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Abstract. We introduce an object which in a sense extends the notion of a
covering space. Such an object is required to understand the “group” generated
by the exponential functions of quadratic forms in the Weyl algebra, and gives
in some sense a complexification of the metaplectic group.

1. Introduction

The quantum picture is basically set up by the Weyl algebra. It is derived from
the differential calculus via correspondence principle: Let u be the operator x· of
multiplication by the coordinate function x on R acting on the space of all C∞

functions on R , and let v be the differential operator i~∂x . u and v generate
an algebra W~ , called the Weyl algebra. Thus, the Weyl algebra is an associative
algebra generated over C by u, v with the fundamental relation [u, v] = −i~ .

However, the correspondence principle, u ↔ x· , v ↔ i~∂x , raises many
mathematical questions. We meet immediately the ordering problem (see §1).
That occurs mainly in Schrödinger quantization procedure which assigns a differ-
ential operator defined on a configuration space to every classical observable.

Avoiding configuration spaces, the Heisenberg procedure for quantum me-
chanics is a formalism built from von Neumann algebras or C∗ algebras (cf. [Co]).
In this formalism, the ordering problem comes down to expressing an element of
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the algebra in the unique way. Whenever the expression is fixed, it is possible to
put a topology on the algebra and to take the topological completion (cf. §1). How-
ever, in this formalism it is difficult to relate the quantum world to the classical
world, as it is very arduous to work out in the theory of selfadjoint operators.

In this paper, we first take several topological completions of the Weyl
algebra. Here, we are not restricted to work within C∗ -algebras or operator
algebras, as we only treat ~ as a deformation parameter (a positive real parameter),
following the notion of deformation quantization initiated by [BFFLS]. Noting that
many laws in physics are expressed as evolution equations, we will consider the
evolution equation d

dt
ft = i~p∗(u, v)∗ft given by a polynomial p∗(u, v) by using

the product in W~ . Thus, solving the evolution equation, we have to know the
individual phenomenon.

In the theory of formal deformation quantization where ~ is treated as
a formal parameter, there is no problem in solving evolution equations. In the
theory where ~ is treated as a positive real parameter, the existence of solutions
of evolution equations is not so obvious. However, it is easy to see the uniqueness
of a real analytic solution if it exists. To obtain solutions, we have to construct
some topological completion of the Weyl algebra, in which one can define the
exponential function e

itp∗(u,v)
∗ .

Along the configuration space approach of Schrödinger, Hörmander intro-
duced the notion of pseudo-differential operators (ψDO) and of Fourier integral

operators on any manifold [9] to treat e
itp∗(u,v)
∗ whenever p(u, v) is in the symbol

class of order one with respect to v . Furthermore, Hörmander [10] proposed a
Weyl calculus on R2n using extended notion of ψDO’s where u and v have the
same weight. In these theories, the essential self-adjointness of p∗(u, v) is cru-

cial, because the evolution equations for e
itp∗(u,v)
∗ are treated as partial differential

equations.

On the other hand, there is another classical way of treating such evolution
equations. This is indeed the method of Lie theory, which treats such evolution
equations within the system of ordinary differential equations. In order to use
this method, we restrict our attention to the linear hull over C of ∗-exponential
functions of polynomials of degree ≤ 2.

However, within these restricted objects, we have encountered pathological
phenomena: A typical phenomenon is that the region where the product is defined
depends on the ordering of expressions (see Lemma 10). In spite of this, one can
obtain product formulas by collecting all possible ordering expressions. Moreover,
it happens that an element has two different inverses. Since this brakes the
associativity (see §1), we cannot treat such a system as an associative algebra.

Motivated by such pathological phenomena, we investigate more precisely
the types of difficulties which occur with such objects. To extend products, we have
to treat intertwiners between different ordering expressions. It happens, however,
that intertwiners are defined only 2-to-2 mappings on the space of exponential
functions of quadratic forms, because of the ambiguity of taking a square root

√

in the calculation (see § 6). Thus, ambiguity can not be eliminated by taking an
appropriate double covering spaces (see § 4).

