
Journal of Lie Theory
Volume 13 (2003) 133–154
c© 2003 Heldermann Verlag

Kazhdan Constants and Matrix Coefficients of Sp (n,R)

Markus Neuhauser∗

Communicated by Alain Valette

Abstract. An infinitesimal Kazhdan constant of Sp (2,R) is computed. The
methods used to prove this can also be employed to determine a quantitative
estimate of the asymptotics of the matrix coefficients of Sp (n,R) in an elemen-
tary manner. An application of the result gives explicit Kazhdan constants for
Sp (n,R), n ≥ 2.

1. Introduction

A locally compact group G has Kazhdan’s property T, if for a compact subset
Q ⊂ G and an ε > 0, every unitary representation π which has a (Q, ε)-invariant
vector, i. e. a vector ξ ∈ Hπ such that ‖π (g) ξ − ξ‖ < ε ‖ξ‖ for all g ∈ Q , has
in fact a nonzero invariant vector. If such (Q, ε) for a group exists it is called
a Kazhdan pair. This group theoretic property introduced in [9] has remarkable
applications, for an account see [5] and [12].

In this paper, by “representation” we shall always mean “unitary repre-
sentation”. Let G be a connected Lie group. If π is a representation of G , a
vector ξ ∈ Hπ is called a C∞ -vector if g 7→ 〈π (g) ξ, η〉 is a C∞ -function for all
η ∈ Hπ , cf. for example [14]. The space of C∞ -vectors is denoted by H∞π . Let K
be a maximal compact subgroup of G . A vector ξ ∈ Hπ is K -finite if the linear
span of π (K) ξ is finite-dimensional. We denote by H∞π,K the space of K -finite,
C∞ -vectors in Hπ .

Let X1, . . . , Xm be a basis of the Lie algebra of G , then ∆ = −
∑m

k=1 X
2
k

denotes the Laplacian. If π is a representation of G , let dπ denote the derived
representation of the Lie algebra. It can be extended to the universal enveloping
algebra.

In [1, Theorem 3.10], it was shown that property T for a connected Lie
group G , is equivalent to the existence of an ε > 0 such that

〈dπ (∆) ξ, ξ〉 ≥ ε ‖ξ‖2

for every ξ ∈ H∞π and every π without nonzero fixed vector.
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In [2, page 94], it was shown that restriction to the space H∞π,K is possible,
namely:

Theorem 1.1. The connected Lie group G has property T if and only if there
exists a constant ε > 0 such that

inf
{
〈dπ (∆) ξ, ξ〉 : ξ ∈ H∞π,K , ‖ξ‖ = 1

}
≥ ε

for any unitary representation π of G without nonzero fixed vector.

We define the infinitesimal Kazhdan constant as

κK (∆, G) = inf
{
〈dπ (∆) ξ, ξ〉 : ξ ∈ H∞π,K , ‖ξ‖ = 1, π ≯ 1

}
.

The symplectic group Sp (n,R) ⊂ GL (2n,R) is the group of isometries of
the skew symmetric bilinear form induced by

J =

(
0 −In
In 0

)
,

where In is the n× n identity matrix. So

Sp (n,R) =
{
g ∈ GL (2n,R) : gTJg = J

}
.

In the following G = Sp (n,R) and K = Sp (n,R) ∩ SO (2n) is the standard
maximal compact subgroup of G .

Let π be a strongly continuous representation of G on a Hilbert space Hπ .
A vector ξ ∈ Hπ is called K -finite if the linear span of the set π (K) ξ in Hπ is
finite-dimensional. Denote this dimension by δ (ξ) = dim 〈π (K) ξ〉 .

Theorem 1.2. For every Sp (2,R)∩SO (4)-finite unit C∞ -vector η and every
representation π of Sp (2,R) without nonzero invariant vectors

〈dπ (∆) η, η〉 ≥ 1

4π
sup

0<ϑ<π/2

(sin (2ϑ))2

ϑ
> 0. 11532

for a suitable Laplacian ∆ on Sp (2,R), described after Theorem 3.5.

By Theorem 1.1, this implies that Sp (2,R) has Kazhdan’s property T
which was shown for any local field in [4] and [13] and with an elementary proof
in [3].

The group G can be decomposed as G = KAK , where

A =

{(
a 0
0 a−1

)
: a = diag (a1, . . . , an)

}
,

the subgroup of the diagonal matrices in G . In fact, the matrices in A in the
decomposition can be chosen more specially as G = KA+K , where

A+ =

{(
a 0
0 a−1

)
:
a = diag (a1, . . . , an) ,
a1 ≥ a2 ≥ . . . ≥ an ≥ 1

}
.
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This can be achieved by suitable conjugation of an element of A by permutation
matrices contained in K .

The asymptotics of the matrix coefficients will be given for the dense sub-
space of K -finite vectors of a representation π .

The quantitative estimate of the asymptotic of matrix coefficients will be
given in terms of the Harish-Chandra function Ξ defined by

Ξ

(
a 0
0 a−1

)
=

1

2π
a−1

∫ 2π

0

∣∣a−4 (cosϑ)2 + (sinϑ)2
∣∣−1/2

dϑ,

cf. for example [7, page 215].

Let g ∈ G with the decomposition g = k1hk2 , k1, k2 ∈ K ,

h = diag
(
a1, . . . , an, a

−1
1 , . . . , a−1

n

)
∈ A+,

then define

Ψ (g) = Ξ

( √
a1a2 0

0
√
a1a2

−1

)
.

The next theorem gives a quantitative estimate for the asymptotics of
matrix coefficients.

Theorem 1.3. Let π be a strongly continuous representation of Sp (n,R),
n ≥ 2, without nonzero invariant vectors, then

|ϕξ,η (g)| ≤ ‖ξ‖ ‖η‖
√
δ (ξ) δ (η)Ψ (g)

for two K -finite vectors ξ, η ∈ Hπ , where ϕξ,η (g) = 〈π (g) ξ, η〉.
Here the main application of this theorem is the proof of Kazhdan’s prop-

erty T of Sp (n,R), n ≥ 2, with an explicit Kazhdan pair.

Theorem 1.4. Let 0 < δ < 1, ε = 0. 32×
√

2δ , and Q = Ψ−1 ([1− δ, 1]), then
(Q, ε) is a Kazhdan pair of Sp (n,R).

It is a pleasure to thank M. B. Bekka, H. Führ, G. Schlichting, A. Valette,
and the referee for their comments and suggestions. Financial support form the
Centre de Coopération Universitaire Franco-Bavarois is acknowledged.

