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Abstract. We consider a generalization (?α) of the Kontsevich family of star
products (?Kα ) for linear Poisson structures α . Such a family is characterized
by a formal function F . We study some general properties of such families:
invariance and covariance, closeness and relativity, symmetry and reality. Finally,
we characterize the Kontsevich family (?Kα ) among all them.

1. Introduction

The study of star products i.e. associative deformations of usual multiplication of
functions has been introduced by F. Bayen, M. Flato, C. Fronsdal, A. Lichnerowicz
and D. Sternheimer [8] as a tool for the quantization of a symplectic or Poisson
[15] manifold.

Recently, M. Kontsevich solved the problem of the existence of star products
on any finite dimensional Poisson manifold [13]. He built a star product ?Kα on
R
d equipped with any Poisson bracket α . This star product is defined by using

oriented graphs
−→
Γ .

In this paper, we restrict ourselves to the case of linear Poisson structures
α , i.e. to the case of dual of Lie algebras.

Many authors studied the Kontsevich construction in this case and its
properties ([13], [1], [4],[11], [17], [2], [3], [10]). In particular, in [4], we defined
a generalization α 7→ ?α of the Kontsevich family of star products α 7→ ?Kα , as:

u ?α v =
∞∑
n=0

∑
Γ∈Gn,2

∑
orientation

a−→Γ B−→Γ (α)(u, v) =
∞∑
n=0

Cn(u, v)

(As a matter of fact, we imposed in [4] Cn(u, v) = (−1)nCn(v, u) and Cn(1, u) =
0,∀n ≥ 1). Then ?α is given by an integral formula:

(u ?α v)(ξ) =

∫
g2

û(X)v̂(Y )
F (X)F (Y )

F (X ×α Y )
e2iπ〈ξ,X×αY 〉dX dY
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where X ×α Y is the Baker-Campbell-Hausdorff formula, viewed as a formal
mapping from g2 to g , F (X) = J(X)H(X) = J(X)eh(X) and

H(X) = 1 +
∞∑
n=1

∑
s1,... ,sp
|s|=2n

as1...spTr(ad 2iπX)s1 . . . T r(ad 2iπX)sp

if J(X) = det(j(ad X)) and j(x) =
[
sh x/2
x/2

]1/2

.

In the present paper, we call such a generalization of (?Kα ) a K-family and
we study the properties of these K-families.

We first consider general properties for every K-star product ?α in these
K-families, proving that they always satisfy

Cn(1, u) = Cn(u, 1) = 0 (n ≥ 1),

they are graded and characterized by (X, u) 7→ X ?α u and (u,X) 7→ u ?α X . We
know that they are equivalent to the Kontsevich family of star products (?Kα ), the
intertwining operator being :

T = Id+
∞∑
n=1

∑
s1...sp
|s|=n

as1...sp Ts1 ◦ . . . ◦ Tsp

where

(Tsu)(ξ) = (2iπ)s
∫

g

û(X)Tr(adX)s e2iπ〈ξ,X〉dX.

We prove that T1 is a derivation for any ?α , then they are all invariant and
covariant.

We study then the symmetry and reality properties for (?α), (?Kα ) is sym-
metric and real and a (?α) is real if and only if H(X) = H(−X).

Restricting ourselves to the case of analytic star products i.e. to formal
function H converging near 0, we suppose there exists r > 0 such that:

1 +
∑
n≥1

rn
∑
|s|=n

|as1...sp | <∞.

In this case, we look for closed and relative K-family. The definition of closed star
product was introduced by A. Connes, M. Flato and D. Sternheimer. These star
products were also studied by G. Felder and B. Shoikhet when they are coming
from cyclic formality [11].

If the Lie algebra g defined by our linear Poisson structure α is not uni-
modular, then a K-star product is never closed on g∗ . Thus we shall say that a
K-family (?α) is closed if, for any unimodular g , ?α is closed on g∗ . We prove
that any closed (?α) is relative in the sense of [2] and if (?α) is strict and relative,
it is closed.

Of course (?Kα ) is an analytic, strict and closed K-family.

Finally we prove that the only symmetric, strict and closed (?α) is the
Kontsevich family (?Kα ), moreover the weights wΓ occurring in the computation
of ?Kα are all rational numbers.
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2. Graded star products

Let M be a smooth manifold, a star product ? is a (formal) deformation of the
usual point-wise product on the space of C∞(M) ([8]). Such a deformation is a
formal series:

(u, v) 7→ u ? v = uv +
∞∑
r=1

Cr(u, v) = C0(u, v) +
∑
r≥1

Cr(u, v)

which is associative in the following sense:∑
r+s=n

Cr(Cs(u, v), w) =
∑
r+s=n

Cr(u,Cs(v, w)).

We suppose the Cr to be bi-differential operators. In fact it is well known [13]
that if ? is such a deformation, then the antisymmetric part of C1 is a Poisson
bracket on M :

1

2
(C1(u, v)− C1(v, u)) = {u, v}

i.e an antisymmetric bracket satisfying the Jacobi identity and being a derivation
for each argument. Such a bracket defines uniquely an antisymmetric bi-vector α
on M such that:

{u, v} = 〈α, du ∧ dv〉.
This bi-vector α is the Poisson tensor associated to {, } . If M = R

d , M. Kontse-
vich in [13] gives an explicit construction of a star product for any Poisson tensor
α . We first generalize a little bit this construction.

In order to associate to each graph Γ an m-differential operator CΓ(α),
Kontsevich considered some oriented admissible graphs

−→
Γ . More precisely, let

A = {p1, . . . , pn} and B = {q1, . . . , qm} be finite sets . Points of A (resp. B ) are
the vertices of type 1 (resp. 2) of the graph Γ. The edges are arrows −→px starting
from a vertex p of type 1 and ending at a vertex x in A ∪B (in fact, Kontsevich
restricts himself to the case where the edge ends at x distinct from p , but here,
we shall allow this sort of edge). From each vertex p in A , there are exactly two
arrows starting. Now we define an orientation of Γ by choosing a total ordering ≤
on A and on the set E(Γ) of edges of Γ which are compatible in the sense that:

p ≤ p′ =⇒ −→px ≤
−→
p′x′ ∀p, p′ ∈ A, ∀x, x′ ∈ A ∪B.

We denote the ordered set of edges by:

E(Γ) = {−→e1 ≤ −→e2 ≤ . . . ≤ −→e2n} .

Let us denote by End(x) the set of arrows ending at the point x and by ∂End(x)

the differential operator:

∂End(x) = ∂l1...ls if End(x) = {−→el1 ≤ . . . ≤ −→els} .

Denote the edges starting from the vertex pi by e`i1 < e`i2 . Thus, for any
Poisson structure α , the m-differential operator C−→Γ (α) is by definition:

C−→Γ (α)(u1, . . . , um) =
∑

1≤`1...`2n≤d

n∏
i=1

∂End(pi)α
`i1`

i
2

m∏
k=1

∂End(qk)uk
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Let us choose any total ordering p1 < p2 < . . . < pn on A , for any graph Γ,
we define the particular orientation lex(Γ) by putting lexicographic ordering on
E(Γ):

−→pipj ≤ −−→pi′pj′ iff i < i′ or i = i′ and j ≤ j′

−→pipj ≤ −−→pi′qk iff i ≤ i′

−→piqk ≤ −−→pi′qk′ iff i < i′ or i = i′ and k ≤ k′

Finally, starting with lex(Γ), we symmetrize Γ by the action of the group
Sn of all permutations of vertices p1, . . . , pn . Let Γσ the graph obtained from Γ
by re-labeling pσ−1(i) the vertices pi . Then, with the lexicographic ordering, σ
induces a permutation σ̃ on the edges: we extend first σ to the vertices qk by
putting qσ−1(k) = qk for all k , then each edge e` = −→pipj or e` = −→piqk of lex(Γ)
becomes the edge eσ̃(`) = −−−−−−−−→pσ−1(i)pσ−1(j) or eσ̃(`) = −−−−−−−−→pσ−1(i)qσ−1(k) of lex(Γσ).