Thinking about the serious meaning of such a pathological phenomenon, we
are forced to consider the notion of manifolds which do not form point sets. We
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propose in this paper the idea of two-valued elements.

Besides such strange phenomena, we have another motivation for treating
~ as a genuine parameter. The deformation quantization of [BFFLS] made us
free from operator theory. In particular, if we treat the deformation parameter
~ as a formal parameter and consider everything in the category of formal power
series of ~ (formal deformation), then the quantization problem goes through very
smoothly. Kontsevich [K] showed every Poisson algebra on a manifold is formally
deformation quantizable. However it is apparent that formal deformation quanti-
zation plays only a probe for the quantum world with exact physical significance.

After Kontsevich’s result, a next generation of deformation theory is devel-
oping, called the exact deformation theory. We have to make an effort to revise the
deformation theory more close to the theories where C∗ algebras or von Neumann
algebras are explicitly used (cf. Connes [Co]). Actually, Rieffel [R] has proposed a
notion of such a deformation theory, called strictly deformation quantization, and
has pointed out many serious problems.

In this paper we point out several serious difficulties are still involved in the
theory of classical ordering.

This paper is organized as follows:

In §2, we give several basic facts, several different orderings, and product
formulas. We also explain also several pathological phenomena, and how such
phenomena appear naturally in exact deformation quantization theory. However,
no problem occurs for exponential functions of linear functions of generators, (see
Theorem 3, and the equation (30)).

Thus, in §3, we restrict our attention to the space of exponential functions
of quadratic forms. Infinitesimal actions of quadratic forms is computed in Weyl
ordering and normal ordering, and these define involutive distributions on the
space of exponential functions. We easily obtain maximal integral submanifolds.

In §4, we give the explicit formula for ∗-exponential functions in Weyl or-
dering and in normal ordering. Via these explicit expressions, we find an “element”
ε00 , called the polar element, having such a strange property that one must call this
is a “two valued” element, although such a notion has never appeared in ordinary
mathematics.

In spite of this, ε00 is very useful in computation. We give in §5 several
product formulas, and show that ∗-exponential functions of quadratic forms gen-
erate a group-like object, which looks like a non-trivial double cover of SLC(2).
Nevertheless, technicality is involved in a standard classical Lie theory. To under-
stand why such a strange element appears, we define in §6 intertwiners between
several ordering expressions. We see that our strange phenomena are caused by
the ambiguity of 1√ of intertwiners. Because of this ambiguity, intertwiners are

defined only as “2-to-2 diffeomorphisms” on the set of exponential functions of
quadratic forms.

Hence in §7 we describe the corresponding glued object. Similar phenomena
occurs in the magnetic monopole theory, and was treated mathematically by
Brylinski (see the last chapter of [?]) using the theory of gerbes of Giraud. However,
we prefer to use the notion of two-valued element, because it is very simple and
intuitive. To clarify these, we propose the notion of blurred C∗ -bundles.

Our conclusion in this paper is that ∗-exponential functions of quadratic
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forms generate a group-like object which is not a point set, but this object can be
understood as a non-trivial double cover of SLC(2). It contains the non trivial
double covers of SLR(2) and SU(1, 1) as real forms. Hence this object may be
understood as a complexification of metaplectic group Mp(2,R) [GiS]. It is known
that there is no complexification of these groups as genuine Lie groups.

2. The Weyl algebra and extensions

We consider the Weyl algebra W~ generated by u, v over C with the fundamental
relation [u, v] (= u∗v− v∗u) = −i~ where ~ is a positive constant. The pair (u, v)
of generators is called a canonical conjugate pair.

2.1. Orderings and product formulas.

To express elements of the Weyl algebra W~ , we introduce several orderings.
Namely, we choose the typical orderings in W~ ; normal ordering, anti-normal
ordering, and Weyl ordering, respectively. For the normal ordering (resp. the anti-
normal ordering), we write elements in the form

∑
am,nu

m∗vn (resp.
∑
am,nv

m∗un )
by arranging u to the left (resp. right) hand side in each term. In the Weyl ordering
elements are written in the form

∑
am,nu

m�vn defined by using the symmetric
product · given by u·v = 1

2
(u∗v+v∗u). (See [17] §1.2, but we have no need to know

about the symmetric product, since the product formulas are given concretely.)

