0 ⊗IN) has an algebra structure. The composition
of ∆VL0 with the projection

lim
←N

(VL0 ⊗ VL0 )/(VL0 ⊗ IN)→ lim
←N

(VL0 ⊗ VL0 )/(IN ⊗ VL0 + VL0 ⊗ IN)

then yields an algebra morphism p′ ◦∆V0
L

from V(0)
L to

lim←N(VL0 ⊗ VL0 )/(IN ⊗ VL0 + VL0 ⊗ IN).

We have for any k ≥ N , ∆V(tki ) ∈ IN ⊗ V̂ + V ⊗ ÎN , therefore ∆VL(IN) ⊂
IN ⊗C[[~]] V̂ + V ⊗C[[~]] ÎN , therefore ∆VL0 (IN) ⊂ IN ⊗ V0 + V0 ⊗ IN . It follows

that p′ ◦ ∆V0
L

maps the intersection ∩N>0IN to the kernel of the projection

lim←N(VL0 ⊗ VL0 )/(VL0 ⊗ IN)→ lim←N(VL0 ⊗ VL0 )/(IN ⊗ VL0 + VL0 ⊗ IN).

We have then an algebra morphism ∆̃W0 from W0 to
lim←N(VL0 ⊗ VL0 )/(IN ⊗ VL0 + VL0 ⊗ IN).
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In Proposition 1.3, we defined a surjective algebra morphism i~ from U~Lb+

to VL . It induces an algebra morphism i from ULb+ to VL0 , which is also
surjective.

Let T be the free algebra generated by the hi[k](T ), k ≤ 0, i = 1, . . . , n and
ei[k](T ), i = 1, . . . , n, k ∈ Z . We have a natural projection of T on ULb+ , sending
each x[k](T ) to x⊗ tk ; composing it with ι , we get a surjective algebra morphism
π from T to VL0 .

We have a unique algebra morphism ∆T : T → T ⊗ T , such that

∆T (xi[k](T )) = xi[k](T ) ⊗ 1 + 1⊗ xi[k](T ).

Lemma 3.6. Let πV0→W0 be the natural projection from V0 to W0 . We have
the identity

∆̃W0 ◦ πV0→W0 = (ν ◦ (πV0→W0 ⊗ πV0→W0)) ◦∆T , (41)

where ν is the natural projection from (VL0 ⊗VL0 ) to lim←N(VL0 ⊗VL0 )/(IN ⊗VL0 +
VL0 ⊗ IN).

Proof. The two sides are algebra morphisms from W0 to
lim←N(VL0 ⊗VL0 )/(IN ⊗VL0 + VL0 ⊗IN). The identity is satisfied on generators of
W0 , therefore it is true.

Let J be the kernel of the projection πV0→W0 ◦ π from T to W0 . It follows
from (41) that ∆T (J) in contained in the kernel of ν ◦ (π ⊗ π), which is the
preimage by π⊗π of Kerν ; Kerν is equal to ∩N>0(IN ⊗VL0 +VL0 ⊗IN), which is
(∩N>0IN)⊗VL0 + VL0 ⊗ (∩N>0IN). Therefore (π ⊗ π)−1(Kerν) is J ⊗ T + T ⊗ J .
We have shown that ∆T (J) ⊂ J ⊗ T + T ⊗ J . We have shown:

Proposition 3.3. ∆T induces a cocommutative Hopf algebra structure on T/J
=W0 .

We will denote by ∆W0 the coproduct induced by ∆T on W0 .

•Compatibility of ∆W0 with ∆VL0
Recall that ∆VL0 is an algebra morphism from VL0 to lim←N(VL0 ⊗VL0 )/(IN ⊗VL0 ).

Let us denote by ∆VL0 ;N the induced map from VL0 to (VL0 ⊗VL0 )/(IN ⊗VL0 ). We

have seen that for any integer p > 0, ∆VL0 ;N(Ip) is contained in the image of

Ip⊗VL0 +VL0 ⊗Ip by the projection map VL0 ⊗VL0 → (VL0 ⊗VL0 )/(IN ⊗VL0 ). This
image is

[(Ip + IN)⊗ VL0 + VL0 ⊗ Ip]/(IN ⊗ VL0 ).

Therefore, ∆VL0 ;N(∩p>0Ip) is contained in the intersection of these spaces, which
is

[IN ⊗ VL0 + VL0 ⊗ (∩p>0Ip)]/(IN ⊗ VL0 ).

It follows that ∆VL0 ;N induces a linear map W0 → (W0⊗W0)/(J N ⊗W0),

where J N is the image of IN by the projection map V0 →W0 .

It also induces an algebra morphism W0 → lim←N(W0 ⊗W0)/(J N ⊗W0).

Then this algebra morphism factors through the coproduct map ∆W0 de-
fined above. To check this, it is enough to check it on generators x[k] of W0 .

It follows that



Enriquez 51

Lemma 3.7. 1) i~ induces a map i : ULb+ →W0 , which is a surjective Hopf
algebra morphism.

2) Let aL be the Lie algebra of primitive elements of W0 . The restriction
ι|Lb+ of ι to Lb+ to aL induces a surjective Lie algebra morphism.

Proof. ∆W0 ◦ i and (i ⊗ i) ◦∆Ub+ are both algebra morphisms from Ub+

to W0 ⊗W0 . Their values on the x⊗ tk coincide, therefore they are equal. This
shows 1).

2) follows directly from 1) and from Proposition 2.1.

•Construction of δW0

Define V̂L⊗̂V̂L as the tensor product

C[Xs[0]V
L(1), Xs[0]V

L(2)][[~]]⊗ C[Xs[k]V
L(1), Xs[k]V

L(2), k > 0]⊗ 〈LV 〉 ⊗C[[~]] 〈LV 〉;

endow V̂L⊗̂V̂L with the unique ~-adically continuous algebra structure such that
VL ⊗C[[~]] VL → VL⊗̂VL , Xs[k]V

L(1) 7→ Xs[k]V
L ⊗ 1, Xs[k]V

L(2) 7→ 1 ⊗ Xs[k]V
L

,
1⊗x⊗1 7→ x⊗1, 1⊗1⊗x 7→ 1⊗x (where x is in 〈LV 〉) is an algebra morphism.

