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Abstract. In this paper we classify all vector relative differential in-
variants with Jacobian weight for the conformal action of O(n+1,1) on

parametrized curves in IRn . We then write a generating set of independent
conformal differential invariants, for both parametrized and unparametrized

curves, as simple combinations of the relative invariants. We also find an

invariant frame for unparametrized curves via a Gram-Schmidt procedure.
The invariants of unparametrized curves correspond to the ones found in [6].

As a corollary, we obtain the most general formula for evolutions of curves
in IRn invariant under the conformal action of the group.

1. Introduction.

The basic theory of Invariance is due to Lie [14] and Tresse [24] and the intro-
duction of their infinitesimal methods brought with it a rapid development of
geometry which had its high point at the turn of the 19th century. The tradi-
tional approach of Lie was followed by the modern one of Cartan, whose moving
frame method was developed during the first half of the 20th century. He showed
how his method could produce differential invariants for several groups, includ-
ing curves in the Euclidean, affine and projective planes [2], [3]. Invariants of
parametrized projective curves were found early in the 20th century by Wilczyn-
ski in [25]. Those of unparametrized conformal curves were found by Fialkow
in [6]. By differential invariants of parametrized curves we mean functions de-
pending on the curve and its derivatives which are invariant under the action
of the group, but not necessarily under reparametrizations. The invariants of
unparametrized curves are, additionally, invariant under reparametrization. The
theory of invariance is recently undergoing a revival and new methods have been
developed, most notably the regularized moving frame method of Fels and Olver
[4,5]. The recent work of Fels and Olver has led to the discovery of new invariants,
among them differential invariants of parametrized objects. In [18] the authors
used Fels and Olver’s regularized moving frame method to classify all differential
invariants of parametrized projective surfaces. In [16] the author found all invari-
ants of parametrized planar curves under the action of O(3, 1), using the same
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approach. The method of Fels and Olver bypasses many of the complications in-
herent in the traditional method by avoiding completely the normalization steps
that are necessary there. Some applications to image processing have also been
found recently in [22].

The main result of this paper is the classification and the finding of
explicit formulas for all vector relative differential invariants for parametrized
curves in conformal n -space. They produce a moving frame, in the traditional
sense, invariant under the group action (although not under reparametrization.)
After classifying explicitly relative invariants the classification of differential in-
variants becomes immediate, for both parametrized and unparametrized curves.
Their formulas in terms of relative invariants are strikingly simple. They involve
only inner products and determinants. These relative invariants can also be used
to generate a moving frame in the unparametrized case (in both traditional and
Cartan’s sense) thus connecting the relative invariants to the group theoretical
definition of Frenet frame. (See Sharpe’s book [23] for an excellent explanation
of Cartan’s formulation and the generation of conformal Frenet equations in Car-
tan’s sense.) The relation with the Cartan frame will appear in a forthcoming
paper. Our results for the unparametrized case coincide with those obtained by
Fialkow in [6], although our construction and formulas are notably simpler.

Geometers have been traditionally interested in invariants and invariant
evolutions of unparametrized submanifolds. These are used to solve the problem
of classification. But both cases, parametrized and unparametrized, are highly
relevant in the study of the relation between the geometry of curves and infinite
dimensional Poisson brackets. This paper is motivated by the investigation
of relationships between invariant evolutions of curves and surfaces, on one
hand, and Hamiltonian structures of PDE’s on the other. The idea behind this
relationship is rather simple: if a curve or surface evolves invariantly in a certain
homogeneous space, the evolution naturally induced on the differential invariants
is sometimes a Hamiltonian system of PDEs. More interestingly, the Poisson
structure is defined exclusively from the geometry of the curves or surfaces. For
example, the so–called Adler–Gel’fand–Dikii bracket can be defined merely with
the use of a projective frame and projective differential invariants of parametrized
curves in IRPn ([15]). The presence of the projective group is essential for the
understanding of the Poisson geometry of these brackets (see [26]). The same
situation appears in, for example, 2 and 3-dimensional Riemannian manifolds
with constant curvature in the case of unparametrized curves ([20], [12],[11],
[19]). On the other hand, for this example it does not seem to hold in the
parametrized case. Other examples are curves in CP1 and reparametrizations
of IRP2 for the parametrized case ([16],[17]). The bibliography on integrable
systems associated to these brackets is very extensive: see for example [10], [12],
[27], [19] and references within. The study of Poisson tensors as related to the
geometry of conformal curves and surfaces, and other homogeneous spaces, is
still open.

In section two we introduce some of the definitions and concepts related
to invariant theory and conformal geometry, as well as other concepts and results
that will be needed in the paper. In section 3 we find a formula for the most
general vector relative differential invariant with Jacobian weight for conformal
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n–space, a formula which can be found in theorem 3.3. In section 4 we combine
the vector invariants found in section 3 in order to classify differential invariants
of parametrized curves. These differential invariants behave in many aspects
like the differential invariants in Euclidean geometry, as is shown in theorem
4.1, formula (4.4). We select a family of independent generators formed by
homogeneous polynomials on certain quotients of dot products of the curve and
its derivatives. Their explicit expression can be found in theorem 4.6. These
invariants are differential invariants at the infinitesimal level, that is, invariant
under the action of the connected component of the group containing the identity.
In section 4 we additionally show that the invariants found are also invariant
under two chosen discrete symmetries of the group, symmetries which connect
the different connected components. Our differential invariants will therefore
be invariant under the complete conformal group. The last corollary in that
section (corollary 4.11) states the most general form of an evolution of curves
in IRn invariant under the conformal group. In section 5 we finally find a
generating system of independent differential invariants which are also invariant
under reparametrizations, with the mere use of inner products and determinants
of vector relative invariants, as shown in theorem 5.1. These correspond to the
invariants classified by Fialkow in [6]. We also find an invariant frame which is
also invariant under reparametrizations. This frame will be obtained via a Gram-
Schmidt process applied to the frame found in section 3. This result is given in
Theorem 5.2. The last section is devoted to conclusions, and to the relation and
the implications for infinite dimensional Hamiltonian systems of PDEs.

I would like to thank Peter Olver for his very useful comments on this
paper and for so patiently explaining to me the regularized moving frame method
and its details. The understanding of his method has given me a deep insight into
the structure of differential invariants. I would also like to thank Jan Sanders
for multiple conversations. Finally, my gratitude goes to the department of
mathematics at the University of Leiden for its hospitality while this paper was
written.

2. Notation and definitions.

2.1. Preliminaries.

Let u : I → IRn be a parametrized curve, where I is some interval of IR. Let
x be the parameter. Denote the components of u by u(x) = (u1, u2, . . . , un)(x)
and let us denote the sth derivative of the curve u .

Let’s denote by pi,j the following expression

pi,j =
ui · uj
u1 · u1

(2.1)

where we denote by · the usual dot product in IRn .

Definition2.1. We say that the degree of pi,j is i+ j− 2 and we denote it by
d(pi,j) = i+ j − 2. Using the natural condition

d(pi,jpr,s) = d(pi,j) + d(pr,s)
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we can extend the concept of degree to products of pi,j ’s.

Let P be a polynomial in pi,j , i, j ≥ 1. We say that P is homogeneous of
degree k if each one of the terms in P has degree k . For example, the polynomial
P = p2

1,2+p1,3 is a homogeneous polynomial of degree 2. The following properties
are all quite obvious:

(a) Let P and Q be homogeneous polynomials of degree r and s . Then
PQ is a homogeneous polynomial of degree r + s .

(b) If P is a homogeneous polynomial of degree k , then dP
dx is a homo-

geneous polynomial of degree k + 1.
(c) The following formula holds

dpi,j
dx

= pi+1,j + pi,j+1 − 2p1,2pi,j . (2.2)

2.2. The conformal action of O(n+ 1, 1) on IRn .

Let O(n+ 1, 1) be the set of n+ 2× n+ 2 matrices such that M ∈ O(n+ 1, 1)
if, and only if MCMT = C where C is given by

C =



0 0 0 . . . 0 1
0 1 0 . . . 0 0
0 0 1 . . . 0 0
...

...
. . . . . .

...
...

0 0 0 . . . 1 0
1 0 0 . . . 0 0

 (2.3)

and where T denotes transposition.
We call Minkowski length the length defined by the matrix (2.3), that

is |x| = xTCx , and Minkowski space the space IRn+2 (or its projectivisation)
endowed with Minkowski length (we are of course abusing the lenguage here since
the “length” of a nonzero vector can be zero). Let IRPn+1

0 be the lightcone in
Minkowski space, that is, points in IRPn+1 with zero Minkowski length. We can
also think of them as lines in IRn+2 such that xCxT = 0 whenever x is on the
line.

O(n+1, 1) acts naturally on IRn+2 using the usual multiplication. Given
that O(n+1, 1) preserves the metric, it also acts on IRPn+1

0 . If U ⊂ IRPn+1 is a
coordinate neighborhood, the immersion of IRPn+1 into IRn+2 will take locally
the form

η : U → IRn+2

y → (y, 1).

Now, IRn can be identified locally with IRPn+1
0 using the map

ρ : IRn → IRPn+1
0

u→ (q, u)
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where q is uniquely determined through the relationship 2q+(u1)2+. . .+(un)2 =
0 which is necessary upon imposing the zero length condition. Let π be the
projection of IRn+2 − {0} on IRPn+1 .