2. Preliminaries

A set in the dual space of S2 (R2) is determined, where S2 (R2) is identified with
the vector space of the symmetric 2 × 2-matrices. This set will be important for
the computation of an explicit estimate of the infinitesimal Kazhdan constant of
Sp (2,R) in Section 3 and for the determination of an explicit quantitative estimate
of the asymptotics of matrix coefficients of Sp (n,R) in Section 5. The asymptotics
will be employed in the last section to obtain a Kazhdan pair for Sp (n,R).

For SL (3,R) M. B. Bekka and M. Mayer in [2] have determined a lower
bound of the infinitesimal Kazhdan constant associated with a Laplacian.

Let π be a representation of Sp (2,R) on Hπ . The strategy for establishing
the estimates consists in considering the restriction of π to SL (2,R) n S2 (R2).
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There is a spectral measure on the dual group N̂ corresponding to π|N where
N = S2 (R2) is an abelian subgroup. The main problem here will be to find a set

W ⊂ N̂ of which the spectral measure can be computed and estimated under the
action of a suitably defined one parameter subgroup.

The subgroup

P =

{(
a b

0 aT
−1

)
: a ∈ SL (2,R) , abT = baT

}
∼= SL (2,R)n S2

(
R2
)

will be considered. If ξ is a vector fixed by the subgroup

N =




1 0 x y
0 1 y z
0 0 1 0
0 0 0 1

 : x, y, z ∈ R

 ∼= R3,

then ξ is a fixed vector of Sp (2,R), cf. for example [10, page 88].

So it can be supposed that π has no nonzero N -invariant vector. Let E be
the spectral measure of N̂ . Then π|N =

∫
N̂
χdE (χ) and E ({0}) = 0. For Borel

sets W ⊂ N̂ we have E (a ·W ) = π (a)E (W )π (a)−1 for all a ∈ SL (2,R).

Let ρ denote the action of SL (2,R) on S2 (R2) by ρ (a) b = abaT . We have

that aT = ωa−1ω−1 for ω =

(
0 −1
1 0

)
and a ∈ SL (2,R). So the dual operation

on N̂ is equivalent to the usual operation ρ since tr
(
baT ca

)
= tr

(
abaT c

)
.

The following basis

s1 =

(
1 0
0 1

)
, s2 =

(
1 0
0 −1

)
, s3 =

(
0 1
1 0

)
of S2 (R2) is chosen. The isomorphism x

y
z

 7→ xs1 + ys2 + zs3 =

(
x+ y z
z x− y

)

yields an identification between N̂ ∼= N ∼= S2 (R2) and R3 . The spectral measure
E is now considered to be defined on R3 .

For an angle 0 < ϑ < π and h ∈ R define

S+
h (ϑ) =


 x

hx+ y cos β
y sin β

 : x ∈ R, y > 0,−ϑ < β ≤ ϑ

 .

For 0 < ϑ < π
2

one has

S+
h (ϑ) =


 x

hx+ y
y tan β

 : x ∈ R, y > 0,−ϑ < β ≤ ϑ

 .
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Let g0 (α) =

(
cos (α/2) − sin (α/2)
sin (α/2) cos (α/2)

)
. Then in the chosen basis g0 (α) acts on

R3 by  1 0 0
0 cosα − sinα
0 sinα cosα

 .

Hence

g0 (α) · S+
0 (ϑ) =


 x

y cos β
y sin β

 : x ∈ R, y > 0,−ϑ+ α < β ≤ ϑ+ α

 .

This implies that g0 (2ϑ) · S+
0 (ϑ) and S+

0 (ϑ) are disjoint.

Let ξ be a unit eigenvector of the image π (K), then π (g0 (α)) ξ = einα/2ξ
for an n ∈ Z . As g0 (α) ∈ SL (2,R),

π (g0 (α))E
(
S+

0 (ϑ)
)
ξ = π (g0 (α))E

(
S+

0 (ϑ)
)
π (g0 (α))−1 π (g0 (α)) ξ

= E
(
g0 (α) · S+

0 (ϑ)
)
π (g0 (α)) ξ

= einα/2E
(
g0 (α) · S+

0 (ϑ)
)
ξ

and so ∥∥E (S+
0 (ϑ)

)
ξ
∥∥ =

∥∥π (g0 (α))E
(
S+

0 (ϑ)
)
ξ
∥∥

=
∥∥E (g0 (α) · S+

0 (ϑ)
)
ξ
∥∥ .

On the other hand S+
0 (ϑ) and g0 (α) · S+

0 (ϑ) are disjoint for 2ϑ ≤ α ≤ 2π −
2ϑ . Hence E

(
S+

0 (ϑ)
)
E
(
g0 (α) · S+

0 (ϑ)
)

= 0 and E
(
S+

0 (ϑ)
)
ξ is orthogonal to

E
(
g0 (α) · S+

0 (ϑ)
)
ξ .

Let now n ≥ 2, ϑ = π/n , and αj = 2πj/n for 0 ≤ j ≤ n− 1, then

R3 \ {0} =
n−1⋃
j=0

g0 (αj) · S+
0 (ϑ)

where the union is disjoint. So
∑n−1

j=0 E
(
g0 (αj) · S+

0 (ϑ)
)

= idHπ . This way ξ can

be decomposed into vectors of equal length ξ =
∑n−1

j=0 E
(
g0 (αj) · S+

0 (ϑ)
)
ξ . If ξ

is a unit vector ∥∥E (S+
0 (ϑ)

)
ξ
∥∥2

= 1/n = ϑ/π.

This equality can be extended first to all ϑ = rπ with r ∈ Q ∩ ]0, 1[ and then to
all r ∈ ]0, 1[. This proves the following.

Lemma 2.1. For 0 < ϑ < π :∥∥E (S+
0 (ϑ)

)
ξ
∥∥2

= ϑ/π.

Let now

S−h (ϑ) =


 x

hx+ y cos β
y sin β

 : x ∈ R, y < 0,−ϑ < β ≤ ϑ


= g0 (π) · S+

−h (ϑ) ,
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then
∥∥E (S−0 (ϑ)

)
ξ
∥∥2

=
∥∥E (S+

0 (ϑ)
)
ξ
∥∥2

= ϑ/π .

Let S0 (ϑ) = S+
0 (ϑ) ∪ S−0 (ϑ), W+ (ϑ) = S+

1 (ϑ) ∩ S+
0 (2ϑ), W− (ϑ) =

S−1 (ϑ) ∩ S−0 (2ϑ), and W (ϑ) = W− (ϑ) ∪W+ (ϑ) for 0 < ϑ < π/2.

The determination of the spectral measure of W (ϑ) is a more difficult task.
This will be done in the next section.

3. Kazhdan constants associated with a Laplacian

The next proposition is an important step in the determination of the infinitesimal
Kazhdan constant associated with ∆.