Define in the same way V̂L⊗̂Î(∞)
N as the tensor product

C[Xs[k]V
L(1), Xs[k]V

L(2)][[~]]⊗ 〈LV 〉 ⊗ I(∞)
N ,

where the tensor products are over C[[~]] . Each V̂L⊗̂Î(∞)
N is then a left ideal of

V̂L⊗̂VL .

Clearly, we have (V̂L⊗̂V̂L)/~(V̂L⊗̂V̂L) = VL0 ⊗ VL0 . Moreover,

[(V̂L⊗̂V̂L)/(V̂L⊗̂Î(∞)
N )]/~[(V̂L⊗̂V̂L)/(V̂L⊗̂Î(∞)

N )] = (VL0 ⊗ VL0 )/(VL0 ⊗ IN).

Then ∆VL is an algebra morphism from VL to lim←N(V̂L⊗̂V̂L)/(Î(∞)
N ⊗̂V̂L).

We again denote by ∆VL the composition of this map with the projection on
lim←N(V̂L⊗̂V̂L)/(Î(∞)

N ⊗̂V̂L + V̂L⊗̂Î(∞)
N ). Define ∆′VL as ∆L

V composed with the
exchange of factors.

We have then

(∆VL −∆′VL)(VL) ⊂ lim
←N

(~V̂L⊗̂V̂L)/[(Î(∞)
N ⊗̂V̂L + V̂L⊗̂Î(∞)

N ) ∩ ~V̂L⊗̂V̂L].

Since I(∞)
N is divisible in VL , we have

(Î(∞)
N ⊗̂V̂L + V̂L⊗̂Î(∞)

N ) ∩ ~(V̂L⊗̂V̂L) = ~(Î(∞)
N ⊗̂V̂L + V̂L⊗̂Î(∞)

N ),

so
∆VL−∆′

VL
~

is a linear map from VL to

lim
←N

(V̂L⊗̂V̂L)/(Î(∞)
N ⊗̂V̂L + V̂L⊗̂Î(∞)

N ).

Define I(1)
N as the image of Î(1)

N in VL0 by the projection VL → VL0 .

Let us set δVL0 =
∆VL−∆′

VL
~

mod ~ . Then δVL0 is a linear map from VL0 to

lim
←N

(VL0 ⊗ VL0 )/(IN ⊗ VL0 + VL0 ⊗ IN).
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Moreover,
∆VL−∆′

VL
~

maps I(∞)
N to the inverse limit

lim
←M

(Î(∞)
N ⊗̂V̂L + V̂L⊗̂Î(∞)

N )/(Î(∞)
M ⊗̂V̂L + V̂L⊗̂Î(∞)

M ).

Therefore, δVL0 maps IN to lim←M(IN ⊗VL0 + VL0 ⊗ IN)/(IM ⊗VL0 + VL0 ⊗ IM).

Therefore, δVL0 (∩NIN) is zero. It follows that δVL0 induces a map δW0 from W0 to

lim←N(W0 ⊗W0)/(J N ⊗W0 +W0 ⊗ J N).

•Identities satisfied by δW0

Lemma 3.8. δW0 satisfies

(∆W0 ⊗ id) ◦ δW0 = (δ2→23
W0

+ δ2→13
W0

) ◦∆W0 , (42)

Alt(δW0 ⊗ id) ◦ δW0) = 0, (43)

δW0(xy) = δW0(x)∆W0(y) + ∆W0(x)δW0(y) for x, y in W0, (44)

where we use the notation of sect. 2.. The two first equalities are identities of maps
from W0 to lim←NW⊗3

0 /(J N ⊗W⊗2
0 +W0 ⊗ J N ⊗W0 +W⊗2

0 ⊗ J N).

Proof. ∆VL maps I(∞)
N to

lim
←M

(Î(∞)
N ⊗̂V̂L + V̂L⊗̂Î(∞)

N )/(Î(∞)
M ⊗̂V̂L + V̂L⊗̂Î(∞)

M ).

Therefore, (∆VL⊗ id)⊗∆VL and (id⊗∆VL)⊗∆VL both define algebra morphisms

from VL to lim←N(V̂L)⊗̂3/[Î(∞)
N ⊗̂(V̂L)⊗̂2 + V̂L⊗̂Î(∞)

N ⊗̂V̂L + (V̂L)⊗̂2⊗̂Î(∞)
N ] . These

morphisms are the restrictions to VL of (∆SL ⊗ id)⊗∆SL and (id⊗∆SL)⊗∆SL ,
which coincide, therefore they coincide.

The intersection ∩N>0I(∞)
N is a two-sided ideal of VL . Define W as the

quotient VL/ ∩N>0 I(∞)
N . Let JN be the image of I(∞)

N by the projection of VL
on W . Define Ŵ and ĴN in the same way, replacing VL and I(∞)

N by V̂L and

Î(∞)
N . Then ∆VL induces an algebra morphism

∆W :W → lim←N(Ŵ⊗̂Ŵ)/(ĴN⊗̂Ŵ + Ŵ⊗̂JN).

Moreover, (∆W ⊗ id) ◦ ∆W and (id ⊗ ∆W) ◦ ∆W define coinciding alge-
bra morphisms from W to lim←N(Ŵ⊗̂3)/[ĴN⊗̂Ŵ⊗̂2 + Ŵ⊗̂JN⊗̂Ŵ + Ŵ⊗̂2⊗̂ĴN ] .
Moreover, W is a free C[[~]]-module, and we have a topological Hopf algebra
isomorphism of W/~W with W0 . The usual manipulations then imply the state-
ments of the Lemma.

The identities of Lemma 3.8 are the topological versions of the co-Leibnitz,
co-Jacobi and Hopf compatibility rules.

•Topological Lie bialgebra structure on aL

Define a
(N)
L as the intersection aL ∩ J N .

Lemma 3.9. J N is the left ideal (UaL)a
(N)
L of W0 = UaL . Moreover, a

(N)
L is

a Lie subalgebra of aL .
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Proof. JN is a left ideal of W , therefore J N is a left ideal of W0 . Moreover,
∆W(JN) is contained in the inverse limit lim←M(ĴN⊗̂Ŵ + Ŵ⊗̂ĴN)/(ĴM⊗̂Ŵ +
Ŵ⊗̂ĴM). It follows that ∆W0(J N) is contained in J N ⊗W0 +W0 ⊗ J N .

The first statement of Lemma 3.9 now follows from Lemma 2.4. For x, y in
a

(N)
L , [x, y] = xy − yx belongs to aL and also to (UaL)a

(N)
L , so it belongs to a

(N)
L .