The action of O(n+ 1, 1) on IRn is given by the map

O(n+ 1, 1)× IRn → IRn

(N,u)→ N · u = ρ−1 (πN(η(ρ(u)))) ,

that is, we lift u to an unique element on the lightcone, lift the line to IRn+2 ,
multiply by N and project back into IRPn+1

0 and into IRn . This procedure
is the usual interpretation of conformal geometry as the geometry induced by
the action of O(n + 1, 1) on IRn , for n > 2 (see [8] for more details). The
equivalence of the geometry defined by this action (in the Klein sense) and the
usual conformal geometry can be found in some classical differential geometry
books, but it is perhaps better explained in [13].

This action has, of course, its infinitesimal version, the representation
of the subalgebra o(n + 1, 1) as infinitesimal generators. This representation is
generated by the following vectors fields of IRn (the case n = 2 is listed in [21])

vi =
∂

∂ui
, i = 1, . . . n, vij = ui

∂

∂uj
− uj ∂

∂ui
, i < j, i, j = 1, . . . , n,

v =
n∑
i=1

ui
∂

∂ui
, wi =

∑
j 6=i

2uiuj
∂

∂uj
+ ((ui)2 −

∑
i 6=j

(uj)2)
∂

∂ui
, i = 1, . . . n.

(2.4)
We will abuse the notation and denote the algebra of infinitesimal generators
also by o(n+ 1, 1).

We recall that the group O(n + 1, 1) has a total of four connected
components: if M ∈ O(n+ 1, 1) is given by

M =

 a1 vT1 a2

v3 A v4

a3 vT2 a4


with ai ∈ IR, vi ∈ IRn and A a n × n matrix, condition MCMT = C implies
the equation

A

[
1

(a1a3 − a2a4)2
( v1 v2 )

(
vT2 v2 1− vT1 v2

1− vT1 v2 vT1 v1

)(
vT1
vT2

)
+ Id

]
AT = Id

where Id represents the identity matrix. Therefore, M ∈ O(n + 1, 1) implies
that the determinant of both M and A should be nonzero. Four connected
components are found for each choice of sign in both determinants. Notice that
multiplication by C itself changes the sign of the determinant of M , but not
that of the inner matrix A . Multiplication by, for example

1 0 0 . . . 0
0 −1 0 . . . 0
0 0 1 . . . 0
...

...
...

. . .
...

0 0 0 . . . 1

 (2.5)
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will change the sign of both determinants. These two multiplications define two
discrete symmetries of the group and they are sufficient to connect the four
connected components.

2.3. The Theory of differential invariance.

Let Jm = Jm(IR, IRn) denote the mth order jet bundle consisting of equivalence
classes of parametrized curves modulo mth order contact. We introduce local
coordinates x on IR, and u on IRn . The induced local coordinates on Jm

are denoted by uk , with components uαk , where uαk = dkuα

dxk
, 0 ≤ k ≤ m ,

α = 1, . . . , n , represent the derivatives of the dependent variables – uα – with
respect to the independent variable – x –.

Since O(n + 1, 1) preserves the order of contact between submanifolds,
there is an induced action of O(n + 1, 1) on the jet bundle Jm known as its
mth prolongation, and denoted by O(n + 1, 1)(m) (the underlying group being
identical to O(n + 1, 1)). Since we are studying the action on parametrized
curves, O(n + 1, 1) does not act on x , and the prolonged action becomes quite
simple, namely the action is given by

O(n+ 1, 1)(m) × Jm → Jm

(g, uk)→ (g · u)k.

The prolonged action has also its infinitesimal counterpart, the infinites-
imal prolonged action of o(n+1, 1)(m) on the tangent space to Jm . The infinites-
imal generators of this action are the so-called prolongations of the infinitesimal
generators in (2.4) above. In our special case of parametrized curves the prolon-
gations of a vector w ∈ o(n+1, 1), with w given as w =

∑n
i=1 ξ

i ∂
∂ui , are defined

as pr(m)w ∈ o(n+ 1, 1)(m)

pr(m)w =
n∑
i=1

∑
k≤m

ξik
∂

∂uik
(2.6)

where again ξik = dkξi

dxk
.

Definition2.2. A map F : Jm → IRn is called a (infinitesimal) relative vector
differential invariant of the conformal action of O(n+1, 1) with Jacobian weight
if for any w ∈ o(n + 1, 1), defined as w =

∑n
i=1 ξ

i ∂
∂ui , F is a solution of the

system

pr(m)w(F ) =
∂ξ

∂u
F, (2.7)

where ∂ξ
∂u is the Jacobian, a matrix with (i, j) entries given by ∂ξi

∂uj
, and where

pr(m)w(F ) represents the application of the vector field pr(m)w to each one of
the entries in F .

A map I : Jm → IR is called a mth order differential invariant for the
conformal action of O(n+1, 1) on IRn if it is invariant under the prolonged action
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of O(n + 1, 1)(m) . The infinitesimal description of differential invariants is well
known. I is an infinitesimal mth order differential invariant for the conformal
action if and only if

pr(m)w(I) = 0

for any w ∈ o(n+ 1, 1). In this case I is only invariant under the action of the
connected component of O(n+ 1, 1) containing the identity.

A set {I1, . . . , Ik} of differential invariants is called a generating set if any
other differential invariant can be written as an analytic function of I1, . . . , Ik
and their derivatives with respect to the parameter. They are called independent
(or differentially independent) if no invariant in the set can be written as an
analytic function of the other invariants and their derivatives with respect to the
parameter x .

3. Classification of relative differential invariants.

This is the main section in the paper. Here we will give explicitly the formula for
any relative vector differential invariant with Jacobian weight, which amounts to
finding all possible solutions of (2.7). It is known ([21]),[7]) that these vectors can
be used to write a general formula for evolutions of parametrized curves in IRn

which are invariant under the action of O(n+1, 1). By an invariant evolution we
mean an evolution for which O(n + 1, 1) takes solutions to solutions. We show
this in section 4. Furthermore, these vectors also determine the invariants of both
parametrized and unparametrized conformal curves. In subsequent sections we
will see that they play the analogous role in conformal geometry to that of the
curve derivatives in Euclidean geometry, not only because they form an invariant
frame, but because they are in fact the building blocks of the invariants. These
are written in terms of the relative invariants much as Euclidean invariants are
written in terms of uk .

The following result is known and can be found for example in [7].

Proposition 3.1. Let ν be a nondegenerate matrix of vector relative differ-
ential invariants with common Jacobian weight. Then, any other vector relative
differential invariant with the same weight is given as

F = νI

where I is a vector of differential invariants.
One can rephrase this proposition as: given n independent solutions of

(2.7), any additional solution can be written as a combination of them with in-
variant coefficients. The solution of (2.7) is a n–dimensional module over the
ring of differential invariants. ¿From here, the classification of relative differen-
tial invariants is reduced to finding a nondegenerate matrix of vector relative
differential invariants with Jacobian weight, ν , and to classify the differential in-
variants. We will solve the first part in this section and the second part in section
4 and 5. The knowledge of ν (almost) suffices for the complete classification of
both vector relative differential invariants and absolute differential invariants.
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The projective case was worked out in [7] and a nondegenerate matrix
of relative invariants was found there. The classification of differential invariants
in the projective case had been already found in the early 20th century in [25].
In the projective case the matrix of relative invariants had a factorization into a
Wronskian matrix and an upper triangular matrix with ones down the diagonal.
In the conformal case things are different and in some sense more complicated.
The Wronskian matrix does not suffice to get a factorization of the matrix we
search for, as we need to use derivatives up to order n + 1. This need will be
clear in chapter four when we recall the order of generating invariants, as given
in the work of Green [9]. First of all, let us prove a simple, but fundamental
lemma that we will need along the paper.

Lemma 3.2. Assume u is such that the vectors u1, . . . , un are independent.
Then, the functions pi,j , i = 1, 2, . . . , n , j = 1, 2, . . . , k , i ≤ j , k ≥ n , are
functionally independent.

In particular, for such a choice of u , the matrix

P =


1 p1,2 p1,3 . . . p1,n

p1,2 p2,2 p2,3 . . . p2,n

...
...

... . . .
...

p1,n p2,n p3,n . . . pn,n

 (3.1)

is invertible.

Proof. Consider the map

L : Jk → P
(x, u, u1, . . . , uk) → (p1,2, . . . , p1,k, p2,2, . . . , p2,k, . . . , pn,n, . . . , pn,k)

where P = IRm and where m is the number of pi,j ’s. The proof of the lemma
is equivalent to showing that L is a submersion for any u for which u1, . . . , un
are independent. Since the dimension of the manifold P equals the number of
different pi,j ’s, that is, equals n(n+1)

2 − 1 + n(k − n), we need to show that the
rank of L is n(n+1)

2 − 1 + n(k − n). Define L̂(u) to be given by the matrix

L̂(u) =


1 p1,2 . . . p1,n p1,n+1 . . . p1,k

p1,2 p2,2 . . . p2,n p2,n+1 . . . p2,k

...
... . . .

...
... . . .

...
p1,n p2,n . . . pn,n pn,n+1 . . . pn,k

 .

Since each ∂L̂(u)
∂uα

i
is a matrix representation of a vector column in the Jacobian

matrix of L (the one associated to ∂L(u)
∂uα

i
) we conclude that the rank of L at u

equals the dimension of the linear subspace of matrices n × k generated by the
set

{∂L̂(u)
∂uαi

,
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Indeed, both rank of L and dimension of (3.2) are equal to the dimension of the
row space of the Jacobian matrix of L . A simple inspection reveals

∂L̂(u)
∂uαi

=
1

u1 · u1



0 . . . 0 uα1 0 . . . . . . . . . 0
0 . . . 0 uα2 0 . . . . . . . . . 0

. . . . . . . . .
... . . . . . . . . . . . . . . .