Proposition 3.1. For 0 < ϑ < π/2 and a unit K -eigenvector ξ the spectral
measure is ‖E (W (ϑ)) ξ‖2 = 2ϑ/π .

The proof is postponed to Appendix A.

Now it will be investigated how W (ϑ) behaves under the action of the one

parameter group g1 (t) =

(
exp (t/2) 0

0 exp (−t/2)

)
. Then g1 (t) acts on S2 (R2)

with the above basis by  cosh t sinh t 0
sinh t cosh t 0

0 0 1

 .

Hence

g1 (t) · S+
1 (ϑ) =


 x

x+ y
yet tan β

 : x ∈ R, y > 0,−ϑ < β ≤ ϑ


= S+

1

(
arctan

(
et tanϑ

))
and

g1 (t) ·W± (ϑ) = S±1
(
arctan

(
et tanϑ

))
∩
(
g1 (t) · S±0 (2ϑ)

)
.

Here

g1 (t) · S±0 (ϑ)

=


 x cosh t+ y cos β sinh t

x sinh t+ y cos β cosh t
y sin β

 : x ∈ R,±y > 0,−ϑ < β ≤ ϑ

 .

Since x ∈ R is arbitrary, replace x by x−y cosβ sinh t
cosh t

. Then the first coordinate
becomes x and the second (x− y cos β sinh t) tanh t + y cos β cosh t = x tanh t +
y cosβ
cosh t

. So

g1 (t) · S±0 (ϑ) =


 x

x tanh t+ y cosβ
cosh t

y sin β

 : x ∈ R,±y > 0,−ϑ < β ≤ ϑ


= S±tanh t (arctan (cosh t tanϑ)) .

The next proposition determines a ϑt dependent of t and ϑ such that
W (ϑt) is contained in g1 (t) ·W (ϑ) giving in the corollary below a lower bound
for the spectral measure of W (ϑt) as an immediate consequence.
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Proposition 3.2. For 0 < ϑ < π/2 and t > 0 holds g1 (t) · W (ϑ) ⊇
W (arctan (et tanϑ)).

The proof is postponed to Appendix B.

Corollary 3.3. For 0 < ϑ < π/2 and t > 0,

‖E (g1 (t) ·W (ϑ)) ξ‖2 ≥ 2

π
arctan

(
et tanϑ

)
.

The purpose of all this is to obtain an estimate of ‖dπ (Y1) ξ‖ , where

Y1 = 1
2

(
1 0
0 −1

)
, for a smooth SO (2)-finite unit vector ξ . Observe that

g1 (t) = exp (tY1).

Proposition 3.4. Let π be a representation of SL (2,R) n S2 (R2) without
nonzero S2 (R2)-invariant vectors, then

‖dπ (Y1) ξ‖ ≥ 1

2
√

2π

sin (2ϑ)√
ϑ

for every smooth SO (2)-eigenvector ξ with ‖ξ‖ = 1.

Proof. For ξ smooth of norm 1:

‖E (g1 (t) ·W (ϑ)) ξ‖ = ‖π (g1 (t))E (W (ϑ))π (g1 (−t)) ξ‖
= ‖E (W (ϑ))π (g1 (−t)) ξ‖ .

Differentiating at t = 0 yields

d

dt
‖E (g1 (t) ·W (ϑ)) ξ‖2

∣∣∣∣
t=0

=
d

dt
‖E (W (ϑ))π (g1 (−t)) ξ‖2

∣∣∣∣
t=0

= −〈dπ (Y1) ξ, E (W (ϑ)) ξ〉 − 〈E (W (ϑ)) ξ, dπ (Y1) ξ〉 .

If f is a real function differentiable at 0 with f (0) = 0 and f (x) ≥ 0 for x ≥ 0,
then f ′ (0) ≥ 0. Together with Corollary 3.3 this implies

d

dt
‖E (g1 (t) ·W (ϑ)) ξ‖2

∣∣∣∣
t=0

≥ 2

π

d

dt
arctan

(
et tanϑ

)∣∣∣∣
t=0

=
2

π

1

1 + (tanϑ)2 tanϑ

=
2

π
(cosϑ)2 tanϑ =

2

π
cosϑ sinϑ =

1

π
sin (2ϑ) .

Hence

2 ‖dπ (Y1) ξ‖
√

2ϑ

π
≥ −〈dπ (Y1) ξ, E (W (ϑ)) ξ〉 − 〈E (W (ϑ)) ξ, dπ (Y1) ξ〉

=
d

dt
‖E (g1 (t) ·W (ϑ)) ξ‖2

∣∣∣∣
t=0

≥ 1

π
sin (2ϑ)
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and

‖dπ (Y1) ξ‖ ≥ 1

2
√

2π

sin (2ϑ)√
ϑ

for every smooth K -eigenvector ξ of norm 1.

For Y2 = 1
2

(
0 1
1 0

)
, conjugate to Y1 , the same equality holds. Together

with Y0 = 1
2

(
0 −1
1 0

)
, the three elements Y0, Y1, Y2 form a basis of the Lie alge-

bra of SL (2,R) orthogonal with respect to the Killing form. The corresponding
Casimir operator is C = 1

2
(Y 2

1 + Y 2
2 − Y 2

0 ) and the corresponding Laplacian is
∆ = −Y 2

1 − Y 2
2 − Y 2

0 = −2C − 2Y 2
0 .

Theorem 3.5. Let π be a representation of SL (2,R)nS2 (R2) without nonzero
S2 (R2)-invariant vectors, then

〈dπ (∆) η, η〉 ≥ 1

4π
sup

0<ϑ<π/2

(sin (2ϑ))2

ϑ

for every smooth SO (2)-finite unit vector η .

Proof. Let η =
∑r

k=1 ξk be the orthogonal decomposition of η into dπ (Y0)-
eigenvectors, then the observation that C commutes with Y0 implies

〈dπ (∆) η, η〉
=

〈
dπ
(
−2Y 2

0

)
η, η
〉

+ 〈dπ (−2C) η, η〉

=
r∑

k=1

〈
dπ
(
−2Y 2

0

)
ξk, ξk

〉
+ 〈dπ (−2C) ξk, ξk〉 =

r∑
k=1

〈dπ (∆) ξk, ξk〉

≥
r∑

k=1

2

(
1

2
√

2π

sin (2ϑ)√
ϑ

)2

‖ξk‖2 =
1

4π

sin2 (2ϑ)

ϑ
‖η‖2 .