Therefore a
(N)
L is a Lie subalgebra of aL .

Lemma 3.10. 1) The restriction of δW0 to aL defines a map δaL : aL →
lim←N(aL ⊗ aL)/(a

(N)
L ⊗ aL + aL ⊗ a

(N)
L ).

2) For any element x of aL , ad(x)(a
(N)
L ) in contained in a

(N−k(x))
L . The

tensor square of the adjoint action therefore induces a aL -module structure on
lim←N(aL ⊗ aL)/(a

(N)
L ⊗ aL + aL ⊗ a

(N)
L ). δaL is a 1-cocycle of aL with values in

this module.

3) We have δaL(a
(N)
L ) ⊂ lim←M(a

(N)
L ⊗aL+aL⊗a

(N)
L )/(a

(M)
L ⊗aL+aL⊗a

(M)
L ).

(δaL ◦ id) ◦ δaL therefore defines a map from aL to lim←Na⊗3
L /(a

(N)
L ⊗ a⊗2

L + aL ⊗
a

(N)
L ⊗ aL + a⊗2

L ⊗ a
(N)
L ). It satisfies the rule

Alt(δaL ⊗ id) ◦ δaL = 0. (45)

Proof. Let us show 1). δW0 induces an map δW0;N :W0 → W⊗2
0 /(J N ⊗W0 +

W0 ⊗ J N). Let a belong to aL . Let us write δW0;N(a) =
∑
i ai ⊗ bi mod

J N ⊗ W0 + W0 ⊗ J N , with (ai)i and (bi)i finite families of W0 such that
(bi mod J N)i is a free family of W0/J N . It follows from (42) that∑

i

(∆W0(ai)− ai ⊗ 1− 1⊗ ai)⊗ bi

belongs to J N ⊗W⊗2
0 +W0⊗J N ⊗W0 +W⊗2

0 ⊗J N . Its image by the projection
W⊗3

0 → [W⊗2
0 /(J N ⊗W0 +W0 ⊗ J N)] ⊗ [W0/J N ] its therefore zero. It follows

that each ai is such that ∆W0(ai)−ai⊗1−1⊗ai belongs to J N⊗W0 +W0⊗J N .
Reasoning by induction on the degree of ai (for the enveloping algebra filtration of
W0 ), we find that ai belongs to aL+J N . Therefore, δW0;n(a) belongs to the image
of aL⊗W0 in W⊗2

0 /(J N ⊗W0 +W0⊗J N). Since δW0;n(a) is also antisymmetric,
it belongs to the image of aL ⊗ aL in this space. This shows 1).

Let us show 2). For x en element of aL and y an element of a
(N)
L ,

[x, y] = xy − yx belongs to J N + J N−k(x) = J N−k(x) ; since it also belongs to

aL , [x, y] belongs to a
(N)
L . That δaL is a 1-cocycle then follows from (44).

Let us show 3). ∆W;M(JN) is contained in (JN ⊗W +W ⊗ JN)/(JM ⊗
W +W ⊗ JM). It follows that δW0;M(J N) is contained in (J N ⊗ W0 +W0 ⊗
øJN)/(JM⊗W0 +W0⊗øJM). Therefore, δaL(a

(N)
L ) is contained in lim←M(a

(N)
L ⊗

aL + aL ⊗ a
(N)
L )/(a

(M)
L ⊗ aL + aL ⊗ a

(M)
L ). (45) in then a consequence of (43).

Define the restricted dual a?L of aL as the subspace of a∗L composed of the

forms φ on aL , such for some N , φ vanishes on a
(N)
L .

Lemma 3.11. The dual map to δaL defines a Lie algebra structure on a?L .
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Proof. Let φ, ψ belong to a?L . Let N be an integer such that φ, ψ vanish

on a
(N)
L . For any integer M let δ̄aL;M be a lift to a⊗2

L of the map δaL;M from aL

to a⊗2
L /(a

(M)
L )⊗ aL + aL ⊗ a

(M)
L induced by δaL .

Let x belong to aL . Then M ≥ N , the number 〈φ ⊗ ψ, δ̄aL;M(x)〉 is
independent of the lift δ̄aL;M and of M ; it defines a linear form [φ, ψ] on aL . The
first statement of Lemma 3.10, 3), implies that [φ, ψ] actually belongs to a?L . It
is clear that (φ, ψ) 7→ [φ, ψ] is linear and antisymmetric in φ and ψ . (45) implies
that it satisfies the Jacobi identity.

•Topological Lie bialgebra structure on Lb+

Define for any integer N , (Lb+)(N) as the Lie subalgebra of Lb+ generated by the
x̄+
i ⊗ tk , k ≥ N, i = 1, . . . , n .

For any x in Lb+ , there exists an integer l(x) such that ad(x)((Lb+)(N))
is contained in (Lb+)(N−l(x)) . It follows that lim←N(Lb+)⊗2/[(Lb+)(N) ⊗ Lb+ +
Lb+⊗ (Lb+)(N)] and lim←N(Lb+)⊗3/[(Lb+)(N)⊗Lb⊗2

+ +Lb+⊗ (Lb+)(N)⊗Lb+ +
Lb⊗2

+ ⊗ (Lb+)(N)] have Lb+ -module structures.

Lemma 3.12. There is a unique map δLb+ from Lb+ to

lim←N(Lb+)⊗2/[(Lb+)(N) ⊗ Lb+ + Lb+ ⊗ (Lb+)(N)],

such that δLb+(h̄i ⊗ tk) = 0 and

δLb+(x̄+
i ⊗ tk) = diAlt[

1

2
(h̄i ⊗ 1)⊗ (x̄+

i ⊗ 1) +
∑
l>0

(h̄i ⊗ t−l)⊗ (x̄+
i ⊗ tk+l)]

and δLb+ is a 1-cocycle. Moreover, δLb+ maps Lb
(N)
+ to lim←M(Lb

(N)
+ ⊗ Lb+ +

Lb+⊗Lb
(N)
+ )/(Lb

(M)
+ ⊗Lb+ +Lb+⊗Lb

(M)
+ ), and it satisfies the co-Jacobi identity

Alt(δLb+ ⊗ id) ◦ δLb+ = 0.