0 . . . 0 uαi−1 0 . . . . . . . . . 0
uα1 uα2 . . . 2uαi . . . uαn uαn+1 . . . uαk
0 . . . 0 uαi+1 0 . . . . . . . . . 0

. . . . . . . . .
... . . . . . . . . . . . . . . .

0 . . . 0 uαn 0 . . . . . . . . . 0


−2

uα1
u1 · u1

δ1
i L̂(u),

(3.2)

for any i ≤ n and α = 1, . . . , n (δ is the Delta of Kronecker,) and

∂L̂(u)
∂uαi

=
1

u1 · u1

 0 . . . 0 uα1 0 . . . 0
... . . .

...
...

... . . .
...

0 . . . 0 uαn 0 . . . 0

 (3.3)

for any i > n , α = 1, . . . , n , where the nonzero column is in place i . Since, by
hypothesis, u1, . . . , un are independent, the matrices in (3.4) generate a subspace
of dimension n(k − n) for the different choices α = 1, . . . , n . They generate
matrices with zero left n× n block.

For the purpose of dimension counting, we can now assume that the right
n × (k − n) block in matrices (3.3) are zero. We then see that for i = n , the
different choices α = 1, . . . , n in (3.3) will generate the matrices Er,n + En,r ,
r = 1, . . . , n . Here Ei,j denotes the matrix having 1 in the (i, j) entry and zeroes
elsewhere. For i = n − 1, in that same group of matrices, n − 1 appropiate
combinations of the choices α = 1, . . . , n will generate the matrices Er,n−1 +
En−1,r , r = 1, . . . , n − 1. In general, for a given 1 < s ≤ n , appropiate choices
of combinations of the matrices corresponding to α = 1, . . . , n will generate
Er,s + Es,r for r = 1, . . . , s . Obviously E1,1 can never be generated by any of
these matrices.

The dimension of the subspace (3.2) is thus n+n−1 + . . .+ 2 +n(n−k)
and the lemma is proved.

The following is the main theorem in this chapter.

Theorem 3.3. Let u be a parametrized curve in IRn . Define D to be the
n× n+ 1 matrix given by

D =


u1

1 u1
2 . . . u1

n+1

u2
1 u2

2 . . . u2
n+1

...
... . . .

...
un1 un2 . . . unn+1

 (3.4)
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where uij = djui

dxj . Then, there exists a n+ 1× n matrix Q of the form

Q =



1 g3
1 g4

1 . . . gn+1
1

0 g3
2 g4

2 . . . gn+1
2

0 1 g4
3 . . . gn+1

3

0 0 1 . . . gn+1
4

...
...

. . . . . .
...

0 0 0 . . . 1


, (3.5)

whose entries are homogeneous polynomials in pi,j as in (2.1), and such that
ν = DQ is a matrix of relative vector differential invariants with Jacobian weight.
For a curve u such that u1, . . . , un are independent vectors, the matrix ν is
nondegenerate.

The entries gij will be defined in lemma 3.4 for any i = 3, . . . , n + 1,
j = 1, . . . , i .

Proof. (Proof of the theorem.) Let Fi be the columns of the matrix ν = DQ .
First of all, it is fundamentally trivial to show that F1 = (F j1 ) = (uj1) is a relative
vector differential invariant. The reader can check the validity of this below. We
will thus focus on the other columns Fi−1 = (F ji−1) for i ≥ 3, where

F ji−1 = uj1g
i
1 + uj2g

i
2 + . . .+ ujig

i
i , (3.6)

and where gij will be defined in lemma 3.4.
First of all, notice that if v , vi and vij are the infinitesimal generators

of o(n + 1, 1) given as in (2.4), and if pr,s are defined as in (2.1), then, using
definition (2.6) of prolonged vector field it is straightforward to show that

pr(m)vi(pr,s) = pr(m)v(pr,s) = pr(m)vij(pr,s) = 0,

for any i, j = 1, . . . , n , i < j , and where m is always chosen as high as necessary.
Furthermore,

pr(m)vi(urs) = 0, pr(m)v(urs) = urs and pr(m)vij(urs) = δrju
i
s − δri ujs.

So, if we assume that our functions gij are polynomials on pi,j , we obtain the
following conditions on Fr ,

pr(m)vi(F sr ) = 0, pr(m)v(F sr ) = F sr

pr(m)vij(F sr ) =


0 if s 6= i, j
F ir if s = j
−F jr if s = i.

Now, the Jacobian ∂ξ
∂u as in (2.7) is zero for the vector fields vi , i = 1, . . . , n ,

∂ξ
∂u = Id, for the vector field v , (where Id represents the identity matrix,) and
∂ξ
∂u = Eji − Eij for the vector fields vij , i, j = 1, . . . , n , i < j . We readily see
that Fr satisfies equations (2.7) whenever the vector field w is one of the vector
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fields v , vi or vij . (Notice that F1 given as in the beginning of the proof would
be a special case where gi1 = 1 and gir = 0 for r > 1. Hence F1 will also satisfy
these equations.) Thus, the main conditions and troubles will come from trying
to find solutions of the form (3.7) to equations (2.7) with vector fields w = wi ,
i = 1, . . . , n .

If i 6= j the following relationship is straightforward

pr(m)wi(u
j
k) = 2

k∑
p=0

(
k
p

)
uipu

j
k−p,

and if i = j , we obtain

pr(m)wi(uik) =
k∑
p=0

(
k
p

)(
2uipu

i
k−p − up · uk−p

)
,

where · denotes the usual dot product in IRn . Now notice that, in the case
w = wi , the Jacobian matrix ∂ξ

∂u in (2.7) is given by a matrix having (j, i) entry
equals 2uj , j = 1, . . . , n , having (i, j) entry equals −2uj , j = 1, . . . , n , j 6= i ,
and having (j, j) entry equals 2ui , j = 1, . . . , n . Thus

∂ξ

∂u
=



2ui 0 . . . 2u1 . . . 0
0 2ui . . . 2u2 . . . 0
...

...
. . .

... . . .
...

−2u1 −2u2 . . . 2ui . . . −2un
...

...
...

...
. . .

...
0 0 . . . 2un . . . 2ui


(3.7)

Equation (2.7) in this case becomes

pr(m)wi(F
j
r−1) =


2uiF jr−1 + 2ujF ir−1 if i 6= j

4uiF ir−1 −
n∑
k=1

2ukF kr−1 if i = j,
(3.8)

r ≥ 3. (Notice that if F1 = (uj1), then pr(m)wi(u
j
1) =

{
2uiuj1 + 2ui1u

j if i 6= j
4uiui1 − 2u · u1 if i = j

so F1 will trivially hold these equations also.) If we are looking for solutions of
the form (3.7) to these PDEs, equations (3.9) become the following equations for
the entries grs

r∑
k=1

ujkpr(m)wi(grk) + 2
r∑

k=2

k−1∑
p=1

(
k
p

)
uipu

j
k−pg

r
k = 0 (3.9)

for any i 6= j and any r ≥ 3, and

r∑
k=1

uikpr(m)wi(grk) +
r∑

k=2

k−1∑
p=1

(
k
p

)2uipu
i
k−pg

r
k −

n∑
j=1

ujpu
j
k−pg

r
k

 = 0 (3.10)



224 Maŕı Beffa

for any i = 1, . . . , n , and any r ≥ 3. Thus, we will prove the theorem once we
find grs polynomials homogeneous in pi,j and solutions of the system of PDEs
given by (3.10) and (3.11). This is an overdetermined system. The first step to
solving the system is to realize that, since ujk are independent variables in the jet
space, the subsystem (3.10) will be solved whenever we solve the simpler system

pr(m)wi(grr) = 0

pr(m)wi(grk) + 2
r−k∑
p=1

(
k + p
p

)
uipg

r
k+p = 0 (3.11)

for any i = 1, . . . , n . This system is given by the coefficients of ujk in (3.10), after
a short rewriting of the equations. The first equation in (3.12) is immediately
satisfied if we normalize assuming that grr = 1 (in fact any choice of constant
would do).

Additional information about our polynomials grs can be found from the
system (3.12). We can extend the 2.1 definition of degree to products of the form
uαkpi,j so that

d(uαkpi,j) = k + d(pi,j).

Now, given that none of the vectors wi in (2.4) involve derivatives of u in their
coefficients, if grs is a homogeneous polynomial

d(pr(m)wi(grs)) = d(grs).

Therefore, if homogeneous polynomials grs are to be found satisfying (3.12), the
degree of grs needs to be r − s .

Next, if grs satisfy (3.12), then the following equation is also satisfied

r∑
k=1

uikpr(m)wi(grk) + 2
r∑

k=2

k−1∑
p=1

(
k
p

)
uipu

i
k−pg

r
k = 0 (3.12)

since this is just a combination of equations in (3.12). Substituting this relation-
ship in (3.11) we obtain that, in order to additionally satisfy (3.8) (and therefore
the complete system), some solutions of (3.12) must also satisfy

2
r∑

k=2

k−1∑
p=1

(
k
p

)
uik−pu

i
pg
r
k = 2

r∑
k=2

k−1∑
p=1

(
k
p

)
uik−pu

i
pg
r
k−

r∑
k=2

k−1∑
p=1

n∑
j=1

(
k
p

)
ujk−pu

j
pg
r
k,

which can be rewritten as
r∑

k=2

k−1∑
p=1

(
k
p

)
pp,k−pg

r
k = 0, (3.13)

for any r ≥ 3. Summarizing, we will have proved the theorem once we find
homogeneous polynomial grs solving (3.12) and having the additional condition
(3.14).