We put now:

CΓ(α) =
∑
σ∈Sn

1

n!
ε(σ̃)Clex(Γσ)(α).

Let Vn,m be the space of admissible graphs. If γ =
∑
aiΓi is a linear combination

of graphs Γi in Vn,m , Cγ will be by definition

Cγ =
∑

aiCΓi .

Definition 2.1. (K-family on Rd ) Let (γn)n≥1 be an element of
∏

n≥1 Vn,2 , the
map α 7→ ?α defined by:

u1 ?α u2 = u1u2 +
∞∑
n=1

Cγn(α)(u1, u2)

is called a K-family if, for any linear Poisson structure α ,∑
r+s=n

Cγr(α) (Cγs(α)(u1, u2), u3) =
∑
r+s=n

Cγr(α) (u1, Cγs(α)(u2, u3))

and
Cγ1(α)(u1, u2)− Cγ1(α)(u2, u1) = 2〈α, du1 ∧ du2〉.

An element ?α of a K-family (?α) is called a K-star product.

From now on, we are looking for ‘universal’ star products on dual of any
Lie algebra, since a linear α ;

α =
∑
i,j,k

Ck
ijxk∂i ∧ ∂j

is a Poisson tensor if and only if the Ck
ij are structure constants of a Lie algebra g .

We consider thus only graphs Γ with # End(pi) ≤ 1 for all i . Let Wn,m be
the space of linear combination of such graphs.

For instance dim(W1,1) = 1, the only graph being Γ1 :

E(Γ1) = {−−→p1p1,−−→p1q1}.
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?

����)
q1

p1

CΓ1(α) = Clex(Γ)(α) =
∑
i,j

Ci
ij∂j.

Similarly, dimW2,1 = 2 the only graphs being:

Γ1,1 : E(Γ1,1) = {−−→p1p1,−−→p1q1,−−→p2p2,−−→p2q1}
Γ2 : E(Γ2) = {−−→p1p2,−−→p1q1,−−→p2p1,−−→p2q1}

@
@
@R

�

q1

p1 �
�
�	

*p2 @
@
@R

����)
q1

p1 �
�
�	

����)
p2

More generally a basis of Wn,1 is given by the ΓP , where P is a partition
of {1, . . . , n} in a family of disjoint finite sequences:

{1, . . . , n} = A1 ∪ A2 ∪ . . . ∪ A`, Ai = (ji1, . . . , j
i
si

), si > 1,

and

Ai ∩ Aj = Ø if i 6= j.

For the CΓ , since, up to a sign, CΓ and CΓσ coincide, we shall only consider the
graphs Γs1,... ,s` (1 ≤ s1 ≤ s2 ≤ . . . ≤ s` ,

∑
sj = n), associated to the subsets

Aj = {
∑
i<j

si + 1,
∑
i<j

si + 2, . . . ,
∑
i<j

si + sj} (1 ≤ j ≤ `).

For instance the graph Γ1,2,2 is defined by:

E(Γ1,2,2) = {−−→p1p1,−−→p2p3,−−→p3p2,−−→p4p5,−−→p5p4} ∪ {−→piq1, i = 1, . . . , 5}.

� * � *

?R	��

����)
p1

p2

p3 p4

p5

q1

Let us put Ts = (−1)sCΓs(α), then:

(−1)
∑
siTs1 ◦ . . . ◦ Tsp = CΓs1,... ,sp

(α).

Now, in [8], the authors consider only star products vanishing on constants.
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Definition 2.2. (Star product vanishing on constants) A star product on a
Poisson manifold M is said to be vanishing on constants if, for all u in C∞(M)
and for all r > 0,

Cr(1, u) = Cr(u, 1) = 0.

Lemma 2.3. (K-family vanishes on constants)

If (?α) is a K-family , then ?α vanishes on the constants.

Proof. First, looking at the total number of edges in admissible graphs Γ in
Wn,2 , we see that for each n > 0, there is at most n edges ending on some vertex
pi . Since they are 2n > n edges, some of them end on a vertex q` , thus:

1 ?α 1 = 1.

Let us set now

1 ?α u = L(α)u = u+
∞∑
n=1

Ln(α)(u).

By definition, each Ln(α) is a differential operator defined by graphs without any
edge ending on q1 , thus the preceding discussion gives:

Ln(α) =
∑

1≤s1≤...≤sp
|s|=n

as1...sp Ts1 ◦ . . . ◦ Tsp

where the numbers as1...sp do not depend on α . Now, by formal associativity:

1 ?α (1 ?α u) = 1 ?α (L(α)u) = L(α)2u = (1 ?α 1) ?α u = 1 ?α u = L(α)u.

Thus we obtain L(α)2u = L(α)u . This implies L(α) = id .

Indeed, suppose L(α) 6= id and let n be the smallest index for which
Ln(α) 6= 0, write Ln(α) =

∑
1≤s1≤...≤sp
|s|=n

as1...spTs1 ◦ . . . ◦ Tsp , let p0 be the largest

p for which one of the as1...sp does not vanish, fix the lexicographic ordering on
the set of p0 -tuples (s1, . . . , sp0) and let (σ1, . . . , σp0) be the largest p0 -tuple for
which as1...sp does not vanish. Choose finally d = 2p0 and the following α0 on Rd :

α0 =

p0−1∑
k=0

x2k+1∂2k+1 ∧ ∂2k+2.

The only (∂2)σ1 . . . (∂2p0)σp0 term in Ln(α0) is:

aσ1...σp0
(∂2)σ1 . . . (∂2p0)σp0 .

Now, in L(α0)2 = (id + Ln(α0) + . . . )2 the term of order n is 2Ln(α0), thus for
that α0 we get an unique term:

2aσ1...σp0
(∂2)σ1 . . . (∂2p0)σp0 .

This is impossible, L(α) = id for any α . The same proof holds for u ?α 1.
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Corollary 2.4. (The C1 term of a K-family)

Let (?α) be a K-family, then:

C1(α)(u1, u2) = 〈α, du1 ∧ du2〉 = {u1, u2}.

Proof. The only graphs Γ in W1,2 are:

the Λ- graph such that E(Λ) = {−−→p1q1,−−→p1q2}

@
@@R

�
��	
q1 q2

p1

and graphs which does not vanish on constants:

Γ1 such that E(Γ1) = {−−→p1p1,−−→p1q1}; Γ2 such that E(Γ2) = {−−→p1p1,−−→p1q2}.

?

����)
q1 q2

p1

?

����)
q1 q2

p1

Since Γ1 and Γ2 do not occur,

C1(α)(u1, u2) = aΛCΛ(α)(u1, u2) = aΛ{u1, u2}

and necessarily aΛ = 1.

Let S(g) be the algebra of all polynomial functions on the dual g∗ of a Lie
algebra g . The algebra S(g) is naturally graded. If u is an homogeneous element
of S(g), we will note by |u| its degree.

A multi-linear function C :

C : S(g)× S(g) . . .× S(g) −→ S(g)

is said to be homogeneous with degree −n if for u1, . . . , uk homogeneous elements
of S(g), C(u1, . . . , uk) is homogeneous with degree |u1|+ . . .+ |uk| − n .

Definition 2.5. (Graded star products) Let S(g) be the algebra of polynomial
functions on g∗ and Sp be the space of homogeneous polynomials with degree p .
A star product on S(g) is graded if:

∀r, p, q ∈ N,∀(u, v) ∈ Sp × Sq, Cr(u, v) ∈ Sp+q−r.

Let us show that a graded star product is totally defined by X?u and u?X
where u belongs to S(g) and X belongs to g .
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Lemma 2.6. (Construction of graded star products)

Let Cn and C ′n be two sequences of bilinear maps:

Cn : g× S(g) −→ S(g) and C ′n : S(g)× g −→ S(g)

such that:

1- C0(X, u) = X.u, C ′0(u,X) = u.X , C1(X, u) = {X, u}, C ′1(u,X) = {u,X}.