Define the restricted dual (Lb+)? to Lb+ as the subspace of (Lb+)∗ con-
sisting of the forms on Lb+ , which vanish on some (Lb+)(N) . The argument of
Lemma 3.11 implies that δLb+ induces a Lie algebra structure on (Lb+)? .

Lemma 3.13. Define on g ⊗ C((t)), the pairing 〈 , 〉g⊗C((t)) as the tensor
product of the invariant pairing on g and 〈f, g〉 = res0(fg dt

t
). 〈 , 〉g⊗C((t)) an

isomorphism of (Lb+)? with the subalgebra Lb− of Lg defined as h ⊗ C[[t]] ⊕
n− ⊗C((t)). This isomorphism is a Lie algebra antiisomorphism (that is, it is an
isomorphism after we change the bracket of Lb− into its opposite).

The map ι|Lb+ defined in Lemma 3.7, 2), maps the generators of Lb
(N)
+ to

a
(N)
L ; since a

(N)
L is a Lie subalgebra of aL (Lemma 3.9), we have ι|Lb+(Lb

(N)
+ ) ⊂

a
(N)
L .

It follows that ι|Lb+ induces a linear map ι? from a?L to (Lb+)? = Lb− .

Moreover, we have

δaL ◦ ι|Lb+ = (ι⊗2
Lb+

) ◦ δLb+ , (46)
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because both maps are 1-cocycles of Lb+ with values in lim←Na⊗2
L /(a

(N)
L ⊗ aL +

aL ⊗ a
(N)
L ), and coincide on the generators of Lb+ . Equation (46) then implies

that ι? : a?L → Lb− is a Lie algebra morphism.

Let us set (Lb−)pol = h⊗C[t−1]⊕n−⊗C[t, t−1] ; (Lb−)pol is the polynomial
part of Lb− .

Lemma 3.14. The image of ι? contains (Lb−)pol .

Proof. As we have seen, VL is graded by N
n . Each ideal I(∞)

N is a graded

ideal, so that W = V/ ∩N I(∞)
N is also graded by Nn . Moreover, the degree 0

and εi components of I(∞)
N are respectively 0 and ⊕k≥NC[[~]][hi[k]V

L
, k ≤ 0]tki .

Therefore, the components of ∩NI(∞)
N of degree 0 and εi are zero. The components

of W of degrees 0 and εi are therefore respectively C[[~]][hi[k], k ≤ 0] and
⊕l∈ZC[[~]][hi[k]V

L
, k ≤ 0]tli .

W0 is also graded by N
n , and its components of degrees 0 and εi are

C[hi[k], k ≤ 0] and ⊕l∈ZC[hi[k]V
L
, k ≤ 0]tli .

The primitive part aL of W0 is therefore also graded by N
n , and the

computation of ∆W0 on W0[0] and W0[εi] shows that aL[0] = ⊕1≤i≤n,k≤0Chi[k]V
L

and aL[εi] = ⊕k∈ZCtki .

Define linear forms h∗i,k and e∗i,k on aL by the rules that h∗i,k vanishes on

⊕α 6=0aL[α] , and the restriction of h∗i,k to aL[0] maps hj[l]
VL to δijδkl ; and e∗i,k

vanishes on ⊕α 6=εiaL[α] , and the restriction of e∗i,k to aL[εi] maps tli to δkl .

It follows from the computation of I(∞)
N [0] and I(∞)

N [εi] that the h∗i,k and

e∗i,k vanish on all the J N , resp. on the J N , N ≥ k , adn therefore on all the a
(N)
L ,

resp. on the a
(N)
L , N ≥ k . It follows that the h∗i,k and e∗i,k actully belong to a?L .

Since the images of h̄i ⊗ tk and x̄+
i ⊗ tk by ι|Lb+ are hi[k]V

L
and tki , the

images of h∗i,k and e∗i,k by ι? are the generators h̄i ⊗ tk, 1 ≤ i ≤ n, k ≥ 0 and
x̄−i ⊗ tk, 1 ≤ i ≤ n, k ∈ Z , of (Lb−)pol .

The statement follows because ι? is a Lie algebra morphism.

Lemma 3.14 implies that the kernel of ι|Lb+ is contained in contains the
annihilator of (Lb−)pol in Lb+ . Since this annihilator is zero, ι|Lb+ is injective. It
follows that ι|Lb+ is an isomorphism.

Therefore, ι : ULb+ → W0 is also an isomorphism. Recall that ι was
obtained from the surjective C[[~]]-modules morphism ι~ = p ◦ i~ , where p is the
projection of VL on W .

We now use:

Lemma 3.15. Let E and F be C[[~]]-modules, such that F is torsion-free and
E is separated (i.e. ∩N>0~

NE = 0). Let π : E → F be a surjective morphism
of C[[~]]-modules, such that the induced morphism π0 : E/~E → F/~F is an
isomorphism of vector spaces. Then π is an isomorphism.

Proof. Let x belong to Kerp . π0(x mod ~) is zero, therefore x belongs to
~E . Set x = ~x1 . ~π(x1) is zero; since F is torsion-free, x1 belongs to Kerp .
Therefore, Kerp ⊂ ~Kerp . It follows that Kerp ⊂ ∩N>0~

NE , so that Kerp = 0.
It follows that π is an isomorphism.
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Recall that U~Ln+ was defined as the quotient A/(∩N>0~
NA). It follows

that U~Ln+ is separated. The above Lemma therefore shows that p ◦ i~ is an
isomorphism. Since p and i~ are both surjective, they are both isomorphisms.
Corollary 1.4 follows, together with ∩N>0I(∞)

N = 0 (from where also follows that
∩N>0IN = 0), and also, by Lemma 3.3, Theorem 1.3, 1).

It is then clear that the map U~Ln+ → U~Lntop+ is injective and that U~Lntop+

is the ~-adic completion of U~Ln+ . This proves Theorem 1.3, 2).

There is a unique algebra morphism ς from Ũ~Ln+ to U~Ln+ , which sends

each ei[k]Ã to ei[k] . As we have seen in Proposition 3.1, ς induces an isomorphism
between Ũ~Ln+/~Ũ~Ln+ and U~Ln+/~U~Ln+ . Moreover, Ũ~Ln+ is separated
and by Theorem 1.3, 1), U~Ln+ is free. Lemma 3.15 then implies that ς is an
isomorphism.