Althought this rewriting has considerably simplified our task, it is still
nontrivial to find the solutions to this simplified system. We are lucky enough
to have the following fundamental recursion formula:



Maŕı Beffa 225

Lemma 3.4. Assume that grs is defined via the following recursion formula

gr+1
k = −p1,2g

r
k + grk−1 + (grk)′ (3.14)

for k ≥ 2 and any r ≥ 3 , and where ′ represents the derivative with respect to
x . Assume grr = 1 for all r and g2

1 = −2p1,2 , by definition. Assume also that,
at each step r , gr1 is determined by the relationship

gr1 = −
r∑

k=2

p1,kg
r
k. (3.15)

Then the set {grs} obtained this way defines a solution of the system (3.12) and
satisfies the additional condition (3.14).

Proof. (Proof of the lemma.) First of all we will describe the recursion. The
procedure defines our set of homogeneous polynomials the following way: using
the defined values g2

2 = 1 and g2
1 = −2p1,2 we obtain g3

2 using (3.15). We then
fix g3

3 = 1 and g3
1 determined by (3.16). We can then find g4

2 and g4
3 using

the recursion formula. We fix g4
4 = 1 and g4

1 determined by (3.16); we find
g5

2 , g
5
3 , g

5
4 using the recursion formula, and so it goes. Using grk , k = 1, . . . , r

we can find, using the recursion formula, the values for gr+1
k , k = 2, . . . , r . We

then fix gr+1
r+1 = 1 and gr+1

1 determined by (3.16). Thus, we build the following
diagram from top to bottom by filling in the central entries with the use of the
row immediately above and the induction, and then finding the beginning and
the end using (3.16).

g2
2 g2

1

g3
3 g3

2 g3
1

g4
4 g4

3 g4
2 g4

1

g5
5 g5

4 g5
3 g5

2 g5
1

. . . . . . . . . . . .

We will obviously prove the lemma by induction on r . The lemma holds true for
r = 3. For this value g3

3 = 1 and (3.15), (3.16) gives us the values g3
2 = −3p1,2

and g3
1 = 3(p1,2)2 − p1,3 . If we use the fact that pr(m)wi(p1,3) = 6ui2 and

pr(m)wi(p1,2) = 2ui1 and we substitute these values in (3.12) we obtain the
desired results. As we pointed out before g3

3 = 1 satisfies trivially the first
equation in (3.12) and condition (3.14) is also trivially satisfied in this case.

Assume the lemma holds true for all gsj , s ≤ r , j = 1, . . . , r . We need
to prove that gr+1

k+1 defined by induction in (3.12) satisfies

pr(m)wi(gr+1
k+1) = −2

r−k∑
p=1

(
k + p+ 1

p

)
uipg

r+1
k+p+1 (3.16)

for any k < r (since again the case k = r is trivial). Using the induction
hypothesis we have on one hand

pr(m)wi(−p1,2g
r
k+1) = −2ui1g

r
k+1 + 2p1,2

r−k−1∑
p=1

(
k + 1 + p

p

)
uipg

r
k+p+1,
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pr(m)wi(grk) = −2
r−k∑
p=1

(
k + p
p

)
uipg

r
k+p

and on the other hand

pr(m)wi((grk+1)′) = (pr(m)w(grk+1))′

= −2
r−k∑
p=2

(
k + p
p− 1

)
uipg

r
k+p − 2

r−k−1∑
p=1

(
k + p+ 1

p

)
uip(g

r
k+p+1)′,

so the coefficient of uip , 1 < p < r − k on the LHS of (3.17) is given by

2
(
k + 1 + p

p

)
p1,2g

r
k+p+1 − 2

(
k + p
p

)
grk+p−2

(
k + p
p− 1

)
grk+p

−2
(
k + p+ 1

p

)
(grk+p+1)′.

Using
(
k + p
p

)
+
(
k + p
p− 1

)
=
(
k + p+ 1

p

)
(a relationship which is also used

later on) we have the above to be equal to

−2
(
k + p+ 1

p

)(
−p1,2g

r
k+p+1 + grk+p + (grk+p+1)′

)
= −2

(
k + p+ 1

p

)
gr+1
k+p+1

which is the coefficient of uip , 1 < p < r−k , in the RHS of (3.17). The coefficient
of uir−k on the LHS is given by

−2
(

r
r − k

)
− 2

(
r

r − k − 1

)
= −2

(
r + 1
r − k

)
which is also the coefficient of uir−k in the RHS. Finally, the coefficient of ui1 in
the LHS is given by

−2grk+1 + 2p1,2

(
k + 2

1

)
grk+2 − 2

(
k + 1

1

)
grk+1−2

(
k + 2

1

)
(grk+2)′

=− 2
(
k + 2

1

)
gr+1
k+2

which is equal to the coefficient of ui1 in the RHS.
The last part is to prove condition (3.14) to be true, also by induction

on r . Assume that
r∑

k=2

k−1∑
p=1

(
k
p

)
pp,k−pg

r
k = 0. (3.17)

Differentiating (3.18) with respect to x , making use of (2.2), (3.18) and perform-
ing minor simplifications we obtain the following equation

r∑
k=2

k−1∑
p=2

(
k + 1
p

)
pp,k+1−pg

r
k +

r∑
k=2

2k p1,kg
r
k +

r∑
k=2

k−1∑
p=1

(
k
p

)
pp,k−p(grk)′ = 0.
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Now, given that gr1 is defined by (3.16) we have that the equation above can be
rewritten, after some calculations, as

r+1∑
k=2

k−1∑
p=1

(
k
p

)
pp,k−pg

r
k−1+

r∑
k=2

k−1∑
p=1

(
k
p

)
pp,k−p(grk)′

=
r+1∑
k=2

k−1∑
p=1

(
k
p

)
pp,k−pg

r+1
k = 0

completing the last induction and the proof of the lemma.

This is the end of the proof of the theorem. From the lemma we deduce that
the matrix ν has columns which are relative differential invariants with Jacobian
weight. We will finally show that, whenever u1, . . . , un are independent vectors,
this matrix is nondegenerate. Indeed, the columns of ν are of the form (3.7)
except for the first one which is given by the first derivative of the curve. First of
all, notice that the differential orders of all gij in the matrix Q are less or equal
to i−j+1 so the highest order in each column of Q is that of gi1 which has order
i . Now, making use of the first column in ν , F1 = u1 , we can simplify the other
columns of ν so that u1 will not appear in the expression of Fi , i > 1. Therefore,
without losing generality, we can assume that gi1 = 0 for all i = 3, . . . , n+ 1.

Now, if the first n derivatives of the curve u are linearly independent,
then any column in the matrix ν , say Fi , must be independent from the previous
columns, Fj , 1 ≤ j < i , with perhaps the exception of the last column. Hence,
we will conclude the proof of the theorem once we prove that the last column
of ν cannot be a combination of the previous columns. In fact, we always have
that un+1 is a combination of ui , i = 1, . . . , n , so assume

un+1 =
n∑
i=1

αiui.

The coefficients αi are homogeneous rational functions of pi,j , i = 1, . . . , n ,
j = 1, . . . , n+ 1 since they are the solution of the system

1 p1,2 . . . p1,n

p1,2 p2,2 . . . p2,n

...
... . . .

...
p1,n p2,n . . . pn,n



α1

α2
...
αn

 =


p1,n+1

p2,n+1

...
pn,n+1

 (3.18)

which is unique from lemma 3.2. Next, assume that Fn is a combination of the
previous columns, that is

Fn =
n−1∑
i=1

βiFi. (3.19)

Substituting definition (3.7) in (3.20) and equating the coefficients of ui , i =
1, . . . .n , we obtain the following equations relating α and β coefficients

1 g4
3 . . . gn3

...
. . . . . .

...
0 . . . 1 gnn−1

0 . . . 0 1


 β2

...
βn−1

 =

 gn+1
3
...

gn+1
n

+

 α3
...
αn

 (3.20)
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n−1∑
k=2

βkg
k+1
2 = α2 + gn+1

2 (3.21)

β1 +
n−1∑
k=2

βkg
k+1
1 = α1 + gn+1

1 . (3.22)

¿From (3.21) we can solve for β2, . . . , βn−1 in terms of α3, . . . , αn and gij , and
from (3.23) we can solve for β1 in terms of α1, α3, . . . , αn and gij . Therefore,
equation (3.22) represents a relationship between the coefficients α and gij . We
will see that this relationship cannot exist.

Equation (3.22) is an equality between rational functions on the variables
pi,j , 1 ≤ i ≤ n , 1 ≤ i ≤ j ≤ n + 1. The functions αk ’s are the only part
of the equation which are not polynomials and their denominators equal the
determinant of the matrix P . If we multiply equations (3.21), (3.22) by det(P ),
these equations become equations on β̂k = det(P )βk and α̂k = det(P )αk and
they are now equalities between polynomials in pi,j . The functions α̂k are given
by

α̂k = det


1 p1,2 . . . p1,n+1 . . . p1,n

p1,2 p2,2 . . . p2,n+1 . . . p2,n

... . . . . . .
... . . .

...
p1,n p2,n . . . pn,n+1 . . . pn,n


where the pi,n+1 column is located in place k , and (3.21), (3.22) become


1 g4

3 . . . gn3
...

. . . . . .
...