Using such orderings, one can identify the Weyl algebra W~ with the space
C[u, v] of all polynomials on C2 with coordinates u, v . Thus, the Weyl algebra W~

can be viewed as a noncommutative associative product structure defined on the
space C[u, v] by fixing an ordering of W~ . According to the normal, anti-normal,
Weyl orderings of W~ , we have noncommutative products on C[u, v] , and denoted
by ∗N , ∗Ñ , ∗M , respectively.

Product formulas. Let f(u, v), g(u, v) ∈ C[u, v] . We denote the ordinary
commutative product of functions by ◦, • , · solely to distinguish the orderings of
W~ .

• The normal ordering: the product ∗ of the Weyl algebra is given by the
ΨDO-product formula as follows: (Note this coincides with the product
formula of ΨDO’s,)

f(u, v) ∗N g(u, v) = f exp{i~(
←−
∂v ◦
−→
∂u)}g. (1)

• The anti-normal ordering: the product ∗ of the Weyl algebra is given by
the ΨDO-product formula as follows:

f(u, v) ∗N̄ g(u, v) = f exp{−i~(
←−
∂u •
−→
∂v )}g. (2)

• The Weyl ordering: the product ∗ of the Weyl algebra is given by the Moyal
product formula as follows:

f(u, v) ∗M g(u, v) = f exp
i~

2
{←−∂v

·
∧ −→∂u}g (3)
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where
←−
∂v

·
∧ −→∂u =

←−
∂v ·
−→
∂u −

←−
∂u ·
−→
∂v , and

f(
←−
∂v ·
−→
∂u −

←−
∂u ·
−→
∂v )g = ∂vf · ∂ug − ∂uf · ∂vg.

Every product formula yields u ∗ v − v ∗ u = −i~ , and recovers the Weyl
algebra W~ .

Within the Weyl algebra W~ , 1
i~

ad(u) and − 1
i~

ad(v) are mutually commu-
tating pair of derivations. These derivations also reproduce commutative products
◦ , • , · from the ∗-product by reversing formulas (cf. [17]). Such inverse expressions
ensure that there is no other relation within W~ produced by the ordering.

For elements p∗(u, v), q∗(u, v) ∈ W~ , we have various expressions according
to the ordering. The product is given as follows:

p∗(u, v) ∗ q∗(u, v) = f·(u, v) ∗M g·(u, v) = f◦ (u, v) ∗N g◦ (u, v) = f• (u, v) ∗N̄ g• (u, v).

If no confusion is suspected, we omit the suffix M,N, N̄ in the ∗-product.

Let Hol(C2) be the space of all entire functions on C2 with the compact-
open topology. Hol(C2) is a complete topological linear space in the compact open
topology. Every product formula (1), (2), (3) has the following properties:

Proposition 1. (1) f ∗ g is defined if one of f, g is a polynomial.

(2) For every polynomial p = p(u, v), the left- (resp. right-) multiplication p∗
(resp. ∗p) is a continuous linear mapping of Hol(C2) into itself in the compact-
open topology.

We call such a system (Hol(C2),C[u, v], ∗) a (C[u, v]; ∗)-bimodule.

By the polynomial approximation theorem, the associativity

f ∗(g∗h) = (f ∗g)∗h

holds if two of f, g, h are polynomials. We call this 2-p-associativity.

2.2. Canonical conjugate pairs.

For every A ∈ SLC(2), we have a change of generators(
u′

v′

)
= A

(
u

v

)
.

It is obvious that [u′, v′]∗ = −i~ , and hence u′, v′ may be viewed as generators.
The replacement (pull-back) A∗ of u, v by u′, v′ gives an algebra isomorphism of
W~ . Thus, we may consider the ordering problem by using u′, v′ instead of u, v .