Remark 3.16. Let FO(0) be the subspace of FO formed of the functions
satisfying f((i)

α ) = 0 when t
(i)
1 = q2

di
t
(i)
2 = · · · = q

−2aij
di

t(i)aij = q
−aij
di

t
(j)
1 for any i, j .

We showed in [11] that the image of U~Ln+ in FO is contained in FO(0)[~−1] . It
is natural to expect that this image is actually the subspace of FO(0) consisting in
the functions such that f(t1, · · · , tN) = O(~k) whenever k out of the N variables
ti coincide.

3.2. Nondegeneracy of the pairing 〈 , 〉U~Ln± (proof of Theorem 1.4).

Let us define T (LV ) as the tensor algebra ⊕k≥0(LV )⊗C[[~]]k , where LV =
⊕ni=1C[[~]][ti, t

−1
i ] . Denote in this algebra, the element tli of LV as fi[l]

(T ) .

Define a pairing

〈 , 〉FO×T (LV ) : FO× T (LV )→ C((~))

as follows: if P belongs to FOk ,

〈P, fi1 [l1](T ) · · · fiN′ [lN ](T )〉FO×T (LV ) (47)

= δ
k,
∑N

j=1
εij

resuN=0 · · · resu1=0P (t1, · · · , tN)
∏
l<l′

ul′ − ul
q〈εil′ ,εil 〉ul′ − ul

ul11 · · ·u
lN
N

du1

u1

· · · duN
uN

 ,
where we set as usual (t1, . . . , tk1) = (t

(1)
1 , . . . , t

(1)
k1

), etc.,

(tk1+···+kn−1+1, . . . , tk1+···+kn) = (t
(n)
1 , . . . , t

(n)
kn

),

and u1 = t
(i1)
1 , u2 = t

(i2)
1 if i2 6= i1 and in general us = t

(is)
νs+1 , where νs is the

number of indices t such that t < s and it = is .

Lemma 3.17. The pairing 〈 , 〉FO×T (LV ) verifies (T (LV ))⊥ = 0.

Proof. Assume that the polynomial P of FOk is such that (47) vanishes
for any families of indices (ik) and (lk). Fix a family of indices (ik) such that
k =

∑N
j=1 εij . Since (47) vanishes for any family (lk), the rational function

P (t1, · · · , tN)
∏
l<l′

ul′−ul
q
〈εil′

,εil
〉
ul′−ul

vanishes, therefore P is zero.
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Let 〈 , 〉〈LV 〉×T (LV ) be the restriction of 〈 , 〉FO×T (LV ) to 〈LV 〉 × T (LV ).
Lemma 3.17 implies that T (LV )⊥ = 0 for this pairing. Using the isomorphism
of Theorem 1.3 between 〈LV 〉 and U~Ln+ , we may view 〈 , 〉〈LV 〉×T (LV ) as a
pairing 〈 , 〉U~Ln+×T (LV ) between U~Ln+ and T (LV ). So again T (LV )⊥ = 0 for
〈 , 〉U~Ln+×T (LV ) .

Let p be the quotient map from T (LV ) to U~Ln+ . Composing

〈 , 〉U~Ln+×T (LV )

with p⊗ id , we get a pairing 〈 , 〉T (LV )×T (LV ) between T (LV ) and itself. It follows
from (47) and (10) that 〈 , 〉T (LV )×T (LV ) is given by formula (11). Moreover, it fol-
lows from [11], Proposition 4.1 (relying on an identity of [18]) that 〈 , 〉T (LV )×T (LV )

induces a pairing 〈 , 〉U~Ln+×U~Ln− between U~Ln+ and U~Ln− .

Since 〈 , 〉U~Ln+×U~Ln− is induced by the pairing 〈 , 〉U~Ln+×T (LV ) , and
the annihilator of T (LV )⊥ for this pairing is zero, we get that (U~Ln+)⊥ = 0
for 〈 , 〉U~Ln+×U~Ln− . Exchanging the roles of U~Ln+ and U~Ln− , we find that
(U~Ln−)⊥ = 0. Theorem 1.4 follows.

Remark 3.18. This argument is completely similar to the proof of Theorem
1.2, the pairing between U~Ln+ and FO playing the role of the pairing beween
U~n+ and Sh(V ).

3.3. The form of the R-matrix (proof of Proposition 1.4).

Let us define Aa,b+ as the subalgebra of U~Ln+ generated by the ei[k] ,
i = 1, . . . , n , a ≤ k ≤ b .

Lemma 3.19. Aa,b+ is a graded subalgebra of U~Ln+ . We have Aa,b+ + I+
≤a +

I+
≥b = U~Ln+ . Moreover, the graded components of Aa,b+ are finite C[[~]]-modules.

Proof. Let us define A≤a+ and A≥b+ as the subalgebras of A+ generated by
the ei[k] , k ≤ a (resp. k ≥ b). It follows from Theorem 1.3 that the product
defines a surjective morphism from A≤a+ ⊗Aa,b+ ⊗A≥b+ to A+ . The Lemma follows.

Since I+
≥a[α] + I+

≤b[α] ⊂ (I+
≥a[α] + I+

≤b[α])⊥⊥ , it follows from Lemma 3.19
that (I+

≥a[α] + I+
≤b[α])⊥⊥ is a submodule of A+ with a complement of finite type.

Moreover, this module is also divisible, so that A+[α]/(I+
≥a[α]+I+

≤b[α])⊥⊥ is torsion-
free. Since it is finitely generated, it follows that A+[α]/(I+

≥a[α] + I+
≤b[α])⊥⊥ is a

free, finite-dimensional C[[~]]-module.

On the other hand, (I+
≥a[α] + I+

≤b[α])⊥ is a submodule of

HomC[[~]](A+[α]/(I+
≥a[α] + I+

≤b[α]),C[[~]]),

and is therefore a C[[~]]-module of finite type. It is a submodule of A−[−α] , so it
is torsion-free. It follows that (I+

≥a[α] + I+
≤b[α])⊥ is also a free, finite-dimensional

C[[~]]-module.

By construction, the pairing induced by 〈 , 〉U~Ln± between
(I+
≥a[α] + I+

≤b[α])⊥ and A+[α]/(I+
≥a[α] + I+

≤b[α])⊥⊥ is nondegenerate.
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The fact that Pa,b[α] defines an element of lim←a,bA+/(I
+
≤a + I+

≥b)
⊥⊥ ⊗C[[~]]

A−[~−1] follows from the following fact: if F ⊂ G is an inclusion of finite dimen-
sional vector spaces, and idF and idG are the identity elements of F ⊗ F ∗ and
G⊗G∗ , then their images in G⊗ F ∗ by the natural maps coincide.