2- If u is homogeneous then Cn(X, u) and C ′n(u,X) are homogeneous and their
degree is |u|+ 1− n.

3- We set:

X ◦ u =
∞∑
n=0

Cn(X, u) and u ◦X =
∞∑
n=0

C ′n(u,X)

and we suppose that:

a) C2(X, Y ) = C ′2(X, Y ), (X , Y ∈ g).

b) X ◦ (u ◦ Y ) = (X ◦ u) ◦ Y , ∀X,Y ∈ g, ∀u ∈ S(g).

c) X ◦ (Y ◦ u)− Y ◦ (X ◦ u) = [X,Y ] ◦ u , (X , Y ∈ g, u ∈ S(g)).

d) (u ◦X) ◦ Y − (u ◦ Y ) ◦X = u ◦ [X,Y ], (X ,Y ∈ g, u ∈ S(g)).

Then there exists one and only one star product ? such that:

X ? u = X ◦ u and u ? X = u ◦X, ∀X ∈ g, ∀u ∈ S(g).

This star product is graded.

Proof. Let v be in S(g), for any u in S(g), we define u ? v by induction on
the degree of u starting with:

1 ? v = v, X ? v = X ◦ v, v ? 1 = v and v ? X = v ◦X.

If u is an homogeneous polynomial function of the form u = Xu′ then there
exists a polynomial function u′′ such that:

Xu′ = X ◦ u′ + u′′ and |u′′| ≤ |u| − 1.

We suppose now u1 ? v defined for any u1 such that |u1| < |u| , we suppose also
that:

u1 ? (v ? w) = (u1 ? v) ? w if |u1|+ |v| < |u|.
Then we set:

(Xu′) ? v = X ◦ (u′ ? v) + u′′ ? v.

This formula defines without ambiguity u ? v . In fact if u has the form:

u = X1X2w = X1 ◦ (X2 ◦ w) + u′′1
= X2 ◦ (X1 ◦ w) + u′′2

Then:
X2 ◦ (X1 ◦ w) + u′′2 = X1 ◦ (X2 ◦ w) + u′′2 + [X2, X1] ◦ w.

Thus:
u′′1 = u′′2 + [X2, X1] ◦ w
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and:

X1 ◦ ((X2 ◦ w) ? v) + u′′1 ? v = X1 ◦ (X2 ◦ (w ? v)) + u′′2 ? v + ([X2, X1] ◦ w) ? v

= X1 ◦ (X2 ◦ (w ? v)) + [X2, X1] ◦ (w ? v) + u′′2 ? v

= X2 ◦ (X1 ◦ (w ? v)) + u′′2 ? v

= X2 ◦ ((X1 ◦ w) ? v) + u′′2 ? v

The homogeneous term of maximum degree in u ? v is C0(u, v) = u.v then we set:

Cn(u, v) = the homogeneous term of degree |u|+ |v| − n.

A simple computation shows that ? is a star product. In fact, let us first show
that:

C1(u, v) = {u, v}.
It is clear that the term of degree |u| + |v| − 1 in u′′ ? v is {−X, u′}v (coming
from u′′v ) and, in X ◦ (u′ ? v), it is X{u′, v}+ {X, u′.v} thus the term of degree
|u|+ |v| − 1 in u ? v is the sum of these terms:

X{u′, v}+ {X, u′v} − {X, u′}v = X.{u′, v}+ u′{X, v}
= {Xu′, v} = {u, v}.

Using the same construction, we can then define similarly u?′v by induction
‘on the right side’ on the degree of v . In fact, thanks to a), ? and ?′ coincide
if |u| = |v| ≤ 1. Now suppose that they coincide for u′ and v′ such that
|u′|+ |v′| < |u|+ |v| , then:

(X ◦ u′) ? (v′ ◦ Y ) = X ◦ (u′ ? (v′ ◦ Y ))

= X ◦ (u′ ?′ (v′ ◦ Y )) = X ◦ ((u′ ?′ v′) ◦ Y )

= (X ◦ (u′ ?′ v′)) ◦ Y = (X ◦ u′) ?′ v′) ◦ Y
= (X ◦ u′) ?′ (v′ ◦ Y )

By induction on the degree of u and w , we can moreover show that ? is
associative.

By definition u ? (v ? w) = (u ? v) ? w if |u| ≤ 1 and |w| ≤ 1. Then, by
induction on |u| , the same holds if |w| ≤ 1 since:

(X ◦ u′ ? v) ? w = (X ◦ (u′ ? v)) ? w = X ◦ ((u′ ? v) ? w) = X ◦ (u′ ? (v ? w))

= (X ◦ u′) ? (v ? w)

and similarly for any w since:

u ? (v ? (w′ ◦ Y )) = u ? ((v ? w′) ◦ Y )

= ((u ? v) ? w′) ◦ Y = (u ? v) ? (w′ ◦ Y ).

Finally ? is a graded star product by construction.
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Corollary 2.7. (Characterization of graded star product) (see also [14]) If ?
is a graded star product, then ? is entirely determined by the mappings:

C : g× S(g) −→ S(g)

(X, u) 7→ X ? u

and

C ′ : S(g)× g −→ S(g)

(u,X) 7→ u ? X.

In particular all K-star products are graded star products, each of them being totally
determined by the giving of X ? u and u ? X .

3. Universal derivation

In [4] we showed that every K-star product is given by an integral formula of the
form:

(u ?α v)(ξ) =

∫
g2

û(X)v̂(Y )
F (X)F (Y )

F (X ×α Y )
e2iπ〈ξ,X×αY 〉 dXdY

for all u , v in S(g).

These star products are all equivalent to the fundamental star product ?Kα
built by Kontsevich.

From results of Kontsevich and Shoikhet, we can deduce that ?Kα can be
written as:

(u ?Kα v)(ξ) =

∫
g2

û(X)v̂(Y )
J(X)J(Y )

J(X ×α Y )
e2iπ〈ξ,X×αY 〉 dXdY

for all u , v in S(g), (or u , v smooth functions such that û and v̂ are compactly
supported with a sufficiently small support) where:

J(X) = det

(
sh adX

2

ad X
2

) 1
2

(see [3] for instance). An equivalence operator T between ?Kα and ?α :

u ?α v = T−1(Tu ?Kα Tv)

is given by:

(Tu)(ξ) =

∫
g

û(X)H(X) e2iπ〈ξ,X〉 dX

if:
F (X) = J(X)H(X).
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The operator T is a formal series of differential operators, each of them being
a linear combination of products of operators Ts as defined in the first section.
Indeed for each positive integer s ,

(Tsu)(ξ) = (2iπ)s
∫

g

û(X)Tr(ad X)s e2iπ〈ξ,X〉 dX.

Thus Ts has the following expression:

(Tsu) =
∑
i1...is

∑
j1...js

Cj2
i1j1
Cj3
i2j2

. . . Cjs
is−1js−1

Cj1
isjs
∂i1...isu,

with that expression, we see that Ts is the operator associated to the graph Γs ,
called a “wheel” by Kontsevich ([13]). Now we can write:

T = Id+
∞∑
n=1

∑
|s|=n

as1...spTs1 ◦ . . . ◦ Tsp

if

H(X) = 1 +
∞∑
n=1

∑
|s|=n

as1...spTr(2iπ ad X)s1 . . . T r(2iπ ad X)sp .

Proposition 3.1. (Annulation of a CΓ )

Let P be the operator CΓ(α) associated to the graph Γ in W2,2 with edges:

E(Γ) = {−−→p1p1,−−→p1p2,−−→p2q1,−−→p2q2}.

Then P is null.

@
@
@R

�
�
�	

?

����)

q1 q2

p2

p1

P = CΓ(α) = 0

Proof. The operator P associated to Γ can be written:

P (u, v) = −
∑
k,`

∑
i,j

Ci
k`C

j
ij∂ku∂`v.