The following is the most useful property of Moyal product formula (3):

Proposition 2. For every A ∈ SLC(2) and
(
α
β

)
∈ C2 , let Φ∗ be the replacement

(pull-back) of u, v into u′, v′ by the combination of the linear transformation by
the matrix A and the parallel displacement

(
α
β

)
:(

u′

v′

)
= A

(
u

v

)
+

(
α

β

)
, A ∈ SLC(2), (α, β) ∈ C2.

Then, Φ∗ is an isomorphism both on (C[u, v], ·) and (C[u, v], ∗).
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We remark that the normal and the anti-normal orderings do not have such a
property. It is easily seen that

(au+ bv)m∗ = (au+ bv)m· , but (au+ bv)m∗ 6= (au+ bv)m◦ for ab 6= 0.

For the proof of Proposition 2, we have only to remark the following identity:

←−
∂v

·
∧ −→∂u =

←−
∂v′

·
∧ −→∂u′ .

2.3. Evolution equations.

In the (C[u, v], ∗)-bimodule (Hol(C),C[u, v], ∗), we consider the evolution
equation

d

dt
ft = p∗(u, v) ∗ ft, f0 = f(u, v) (4)

for every polynomial p∗(u, v). If p(u, v) = u2 + ( i
~
v)2 , the equation corresponds

to that of standard harmonic oscillator. For a complex parameter t , the evolution
equation (4) may not be necessarily solved for arbitrary initial function. However
a real analytic solution for (4) in t is unique if it exists. The solution, if it exists

for the initial function f0 = 1, will be denoted by e
tp∗(u,v)
∗ . If the real analytic

solution of (4) exists, then we denote it by e
tp(u,v)
∗ ∗f(u, v).

If the infinite series
∑

tk

k!
p(u, v)k∗ converges, then it must be the solution of

(4). Since
∑

tk

k!
(αu+ βv)k∗ converges, we use the ∗-exponential function e

t(αu+βv)
∗

to define the intertwiners between different orderings, (see §6).

2.4. Extensions of product formulas.

Starting from (C[u, v]; ∗), we extend the ∗-product to a wider class of
functions. For every positive real number p , we set

Ep(C2) = {f ∈ Hol(C2) | ‖f‖p,s = sup |f | e−s|ξ|p <∞, ∀s > 0} (5)

where |ξ| = (|u|2 + |v|2)1/2 . The family of seminorms {|| · ||p,s}s>0 induces a
topology on Ep(C2) and (Ep(C2), ·) is an associative commutative Fréchet algebra,
where the dott · is the ordinary product for functions in Ep(C2). The product
· may be replaced by ◦ or • to indicate the ordering. It is easily seen that for
0 < p < p′ , there is a continuous embedding

Ep(C2) ⊂ Ep′(C2) (6)

as commutative Fréchet algebras (cf. [GS]), and that Ep(C2) is SLC(2)-invariant.

It is obvious that every polynomial is contained in Ep(C2) and C[u, v] is
dense in Ep(C2) for any p > 0 in the Fréchet topology defined by the family of
seminorms {|| ||p,s}s>0 .

We note that every exponential function eαu+βv
· is contained in Ep(C2) for

any p > 1, but not in E1(C2), and such functions as eau
2+bv2+2cuv

· are contained in
Ep(C2) for any p > 2, but not in E2(C2). Functions such as

∑
1

(k!)
1
p
uk is contained

in Eq(C2) for any q > p , but not in Ep(C2).

The following theorem is the main result of [18]: 1

1In [18], the proof is given for the Weyl ordering, but the same proof works for other orderings.
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Theorem 3. The product formulas (1), (2), (3) extend to give the following:

(i) For 0 < p ≤ 2, the space (Ep(C2), ∗) forms a complete topological associative
algebra.

(ii) For p > 2, every product formula gives continuous bi-linear mappings of

Ep(C2)× Ep′(C2)→ Ep(C2), Ep′(C2)× Ep(C2)→ Ep(C2), (7)

for every p′ such that 1
p

+ 1
p′
≥ 1.

Let E2+(C2) =
⋂
p>2 Ep(C2). Thus, E2+(C2) is a Fréchet space for the

natural intersection topology. Note that e
1
~

(au2+bv2+2cuv) is continuous in E2+(C2)
in (a, b, c) ∈ C3 .