Let x be any product of the fi[k] , with c ≤ k ≤ d . Then x is orthogonal to
I+
≤−c + I+

≥−d . It follows that ∪a,b(I+
≤a + I+

≥b)
⊥ = 0, therefore ∩a,b(I+

≤a + I+
≥b)
⊥⊥ = 0.

The proof of Proposition 1.4 follows then the proof of Proposition 1.1.

Remark 3.20. We have in the sl2 case

P =
∑
r

∑
i1<···<ir,nr≥0

~
n1+···+nr

[n1]!q · · · [nr]!q
en1
i1 · · · e

nr
ir ⊗ f

n1
−i1 · · · f

nr
−ir ;

for r ≤ 2, this formula is shown in [7], App. B. It would be interesting to obtain
analogous explicit formulas in Yangian or elliptic cases.

4. Toroidal algebras (proofs of Propsositions 1.5, 1.6)

4.1. Proof Proposition 1.5.

1) follows from the argument of the beginning of the proof of Proposition
3.1. The first statements of 2) are obvious.

The proof of Proposition 3.1 then implies that j+ induces a surjective Lie
algebra morphism from F̃ to g ⊗ C[t, t−1] , which restricts to an isomorphim
between ⊕α∈±∆+,α real;k∈ZF̃ [(α, k)] and (⊕α∈±∆+,α realg[α]) ⊗ C[t, t−1] , which are

the real roots part of both Lie algebras, and that F̃+[(α, k)] = 0 if α does not
belong to ∆+ .

It follows that Kerj+ is a graded subalgebra of F̃+ , contained in

⊕α∈∆+,α imaginary,k∈ZF̃+[(α, k)].

4.2. Proof of Proposition 1.6.

Let us prove 1). Let us denote by Z(F̃+) the center of F̃+ . Let us first
prove that Kerj+ ⊂ Z(F̃+). Let x belong to Kerj+ . We may assume that x is
homogeneous of degree nδ . Then any nδ + αi , which is a real root. [ẽi[k], x] is
homogeneous of degree nδ + αi , which is a real root. Since the restriction of j+

on the subspace of F̃ of degree nδ+αi is injective, j+([ẽi[k], x]) is nonzero unless
[ẽi[k], x] is itself zero. But j+([ẽi[k], x]) is equal to [j+(ẽi[k]), j+(x)], which is zero
because j+(x) = 0. Therefore, [ẽi[k], x] is equal to zero.

On the other hand, since j+ is surjective and the center of Ln+ is zero,
Kerj+ = Z(F̃+). This proves 1).

Let us prove 2). The argument used in the proof of 1) implies that Kerj+

is contained in the center Z(F̃ ) of F̃ . In the same way, one proves that Kerj− is
contained in Z(F̃ ), therefore Kerj ⊂ Z(F̃ ). On the other hand, F̃ is perfect.
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It follows that we have a surjective Lie algebra morphism j′ : t→ F̃ , such
that the composition t→ F̃ → Lg is the natural projection of t on Lg . Let j′+ be
the restriction of j′ to t+ . For any i, k , we have j′+(ei[k]t) = ẽi[k]+ki,k , with ki,k in
Ker(j). Let λ be any linear map from t+ to Ker(j), such that λ(ei[k]t) = ki,k . Set
j̃′+ = j′+− λ . Then j̃′+ is a Lie algebra map from t+ to F̃ . Since j̃′+(ei[k]t) = ẽi[k]

and the ei[k]t generate t+ , the image of j̃′+ is contained in F̃+ .

Moreover, j̃′+ is graded, and it coincides with j′+ on the nonsimple roots
subspace [t+, t+] = ⊕α∈∆+\{εi}t+[α] of t+ . It follows that the restrictions of j′ on
[t+, t+] and [t−, t−] are graded.

Let us show that j̃′+ is surjective. Since the composition of j̃′+ with the

projection j : F̃+ → Ln+ is the natural projection, it suffices to show that
any element x of Kerj+ is contained in j̃′+(t+). x belongs to the image of
j′ , so let us set x = j′(y), with y = y+ + y− + y0 , y± in [t±, t±] and y0 in
ht ⊕ ⊕ni=1t+[εi] ⊕ ⊕ni=1t−[−εi] , where ht is the Cartan subalgebra of t (defined
as h[λ±1] ⊕ Z0 , see Remark 4.3). Then j′(y±) belong to [F̃±, F̃±] and j′(y0)
belongs to H̃ ⊕ ⊕ni=1F̃+[εi] ⊕ ⊕ni=1F̃−[−εi] ⊕ Ker(j). Moreover, the map from
ht ⊕ ⊕ni=1t+[εi] ⊕ ⊕ni=1t−[−εi] to H̃ ⊕ ⊕ni=1F̃+[εi] ⊕ ⊕ni=1F̃−[−εi] induced by j′ is
injective, therefore y0 = 0. It follows that y− = 0 and x = j′(y+) = j̃′+(y+),

because j̃′+ coincides with j′ on [t+, t+] .

Lemma 4.1. 1) Assume that A is not of type A
(1)
1 . There is a unique Lie

algebra map j′′ from F̃+ to t+ such that j′′(ẽi[k]) = ei[k]t , for any i = 0, . . . , n
and k integer.

2) Assume that A is the Cartan matrix of type A
(1)
1 . There is a unique Lie

algebra map j′′ from F̃+ to t+/ ⊕l∈Z CKδ[l] such that j′′(ẽi[k]) = ei[k]t , for any
i = 0, 1 and k integer.

Proof. One should just check that the defining relations of F̃+ are satisfied by

the ei[k]t (in the A
(1)
1 case, by the images of ei[k]t in t+/ ⊕l∈Z CKδ[l]). This is

the case when A is not of type A
(1)
1 , because in that case we set ei = x̄i⊗λδi0 and

we always have 〈x̄i, x̄j〉ḡ = 0 for i 6= j .

If A is of type A
(1)
1 , we have x0 = f̄ ⊗ λ , x1 = ē , therefore

[x0[l], x1[m]] = (−h̄λ⊗ tl+m,−mKδ[l +m]),

so that [x0[l + 1], x1[m]] = [x0[l], x1[m+ 1]] holds in t+/⊕l∈Z CKδ[l] .