Let (Ei)1≤i≤d be the basis of g dual to the canonical basis of Rd , then one has:

ad [Ek, E`] =
∑
i

Ci
k` ad Ei
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Thus:
Tr(ad [Ek, E`]) =

∑
i

Ci
k`Tr(ad Ei) =

∑
i,j

Ci
k`C

j
ij.

But:
Tr(ad [Ek, E`]) = Tr(ad Ek ◦ ad E` − ad E` ◦ ad Ek) = 0.

Finally, for all u and v :

P (u, v) = −
∑
k,`

Tr(ad [Ek, E`]) ∂ku∂`v = 0

and P = 0.

Theorem 3.2. (An universal derivation) The ‘wheel’ operator T1 associated to
the wheel graph Γ1 having one vertex p0 and one vertex q1 and the edges of Γ1

are {−−→p0p0,−−→p0q1} is an ‘universal’ derivation for K-star products. We have:

T1(u ?α v) = T1u ?α v + u ?α T1v,

for all u, v and for all linear α, all K-star products ?α .

?

����)
q1

p0

Proof. By definition, T1 is a vector field. Now, for any admissible graph Γ,
we say that a vertex pi of Γ is ‘free’ if End(pi) = Ø. Then, for the corresponding
Kontsevich operator CΓ(α), if LT1 is the Lie derivative, one has:

LT1CΓ(α)(u1, . . . , um) = T1(CΓ(α)(u1, . . . , um))− CΓ(α)(T1u1, . . . , um) + . . .

. . .− CΓ(α)(u1, . . . , T1um)

= Cγ(α)(u1, . . . , um)

where γ is the sum of all the graphs
∑
free pi

Γ1 ∪pi Γ. The vertices of Γ1 ∪pi Γ are

{p0, p1, . . . , pn, q1, . . . , qm} and its edges are {−−→p0p0,−→p0pi}∪E(Γ). For each Γ1∪piΓ,
there is a subgraph P :

E(P ) = {−−→p0p0,−→p0pi,−−→pix1,−−→pix2}

if the edges starting from pi are −−→pix1 and −−→pix2 .

Then:

CΓ1∪piΓ(α)(u1, . . . , um) = −
∑
`1...`2n

(∑
j,k

Cj
kjC

k
`2i+1`2i+2

)∏
s 6=i

∂End(ps)

(
Cr
`2s+1`2s+2

xr
) m∏
k=1

∂End (qk)uk

= 0,
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since
∑
j,k

Cj
kjC

k
`2i+1`2i+2

= 0.

We will frequently use the following corollary.

Corollary 3.3. (Normalized equivalence) Each K-star product is equivalent to
the Kontsevich star product ?Kα through an operator T associated to a formal
function F (or H ) such that:

F (X) = 1 +
∑
n≥2

∑
|s|=n

as1...s`Tr(adX)s1 . . . T r(adX)s` .

Proof. Indeed, T1 being a derivation of our star products, e−a1T1 is an auto-
morphism and:

u ?α v = T−1(Tu ?Kα Tv) = (T ◦ e−a1T1)−1(T ◦ e−a1T1u ?Kα T ◦ e−a1T1v)

and T ◦ e−a1T1 is a formal series without any order 1 term.

4. Invariance and Covariance

We recall that all K-star products are equivalent to the Gutt star product ?Gα
[12] associated to the complete symmetrization mapping between the space of
polynomial functions S(g) and the universal enveloping algebra U(g) of g .

(u ?Gα v)(ξ) =

∫
g2

û(X)v̂(Y )e2iπ〈ξ,X×αY 〉 dXdY.

This equivalence being through an intertwining operator T of the form:

(Tu)(ξ) =

∫
g

û(X)F (X)e2iπ〈ξ,X〉 dX.

This operator is also composed of ‘wheel’ operators as in the previous section.

Gutt proved in [12] that ?Gα is invariant under the coadjoint action. The
same is true for the Kontsevich star product ?Kα (see [13]). Let us first recall the
definition of the invariance under the coadjoint action Ad∗ .

Definition 4.1. (Invariant star product) A star product ? is said to be invari-
ant under the coadjoint action if, for all X in g :

X−(u ? v) = (X−u) ? v + u ? (X−v)

where:

(X−u)(ξ) =
d

dt
|t=0u(Ad∗(exp tX)ξ).

Now using the equivalence operator T , we show that all K-star products
are invariant under the coadjoint action.



342 Ben Amar

Theorem 4.2. (Invariance of K-star products) All the K-star products are
invariant under the coadjoint action.

Proof. S. Gutt showed in [12] that:

1

2
(X ?Gα u− u ?Gα X) = {X, u} = X−u

for each element X of g and every polynomial function u . This implies invariance
for ?Gα . Now since TX = X + T1(X) and T1(X) is a constant, we obtain:

{X,Tu} = {TX, Tu} =
1

2
(TX ?Gα Tu− Tu ?Gα TX)

=
1

2
T (X ?α u− u ?α X).

Thus to show the invariance of ?α it is sufficient to prove X−Tu = TX−u
or, for all ‘wheel’ operators Tn ,

X−(Tnu) = Tn(X−u).

But a direct computation gives:

X−u(ξ) =

∫
g

((LX û)(Z)− Tr(ad X)û(Z))e2iπ〈ξ,Z〉 dZ

where

(LXϕ)(Y ) =
d

dt
|t=0ϕ(Ad(e−tX)(Y )).

Then:

(Tn(X−u))(ξ) =

∫
g

(LX û(Z)Tr(ad Z)n − Tr(ad X)Tr(ad Z)nû(Z))e2iπ〈ξ,Z〉 dZ.

Now let us compute X−(Tnu):

X−(Tnu)(ξ) =

∫
g

(LX(û(Z)Tr(ad Z)n)− Tr(ad X)Tr(ad Z)nû(Z)) e2iπ〈ξ,Z〉 dZ.

But we have:

(LX [ûT r(ad.)n]) (Z) = (LX û)(Z)Tr(ad Z)n + û(Z)(LXTr(ad.)n)(Z)

and

d

dt

∣∣∣∣
t=0

Tr
(
ad(Ad e−tX(Z))n

)
= nTr((ad Z)n−1ad([Z,X]))

= nTr(ad Znad X − ad Zn−1ad Xad Z)

= 0.
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Then ∫
g

û(Z) (LXTr(ad.)n) (Z) dZ = 0.

And finally:

X−(Tnu)(ξ) =

∫
g

((LX û)(Z)Tr(ad Z)n − Tr(ad X)Tr(ad Z)nû(Z)) e2iπ〈ξ,Z〉dZ

= Tn(X−u)(ξ).

Now let us recall the definition of a covariant star product.

Definition 4.3. (Covariant star product) A star product on S(g) is called
covariant if, for all X and Y in g ,

1

2
(X ? Y − Y ? X) = {X,Y } = [X, Y ].

In the following theorem we shall show that each K-star product is covariant
by considering all the possible graphs.

Theorem 4.4. (Covariance of K-star products) Each K-star product ?α is
covariant and so is strongly invariant in the sense of [6].

Proof. Since a K-star product ?α is graded, in order to show its covariance, it
is sufficient to prove that for all α ,

C2(α)(X, Y ) = C2(α)(Y,X) for all X and Y in g.

But the coefficients C2(α)(u, v) for any u , v in S(g) are given by graphs having
two vertices of first kind p1 , p2 and two vertices of second kind q1 , q2 . We
remark that there are, up to the ordering of the vertices pi , only eight graphs
of the above type non vanishing on constants. These graphs are respectively:

? ?

@
@@R

�

q1 q2

p1 p2

? ?

�
��	

-

q1 q2

p1 p2

E(Γ1) = {−−→p1q1,−−→p1q2,−−→p2p1,−−→p2q2}, E(Γ2) = {−−→p1p2,−−→p1q1,−−→p2q1,−−→p2q2},

?

����)
�
�
�	 ?

q1 q2

p1 p2

?

����)
@
@
@R?

q1 q2

p1 p2

E(Γ3) = {−−→p1p1,−−→p1q1,−−→p2q1,−−→p2q2}, E(Γ4) = {−−→p1q1,−−→p1q2,−−→p2p2,−−→p2q2},
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? ?