By Theorem 3, it is easy to treat (Ep(C2), ∗) for 0 < p ≤ 2. We now focus
on the space E2+(C2). As we mention in §2.5, the extended space E2+(C2) has
several strange phenomena.

2.5. Vacuums, half-inverses and the break down the associativity.

A direct calculation using the Moyal product formula (3) shows that the

coordinate function v has a right inverse v ◦ = 1
v
(1 − e

2i
~
uv) and a left inverse

v • = 1
v
(1− e− 2i

~
uv) respectively in E2+(C2), i.e,

v ∗ v ◦ = 1 = v • ∗ v, v ◦ ∗ v = 1− 2e
2i
~
uv, v ∗ v • = 1− 2e−

2i
~
uv,

where uv means u ·v in precise. The ·-sign is occasionally omitted in the Weyl
ordering.

If associativity holds in E2+(C2), then v ◦ should coincide with v • . Hence
1
v

sin 2
~
uv = 0, a contradiction (cf. [18]). Thus, we lose associativity in E2+(C2).

This is one of the typical phenomena showing the lack of the associativity, namely
that coordinate functions have different left- and right-inverses.

By the Moyal product formula (3), we also have

v ∗ e
2i
~
uv = 0 = e

2i
~
uv ∗ u, u ∗ e−

2i
~
uv = 0 = e−

2i
~
uv ∗ v.

We set by $00 = 2e
2i
~
uv , $̄00 = 2e−

2i
~
uv to be a vacuum and a bar-vacuum,

respectively. Using the Moyal product formula and the 2-p-associativity, we easily
have

(uv − i~
2

) ∗ e 2i
~
uv = u ∗ v ∗ e 2i

~
uv = 0. (8)

In Lemma 4 in §4, we show that e
it
~
uv
∗ = 1

cosh t
2

e
i
~

(tanh t
2

)2uv in the Weyl

ordering. Note that
∫∞
−∞

1
cosh t

2

e
i
~

(tanh t
2

)2uvdt <∞ in the space E2+(C2). Setting

(uv)−1
+i0 = −i~

∫ ∞
0

e
it
~
uv
∗ dt, (uv)−1

−i0 = i~

∫ 0

−∞
e
it
~
uv
∗ dt,

we see that uv has two different inverses, since the difference is given as

(uv)−1
+i0 − (uv)−1

−i0 = −i~
∫ ∞
−∞

e
it
~
uv
∗ dt. (9)
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The r.h.s. of (9) has the following expression by the Hansen-Bessel formula:∫ ∞
−∞

e
it
~
uv
∗ dt =

∫ ∞
−∞

1

cosh t
2

e
i
~

(tanh t
2

)2uvdt =
π

2
J0(

2

~

uv),

where J0 is the Bessel function. This is obviously non zero, causing another
breakdown of associativity. Thus, it is impossible to treat both (uv)−1

+i0 and (uv)−1
−i0

in the same associative algebra.

Since the r.h.s. of (9) can be viewed as the ∗-Fourier transform of the
constant function 1, it may be regarded as the ∗-delta function −iδ∗(uv) (cf. [18]).
This can actually be expressed as the difference of two holomorphic functions and
has several nice relations to Sato’s hyperfunctions are observed [16],[18], (see also
[12]).

Hence, the ∗-delta function δ∗(uv) is expressed as an entire function in
terms of the Weyl ordering. We are very interested in such phenomena, since
these may be useful in nano-technology.

3. Quadratic forms

These strange phenomena as in §2 are deeply related to ∗-exponential functions,

such as e
t
~
u·v
∗ , defined by the evolution equation (4) of quadratic forms.