0 . . . 1 gnn−1

0 . . . 0 1


 β̂2

...
β̂n−1

 = det(P )

 gn+1
3
...

gn+1
n

+

 α̂3
...
α̂n

 (3.23)

n−1∑
k=2

β̂kg
k+1
2 = α̂2 + det(P )gn+1

2 . (3.24)

Lemma 3.2 states that both sides of equation (3.25) must be equal term by
term. But such is not the case. Let Cr,s be the cofactor of the entry (r, s) in
P . The right hand side of equation (3.25) contains a unique term of the form
p2,n+1p3,3 . . . pn,n , a term with n−1 factors appearing in α̂2 . On the other hand,
on the left hand side of (3.25) p2,n+1 appears in each β̂k . In fact, from (3.24)
it is straightforward to check that in each β̂k the factor p2,n+1 is multiplied
by C2,k+1 plus a combination of other cofactors with coefficients depending
on grs , r 6= s . Thus, all the terms with minimum number of factors appear
in C2,k+1p2,n+1 , k = 2, . . . , n − 1, as part of β̂k . These terms have already
a minimum number of factors equal n − 1. But in equation (3.25) they are
multiplied by gk+1

2 k = 2, . . . , n − 1. Hence, they must have at least n factors
each. This is a contradiction to lemma 3.2, since the term p2,n+1p3,3 . . . pn,n ,
with n− 1 factors, can never appear in the left hand side of (3.25) .
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Example. In the case n = 3 the gij polynomials needed for the definition of
Fi are g3

i , i = 1, 2, 3 and g4
i , i = 1, 2, 3, 4. We can find these using relation

(3.15). From lemma 3.4 we have

g3
3 = 1,

g3
2 = −p1,2g

2
2 + g2

1 + (g2
2)′ = −3p1,2,

g3
1 = −p1,2g

3
2 − p1,3g

3
3 = −p1,3 + 3p2

1,2,

since g2
1 = −2p1,2 by definition, and gii = 1 for all i . We can now find g4

i .
Indeed

g4
4 = 1,

g4
3 = −p1,2g

3
3 + g3

2 + (g3
3)′ = −4p1,2,

g4
2 = −p1,2g

3
2 + g3

1 + (g3
2)′ = −4p1,3 − 3p2,2 + 12p2

1,2,

g4
1 = −p1,2g

4
2 − p1,3g

4
3 − p1,4g

4
4 = −p1,4 + 8p1,2p1,3 + 3p1,2p2,2 − 12p3

1,2.

With these values for gij , the relative invariants are given by

F1 = u1,

F2 = u3 − 3p1,2u2 + (3p2
1,2 − p1,3)u1,

F3 = u4 − 4p1,2u3 + (−4p1,3 − 3p2,2 + 12p2
1,2)u2+

(−p1,4 + 8p1,2p1,3 + 3p2,2p1,2 − 12p2
1,2)u1.

(3.25)

In the next sections we will make use of {F r} in order to find differential
invariants of both parametrized and unparametrized curves and an invariant
frame for unparametrized curves. The procedure is very close to that of Euclidean
Geometry, with F̃ r = Fr

(u1·u1)
1
2

taking the role of ur .

4. Independent set of differential invariants for parametrized curves.

As we indicated in the introduction, the knowledge of the relative invariants
with Jacobian weight will suffice to obtain any differential invariant, with the
exception of the invariant of lowest degree. Theorem 4.1 below shows to what
extent F̃ r is taking the Euclidean Geometry role reserved for ur . Perhaps we
should recall that any Euclidean differential invariant for parametrized curves
can be written as a function of the basic Euclidean invariants ur · us .

The simplest differential invariant has degree 2 and order 3. We will call
it I1 and it is given by

I1 = p1,3 +
3
2
p2,2 − 3p2

1,2. (4.1)

There are many ways to finding I1 . For example, one can choose a general
homogeneous polynomial of order 2, which would be given by

ap1,3 + bp2,2 + c(p1,2)2
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with a, b, c ∈ IR. We can then apply the prolongation of the vectors in (2.4) and
then solve for a ,b and c .

The rest of the generating invariants are found in terms of the vector
relative invariants, as shown in the next theorem. Formula (4.4) below is quite
striking, particularly since dF̃ r−1

dx is never equal to F̃ r , as shown in (4.6) below.

4.4. Differential invariants: infinitesimal version.

The following theorem describes differential invariants at the infinitesimal level,
that is, invariant under the action of the connected component of the group
which contains the identity element. We will later prove that these invariants
are indeed invariant under the action of the entire group.

Theorem 4.1. Let Gi , i = 1, 2, 3, 4 be any four relative vector differential in-
variant with Jacobian weight. Assume that the following expression is a function
of pi,j as in (2.1)

G =
G1 ·G2

G3 ·G4
(4.2)

where · denotes the usual inner product in IRn . Then G satisfies

pr(m)w(G) = 0

for any w ∈ o(n+ 1, 1) .
In particular, let Fk k = 1, 2, 3, . . . , n be given as in (3.7). Then,

Vr,s =
Fr · Fs
F1 · F1

= F̃ r · F̃ s, (4.3)

are all differential invariants (at the infinitesimal level), for any r, s = 2, 3, . . . , n .
Furthermore, the following surprising relationship holds for any r, s = 2, . . . , n−1

dVr,s
dx

= Vr+1,s + Vr,s+1. (4.4)

Notice that V1,1 = 1 and, as shown in (4.7) below, V1,s = 0 for s =
2, . . . , n .

Proof. First of all observe that if G is a function of pi,j , then the prolonga-
tions of the vectors vi , i = 1, . . . , n , v and vij , i, j = 1, . . . , n , i < j , as in (2.4)
will immediately vanish on it since they vanish on each pi,j . We thus need to
check only wi , i = 1, 2, . . . , n . But it is rather simple to check that, if we denote
by ∂ξ

∂u the Jacobian of wi as given in (2.7), then, for any vector V = (Vj) the
following holds

∂ξ

∂u
V = 2uiV + 2Viu− 2u · V ei

where ei is the vector in IRn with all entries equal zero except for a 1 in place
i . Therefore, if Gi = (Gji ) are all relative differential invariants with Jacobian
weight



Maŕı Beffa 231

pr(m)wiG = 2uiG+2Gi1
u ·G2

G3 ·G4
−2Gi2

u ·G1

G3 ·G4
+2uiG+2Gi2

u ·G1

G3 ·G4
−2Gi1

u ·G2

G3 ·G4

−G
(

2ui + 2Gi3
u ·G4

G3 ·G4
− 2Gi4

u ·G3

G3 ·G4
+ 2ui + 2Gi4

u ·G3

G3 ·G4
− 2Gi3

u ·G4

G3 ·G4

)
= 0.

Next, observe that Vr,s are all in fact homogeneous polynomials on pi,j
as in (2.1), well defined as far as u1 · u1 . Indeed, they can be rewritten as

Vr,s =
r+1∑
l=1

s+1∑
k=1

pl,kg
r+1
l gs+1

k . (4.5)

Hence, all Vr,s are differential invariants of the action, at the infinitesimal level.
To finish the proof of the theorem, we only need to prove formula (4.4). Indeed,
one obtains first

dgr1
dx

= −
r∑

k=2

[p2,k + p1,k+1 − 2p1,2p1,k] grk −
r∑

k=2

p1,k

[
gr+1
k + p1,2g

r
k − grk−1

]

= gr+1
1 + 2p1,2g

r
1 −

r∑
k=2

p2,kg
r
k.

So that we get

dFr−1

dx
=

r∑
k=1

d(ukgrk)
dx

=
r∑

k=1

uk+1g
r
k +

r∑
k=2

uk
[
gr+1
k + p1,2g

r
k − grk−1

]
+ u1

dgr1
dx

= Fr + p1,2Fr−1 − u1

r∑
k=1

p2,kg
r
k, (4.6)

after using (3.16) and the recursion formula. Finally one has that, for any
s = 2, 3, . . . , n

u1 · Fs
F1 · F1

=
s+1∑
k=1

p1,kg
s+1
k = 0 (4.7)

from (3.16). Using (4.6) and (4.7) we get the desired formula.

4.5. Discrete symmetries and differential invariants of O(n+ 1, 1) .

As I explained in section 2, O(n+1, 1) has four connected components, connected
via multiplication by either matrix (2.3), or matrix (2.5). Next theorem shows
that Vr,s are all invariant under these discrete symmetries and, hence, that they
are invariant under the action of the entire group.
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Theorem 4.2. Vr,s are all invariant under the prolonged action of multipli-
cation by C in (2.3) and multiplication by (2.5).

Notice that the prolonged action of multiplication by (2.5) trivially leaves
Vr,s invariant. The result of this action is simply to change the sign of the first
component of the curve, and so pi,j are already been preserved. Now, the action
of C is more involved. In fact, using the original definition given in section 2 of
the O(n+ 1, 1) action on a curve u = (ui), it is trivial to see that

Cu =
u

q

where q is defined by the relation 2q +
∑n
i=1(ui)2 = 0. Hence, the prolonged

action on derivatives will be defined by

Cui =
(
u

q

)(i)

.

Let’s denote by a hat the result under the action of C . That is, if G is a
function on the jet space, G = G(x, u, u1, u2, . . .), then Ĝ(x, u, u1, u2, . . .) =

G(x, uq ,
(
u
q

)(1)

, . . .). Before we prove the theorem we need to prove some tech-
nical lemmas.