�
��	

@
@@R

q1 q2

p1 p2

?

�

?

*p1 p2

q1 q2

E(Γ5) = {−−→p1q1,−−→p1q2,−−→p2q1,−−→p2q2}, E(Γ6) = {−−→p1p2,−−→p1q1,−−→p2p1,−−→p2q2},

?

����
?

����))

q1 q2

p1 p2 @
@@R

�
��	

?

����)

q1 q2

p2

p1

E(Γ7) = {−−→p1p1,−−→p1q1,−−→p2p2,−−→p2q2}, E(Γ8) = {−−→p1p1,−−→p1p2,−−→p2q1,−−→p2q2}.

Among these graphs, only the last three are possibly non vanishing in the
computation of C2(α)(X, Y ) and C2(α)(Y,X) since X and Y are linear functions.
The last graph corresponds to the operator P of proposition 2-1 which is null. The
two other graphs give symmetric CΓ(α) and thus C2(α)(X, Y ) = C2(α)(Y,X).

5. Symmetry and reality

The star products defined by F. Bayen, M. Flato, C. Fronsdal, A. Lichnerowicz
and D. Sternheimer [8] had symmetry properties. Thus we put:

Definition 5.1. (Symmetric star products) A star product on a Poisson man-
ifold M is said to be symmetric if Cr is symmetric (resp skew symmetric) if r is
even (resp odd) that is:

Cr(u, v) = (−1)rCr(v, u) for all u, v ∈ C∞(M).

For instance, the Gutt star product ?Gα is symmetric for any α and the
star product built by Kontsevich ?Kα is also symmetric for any α . In fact this
is a consequence of the action of the symmetry z 7→ −z on the graphs and
the orientation of the configuration space. But in the linear case, it is also a
consequence of the parity of the function J since we have:

Proposition 5.2. (Symmetric K-star products) Let (?α) be a K-family given
by a function F then each ?α is symmetric if and only if:

F (X) = e2iπa1Tr(ad X)G(X)

where G is an even function, or:

F (X) = e2iπa1Tr(ad X)

1 +
∞∑
n=1

∑
s1...sp
|s|=2n

bs1...spTr(2iπ ad X)s1 . . . T r(2iπ ad X)sp

 .

Moreover, ?α is thus associated to the even function G itself.
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Proof. First the Gutt star product ?Gα is symmetric, since, for the Campbell-
Hausdorff formula,

(−X)×α (−Y ) = −(Y ×α X).

Thus, if CHr(X, Y ) is the degree r term in this formula:

X ×α Y =
∑
r

CHr(X, Y ) with CHr(Y,X) = (−1)r+1CHr(X, Y ).

The symmetry of ?Gα is a consequence of this ([7]). Now let (?α) be a K-family
characterized by:

F (X) = 1 +
∞∑
n=1

(2iπ)n
∑
s1...sp
|s|=n

as1...spTr(ad X)s1 . . . T r(ad X)sp

= e2iπ a1Tr(ad X)

1 +
∞∑
n=2

(2iπ)n
∑
s1...sp
|s|=n

bs1...spTr(ad X)s1 . . . T r(ad X)sp


= e2iπa1Tr(ad X)G(X).

Let us set:

u ?α v =
∞∑
r=0

Cr(u, v) and u ?Gα v =
∞∑
r=0

CG
r (u, v).

?α is equivalent to ?Gα through the equivalence operator:

T = ea1T1 ◦

Id+
∞∑
n=2

∑
|s|=n

bs1...spTs1 ◦ . . . ◦ Tsp


= ea1T1 ◦ T ′.

Since T1 is a derivation for any ?α , ea1T1 is an automorphism and ?α is equivalent
to ?Gα through the equivalence operator T ′ .

Let us put:

T ′ = Id+
∑
m≥2

T ′m.

Now if G is not even and ?α is symmetric for each α , let n0 be the first odd
n such that there exists bs1...sp 6= 0 with |s| = n0 . We select the largest element
(s1, s2, . . . , sp0) for the lexicographic ordering in the set:{

(s1, . . . , sp), such that |s| = n0 and bs1...sp 6= 0
}
.

Then we choose g as in the proof of lemma 2-3, then T ′n0
contains an unique term

bs1...sp0 (∂2)s1 . . . (∂2p0)sp0 .

We compute now the n0 order term in T ′(u ?α v) = (T ′u) ?Gα (T ′v):∑
r+s=n0

T ′rCs(α)(u, v) =
∑

m1+m2+m3=n0

CG
m1

(α)(T ′m2
u, T ′m3

v)
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or

T ′n0
(uv)+

∑
r+s=n0
r<n0

T ′rCs(α)(u, v) = (T ′n0
u)v+u(T ′n0

v)+
∑

m1+m2+m3=n0
m2<n0,m3<n0

CG
m1

(α)(T ′m2
u, T ′m3

v).

In these expression s and m1 are necessarily odd, thus we can separate the
symmetric and the skew symmetric part and get:

T ′n0
(uv)− (T ′n0

u)v − u(T ′n0
v) ≡ 0

and this is impossible since T ′n0
contains an unique term bs1...sp0 (∂2)s1 . . . (∂2p0)sp0

of order n0 which is not a vector field. Then G is necessarily an even formal
function.

Conversely if G is an even formal function, we have:

F (X) = eaTr(ad X)G(X).

Thus a = (2iπ)a1 and

G(X) = 1 +
∞∑
n=1

(2iπ)2n
∑
|s|=2n

bs1...spTr(ad X)s1 . . . T r(ad X)sp .

Then ?α is equivalent to ?Gα through T ′ :

T ′ = Id+
∞∑
n=1

∑
|s|=2n

bs1...spTs1 ◦ . . . ◦ Tsp

= Id+
∑
m≥1

T ′2m.

By induction, we suppose now:

Cs(α)(u, v) = (−1)sCs(α)(v, u) for any s < n

and compute
T ′(u ?α v) = (T ′u) ?Gα (T ′v).

We get: ∑
r+s=n

T ′rCs(α)(u, v) =
∑

m1+m2+m3=n

CG
m1

(α)(T ′m2
u, T ′m3

v)

= Cn(α)(u, v) +
∑
r+s=n
s<n

T ′rCs(α)(u, v).

Thus:

Cn(α)(v, u) =
∑

m1+m2+m3=n

CG
m1

(α)(T ′m2
v, T ′m3

u)−
∑
r+s=n
s<n

T ′rCs(α)(v, u)

=
∑

m1+m2+m3=n

(−1)m1CG
m1

(α)(T ′m3
u, T ′m2

v)−
∑
r+s=n
s<n

(−1)sT ′rCs(α)(u, v)
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but the parities of m1 and s coincide with the parity of n , then:

Cn(α)(v, u) = (−1)n

 ∑
m1+m2+m3=n

CG
m1

(α)(T ′m3
u, T ′m2

v)−
∑
r+s=n
s<n

T ′rCs(α)(u, v)


= (−1)nCn(α)(u, v).

And ?α is symmetric.

The symmetry is a property related in some way to the reality of star
products, this notion was considered by A. Lichnerowicz.

Definition 5.3. (Real star products) Let (?α) be a K-family. Then (?α) is said
to be real if for any α and for any smooth functions ϕ1 and ϕ2 with sufficiently
small supported Fourier transform ϕ̂1 , ϕ̂2 :

ϕ1 ?α ϕ2 = ϕ2 ?α ϕ1.

Each element ?α of a real K-family (?α) is said to be a real K-star product.

Now accordingly to this definition we can show the following proposition.

Proposition 5.4. (Symmetric and real K-star products) Let (?α) be a sym-
metric K-family associated to a function F . As the term ea1Tr(adX) does not play
any role, we suppose F even. Then (?α) is real if and only if F is a real function.