The following basis of the Lie algebra sp (2,R) will be considered which
contains elements corresponding to Y1 and Y2 . The Lie algebra sp (2,R) admits
a Cartan decomposition into sp (2,R) = k⊕ p where k = so (4,R)∩ sp (2,R) and
p = S2 (R2) ∩ sp (2,R). With

X0 =
1

2


0 −1 0 0
1 0 0 0
0 0 0 −1
0 0 1 0

 , X1 =
1

2


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 1

 ,

X2 =
1

2


0 1 0 0
1 0 0 0
0 0 0 −1
0 0 −1 0

 , X3 =
1

2


1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1


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and

X4 =
1

2


0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

 , X5 =
1

2


0 0 1 0
0 0 0 −1
1 0 0 0
0 −1 0 0

 ,

X6 =
1

2


0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

 , X7 =
1

2


0 0 1 0
0 0 0 1
−1 0 0 0
0 −1 0 0

 ,

X8 =
1

2


0 0 1 0
0 0 0 −1
−1 0 0 0
0 1 0 0

 , X9 =
1

2


0 0 0 1
0 0 1 0
0 −1 0 0
−1 0 0 0


the Casimir operator satisfies

C = 2
(
X2

1 +X2
2 +X2

3 +X2
4 +X2

5 +X2
6 −

(
X2

7 +X2
8 +X2

9 +X2
0

))
.

The elements X0, X7, X8, X9 form a basis of k and X1, X2, X3, X4, X5, X6 form a
basis of p . Let η be a smooth Sp (2,R) ∩ SO (4)-finite unit vector, then

〈dπ (∆) η, η〉 ≥ 〈dπ (∆1) η, η〉 ,

with ∆1 = −X2
0 − X2

1 − X2
2 = −2X2

0 − 2C1 where C1 = 1
2

(−X2
0 +X2

1 +X2
2 ) is

the Casimir operator of a Lie subalgebra isomorphic to sl (2,R). By Theorem 3.5
this shows that 〈dπ (∆) η, η〉 ≥ (4π)−1 (sin (2ϑ))2 /ϑ for every smooth Sp (2,R) ∩
SO (4)-finite unit vector η of a representation π without nonzero S2 (R2)-invariant
vectors.

To conclude the proof of Theorem 1.2 let π be a representation of Sp (2,R)
without nonzero invariant vector. If the restriction to S2 (R2) would have a
nonzero invariant vector this would imply the contradiction that Sp (2,R) would
have a nonzero invariant vector by an argument similar to the one for SL (2,R)
in [10, page 88]. For more details see also the proof of Theorem 4.3. In the
notation used there a nonzero S2 (R2)-invariant vector would imply a nonzero
vector invariant under G1,1 , G1,2 , and G2,2 (see next section). But these three
subgroups together generate Sp (2,R).

By Theorem 3.5 now only the maximum of the function ϑ 7→ (sin (2ϑ))2 /ϑ
has to be considered which is obtained at approximately ϑ ≈ 0. 582781 so

1

4π
sup

0<ϑ<π/2

(sin (2ϑ))2

ϑ
≈ 0. 115325 > 0. 11532.

4. Vanishing of matrix coefficients

In this section the qualitative behavior of the matrix coefficients of Sp (n,R) will
be analyzed in an elementary manner. The case SL (n,R) was done in [7].

The following notion will be used.
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Let X be a Hausdorff topological space. A complex valued function f is
said to vanish at infinity if for every ε > 0 there exists a compact set C ⊂ X such
that |f (x)| < ε for all x ∈ X \ C .

A sequence goes to ∞ in X if it has no limit point in X . If X is second
countable a complex valued function f vanishes at ∞ if limm→∞ f (x) = 0 for
every sequence (xm)m∈N in X going to ∞ . This will be used for Sp (n,R).

The following is easily deduced from the fact that Sp (n,R) = KA+K and
π (K) is compact.

Lemma 4.1. Let π be a representation of Sp (n,R) on Hπ such that the matrix
coefficients do not vanish at infinity; then there are ξ, η ∈ Hπ and a sequence
(gm)m∈N with gm ∈ A+ and gm → ∞ such that (〈π (gm) ξ, η〉)m∈N does not
converge to 0.

The subgroup

N1 =




1 0 x yT

0 I y 0
0 0 1 0
0 0 0 I

 : x ∈ R, y ∈ Rn−1


of Sp (n,R) will be important. The following proposition shows that a repre-
sentation of Sp (n,R) which has a matrix coefficient that does not vanish at ∞
has in fact a nonzero vector which is N1 -invariant. The next theorem will show
this vector is in fact invariant by proving that some specific subgroups generate
Sp (n,R).

Proposition 4.2. Let π be a strongly continuous unitary representation of
Sp (n,R) on Hπ and suppose that a matrix coefficient of π does not vanish at
∞, then there is a nonzero N1 -invariant vector.

Proof. By Lemma 4.1 there is a sequence (gm)m∈N which goes to infinity with
gm ∈ A+ and a ξ ∈ Hπ such that the sequence (π (gm) ξ)m∈N does not converge
weakly to 0. After passing to a subsequence it can be assumed that (π (gm) ξ)m∈N

converges in the weak topology to η 6= 0 since π (gm) is unitary and the unit ball
is compact in the weak topology.

Let gm =

(
am 0
0 a−1

m

)
with

am = diag (am,1, . . . , am,n) , am,1 ≥ . . . ≥ am,n ≥ 1.

As am → ∞ , we have a−1
m,1 → 0. The elements g−1

m hgm converge to the identity
In for m→∞ and h ∈ N1 as(

a−1 0
0 a

)(
In b
0 In

)(
a 0
0 a−1

)
=

(
In a−1ba−1

0 In

)
with a diagonal and b ∈ S2 (Rn),(

a−1
m,1 0
0 d−1

m

)(
x yT

y 0

)(
a−1
m,1 0
0 d−1

m

)
=

(
a−2
m,1x a−1

m,1y
Td−1

m

a−1
m,1d

−1
m y 0

)
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with dm = diag (am,2, . . . , am,n) and so a−2
m,1x → 0 and a−1

m,1d
−1
m y → 0 because

am,j ≥ 1 for all j .

Next it is proven that η ∈ Hπ is N1 -invariant. Let h ∈ N1 with h =(
I b
0 I

)
, then

|〈π (h) η − η, ζ〉| = lim
m→∞

|〈π (h)π (gm) ξ − π (gm) ξ, ζ〉|

= lim
m→∞

∣∣〈π (gm)
(
π
(
g−1
m hgm

)
ξ − ξ

)
, ζ
〉∣∣

≤ lim
m→∞

∥∥π (gm)
(
π
(
g−1
m hgm

)
ξ − ξ

)∥∥ ‖ζ‖
= lim

m→∞

∥∥π (g−1
m hgm

)
ξ − ξ

∥∥ ‖ζ‖ = 0

for all ζ ∈ Hπ because of the strong continuity of π . So π (h) η = η .