Lemma 4.3. Let gij be defined by the recursion (3.15), and let q be determined
by 2q +

∑n
i=1(ui)2 = 0 as above. Then

q
r+1∑
s=k

(
s
k

)(
1
q

)(s−k)

ĝr+1
s = gr+1

k (4.8)

for any k = 1, 2, . . . , r + 1 , r = 2, . . . , n .

Proof. For r = 2, cases k = 1, 2, 3 are proved straightforwardly using the
two transformations

p̂1,2 = p1,2 −
q′

q
, p̂1,3 = p1,3 − 3(

q′′

q
− q′2

q2
). (4.9)

Assume that

q
r∑
s=k

(
s
k

)(
1
q

)(s−k)

ĝrs = grk (4.10)

for any k = 1, 2, . . . , r .

First case : if k > 1 we can make use of recursion (3.15) to obtain

q
r+1∑
s=k

(
s
k

)(
1
q

)(s−k)

ĝr+1
s

=q
r∑
s=k

(
s
k

)(
1
q

)(s−k)

(ĝrs)
′ − p̂1,2q

r∑
s=k

(
s
k

)(
1
q

)(s−k)

ĝrs

+q
r∑
s=k

(
s
k

)(
1
q

)(s−k)

ĝrs−1 +
(
r + 1
k

)
q

(
1
q

)(r−k+1)

.

(4.11)
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With the use of (4.10), its derivative and p̂1,2 = p1,2 − q′

q we have that,
after some straightforward calculations, (4.11) equals

−p1,2g
r
k + (grk)′ +

r∑
s=k−1

(
s

k − 1

)
q

(
1
q

)(s−k+1)

ĝrs

= (grk)′ − p1,2g
r
k + grk−1 = gr+1

k .

2nd Case: k = 1. Using cases k > 1 above, multiplying (4.8) by p1,k

and applying (3.16) we have

gr+1
1 = −q

r+1∑
s=2

[
s∑

k=2

(
s
k

)(
1
q

)(s−k)

p1,k

]
ĝr+1
s .

Therefore, in order to prove this case, we need to show that the following equality
holds

r+1∑
s=2

[
s∑

k=2

(
s
k

)(
1
q

)(s−k)

p1,k

]
ĝr+1
s =

r+1∑
s=2

[
p̂1,s

q
− s

(
1
q

)(s−1)
]
ĝr+1
s . (4.12)

Now, (4.12) can be transformed using the equality

s∑
k=2

(
s
k

)(
1
q

)(s−k)

p1,k =
1
q
p̂1,s −

(
1
q

)(s)

p0,1 − s
(

1
q

)(s−1)

+
q′

q2
p̂0,s

which is obtained straighforward from the definition. We thus need to show

r+1∑
s=2

[(
1
q

)(s)

+
u1 · u1

q2
p̂0,s

]
ĝr+1
s = 0. (4.13)

But we can further transform (4.13) using the fact that(
1
q

)(s)

= −u1 · u1

2q2

s∑
k=0

(
s
k

)
p̂k,s−k (4.14)

which is obtained explanding
(
u
q ·

u
q

)(s)

= −2
(

1
q

)(s)

with the use of the binomial
formula. If we use this relationship, we see that (4.13) equals

−u1 · u1

2q2

r+1∑
s=2

s−1∑
k=1

(
s
k

)
p̂k,s−kĝ

r+1
s = 0

which is true since it is the transformed of (3.14). This concludes the proof of
the first lemma.
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Lemma 4.4.

q2
r+1∑
s=1

(
1
q

)(s)

ĝr+1
s =

r+1∑
s=1

u · usgr+1
s = u · Fr (4.15)

Proof. Using the result of the previous lemma, we obtain that relation (4.15)
can be rewritten as

q
r+1∑
s=1

(
1
q

)(s)

ĝr+1
s =

r+1∑
s=1

s∑
k−1

u · uk
(
s
k

)(
1
q

)(s−k)

ĝr+1
s

which itself can be written as

r+1∑
s=1

(
1
q

)(s)

ĝr+1
s =

r+1∑
s=1

[
û · ûs + 2

(
1
q

)(s)
]
ĝr+1
s . (4.16)

Equation (4.16) is equivalent to

r+1∑
s=1

[
û · ûs +

(
1
q

)(s)
]
ĝr+1
s = 0

which is simply a rewriting of (4.13) in the previous lemma, and which has been
proved to be true.

Theorem 4.5.
Vr,s = V̂r,s.

Proof. From the definition of Fr in (3.7) and using the binomial formula we
obtain

F̂r =
r+1∑
s=1

(
u

q

)(s)

ĝr+1
s =

r+1∑
s=1

s∑
k=0

(
s
k

)(
1
q

)(s−k)

ukĝ
r+1
s

=
r+1∑
k=1

r+1∑
s=k

(
s
k

)(
1
q

)(s−k)

ĝr+1
s uk +

r+1∑
s=1

(
1
q

)(s)

ĝr+1
s u. (4.17)

But, from lemmas 4.3 and 4.4 we have that

F̂r =
1
q
Fr +

u

q2
Fr · u.

Using the fact that u · u = −2q we finally have

F̂r · F̂s =
1
q2
Fr · Fs

which proves the invariance of Vr,s .

Next theorem will finally select which Vr,s form an independent system
of differential conformal invariants. We will prove in the next subsection that
they are also generators.
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Theorem 4.6. Let I1 be given as in (4.1) and let Ik be defined as

Ik = Vk,k, (4.18)

k = 2, 3, . . . , n . Then {I1, . . . , In} form a set of (differentially) independent
differential invariants.

Proof. Notice that, since Fr , r = 1, . . . , n + 1, are all independent and we
have relation (4.3), the independency of I2, . . . , In can be proved following a
reasoning similar to the one in lemma 3.2. It is the appearance of I1 in the set
that will require a bit more care.

Recall that the highest derivative involved in the definition of Ik is the
one appearing in gk+1

1 , that is, k+ 1. Hence I1 has order 3 and Ik order k+ 1,
k = 2, . . . , n . Also, each Ik has homogeneous degree 2k , for k = 1, 2, . . . , n .

Assume that there exists Ik such that I1, . . . , Ik−1 are independent and
such that

Ik = G(I1, I2, . . . , Ik−1, I
′
1, I
′
2, . . . , I

′
k−1, . . .) (4.19)

for some analytic function G depending on I1, . . . , Ik−1 and their derivatives up
to a certain order ok .

Assume that k 6= n . We expand G analytically in I ’s and their deriva-
tives. Assume

G = G1 +G2 + . . . (4.20)

with G1 linear, G2 quadratic, etc. By homogeneity the linear part of G must
necessarily be of the form

G1 = γk−1
d2Ik−1

dx2
+ γk−2

d4Ik−2

dx4
+ . . .+ γ1

d2(k−1)I1
dx2(k−1)

(4.21)

for some γi ∈ IR, i = 1, . . . , k− 1. Indeed, the linear part of both sides in (4.19)
must be equal. Since Ik is a homogeneous polynomial of degree 2k so must be
G1 . Expression (4.21) is a combination of the only possible linear terms (in I ’s
and derivatives) with that degree of homogeneity. (In fact, since in this case the
LHS of (4.19) is a polynomial on pi,j , i ≤ n , i ≤ j ≤ n , so must be (4.20).)
¿From lemma 3.2 both linear parts must be equal term by term.

We now analyze the pi,j –linear part of both sides of (4.19). The linear
part of Ii , i > 1 equals pi+1,i+1 and so the linear part of d2(k−i)Ii

dx2(k−i) equals

2(k−i)∑
s=0

(
2(k − i)

s

)
pi+s+1, 2k−i−s+1.

The pi,j –linear part of Ik is pk+1,k+1 and pk+1,k+1 appears also in each term of

(4.21), with coefficient
(

2(k − i)
k − i

)
for any i > 1. Analogously pk+1,k+1 appears

in the term corresponding to I1 with some nonzero coefficient α . Thus, from
the comparison of pk+1,k+1 coefficients we obtain the condition

k−1∑
i=1

γi

(
2(k − i)
k − i

)
+ αγ1 = 1. (4.22)
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On the other hand, p1,2k+1 appears only in the derivative of I1 and nowhere else
in (4.19). Therefore γ1 = 0. The term p3,2k−1 appears only in the derivative
of I2 and nowhere else in (4.19), and so γ2 = 0. And so on, if γi = 0 for
i = 1, . . . , r − 1, using the fact that pr+1,2k−r+1 appears only in the derivative
of Ir we obtain γr = 0. This contradicts (4.22).

Finally, assume k = n . Recall that

un+1 =
n∑
k=1

αkuk

with αk solutions of (3.19). Recall that we denote by Crs the (r, s) cofactor of
P as in (3.1). Then, we have

αi =
n∑
r=1

Cri
detP

pr,n+1

and so

pn+1,n+1 =
n∑

i,j=1

n∑
r,s=1

CriCsj
(detP )2

pi,jpr,n+1ps,n+1 =
1

detP

n∑
r,s=1

Csrpr,n+1ps,n+1,

(4.23)
since

∑n
i=1 Cripi,j = δjrdetP . Relation (4.19) for k = n can thus be rewritten as

n∑
r,s=1

Csrpr,n+1ps,n+1 + detP
n∑
i=1

n+1∑
j=1

pi,jg
n+1
i gn+1

j + detP
n∑
i=1

pi,n+1g
n+1
i

= detP [G1 +G2 + . . .]
(4.24)

and both sides of (4.24) are now polynomials on pi,j , i ≤ n , i ≤ j . Thus, we can
apply lemma 3.2 and compare term by term depending, for example, in number
of factors, differential order, etc.