Proof. Let us compute:

(ϕ2 ?α ϕ1)(ξ) =

∫
g2

ϕ̂2(X)ϕ̂1(Y )
F (X)F (Y )

F (X ×α Y )
e2iπ〈ξ,X×αY 〉 dXdY

=

∫
g2

ϕ̂2(X)ϕ̂1(Y )
F (−X)F (−Y )

F ((−X)×α (−Y ))
e2iπ〈ξ,(−X)×α(−Y )〉 dXdY

=

∫
g2

ϕ̂2(X)ϕ̂1(Y )
F (X)F (Y )

F (−(Y ×α X))
e2iπ〈ξ,−(Y×αX)〉 dXdY

=

∫
g2

ϕ̂2(X)ϕ̂1(Y )
F (X)F (Y )

F (Y ×α X)
e2iπ〈ξ,(Y×αX)〉 dXdY

and

ϕ1 ?α ϕ2(ξ) =

∫
g2

ϕ̂2(X)ϕ̂1(Y )
F (X)F (Y )

F (Y ×α X)
e2iπ〈ξ,(Y×αX)〉 dXdY

Thus (ϕ2 ?α ϕ1)(ξ) = ϕ1 ?α ϕ2(ξ) if and only if F = F , if and only if

F (X)F (Y )

F (Y ×α X)

is real. If Y = −X , this becomes F (X)2 real but then each coefficient in the
formal series defining F (X) should be real. Conversely, if F is real, (?α) is also
real.

However this condition is no more true if (?α) is not symmetric.
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Proposition 5.5. (Characterization of real K-family)

Let (?α) be a K-family (perhaps not symmetric) defined by a function F :

F (X) = 1 +
∞∑
n=1

∑
s1...sp
|s|=n

as1...spTr(2iπ ad X)s1 . . . T r(2iπ ad X)sp ,

then the following are equivalent:

i) (?α) is real.

ii) F (X) = F (−X).

iii) as1...sp is real for all s1 , . . . , sp .

Proof. It is not difficult to show that (i) =⇒ (iii). In fact, (?α) is real if and
only if for any g and for all ϕ1 , ϕ2 smooth such that ϕ̂1 and ϕ̂2 are sufficiently
small supported:∫

g2

ϕ̂2(X)ϕ̂1(Y )
F (−X)F (−Y )

F (−(Y ×α X))
e2iπ〈ξ,−(Y×αX)〉 dXdY =

=

∫
g2

ϕ̂2(X)ϕ̂1(Y )
F (X)F (Y )

F (Y ×α X)
e2iπ〈ξ,(Y×αX)〉 dXdY

but this equality happens if and only if

F (X)F (Y )

F (Y ×α X)
=
F (−X)F (−Y )

F (−Y ×α −X)
.

Taking Y = −X , we get F (X)2 = F (−X)2 . This implies that the first perhaps
not real coefficient as1...sp satisfies 2as1...sp = 2as1...sp , thus it is in fact real.

Now, (iii) implies (ii) and (ii) implies (i) are obvious since F = Fe + Fo
where:

Fe = 1 +
∞∑
n=1

∑
|s|=2n

as1...spTr(2iπ ad X)s1 . . . T r(2iπ ad X)sp

and

Fo(X) =
∞∑
n=0

∑
|s|=2n+1

as1...spTr(2iπ ad X)s1 . . . T r(2iπ ad X)sp .

Then F (X) = Fe(X) +Fo(X) and F (−X) = Fe(X)−Fo(X). Thus as1...sp
is real for all s1 , . . . , sp implies that F (X) = F (−X) and (?α) is real.

6. Closed and relative star products

Definition 6.1. (Analytic star products) A K-family defined by a function
F (X) = J(X)eh(X) is said to be analytic if the series

h(x) =
∑
s1...sp

as1...spTr(2iπadX)s1 . . . T r(2iπadX)sp
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has a strictly positive convergence radius: there exists r > 0 such that:∑
s1...sp

|as1...sp |rs1+...+sp <∞.

An element ?α of an analytic K-family (?α) is said to be an analytic K-star
product.

Accordingly to this definition we have the following lemma.

Lemma 6.2. (F is holomorphic) Let ?α be an analytic K-star product then F
is holomorphic on a neighborhood of zero for any Lie algebra g.

Proof. Let us fix a norm ‖.‖ on g . As the function trace Tr from the space
L(g) (of linear mapping from g to g) to C is linear,then there exists a constant
K such that:

|Tr(A)| ≤ K‖A‖ for all A ∈ L(g).

Then

|Tr(ad X)si| ≤ K‖(ad X)si‖ ≤ K‖ad X‖si ∀si ∈ N.

Thus we obtain:∑
s1...sp

∣∣as1...spTr(2iπ ad X)s1Tr(2iπ ad X)s2 . . . T r(2iπ ad X)sp
∣∣

≤
∑
s1...sp

|as1...sp | Kp ‖ad X‖s1+...+sp(2π)s1+...+sp .

If K ≤ 1, then:∑
s1...sp

∣∣as1...spTr(2iπ ad X)s1 . . . T r(2iπ ad X)sp
∣∣

≤
∑
s1...sp

|as1...sp | ‖ad X‖s1+...+sp(2π)s1+...+sp .

Now there exists ρ > 0 such that

‖ad X‖ ≤ r

2π
if ‖X‖ < ρ,

thus F is holomorphic on the ball B(0, ρ).

If K > 1, then Kp ≤ Ks1+...+sp . But one has

‖adX‖ < r

2πK
if ‖X‖ < ρ

K

and F is holomorphic on the ball B(0, ρ
K

).
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Proposition 6.3. (An integral relation) Let ?α be an analytic K-star product
associated to a function F and let ϕ1 , ϕ2 be two smooth functions on g∗ such
that ϕ̂1 and ϕ̂2 have sufficiently small support then:∫

g∗
(ϕ1 ?α ϕ2)(ξ) dξ =

∫
g∗
ϕ̂1(X)ϕ̂2(−X)H(X)H(−X)e−1/2TradX dX

=

∫
g∗
ϕ̂1(X)ϕ̂2(−X)H(X)H(−X)(∆(X))1/2 dX,

where H(X) = F (X)J−1(X) and ∆(X) is the modular function for g.

In particular if g is unimodular we get:∫
g∗

(ϕ1 ?α ϕ2)(ξ) dξ =

∫
g

ϕ̂1(X)ϕ̂2(−X)H(X)H(−X) dX.

Proof. We can write:

(ϕ1 ?α ϕ2)(ξ) =

∫
g2

ϕ̂1(X)ϕ̂2(Y )
F (X)F (Y )

F (X ×α Y )
e2iπ〈ξ,X×αY 〉 dXdY

=

∫
g2

ϕ̂1(X)ϕ̂2((−X)×α Z)
F (X)F ((−X)×α Z)

F (Z)

× ω((−X)×α Z)−1ω(Z)e2iπ〈ξ,Z〉 dXdZ

where

ω(X) = det(d exp X) = det

(
1− e−ad X

ad X

)
.

Then:∫
g

(ϕ1 ?α ϕ2)(ξ) dξ =

∫
g

ϕ̂1(X)ϕ̂2(−X)F (X)F (−X)ω(−X)−1 dX

=

∫
g

ϕ̂1(X)ϕ̂2(−X)J2(X)H(X)H(−X)J−2(X)det
(
e−ad X/2

)
dX

=

∫
g

ϕ̂1(X)ϕ̂2(−X)H(X)H(−X)e−Tr(ad X/2) dX

=

∫
g

ϕ̂1(X)ϕ̂2(−X)H(X)H(−X)(∆(X))1/2 dX.

A. Connes, M. Flato and D. Sternheimer studied closed star products in
[9]. Let us recall their definition.

Definition 6.4. (Closed star products) A star product on g∗ is said to be closed
if, for all smooth compactly supported ϕ1 , ϕ2 , one has:∫

g∗
(ϕ1 ? ϕ2)(ξ) dξ =

∫
g∗
ϕ1(ξ)ϕ2(ξ) dξ.