With the help of the last proposition the following yields an elementary
proof that the matrix coefficients of Sp (n,R) vanish at infinity.

Let Ej,k ∈ Rn×n be the matrix which is zero in every entry except for the
one at (j, k) which is 1. Let ρj,k : SL (2,R)→ Sp (n,R) be the homomorphisms

ρj,k

(
a b
c d

)
=

(
In + (a− 1) (Ej,j + Ek,k) b (Ej,k + Ek,j)

c (Ej,k + Ek,j) In + (d− 1) (Ej,j + Ek,k)

)
for j, k = 1, . . . , n , j 6= k ,

ρk,k

(
a b
c d

)
=

(
In + (a− 1)Ek,k bEk,k

cEk,k In + (d− 1)Ek,k

)
for k = 1, . . . , n , and ρ̃j,k : SL (2,R)→ SL (n,R) the homomorphisms

ρ̃j,k

(
a b
c d

)
= In + (a− 1)Ej,j + bEj,k + cEk,j + (d− 1)Ek,k

for j, k = 1, . . . , n . Let

Gj,k = ρj,k (SL (2,R)) ,

G̃j,k =

{(
ρ̃j,k (g) 0

0
(
ρ̃j,k (g)T

)−1

)
: g ∈ SL (2,R)

}

for j, k = 1, . . . , n be the corresponding subgroups.

The first proof of the following was given in [6].

Theorem 4.3. Let π be a unitary representation of Sp (n,R) which does not
contain the trivial representation, then the matrix coefficients of π vanish at in-
finity.

Proof. Assume by contradiction that at least one coefficient of π does not
vanish at infinity.

For n = 1 a vector which is N1 -invariant is also invariant for Sp (n,R) =
SL (2,R), see for example [10, page 88].
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Now suppose n ≥ 2, then by Lemma 4.2 there is an N1 -invariant ξ . The
case n = 1 implies that this vector is also G1,k -invariant for k = 1, . . . , n . Let G
be the subgroup of Sp (n,R) generated by these subgroups. It will be shown that
G = Sp (n,R).

Let

ω =

(
0 −1
1 0

)
, ωj,k = ρj,k (ω) , ω̃j,k = ρ̃j,k (ω)

for j, k = 1, . . . , n . Then ω1,kρ1,1 (g)ω−1
1,k =

(
ρk,k (g)T

)−1

for k = 2, . . . , n . This

implies Gk,k ⊂ G . Since ω1,1ρ1,k (g)ω−1
1,1 =

(
ρ̃1,k (g)T

)−1

for k = 2, . . . , n , we

have G̃1,k ⊂ G . Also ω̃1,j ρ̃1,k (g) ω̃−1
1,j = ρ̃j,k (g) for j, k = 2, . . . , n , j 6= k which

gives G̃j,k ⊂ G . Finally ω̃1,jρ1,k (g) ω̃−1
1,j = ρj,k (g) for j, k = 2, . . . , n , j 6= k and

Gj,k ⊂ G .

This implies G = Sp (n,R), see [8, Section 6.9]. So ξ is G-invariant.

5. An estimate for the decay of the matrix coefficients

Before studying the decay of the matrix coefficients of Sp (n,R) the matrix coeffi-
cients of the semi-direct product SL (2,R)n S2 (R2) are considered. A set in the

unitary dual ̂S2 (R2) of the additive group of S2 (R2) will help to determine an
estimate for the matrix coefficients of the representations of SL (2,R) n S2 (R2)
without nonzero S2 (R2)-invariant vectors.

Theorem 5.1. Let π be a representation of SL (2,R)nS2 (R2) on Hπ without
nonzero S2 (R2)-invariant vectors, then

|ϕξ,η (g0 (α) g1 (t) g0 (β))| = |〈π (g0 (α) g1 (t) g0 (β)) ξ, η〉| ≤ cξ,ηe
−t/2

for ξ, η ∈ Hπ,K and cξ,η is a constant depending only on ξ and η .

Proof. Let Φ : R3 → ̂S2 (R2) be the isomorphism

(Φ (x, y, z)) (u) = exp

(
i tr

((
x+ z y
y z

)
u

))

for u ∈ S2 (R2). We identify R3 with ̂S2 (R2) via Φ. Let s > 1 and

Xs =


 x

y
z

 ∈ R3 : s−2 < y2 + z2 < s2

 ,

then
⋃
s>1 Xs = R3\{0} . As π has no nonzero S2 (R2)-invariant vectors, E (Xs) η

converges to η for η ∈ Hπ where E is the spectral measure associated to π|S2(R2) .
So it is enough to prove the statement for eigenvectors ξ, η ∈ E (Xs)Hπ of π (K)
as the matrix coefficients are sesquilinear in ξ and η .
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Let t > 2 ln s , then

ϕξ,η (g1 (t)) = 〈π (g1 (t)) ξ, η〉 = 〈π (g1 (t))E (Xs) ξ, E (Xs) η〉
= 〈E (g1 (t) ·Xs)π (g1 (t)) ξ, E (Xs) η〉
= 〈π (g1 (t)) ξ, E ((g1 (t) ·Xs) ∩Xs) η〉 .

By the Cauchy–Schwarz inequality:

|ϕξ,η (g1 (t))| ≤ ‖ξ‖ ‖E ((g1 (t) ·Xs) ∩Xs) η‖ .

The one-parameter subgroup generated by g1 (t) operates in the following way on
R3 . Then

g1 (−t)
(
x+ z y
y z

)
g1 (−t) =

(
e−t (x+ z) y

y etz

)
=

(
e−tx− 2z sinh t+ etz y

y etz

)
so by the isomorphism Φ

g1 (t) ·

 x
y
z

 =

 e−tx− 2z sinh t
y
etz

 .

Hence

g1 (t) ·Xs =


 x

y
z

 : s−2 < y2 + e−2tz2 < s2

 ⊂

 x

y
z

 : |z| < ets

 .

As

(g1 (t) ·Xs) ∩Xs ⊂


 x

y
z

 : y2 + z2 > s−2, |z| < ets


we have |z|

(√
y2 + z2

)−1

< ets (s−1)
−1

= ets2 . Now z = r cos β with r =√
y2 + z2 where |cos β| < ets2 . Let ϑ = arccos (ets2), then −π < β < π if and

only if −π < β < −ϑ or ϑ < β < π . By definition of Sh (ϑ) and W (ϑ), cf.
Section 3,

|ϕξ,η (g1 (t))| ≤
√

1− ‖E (S1 (ϑ)) ξ‖2 ≤
√

1− ‖E (W (ϑ)) ξ‖2

=

√
1− 2

π
arccos (e−ts2) =

√
2

π
arcsin (e−ts2)

≤ se−t/2.