The terms with a minimum number of factors in the RHS of (4.24) have
n factors. They correspond to, for example, p2,2 . . . pn,n or other terms in the
determinant with n− 1 factors, times terms in G1 with only one pi,j factor.

The terms with a minimum number of factors in the LHS of (4.24) will
appear in the cofactor expansion since the other two sums have terms with at
least n+1 factors. But, for example, p2

2,n+1p3,3 . . . pn,n appears only once in the
LHS of (4.24), in the cofactor expansion, and it can never appear in the RHS of
(4.24). The term p2

2,n+1p3,3 . . . pn,n has two factors of order n+ 1 and the terms
in the RHS have at most one factor with that order, the factor that comes from
G1 . We found a contradiction to lemma 3.2.

This concludes the proof of the theorem.
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4.6. A generating set of differential invariants.

In this subsection we will show that {I1, . . . , In} as found in the previous sec-
tion, form a generating set of differential conformal invariants. That is, any other
conformal differential invariant can be written as a function of them and their
derivatives with respect to the parameter x . This result will be a direct conse-
quence of the work of Green ([9]) and Fialkow ([6]). We will proceede to give
some definitions and notations. Some of what follows is as found in [21].

Let o(n+ 1, 1)(m)(p) be the vector subspace of the tangent space to Jm

spanned by the mth prolongation of the infinitesimal generators of the action of
o(n+ 1, 1) on IRn at the point p . Denote by sm(p) the dimension of the generic
mth prolonged orbit at p , that is, the dimension of the orbit of the action of
O(n + 1, 1)(m) on Jm , going through p . (We will avoid here any comments
about singular orbits. For more information see [21].) It is known that sm(p)
coincides with the dimension of o(n+ 1, 1)(m)(p) (again, see [21]). From now on
we won’t make any references to the point p , assuming we are always working
at a given point.

Let im be the dimension of Jm . That is, in our case im = n(m+ 1) + 1
since we have n variables in IRn and the parameter x . The following proposition
is a standard result in invariant theory ([21]).

Proposition 4.7. There are exactly im − sm (differentially) independent
differential invariants of order at most m . The number

jm = im − sm − (im−1 − sm−1) (4.25)

denotes the number of independent differential invariants of order equal m .
The next theorem describes the values of jm for conformal parametrized

and unparametrized curves, and concludes that our system is generating. In
the parametrized case, the theorem is a corollary of the study on Cartan’s
polygons done by Green in [9]. He gives the precise numbers in example 7.
In the unparametrized case we can obtain the numbers from the study done by
Fialkow in [6].

Theorem 4.8. In the case of parametrized curves on IRn under the conformal
action of O(n+ 1, 1) the values of jm are

j0 = 1, j1 = j2 = 0, and jk = k − 1 for any k = 3, 4, 5, . . . , n+ 1.

In the case of unparametrized curves in IRn the values are

j0 = 0, j1 = j2 = 0, and jk = k − 1 for any k = 3, 4, 5, . . . , n+ 1.

Corollary4.9. {I1, I2, . . . , In} form a generating set of independent differen-
tial invariants for the conformal action of O(n+1, 1) on IRn . That is, any other
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differential invariant of the action can be written as a function of I1, I2, . . . , In
and their derivatives with respect to the parameter.

As a final corollary to this section, we will write a formula for the most
general evolution of parametrized curves in IRn of the form

ut = F (u, u1, u2, . . . , ur, . . .) (4.26)

invariant under the action of O(n+1, 1). That is, evolutions for which the group
O(n+ 1, 1) takes solutions to solutions. The following can be found, for example
in [7].

Proposition 4.10. An evolution of the form (4.27) is invariant under the
action of O(n + 1, 1) on IRn if, and only if F is a relative vector differential
invariant with Jacobian weight.

This result, together with proposition 3.1, theorem 3.3 and theorem 4.6,
gives us the desired formula.

Corollary4.11. The most general evolution of the form (4.27) invariant under
the conformal action of O(n+ 1, 1) on IRn is given by

ut = DQJ (4.27)

where D and Q are given as in (3.5) and (3.6), and where J is a general
differential invariant vector, that is a vector whose entries are functions of Ik ,
k = 1, . . . , n , as in (4.18) and their derivatives with respect to the parameter x .

That is, any invariant evolution of the form (4.27) can be written as
(4.28) for some invariant vector J .

Example4.12. In the case n = 3 the differential invariants are generated by

I1 = p1,3 +
3
2
p2,2 − 3p2

1,2

I2 =
F2 · F2

u1 · u1
= p3,3 − 6p1,2p2,3 − p2

1,3 + 9p2
1,2p2,2 + 6p2

1,2p1,3 − 9p4
1,2

I3 =
F3 · F3

u1 · u1
, F3 as in (3.26).

(4.28)

Any invariant evolution will be of the form

ut = h1F1 + h2F2 + h3F3

where hi are arbitrary functions of I1, I2, I3 and their derivatives, and where Fi
are as in (3.26), i = 1, 2, 3.

5. Differential Invariants of unparametrized curves

In this section we write a complete system of independent and generating differ-
ential invariants for conformal unparametrized curves. They correspond to the
invariants found in [6]. The first step is to identify an element of arc-length. Let’s
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denote by φ†I the reparametrization of I by x = φ(y). That is, if I = I(u) and
u = u(x), then φ†I = I(u ◦ φ). A straightforward calculation reveals that

φ†I1 = φ′2I1 ◦ φ+ S(φ),

where S(φ) = φ′′′

φ′ −
3
2
φ′′

(φ′)2 is the Schwarzian derivative of φ . On the other hand

φ†I2 = φ′4I2 ◦ φ.

Therefore, we can choose ds = I
1
4
2 dx , I2 being the lowest order invariant that

can define an element of arc–length. I2 is given explicitly in (4.29). As usual,
the arc–length is well-defined for those curves for which I2 > 0.

We define, very much in the Euclidean fashion, the following symmetric
determinants

∆k =
1
Imk2

∣∣∣∣∣∣∣∣
V2,2 V2,3 . . . V2,k+1

V3,2 V3,3 . . . V3,k+1

...
... . . .

...
Vk+1,2 Vk+1,3 . . . Vk+1,k+1

∣∣∣∣∣∣∣∣ (5.1)

for k = 2, . . . , n− 1 and where mk = 1
4k(k + 3).

Theorem 5.1. The expressions ∆k , k = 2, . . . , n together with

∆1 = 4
I1

I
1
2
2

+
9
8

(I ′2)2

I
5
2
2

− I ′′2

I
3
2
2

(5.2)

form a complete set of independent and generating differential invariants for con-
formal unparametrized curves. i.e., they are also invariant under reparametriza-
tions and any other differential invariant which is invariant under reparametriza-
tion is a function of ∆k , k = 1, . . . , n and their derivatives with respect to the
invariant differentiation 1

I
1/4
2

Dx .

Proof. We will prove that they are invariant under reparametrizations. The
argument is almost identical to the one that shows that the analogous determi-
nants in Euclidean geometry, that is with uk−1 instead of Fk , are a generating
system of differential invariants for unparametrized curves in IRn .

Since φ†Fk is also a relative invariant of the conformal action, it must
be a linear combination of Fs s = 1, 2 . . . , k , with invariant coefficients. Indeed,
the order of φ†Fk equals that of Fk so it must be an invariant combination of
relative invariants with equal or less order. We claim that, for any k ≥ 2, φ†Fk
is a linear combination which does not contain F1 . This will suffice to show that
∆k are invariant under reparametrizations. Indeed, if we assume that our claim
is correct, for any 2 ≤ k ≤ n we can write

φ†Fk =
k∑
s=2

Aks(Fs ◦ φ). (5.3)
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Clearly, since φ†uk = (φ′)kuk + . . . , where the dots represent lower order terms,
one has that Akk = (φ′)k+1 for any 2 ≤ k ≤ n . ∆k can be rewritten as

∆k =
1
Im2

det

 F̃T2
...
F̃Tk

 ( F̃2 . . . F̃k ) =
1
Im2

det ( F̃2 . . . F̃k )2
,

where again F̃i = 1
(u1·u1)1/2Fi . But, if our claim is correct,

φ†∆k =
(φ′)−4m

Im2 ◦ φ
det
(
A2

2
φ′ F̃2 ◦ φ A3

3
φ′ F̃3 ◦ φ . . .

Akk
φ′ F̃k ◦ φ

)2

using column reduction in the determinant. Factoring Aii
φ′ = (φ′)i from each Fi

column, we have the invariance of ∆k .
We will prove our claim by induction. We can make use of formula (4.6)

and the fact that
r∑

k=1

p2,kg
r
k =

u2

u1 · u1
· Fr−1

to obtain the following relationship

φ†Fr = φ′[φ†Fr−1]′ − φ†p1,2φ
†Fr−1 + φ′

(
φ† u2

u1 · u1
· φ†Fr−1

)
u1. (5.4)

Now, in order to show that φ†Fr does not contain a term on F1 = u1 , it suffices
to show that the coefficient of u1 above is zero. A quick calculation reveals that,
if

φ†Fr−1 =
k∑
s=2

Ar−1
s (Fs ◦ φ),

then the coefficient of u1 in (5.4) equals

φ′

(
φ†u2 · φ†Fr−1 −

r−1∑
k=2

k+1∑
s=1

Akr−1(p2,sg
k+1
s ) ◦ φ

)
. (5.5)

But
r−1∑
k=2

k+1∑
s=1

Akr−1(p2,sg
k+1
s ) ◦ φ

=
r−1∑
k=2

Akr−1

[
u2

u1 · u1
◦ φ
]
· [Fk ◦ φ] =

[
u2

u1 · u1
◦ φ
]
·
[
φ†Fr−1

]
,

and also,

φ† u2

u1 · u1
=

u2

u1 · u1
◦ φ+

φ′′

(φ′)2

u1

u1 · u1
.