Proposition 6.5. (g has to be unimodular) Let g be a not unimodular Lie
algebra and let ?α be an analytic K-star product on g∗ then ?α is not closed.
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Proof. Suppose that ?α is closed. We can write:

H(X) = eh(X) where h(X) =
∑
s1...sp

as1...spTr(2iπ ad X)s1 . . . T r(2iπ ad X)sp .

Since the function eh(X)+h(−X)−1/2TradX is holomorphic and equal to 1 on some
neighborhood of zero then it is identically equal to 1 that is:

h(X) + h(−X)− 1

2
TradX = 0.

But one has:

h(X) + h(−X) = 2
∑
s1...sp
|s|=2n

as1...spTr(2iπ ad X)s1 . . . T r(2iπ ad X)sp

is an even function. Thus we cannot obtain h(X) + h(−X) − 1/2Tr(ad X) = 0,
since Tr(ad X) is a non-everywhere vanishing odd function.

Accordingly to the above proposition, from now on, we shall define a closed
K-star product as follows:

Definition 6.6. (Closed K-family) An analytic K-family (?α) will be called
closed if and only if ?α is closed for all unimodular Lie algebra g .

Now let us recall the definitions of relative star products and strict Kont-
sevich star products.

Definition 6.7. (Relative K-star-products) A K-family (?α) is said to be rel-
ative (to the algebra of invariant polynomial functions) if:

u1 ?α u2 = u1.u2

for every α and every invariant polynomial functions u1 , u2 (ui ∈ S(g)G).

An element ?α of a relative K-family (?α) is said to be a relative K-star
product.

Definition 6.8. (Strict Kontsevich star products) ([3]) A K-family associated
to a function F is said to be strict if there exists a function f holomorphic on a
neighborhood of 0 such that:

f(0) = 1 and F (X) = det(f(ad X)).

An element ?α of a strict K- family (?α) is said to be a strict K-star product.

An easy corollary of the result of [3] is:

Corollary 6.9. (Strict relative K-star products) A K-star product ?α is a strict
relative star product if and only if:

F (X) = J(X)e
∑∞
s=0 a2s+1Tr(ad 2iπ X)2s+1

.

Proposition 6.10. (The unimodular case) Let ?α be an analytic K-star prod-
uct then:

1) If ?α is closed then ?α is relative.

2) If ?α is strict and relative then ?α is closed.
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Proof. Let g be unimodular, thus Tr(ad X) = 0 and for any ϕ1 , ϕ2 with
sufficiently small supported Fourier transform we have:∫

g∗
(ϕ1 ?α ϕ2)(ξ) dξ =

∫
g

ϕ̂1(X)ϕ̂2(−X)H(X)H(−X) dX.

Since ?α is an analytic K-star product then we choose H(X) = eh(X) where h is
an holomorphic function on a neighborhood of zero.

Suppose that ?α is closed then eh(X)+h(−X) is an holomorphic function equal
to 1 on the neighborhood of zero and so is identically equal to 1. This means that:

h(−X) = −h(X).

Thus ?α is a relative star product.

Now suppose that ?α is strict and relative then we choose

H(X) = e
∑∞
s=0 a2s+1Tr(ad 2iπ X)2s+1

and so H(X)H(−X) = 1. Then we obtain, if × is the usual convolution of
functions, ∫

g∗
(ϕ1 ?α ϕ2)(ξ) dξ =

∫
g

ϕ̂1(X)ϕ̂2(−X) dX

= (ϕ̂1 × ϕ̂2)(0) =

∫
g∗
ϕ1(ξ)ϕ2(ξ) dξ.

This concludes the proof of the proposition.

Let us remark that the reality of a K-family (?α) implies that:

(ϕ1, ϕ2) 7→
∫

g∗
(ϕ1 ?α ϕ2)(ξ) dξ

is a scalar product. This useful property is a consequence of the closeness of ?α
if g is unimodular, but it is still holding for a general g . In our opinion, it is the
good generalization of closeness for any g .

7. Characterization of ?Kα

Proposition 7.1. (Properties of ?Kα ) The star product ?Kα built by Kontsevich
is analytic strict relative, closed symmetric and real.

Proof. First ?Kα is clearly an analytic star product since h(X) = 0. We showed
in [3] that ?Kα is strict and relative. Since

J(X) = det

(
sh ad(X/2)

ad(X/2)

)1/2

is an even real function then ?Kα is symmetric and real. Now by proposition 6-10
we conclude that ?Kα is closed.

Our goal is now to characterize (?Kα ) among all K-families.
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Proposition 7.2. (Characterization of (?Kα )) If (?α) is a symmetric strict and
closed K-family then (?α) = (?Kα ). Or, equivalently, the only K-family strict
relative and symmetric is (?Kα ).

Proof. Let (?α) be a strict relative symmetric K-family defined by a function
F then there exists a function f holomorphic on a neighborhood of 0 such that
f(0) = 1 and

F (X) = det(f(ad X)).

Accordingly to the corollary 6-9, we can write:

F (X) = J(X) det eh(2iπ ad X) where h(x) =
∞∑
n=0

a2n+1x
2n+1

is holomorphic near 0.

Now, remark we can replace h(x) by h(x) − a1x since T1 is a derivation.
Thus we can suppose that:

h(x) =
∞∑
n=1

a2n+1x
2n+1.

Let us suppose a3 = a5 = . . . = a2n−1 = 0. Thus, for each α , ?α is equivalent to
?Kα through an intertwining operator T given by:

T = Id+ b2n+1T2n+1 +
∑

`≥2n+2

b`T`.

We have:
T (u ?α v) = Tu ?Kα Tv.

Now let us set:

u ?α v =
∑
`≥0

C`(u, v) and u ?Kα v =
∑
`≥0

CK
` (u, v).

Since ?α and ?Kα are symmetric, one has:

C`(u, v) = (−1)`C`(v, u) and CK
` (u, v) = (−1)`CK

` (v, u).

Thus we have:

C2n+1(u, v) + b2n+1T2n+1(uv) = b2n+1(T2n+1u)v + b2n+1u(T2n+1v) + CK
2n+1(u, v).

Using the antisymmetry of C2n+1 and CK
2n+1 , we obtain:

2b2n+1(T2n+1(uv)− (T2n+1u)v − u(T2n+1v)) = −2b2n+1(δT2n+1)(u, v) = 0,

where δ is the Hochschild cobundary operator.But δT2n+1 6= 0 for all n ≥ 1 (just
consider, as usual, R2 with α = x1∂x1 ∧ ∂x2) thus we can conclude

b2n+1 = 0 then a2n+1 = 0 ∀n ≥ 1 and (?α) = (?Kα ).

Now since (?Kα ) is graded and symmetric, it is entirely determined by the
values of X ?α u for X in g and u in S(g).
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Theorem 7.3. (Explicit formula for the Duflo-Kontsevich star product) Let
(Ei) be a basis of the Lie algebra g and Ck

ij the structure constants for g. For any
u in S(g) (or u with û smooth and compactly supported),

(Ei ?
K
α u)(ξ) =

∑
k≥0

1

(2iπ)k

(
Bk

k!
Cj1
i1i
Cj2
i2j1

. . . Cjk
ikjk−1

ξjk∂i1...iku

−
[k/2]∑
`=1

Bk−2`

2(k − 2`)!

B2`

(2`)!
Cj2`
jkj1

Cj1
i2j2

. . . C
j2`−1

i2`j2`
C
j2`+1

i2`+1i
C
j2`+2

i2`+2j2`+1
. . . Cjk

ikjk−1
∂i2...iku

)
.

here Bk is the kth Bernouilli number;

Or with a ‘deformation parameter’ ~ like in [1] and [12]:

Ei ?~ u(ξ) =
∑
k≥0

2k~k
(
Bk

k!
Cj1
i1i
Cj2
i2j1

. . . Cjk
ikjk−1

ξjk∂i1...iku

−
[k/2]∑
l=1

Bk−2`

2(k − 2`)!