Let us now prove Proposition 1.6, 2). The composition j̃′+◦j′′ are Lie algebra

maps from F̃+ → t+ → F̃+ (F̃+ → t+/ ⊕k∈Z CKδ[k] → F̃+ in the A
(1)
1 case),

which map the generators ẽi[k] to themselves. Therefore, F̃+ can be viewed as a

subalgebra of t+ (of t+/⊕k∈Z CKδ[k] in the A
(1)
1 case). This subalgebra contains

the elements ei[k]t of t+ (resp. of t+/ ⊕k∈Z CKδ[k]). Since the Lie subalgebra of
t+ generated by the ei[k]t is t+ itself, the image of F̃+ is equal to t+ (resp. to
t+/⊕k∈Z CKδ[k]). This proves Proposition 1.6, 2).
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Remark 4.2. Proposition 1.6, 1), can also be obtained using the presentation
given in [23] of t . In this paper, one shows that t is isomorphic to the algebra
Ḟ with generators ė±i [k], ḣi[k] and ċ and relations ad(ė±i [0])1−aij(ė±j [k]) = 0,

[ė±i [k], ė±i [l]] = 0, [ḣi[k], ė±j [l]] = ±aij ė±j [k + l] , [ė+
i [k], ė−j [l]] = δijḣi[k + l] +

iδi+j,0〈ei, fi〉ḡc , [ḣi[k], ḣj[k]] = kδk+l,0〈hi, hj〉ḡc , c central. It is then clear that

there is a Lie algebra map from t to F̃ . On the other hand, the system of relations
[ė+
i [k], ė+

i [l]] = ad(ė±i [0])1−aij(ė±j [k]) = 0 is not a presentation of t+ , because the
ideal generated by these relations is not preserved by the analogues of the Φ±i,k of
the proof of Lemma 3.2.

Remark 4.3. Toroidal Manin triples. It is easy to define an extension of the
Lie algebra t with an invariant scalar product. Recall first ([23, 20]) that if g is the
central extension of the Lie algebra ḡ[λ, λ−1] , t is the universal central extension
of ḡ[λ±1, µ±1] . We have therefore

t = ḡ[λ±1, µ±1]⊕ Z(t).

Z(t) is isomorphic to Ω1
A
/dA , where A = C[λ±1, µ±1] . We have

Z(t) = ⊕k,l∈ZKkδ[l]⊕ Cc,

with Kkδ[l] = the class of 1
k
λkµl−1dµ if k 6= 0 , K0[l] = the class of µl dλ

λ
, c = the

class of dµ
µ

.

Define for k, l in Z , D̃kδ[l] as the derivations of ḡ[λ±1, µ±1] equal to
λkµl(lλ∂λ − kµ∂µ) if k 6= 0 and to µlλ∂λ if k = 0, and d̃ as the derivation
µ∂µ .

Endow C
×2 with the coordinates (λ, µ) and consider on this space the

Poisson structure defined by {λ, µ} = λµ . Let Ham(C×2) be the Lie algebra
of Hamiltonian vector fields on C×2 generated by the functions λkµl , k, l ∈ Z2 ,
log λ and log µ . For any function f on C

×2 , denote by Vf the corresponding
Hamiltonian vector field. Then Ham(C×2) is a Lie algebra, and the map Vλkµl 7→
D̃kδ[l] , for (k, l) 6= (0, 0), V1 7→ 0, Vlog λ 7→ D̃0[0], Vlog µ 7→ d̃ , defines a Lie algebra
map from Ham(C×2) to Der(ḡ[λ±1, µ±1]).

The formula Vf (
∑
i aidbi) =

∑
i{f, ai}dbi + aid{f, bi} defines an action

of Ham(C×2) on Ω1
A
/dA , that is on Z(t). Define D̄kδ[l] and d̄ as the fol-

lowing endomorphisms of t : D̄kδ[l](x, 0) = (D̃kδ[l](x), 0), d̄(x, 0) = (d̃(x), 0),
and D̄kδ[l](0, ω) = (0, Vλkµl(ω)) for (k, l) 6= (0, 0), D̄0[0](0, ω) = (0, Vlog λ(ω)),
d̄(0, ω) = (0, Vlog µ(ω)). These endomorphisms again define derivations of t , and
we have now a Lie algebra map from Ham(C×2) to Der(t). Let t̃ be the corre-
sponding crossed product Lie algebra of t with Ham(C×2). We denote by Dkδ[l]
and d the elements of t̃ implementing the extensions of the derivations D̄kδ[l] and
d̄ to t .

Define for a, b integers, x[a, b] as the element (x ⊗ λaµb) of ḡ[λ±1, µ±1] .
Define the bilinear form 〈 , 〉̃t by

〈x[a, b], x′[a′, b′]〉̃t = 〈x, x′〉ḡδa+a′,0δb+b′,0,
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〈Dkδ[l], Kk′δ[l
′]〉̃t = δk+k′,0δl+l′,0, 〈d, c〉̃t = 1,

and all other pairings of elements x[a, b], Kkδ[l], Dk′δ[l
′], c and d are zero.

Then 〈 , 〉̃t is an invariant nondegenerate bilinear form on t̃ .

Let us define D as the image of Ham(C×2) in t̃ . Let us set D>, D< and
D0 as its subspaces ⊕k>0,l∈ZCDkδ[l] , ⊕k<0,l∈ZCDkδ[l] and ⊕l∈ZCD0[l] ⊕ Cd . We
have then D = D> ⊕ D0 ⊕ D< . In the same way, define Z>, Z< and Z0 as the
subspaces ⊕k>0,l∈ZCKkδ[l] , ⊕k<0,l∈ZCKkδ[l] and ⊕l∈ZCK0[l] ⊕ Cc of Z(t). We
have then Z(t) = Z> ⊕ Z< ⊕ Z0 .

Recall we defined ht as the subalgebra h̄[λ±1] ⊕ Z0 of t . h̃t = ht ⊕ D0 is
then a Lie subalgebra of t̃ . In the spirit of the new realizations, we split h̃t in two
parts.

Let us set h+ = h̄[λ] ⊕ Z0 , h− = h̄[λ−1] ⊕ D0 ; then h+ + h− = h̃t , and
h+ ∩ h− is h̄ .