Finally for t ≤ 2 ln s , |ϕξ,η (g1 (t))| ≤ 1 ≤ se−t/2 holds.



146 Neuhauser

There is an estimate for the matrix coefficients of the regular representation
of SL (2,R) which depends on the Harish-Chandra Ξ function, cf. for example [7,
page 217]. For t ∈ R :

Ξ (g1 (t)) = (2π)−1 e−t/2
∫ 2π

0

∣∣e−2t (cosϑ)2 + (sinϑ)2
∣∣−1/2

dϑ.

Theorem 5.2. Let π be a representation of SL (2,R)nS2 (R2) without nonzero
S2 (R2)-invariant vectors, then for the matrix coefficient of any two vectors ξ, η ∈
Hπ there is the pointwise estimate

|ϕξ,η (g1 (t))| ≤ ‖ξ‖ ‖η‖
√

dim 〈π (K) ξ〉 dim 〈π (K) η〉Ξ (g1 (t)) ,

where 〈π (K) ξ〉 is the subspace spanned by the orbit π (K) ξ .

The proof can be copied word by word form [7, page 226] replacing the
corresponding statement by Theorem 5.1.

Hence it is possible to prove Theorem 1.3, which describes the asymptotics
of matrix coefficients of Sp (n,R).

Proof of Theorem 1.3. Consider the subgroups

G̃1,2 =




a 0 0 0
0 I 0 0

0 0 aT
−1

0
0 0 0 I

 : a ∈ SL (2,R)

 ,

P1,2 =




a 0 b 0
0 I 0 0

0 0 aT
−1

0
0 0 0 I

 : a ∈ SL (2,R) , abT = baT


isomorphic to SL (2,R) and SL (2,R)n S2 (R2) respectively.

Let π be a representation of Sp (n,R) without nonzero invariant vectors,
then the representation π1,2 = π|P1,2

also has no nonzero S2 (R2)-invariant vectors,
as the matrix coefficients of π and hence the ones of π1,2 vanish at ∞ , as shown
in Theorem 4.3.

To G̃1,2 ⊂ Sp (n,R) the estimate of Theorem 5.2 is applied. Let

K1,2 =




a 0 0 0
0 I 0 0
0 0 a 0
0 0 0 I

 : a ∈ SO (2,R)


be a maximal compact subgroup of G̃1,2 .

Let ω =

(
I − E2,2 −E2,2

E2,2 I − E2,2

)
∈ K , then

ωgω−1 = diag
(
a1, a

−1
2 , a3, . . . , an, a

−1
1 , a2, a

−1
3 , . . . , a−1

n

)
.

Now ( √
a1a2 0

0
√
a1a2

−1

)( √
a1/a2 0

0
√
a1/a2

)
=

(
a1 0
0 a−1

2

)
.
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Let

g̃ = diag
(√

a1a2,
√
a1a2

−1
, 1, . . . , 1,

√
a1a2

−1
,
√
a1a2, 1, . . . , 1

)
,

h = diag
(√

a1/a2,
√
a1/a2, a3, . . . , an,

√
a2/a1,

√
a2/a1, a

−1
3 , . . . , a−1

n

)
,

then

|ϕξ,η (g)| = |〈π (g) ξ, η〉| = |〈π (g̃)π (hω) ξ, π (ω) η〉|

≤ ‖ξ‖ ‖η‖
√
δ (ξ) δ (η)Ξ

( √
a1a2 0

0
√
a1a2

−1

)
by Theorem 5.2, as π is unitary,

dim 〈π (K1,2)π (hω) ξ〉 = dim 〈π (h)π (K1,2)π (ω) ξ〉
= dim 〈π (K1,2)π (ω) ξ〉 ,

and K1,2ω ⊂ K .

6. Kazhdan pairs

For g ∈ Sp (n,R) there are k1, k2 ∈ K and

h = diag
(
a1, a2, . . . , an, a

−1
1 , a−1

2 , . . . a−1
n

)
∈ A+

such that g = k1hk2 . This implies

|ϕξ,η (g)| =
∣∣〈π (h)π (k2) ξ, π (k1)−1 η

〉∣∣
≤ ‖ξ‖ ‖η‖

√
δ (ξ) δ (η)Ξ (g1 (ln (a1a2))) .

Let Ψ be defined by Ψ (g) = Ξ (g1 (ln (a1a2))).

Theorem 6.1. Let 0 < ε < 1 and δ =
(
4 sin

(
arcsin ε

2

)
+ ε
)2
/2 < 1, then

(Ψ−1 ([1− δ, 1]) , ε) is a Kazhdan pair of Sp (n,R).

The proof can again be copied word by word from [7, page 230–231] re-
placing SL (n,R) by Sp (n,R), δ by 1 − δ , and the corresponding statement by
Theorem 5.2.

For given δ the ε in the last theorem can be estimated. We can now prove
Theorem 1.4.

Proof of Theorem 1.4. Let at first 0 < ε < 1 be arbitrary. The Taylor
expansion of x 7→

√
1 + x at 0 shows

4 sin ((arcsin ε) /2) = 2
√

2

√
1−
√

1− ε2

≥ 2
√

2
√

1− (1− ε2/2) = 2ε

for 0 < ε < 1, hence 4 sin ((arcsin ε) /2) + ε ≥ 3ε ≥
√

2 for ε ≥
√

2/3. So
ε <
√

2/3 can be assumed. Again with the above mentioned Taylor expansion we
have

√
1 + x ≤ 1 + x/2 for x ≥ −1 and so

√
1 + x =

√
1− x

1 + x

−1

≥
(

1− x

2 + 2x

)−1

= 1 +
x

2 + x
.
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By letting x = −ε2 this yields√
1−
√

1− ε2

≤

√
1−

(
1− ε2

2− ε2

)
=

ε√
2

√
1

1− ε2/2
=

ε√
2

√
1 +

ε2/2

1− ε2/2

≤ ε√
2

(
1 +

ε2/2

2− ε2

)
=

ε√
2

(
1 +

1

4ε−2 − 2

)
<

ε√
2

17

16

for 0 < ε <
√

2/3 and hence 4 sin ((arcsin ε) /2) + ε < (17/8 + 1) ε = (25/8) ε .

Now let 0 < ε = (8/25)
√

2δ <
√

2/3, then 4 sin ((arcsin ε) /2) + ε <
√

2δ
and the last theorem shows that (Q, ε) is a Kazhdan pair.

A Proof of Proposition 3.1

The idea is to decompose W (ϑ) suitably such that it can be rearranged to S0 (ϑ)
using only rotations g0 (α).