B2`

(2`)!
Cj2`
jkj1

Cj1
i2j2

. . . C
j2`−1

i2`j2`
C
j2`+1

i2`+1i
C
j2`+2

i2`+2j2`+1
. . . Cjk

ikjk−1
∂i2...iku

)
Proof. Let φ be a smooth function such that φ̂ is smooth with sufficiently small
support near 0, we compute Ei ?

K
α u as the Fourier transform of a distribution

with {0} support. If X =
∑
xiEi ,

〈Ei ?Kα u, φ〉 = 〈u(Y )J(Y ), 〈Ei(X)J(X), φ̂(X ×α Y )J−1(X ×α Y )〉〉

= 〈û(Y ),
1

2iπ

∂

∂xi

(
φ̂(X ×α Y )

J(X)J(Y )

J(X ×α Y )

)∣∣∣∣
X=0

〉

The functions (X,Y ) 7→ X ×α Y and X 7→ J(X) being holomorphic near 0, this
expression holds if the support of φ̂ is sufficiently small. Moreover let us recall
that :

∂

∂xi
(X ×α Y )|X=0 =

∑
k≥0

Bk

k!
(ad Y )kEi

(see [7] for instance) and that:

sh x/2

x/2
= e

∑
k≥1

B2k
2k(2k)!

x2k

.

(see [16]). Thus:

J(X) =
∞∏
k=1

e
B2k

4k(2k)!
Tr(ad X)2k

=
∞∏
k=1

e
B2k

4k(2k)!

∑
i1...i2k

xi1 ...xi2k
∑
j1...j2k

C
j2k
i1j1

C
j1
i2j2

...C
j2k−1
i2kj2k .

Then ∂
∂xi
J(X)|X=0 = 0 and

∂

∂xi
J(X ×α Y )|X=0 = J(Y )

∞∑
k=2

[k/2]∑
`=1

Bk−2`

(k − 2`)!

B2`

2(2`)!

∑
i2...ik

yi2 . . . yik∑
j1...jk

Cj2`
jkj1

Cj1
i2j2

. . . C
j2`−1

i2`j2`
C
j2`+1

i2`+1i
C
j2`+2

i2`+2j2`+1
. . . Cjk

ikjk−1
.
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Or

∂

∂xi

(
J(X)J(Y )

J(X ×α Y )

)∣∣∣∣
X=0

= −
∞∑
k=2

[k/2]∑
`=1

Bk−2`

(k − 2`)!

B2`

2(2`)!

∑
i2...ik

yi2 . . . yik∑
j1...jk

Cj2`
jkj1

Cj1
i2j2

. . . C
j2`−1

i2`j2`
C
j2`+1

i2`+1i
C
j2`+2

i2`+2j2`+1
. . . Cjk

ikjk−1
.

Thus we get:

Ei ?
K
α u =

∑
k≥0

1

(2iπ)k

(∑
i2...ik
j1...jk

Bk

k!
Cj1
i1i
Cj2
i2j1

. . . Cjk
ikjk−1

Ejk∂i1...iku

−
[k/2]∑
`=1

Bk−2`

(k − 2`)!

B2`

2(2`)!

∑
i2...ik
j1...jk

Cj2`
jkj1

Cj1
i2j2

. . . C
j2`−1

i2`j2`
C
j2`+1

i2`+1i
C
j2`+2

i2`+2j2`+1
. . . Cjk

ikjk−1
∂i2...iku

)
.

This is a special case of the formula with deformation parameter ~ , if we
put ~ = 1

4iπ
.

Remark 7.4. 1) For each k , the only graphs occurring in the last expression
are one graph Γk without any wheel and graphs Γk,2` , with 1 ≤ ` ≤ [k/2] with
exactly one wheel of size 2` .

Γk has k vertices of first kind p1 , . . . , pk , 2 vertices of second kind q1 , q2

and its edges are:

{−−→p1q1,−−→p1q2,−−→p2p1,−−→p2q2, . . . ,−−−→pkpk−1,−−→pkq2} .

Γk,2` has the same vertices of Γk and its edges are:

{−−→p1pk,−−→p1p2,−−→p2p3,−−→p2q2, . . . ,−−→p2`p1,−−→p2`q2,−−−−→p2`+1q1,−−−−→p2`+1q2,−−−−−−→p2`+2p2`+1,−−−−→p2`+2q2, . . . ,
−−−→pkpk−1,−−→pkq2}.

2) For each k , there is k!2k graphs having the same weight. These graphs
are obtained from Γk or Γk,2` (1 ≤ ` ≤ [k/2]) by using permutations of the vertices
of first kind or the edges coming from these vertices.

Corollary 7.5. (Weights of graphs)

a) The weight of the graph Γk is wk = Bk
(k!)2 (see also [1] and [14]).

b) The weight of the graph Γk,2` is:

wk,2` = − 1

k!

Bk−2`

(k − 2`)!

B2`

2(2`)!
= − 1(

k
2`

) Bk−2`

((k − 2`)!)2

B2`

2((2`)!)2

= − 1(
k
2`

)wk−2`
w2`

2
.

Especially, for the wheel graph Γ2`,2` , we get:

w2`,2` = − B2`

2((2`)!)2
= −1

2
w2`.

c) The weight of any graph Γ having at least a ‘parachute’ i.e a wheel linked only
with the point q2 vanishes.
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Remark 7.6. 1) Since the edges of Γ2`,2` are {−−→p1q1 , −−→p1p2 , −−→p2p3 , −−→p2q2 , . . . ,
−−−−→p2`−1p2` , −−−−→p2`−1q2 , −−→p2`p1 , −−→p2`q2} , then passing from Γ2`,2` to Γ2` consists only to
move the edge −−→p1p2 to −−→p1q2 . Thus probably the formula

w2`,2` = −1

2
w2`,

could be deduced directly from this operation.

2) It is easy to prove directly (see [4],[14]) that the only graphs Γ which
can occur in Ei ?

K
α u are those of our corollary.

Moreover we see directly that the weight of a graph Γ having at least a
parachute vanishes. Indeed, let W be a parachute inside Γ with vertices p1 , . . . ,
p` , we set the parameters of the configuration space Ck,2 defined by Kontsevich
([13]) by putting q2 = 0, |p1| = 1:

Ck,2 = {(p1, p2, . . . , pk, q1) Im(pi) > 0, pi 6= pj if i 6= j, |p1| = 1, q1 < 0}.

Then Ck,2 is a dense subset in the product U × V , where:

U = {(p1, p2, . . . , p`), pi 6= pj if i 6= j} ⊂ T×H`−1

if H is the standard upper half-plane {z, Im(z) > 0} and T the one dimensional
torus. And

V = {(p`+1, . . . , pk, q1)} ⊂ Hk−` × R−.
Thus the form ωΓ associated by Kontsevich to the graph Γ can be written as:

ωΓ = ωW ∧ ωΓ\W ,

ωW depending only of the points p1 , . . . , p` and so ωW can be viewed as a form
on U . Now:

wΓ =

∫
Ck,2

ωΓ =

∫
U

ωW

∫
V

ωΓ\W = 0

since the dimension of U is 2`− 1 and ωW is an 2`-form.

Corollary 7.7. (Rationality of weights) Let u and v be two polynomial func-
tions on g∗ , then all the weights of graphs occurring in the expression of u ?α v
are rational numbers.

Proof. We first remark that if X is in g and u is in S(g) then an easy
consequence of corollary 7.4 is that weights of all graphs which occur in the
expression of X ?α u are rational numbers.

Now we can show the corollary by induction on the degree of u . If u is
an homogeneous polynomial function of the form u = Xu′ then there exists a
polynomial function u′′ such that:

Xu′ = X ?α u
′ + u′′ with degree of u′′ ≤ degree of u− 1.

Then:
u ?α v = (Xu′) ?α v = X ?α (u′ ?α v) + u′′ ?α v.

But the weights of graphs in X ?α (u′ ?α v) and in u′′ ?α v are all rational numbers.
Thus, we conclude the proof of the corollary.
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