Define Ln+ and Ln− as the linear spans of the x[a, b] , a ∈ Z, b > 0 (b ≥ 0
if x ∈ n̄+ ), resp. of the x[a, b] , a ∈ Z, b < 0 (b ≤ 0 if x ∈ n̄− ). Ln± are Lie
subalgebras of ḡ[λ±1, µ±1] . Ln± ⊕ Z± and L̃n± = Ln± ⊕ D± ⊕ Z± are also Lie
subalgebras of t̃ . Set t̃± = L̃n± ⊕ h± .

Endow t̃× h̄ with the scalar product 〈 , 〉̃t×h̄ defined by

〈(x, h), (x′, h′)〉̃t×h̄ = 〈x, x′〉̃t − 〈h, h
′〉h̄.

Let p± be the natural projection of t̃± on h̄ . Identify t̃± as the Lie subalgebras of
{(x,±p±(x)), x ∈ t̃±} of t̃ × h̄[λ, λ−1] . t̃± are supplementary isotropic subspaces
of t̃× h̄[λ, λ−1] and define therefore a Manin triple. This Manin triple is a central
and cocentral extension (by Z(t) and D) of the Manin triple

(ḡ[λ±1, µ±1]× h̄, Ln+ ⊕ h̄[λ], Ln− ⊕ h̄[λ−1])

which is a part of the new realizations Manin triple (g[µ±1]× h, Lb+, Lb−).

One may also consider “intermediate” Manin triples, for example

(
{ḡ[λ±1, µ±1]⊕ Z> ⊕D<} × h̄, Ln+ ⊕ h̄[λ]⊕ Z>, Ln− ⊕ h̄[λ−1]⊕D<

)
.

It is a natural problem to quantize the corresponding Lie bialgebra struc-
tures on t̃± . For this, one can think of the following program:

1) to compute the centers of U~Ln+ and (following [15]) the center of
FO. By duality, these central elements should provide derivations of U~Ln− (and
FO) of imaginary degree. Compute these derivations and relations between them.
One could expect that the algebra generated by the derivations is some difference
analogue of the Lie algebra Ham(C×2).

2) it should then be easy, following Theorem 1.3, to prove that the analogue
of i~ is an isomorphism, and to derive from there the quantization of the Lie
bialgebra Lb+ .

We hope to return to these questions elsewhere.
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A Appendix: Lemmas on C[[~]]-modules

Lemma A1. Let E be a finitely generated C[[~]]-module. Let Etors =
{x ∈ E|~kx = 0 for some k > 0} be the torsion part of E . Then Etors is
isomorphic to a direct sum ⊕pi=1C[[~]]/(~ni), where ni are positive integers, and
E is isomorphic to the direct sum of Etors and a free module C[[~]]p

′
.

Proof. As E is finitely generated, we have a surjective C[[~]]-modules mor-
phism C[[~]]N → E . Let K be the kernel of this morphism. Then E is isomorphic
to C[[~]]N/K .

Let us determine the form of K . Let us set K̄i = K ∩ ~iC[[~]]N . Then
we have ~K̄i ⊂ K̄i+1 . Let us set E0 = C

N , and Fi = ~
−iK̄i mod ~ . Then we

have F0 ⊂ F1 ⊂ · · · ⊂ E0 . Let p the integer such that Fk = Fp for k ≥ p . We
can then find a basis (vi)1≤i≤N of E0 such that (v1, . . . , vdimF0) is a basis of F0 ,
(v1, . . . , vdimF1) is a basis of F1 , etc., (v1, . . . , vdimFp) is a basis of Fp . Then K is

the submodule ⊕i(⊕dimFi
k=dimFi−1+1~

i
C[[~]]vk) of E0[[~]] .

It follows that the quotient E0[[~]]/K is isomorphic to a direct sum

⊕pi=1C[[~]]/(~ni)⊕ C[[~]]p
′
.

The statement of the Lemma follows.

Corollary A1. Any C[[~]]-submodule of a finite-dimensional free C[[~]]-mo-
dule is free.

Proof. This follows from the fact that such a submodule has no torsion and
from the above Lemma.

We have also

Lemma A2. Let E be a free C[[~]]-module with countable basis (vi)i≥0 . Any
countably generated C[[~]]-submodule of E is free and has a countable basis.

Proof. We repeat the reasoning of the proof of Lemma A1. Let (wi)i≥0 be a
countable family of E and let F be the sub-C[[~]]-module of E generated by the
wi .

Set F̄i = F ∩ ~iE and Fi = ~
−iF mod ~ . Generating families and bases

for the Fi can be constructed inductively as follows.

A generating family for F0 is (wi mod ~)i≥0 . We can then construct by
induction a partition of N in subsets (ik) and (jk) such that (wik mod ~)k≥0 is a
basis of Span(wi mod ~)i≥0 .

Let λkk′ be the scalars such that wjk −
∑
k′ λkk′wik′ belongs to ~E . Set

w
(1)
k = ~

−1[wjk −
∑
k′ λkk′wik′ ] . Then a generating family of F1 is (wik , w

(1)
k mod

~). We then construct by induction a partition of N in subsets (i
(1)
k ) and (j

(1)
k )

such that (wik , w
(1)

i
(1)
k

mod ~) is a basis of F1 .

It is clear how to continue this procedure. Then (wik , w
(1)

i
(1)
k

, w
(2)

i
(2)
k

. . .) forms

a basis of F .
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[25] Rosso, M., Certaines formes bilinéaires sur les groupes quantiques et une
conjecture de Schechtman et Varchenko, C. R. Acad. Sci. Paris 314 (sér.
I)(1992), 5–8.

[26] —, An analogue of the PBW theorem and the universal R-matrix for
U~sl(N + 1), Commun. Math. Phys. 124 (1989), 307–318.

[27] —, Quantum groups and quantum shuffles, Inv. Math. 133 (1998), 399–
416.

[28] Schauenburg, P., A characterization of Borel-like subalgebras of quantum
enveloping algebras, Commun. in Algebra 24 (1996), 2811–2823.

[29] Tanisaki, T., Killing forms, Harish-Chandra isomorphisms and universal
R-matrices for quantum algebras, Int. Jour. Mod. Phys. A 7 (suppl. 1B)
(1992), 941–961.

[30] Varagnolo, M., and Vasserot, E., Schur duality in the toroidal setting,
Commun. Math. Phys. 182 (1996), 469–484.

B. Enriquez
IRMA and Université Louis Pasteur,
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