The union W (ϑ) = W− (ϑ) ∪W+ (ϑ) is disjoint and

W (ϑ) ∩ S0 (ϑ) =
(
W+ (ϑ) ∩ S+

0 (ϑ)
)
∪
(
W− (ϑ) ∩ S−0 (ϑ)

)
and

W (ϑ) \ S0 (ϑ) =
(
W+ (ϑ) ∪W− (ϑ)

)
\ S0 (ϑ)

=
(
W+ (ϑ) \ S0 (ϑ)

)
∪
(
W− (ϑ) \ S0 (ϑ)

)
=

(
W+ (ϑ) \ S+

0 (ϑ)
)
∪
(
W− (ϑ) \ S−0 (ϑ)

)
.

Hence ‖E (W (ϑ)) ξ‖2 = ‖E (W (ϑ) ∩ S0 (ϑ)) ξ‖2 + ‖E (W (ϑ) \ S0 (ϑ)) ξ‖2 ,

‖E (W (ϑ) ∩ S0 (ϑ)) ξ‖2

=
∥∥E (W+ (ϑ) ∩ S+

0 (ϑ)
)
ξ
∥∥2

+
∥∥E (W− (ϑ) ∩ S−0 (ϑ)

)
ξ
∥∥2

,

and

‖E (W (ϑ) \ S0 (ϑ)) ξ‖2

=
∥∥E (W+ (ϑ) \ S+

0 (ϑ)
)
ξ
∥∥2

+
∥∥E (W− (ϑ) \ S−0 (ϑ)

)
ξ
∥∥2

.

Then

W± (ϑ) \ S±0 (ϑ) =
(
S±1 (ϑ) ∩ S±0 (2ϑ)

)
\ S±0 (ϑ)

= S±1 (ϑ) ∩
(
S±0 (2ϑ) \ S±0 (ϑ)

)
where the sign is either everywhere + or everywhere − and

S±0 (2ϑ) \ S±0 (ϑ) = g0

(
3ϑ

2

)
· S±0

(
ϑ

2

)
∪ g0

(
−3ϑ

2

)
· S±0

(
ϑ

2

)
and the union is again disjoint.
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We have

S+
0 (ϑ) =

(
W+ (ϑ) ∩ S+

0 (ϑ)
)

∪ g0 (π + 2ϑ) ·
(
S−1 (ϑ) ∩ g0

(
−3ϑ

2

)
· S−0

(
ϑ

2

))
∪ g0 (π − 2ϑ) ·

(
S−1 (ϑ) ∩ g0

(
3ϑ

2

)
· S−0

(
ϑ

2

))
where the union is again disjoint. The validity of this equality for S+

0 (ϑ) can be
deduced from the following equalities for the three sets. It can be shown that

W+ (ϑ) ∩ S+
0 (ϑ) =


 x

x+ y
y tan β

 : x > 0, y > 0,−ϑ < β ≤ ϑ


∪


 x

y
y tan β

 : x ≤ 0, y > 0,−ϑ < β ≤ ϑ

 ,

g0 (π + 2ϑ) ·
(
S−1 (ϑ) ∩ g0

(
−3ϑ

2

)
· S−0

(
ϑ

2

))

=


 x

hx+ y
y tanϑ

 : x > 0, 0 ≤ h < 1, y > 0


and

g0 (π − 2ϑ) ·
(
S−1 (ϑ) ∩ g0

(
3ϑ

2

)
· S−0

(
ϑ

2

))

=


 x

hx+ y
−y tanϑ

 : x > 0, 0 < h ≤ 1, y > 0

 .

An analogous statement holds for S−0 (ϑ).

Now W (ϑ) will be decomposed accordingly and put together again from
rotated pieces to S0 (ϑ). With the above

‖E (W (ϑ)) ξ‖2 =
∥∥E (W+ (ϑ) ∩ S+

0 (ϑ)
)
ξ
∥∥2

+

∥∥∥∥E (W+ (ϑ) ∩ g0

(
3ϑ

2

)
· S+

0

(
ϑ

2

))
ξ

∥∥∥∥2

+

∥∥∥∥E (W+ (ϑ) ∩ g0

(
−3ϑ

2

)
· S+

0

(
ϑ

2

))
ξ

∥∥∥∥2

+
∥∥E (W− (ϑ) ∩ S−0 (ϑ)

)
ξ
∥∥2

+

∥∥∥∥E (W− (ϑ) ∩ g0

(
3ϑ

2

)
· S−0

(
ϑ

2

))
ξ

∥∥∥∥2

+

∥∥∥∥E (W− (ϑ) ∩ g0

(
−3ϑ

2

)
· S−0

(
ϑ

2

))
ξ

∥∥∥∥2
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and by the K -invariance∥∥∥∥E (W+ (ϑ) ∩ g0

(
3ϑ

2

)
· S+

0

(
ϑ

2

))
ξ

∥∥∥∥2

=

∥∥∥∥E (g0 (π − 2ϑ) ·
(
S+

1 (ϑ) ∩ g0

(
3ϑ

2

)
· S+

0

(
ϑ

2

)))
ξ

∥∥∥∥2

=

∥∥∥∥E (g0 (π − 2ϑ) · S+
1 (ϑ) ∩ g0

(
−ϑ

2

)
· S−0

(
ϑ

2

))
ξ

∥∥∥∥2

and analogously ∥∥∥∥E (W+ (ϑ) ∩ g0

(
−3ϑ

2

)
· S+

0

(
ϑ

2

))
ξ

∥∥∥∥2

=

∥∥∥∥E (g0 (π + 2ϑ) · S+
1 (ϑ) ∩ g0

(
ϑ

2

)
· S−0

(
ϑ

2

))
ξ

∥∥∥∥2

,∥∥∥∥E (W− (ϑ) ∩ g0

(
3ϑ

2

)
· S−0

(
ϑ

2

))
ξ

∥∥∥∥2

=

∥∥∥∥E (g0 (π − 2ϑ) · S−1 (ϑ) ∩ g0

(
−ϑ

2

)
· S+

0

(
ϑ

2

))
ξ

∥∥∥∥2

,∥∥∥∥E (W− (ϑ) ∩ g0

(
−3ϑ

2

)
· S−0

(
ϑ

2

))
ξ

∥∥∥∥2

=

∥∥∥∥E (g0 (π + 2ϑ) · S−1 (ϑ) ∩ g0

(
ϑ

2

)
· S+

0

(
ϑ

2

))
ξ

∥∥∥∥2

.