Since u1 · Fk = 0 for any k = 2, . . . , n , we obtain that (5.5) equals zero and the
induction is now complete.

The last part of the proof of the Theorem is to show that these are indeed
generators for the set of differential invariants of unparametrized curves (their
independence is quite obvious from the definition). This is an immediate conse-
quence of Theorem 4.8, the reasoning being identical to that of the parametrized
case.
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Our last theorem of the paper describes an invariant frame for n–
conformal unparametrized curves.

Theorem 5.2. Let Fi , i = 1, . . . , n be the invariant frame defined in the-
orem 3.3. Consider G1 = I

−1/4
2 F1 and let Gi be the frame obtained from Fi ,

i = 2, . . . , n via a Gram–Schmidt orthonormalization process using the product
〈Fi, Fj〉 = I

1/2
2 F̃i · F̃j = I

1/2
2 Vi,j . Then {Gi} , i = 1, . . . , n is an invariant

conformal frame for unparametrized n-curves.

Proof. The proof of this theorem is very simple. Obviously G1 is invariant
under reparametrizations and G1 is orthogonal to Gi for i = 2, . . . , n , since F1

was orthogonal to the other Fi ’s (recall that V1,r = 0 for any r .) Also, Gram–

Schmidt process as applied to Fi , i = 2, . . . , n with the product I
1/2
2

F1·F1
〈, 〉 will

produce a system of relative invariants since the result is a combination of the
Fi with invariant coefficients. Thus φ†Gi will also be a relative invariant. The
same reasoning as in the previous theorem tell us that φ†Gi =

∑i
r=2B

i
rGr ◦ φ ,

for some invariant coefficients Bir . But φ† also preserves the orthonormality

conditions. That is, φ†G2 = φ†
(

1

I
3/2
2

F2

)
= G2 ◦ φ . Also, φ†G3 must be

orthonormal to G2 ◦φ and it must have order 4. The only choice will be G3 ◦φ .
Etc. This procedure results on φ†Gi = Gi ◦φ , for any i = 1, . . . , n , as stated by
the theorem .

Example5.3. In the case n = 3 the differential invariants for unparametrized
curves are given by

∆1 = 4
I1

I
1
2
2

+
9
8

(I ′2)2

I
5
2
2

− I ′′2

I
3
2
2

∆2 =
1

I
10/4
2

det
(
V2,2 V2,3

V2,3 V3,3

)
=

I3

I
3/2
2

− 1
4

(I ′2)2

I
5/2
2

,

and the invariant frame is given by

G1 =
1

I
1/4
2

F1

G2 =
1

I
3/2
2

F2

G3 =
1

∆1/2
2 I

3/4
2

[
F3 −

1
2
I ′2
I2
F2

]
.

6. Conclusions and further questions.

In this paper we have found a system of n vector relative differential invariants
of parametrized conformal curves in IRn , for any n ≥ 3. With the use of
these vectors we classify all differential invariants of both parametrized and
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unparametrized curves, and we also find an invariant frame in the unparametrized
case. Furthermore, the invariants of parametrized curves are generated by a
system of independent homogeneous polynomials on expressions of the form ui·uj

u1·u1
where the degree of this term is defined to be i + j − 2. The differential order
of the generators are 3, 3, 4, 5, . . . , n + 1 and the homogeneity degrees are 2k ,
k = 1, . . . , n , respectively. The fact that they are homogeneous allows one to
find any other homogeneous invariant in a rather simple way.

As I said in the introduction, the inspiration for the approach adopted
here was found in the study of the relationship between differential invariants
and Hamiltonian structures of PDE’s. One of the simplest connection in the
parametrized case is that of two very well known evolutions, the Schwarzian
KdV and the KdV equation. The Schwarzian KdV is given by

φs = φ′S(φ)

where φ : IR→ IR is a nondegenerate real map, and where

S(φ) =
φ′φ′′′ − 3

2 (φ′′)2

(φ′)2

is the Schwarzian derivative of the function φ . It is well–known that whenever
φ is a solution of the Schwarzian KdV, its Schwarzian derivative satisfies KdV
itself, that is, if v = S(φ), then

vs = v′′′ + 3vv′.

In fact the relation is closer. If φ is a solution of

φs = φ′H (6.1)

where H is a function of S(φ) and its derivatives with respect to x , then
v = S(φ) satisfies

vs = H ′′′ + 2vH ′ + v′H. (6.2)

It is well known that S(φ) is the unique generating differential invariant
for the projective action of SL(2) on maps φ : IR → IRP1 . That is, the unique
differential invariant of fractional transformations acting on φ . It is also trivial
to check that evolution (6.1) is the formula for the most general evolution of maps
φ : IR→ IRP1 invariant under the projective action of SL(2) (φ′ has the role of
ν in section 3 and H is a general invariant). Hence, if φ is a solution of (6.1),
its generating invariant is a solution of (6.2). Equation (6.2) is the well known
Hamiltonian evolution associated to the second KdV Hamiltonian bracket. It
has a compatible symplectic structure, the derivative, and it produces completely
integrable PDEs, namely KdV itself. As seen in this simple example, the Poisson
structure D3

x + 2vDx + v′ can be found only with the knowledge of the relative
invariant φ′ and the invariant S(φ).

This relationship holds true for higher dimensions: if φ is a curve φ :
IR → IRPn−1 and we consider the projective action of SL(n) on IRPn−1 , then,
whenever φ evolves invariantly, a generating set of differential invariants evolves



Maŕı Beffa 243

following the so called Adler–Gel’fand–Dikii Hamiltonian evolution. This result
can be found in [15]. The Adler–Gel’fand–Dikii Hamiltonian structure has a
symplectic companion and it also produces completely integrable systems, the so
called generalized KdV systems.

In the unparametrized case a similar situation can be found, for example,
in Euclidean geometry ([11]). If φ : IR × IR → IR2 is a planar flow of curves
satisfying evolution

φs = h1T + h2N = (T N )
(
h1

h2

)
where h1 and h2 are functions of the curvature κ and where T and N are
tangent and normal, and if the evolution is arc–length preserving (i.e., if h2 =
h′1
κ ), then the evolution induced on the curvature is given by

κs = Dx(Dx
1
κ
Dx +Dxκ)h1

and the Hamiltonian structure Dx can be defined with the use of the invariant
frame {T,N} and the invariant κ . The same situation appears again in 3-
dimensional Riemannian manifolds with constant curvature where 4 compatible
Poisson tensors can be found this way ([19]).

It is thus natural to investigate for which groups do we obtain these kind
of structures, and whether or not one could obtain new integrable systems as a
byproduct. A fundamental first step of independent importance is, of course, the
classification of relative and absolute differential invariants.

Finally, I will write a short comment on still another use of these sys-
tems of PDE’s, analogous to (6.2). The same way we can obtain these PDE’s
by classifying differential invariants and invariant evolutions, one can also go the
other way around and search for help finding differential invariants among the
coefficients of these PDE’s. Namely, if we have the general matrix ν of relative
invariants and the first invariant I1 , which is always the simplest one, one can
write the evolution induced on I1 by the invariant evolution of curves. The co-
efficients of the resulting equation will all be differential invariants themselves.
In all cases of group actions that we have studied either a complete set of gener-
ators, or a significant partial subset, appeared already among these coefficients,
which can be generated only with the knowledge of ν and I1 . It is a very simple
procedure that produces invariants in simple form. In the case presented here
part of the generators were originally found this way, and most of their properties
were learned from these coefficients. For example, in the case n = 3, if a general
invariant evolution for a curve u is given by

us = h1F1 + h2F2 + h3F3

straightforward calculations show that the induced evolution on I1 is given by

(I1)t = [D3
x + 2I1Dx + 2(I1)′]h1 − [2I2Dx +

3
2

(I2)′]h2 − [(I2)′Dx + (I2)′′ − I3]h3.

This evolution already shows in its coefficients the rest of the generating invari-
ants, I2 and I3 . The appropiate way of combining the relative invariants was
found while studying the coefficients of the evolution of the first invariant and,
even though it is very simple, it was not guessed.



244 Maŕı Beffa
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tial equations and the Adler-Gel’fand-Dikii bracket, J. Math. Phys. 38
(1997), 5720–5738.

[8] Guillemin V. and S. Sternberg, Variations on a theme by Kepler, “Col-
loquium publ. Amer. Math. Soc.” 42, Providence R. I. 1990.

[9] Green, Mark L. A., The moving frame, differential invariants, and rigid-
ity theorems for curves in homogeneous spaces, Duke Math. J. 45 (1978),
735–779.

[10] Hasimoto, R., A soliton on a vortex filament, J. Fluid Mechanics 51
(1972), 477–485.

[11] Ivey, T. A., Integrable geometric evolution equations for curves, Technical
report (2001), to be published in Contemporary Mathematics.

[12] Langer, J., and R. Perline, Poisson geometry of the filament equation, J.
Nonlinear Sci. 1:1 (1991), 71–93.

[13] Kobayashi, S., “Transformation Groups in Differential Geometry,” Clas-
sics in Mathematics, Springer–Verlag, New York, 1972.
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