This yields

‖E (W (ϑ)) ξ‖2 =
∥∥E (S+

0 (ϑ)
)
ξ
∥∥2

+
∥∥E (S−0 (ϑ)

)
ξ
∥∥2

= 2
∥∥E (S+

0 (ϑ)
)
ξ
∥∥2

=
2ϑ

π
.

A more detailed proof can be found in [11, page 59–68].

B Proof of Proposition 3.2

It is enough to prove that

W± (ϑ) ⊇ g1 (−t) ·W± (arctan
(
et tanϑ

))
where either both signs are + or both − . Therefore it has to be shown that

S±1 (ϑ) ∩ S±0 (2ϑ) ⊇ S±1 (ϑ) ∩ S±− tanh t

(
arctan

(
cosh t tan

(
2 arctan

(
et tanϑ

))))
.

So let x
x+ y
y tan β

 ∈ S+
1 (ϑ) ∩ S+

− tanh t

(
arctan

(
cosh t tan

(
2 arctan

(
et tanϑ

))))
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with x ∈ R , y > 0 and −ϑ < β ≤ ϑ . Then there is z > 0 and α with

− arctan
(
cosh t tan

(
2 arctan

(
et tanϑ

)))
< α ≤ arctan

(
cosh t tan

(
2 arctan

(
et tanϑ

)))
such that x+ y = −x tanh t+ z and y tan β = z tanα . If x ≥ 0, then x+ y > 0,
since y > 0. Hence 0 < y tanβ

x+y
≤ tan β ≤ tanϑ for 0 < β ≤ ϑ and 0 ≥ y tanβ

x+y
≥

tan β > − tanϑ for −ϑ < β ≤ 0. So

 x
x+ y
y tan β

 ∈ S+
0 (2ϑ). If x < 0, then

x+ y = −x tanh t+ z > 0. If 0 < β ≤ ϑ and y ≥ −2x (cosϑ)2 , then

0 <
y tan β

x+ y
=

(
1 +

−x
x+ y

)
tan β

≤
(

1 +
1

−1 + 2 (cosϑ)2

)
tan β =

2 (cosϑ)2

cos (2ϑ)
tan β

≤ 2 (cosϑ)2

cos (2ϑ)
tanϑ = tan (2ϑ) .

If −ϑ < β ≤ 0, holds analogously

0 ≥ y tan β

x+ y
=

(
1 +

−x
x+ y

)
tan β

≥
(

1 +
1

−1 + 2 (cosϑ)2

)
tan β =

2 (cosϑ)2

cos (2ϑ)
tan β

> −2 (cosϑ)2

cos (2ϑ)
tanϑ = − tan (2ϑ) .

For z ≤ −x tanh t
cosh t tan(2 arctan(et tanϑ))−tan(2ϑ)

tan (2ϑ) and

0 < α ≤ arctan
(
cosh t tan

(
2 arctan

(
et tanϑ

)))
holds

0 <
z tanα

−x tanh t+ z
=

(
1− −x tanh t

−x tanh t+ z

)
tanα

≤

(
1− 1

1 + 1
cosh t tan(2 arctan(et tanϑ))−tan(2ϑ)

tan (2ϑ)

)
tanα

=
tan (2ϑ)

cosh t tan (2 arctan (et tanϑ))
tanα ≤ tan (2ϑ) .

For − arctan (cosh t tan (2 arctan (et tanϑ))) < α ≤ 0 analogously

0 ≥ z tanα

−x tanh t+ z
=

(
1− −x tanh t

−x tanh t+ z

)
tanα

≥

(
1− 1

1 + 1
cosh t tan(2 arctan(et tanϑ))−tan(2ϑ)

tan (2ϑ)

)
tanα

=
tan (2ϑ)

cosh t tan (2 arctan (et tanϑ))
tanα > − tan (2ϑ) .
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But,

(cosh t) tan
(
2 arctan

(
et tanϑ

))
− tan (2ϑ)

= (cosh t)
2et tanϑ

1− (et tanϑ)2 − tan (2ϑ)

= (cosh t)
et tan (2ϑ)

1− (et tanϑ)2

(
1− (tanϑ)2)− tan (2ϑ)

=

(
(cosh t)

et

1− (et tanϑ)2

(
1− (tanϑ)2)− 1

)
tan (2ϑ)

and hence

tanh t

cosh t tan (2 arctan (et tanϑ))− tan (2ϑ)
tan (2ϑ)

=
tanh t

(cosh t) et

1−(et tanϑ)2

(
1− (tanϑ)2)− 1

=

(
1− (et tanϑ)

2
)

tanh t

(cosh t) et
(
1− (tanϑ)2)− 1 + (et tanϑ)2 .

Now

(cosh t) et
(
1− (tanϑ)2)− 1 +

(
et tanϑ

)2

= (cosh t) et − 1 + et (tanϑ)2 (− (cosh t) + et
)

=
e2t − 1

2
+ et (tanϑ)2 e

t − e−t

2

= et sinh t+ et (tanϑ)2 sinh t = et
sinh t

cos2 ϑ
.

This implies

tanh t

cosh t tan (2 arctan (et tanϑ))− tan (2ϑ)
tan (2ϑ)

=

(
1− (et tanϑ)

2
)

tanh t

et sinh t
cos2 ϑ

=

(
1− (et tanϑ)

2
)

cos2 ϑ

et cosh t

=
e−t cos2 ϑ− et sin2 ϑ

cosh t
.

Since y ≥ −2x (cosϑ)2 , one has x+ y ≥ −x
(
−1 + 2 (cosϑ)2) = −x cos (2ϑ) and

z ≤ −x tanh t

cosh t tan (2 arctan (et tanϑ))− tan (2ϑ)
tan (2ϑ)

= −xe
−t cos2 ϑ− et sin2 ϑ

cosh t
,

so

−x tanh t+ z ≤ −x
(

tanh t+
e−t cos2 ϑ− et sin2 ϑ

cosh t

)
.
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Also

tanh t+
e−t cos2 ϑ− et sin2 ϑ

cosh t

=
sinh t+ e−t cos2 ϑ− et sin2 ϑ

cosh t

=
(1− 2 cos2 ϑ) sinh t+ et cos2 ϑ− et sin2 ϑ

cosh t

=
− cos (2ϑ) sinh t+ et cos (2ϑ)

cosh t
=

cos (2ϑ) (− sinh t+ et)

cosh t
= cos (2ϑ) .

So −x tanh t + z ≤ −x cos (2ϑ). Hence

 x
x+ y
y tan β

 =

 x
−x tanh t+ z

z tanα

 ∈
S+

0 (2ϑ).

The inclusion g1 (t) · W− (ϑ) ⊇ W− (arctan (et tanϑ)) holds analogously.
Therefore g1 (t) ·W (ϑ) ⊇ W (arctan (et tanϑ)).
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