It is easy to see that the set of all quadratic forms in W~ is closed under
the commutator bracket [a, b] = a∗b− b∗a . Set X = 1

~

√
8
u2, Y = 1

~

√
8
v2, H = i

2~
uv ,

where uv = u∗sv + i~
2

. Then, they form a basis of the Lie algebra slC(2): We see

[H,X] = −X, [H, Y ] = Y, [X, Y ] = −H,

and {X,Y,H} generate an associative algebra in the space C[u, v] , which is an
enveloping algebra of slC(2). Setting ad(W )V = [W,V ] , we see

ad(
i

2~
(au2 + bv2 + 2cuv))

[
u
v

]
=

[
−c −b
a c

] [
u
v

]
. (10)

Thus, ad( i
2~

(au2+bv2+2cuv)) generates the complex Lie group SLC(2), which will
be useful to fix the product formula involving ∗-exponential functions of quadratic
forms (see (30)). In a (C[u, v]; ∗)-bimodule (Hol(C2),C[u, v], ∗) with an ordering
expression as in §2, we consider the evolution equation (4) for every quadratic form
q(u, v) with the initial function f .

However, following standard method in Lie theory, we change a partial
differential equation to a system of ordinary differential equations.

3.1. Singular distributions in the Weyl ordering.

In the following, we identify (a, b, c; s) ∈ C3×C∗ with

se
1
~

(au2+bv2+2cuv) ∈ E2+(C2), i.e. (a, b, c; s)⇐⇒ se
1
~

(au2+bv2+2cuv),

if no confusion is possible. s and 1
~
(au2 + bv2 + 2cuv) are called the amplitude and

the phase respectively. The function e
1
~

(au2+bv2+2cuv) is called the phase part.
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For every point (a, b, c; s) in C4 , we consider a curve s(t)e
1
~

(a(t)u2+b(t)v2+2c(t)uv)

starting at se
1
~

(au2+bv2+2cuv) . The tangent vector of this curve at t = 0 is given as(1

~

(a′u2 + b′v2 + 2c′uv)s+ s′
)
e

1
~

(au2+bv2+2cuv).

We now compute the derivative of the ∗-product e
t
~

(a′u2+b′v2+2c′uv)∗se 1
~

(au2+bv2+2cuv)

at t = 0. Using the Moyal product formula, we have

d

dt

∣∣∣
t=0
e
t
~

(a′u2+b′v2+2c′uv) ∗ se
1
~

(au2+bv2+2cuv)

=
1

~

(a′u2 + b′v2 + 2c′uv) ∗ se
1
~

(au2+bv2+2cuv)

=
1

~

(a′u2 + b′v2 + 2c′uv)se
1
~

(au2+bv2+2cuv)

+
2i

~

{(b′v+c′u)(au+cv)− (a′u+c′v)(bv+cu)}se
1
~

(au2+bv2+2cuv)

− 1

2~
{b′(~a+ 2(au+cv)2)− 2c′(~c+ 2(au+cv)(bv+cu))

+ a′(~b+ 2(bv+cu)2)}se
1
~

(au2+bv2+2cuv).

(11)

Then, (11) is written as

d

dt

∣∣∣
t=0
e
t
~

(a′u2+b′v2+2c′uv) ∗ se
1
~

(au2+bv2+2cuv)

=
1

~

(a′, b′, c′)M(a, b, c; s)


u2

v2

2uv
~

 se 1
~

(au2+bv2+2cuv),
(12)

where

M(a, b, c; s) =

 −(c+ i)2, −b2, −b(c+ i); − b
2

−a2, −(c− i)2, −a(c− i); −a
2

2a(c+ i), 2b(c− i), 1 + ab+ c2; c

 . (13)

We denote by M(a, b, c) the submatrix of the first three columns of M(a, b, c; s).

Note that

detM(a, b, c) = (c2−ab+1)3. (14)

It is seen that every radial direction is an eigenvector of M(a, b, c):

(a, b, c)M(τa, τb, τc) = (1 + (c2−ab)τ 2)(a, b, c). (15)

If c2−ab+1 = 0, then we can write

au2 + bv2 + 2cuv = 2i(αu + βv)(γu+ δv), αδ − βγ = 1.

Clearly, [αu+βv, γu+δv] = −i~ . For u′ = αu+βv, v′ = γu+δv , (u′, v′) is a
canonical conjugate pair. Applying (3) to (u′, v′), we easily see that

(γu+ δv) ∗ e
2i
~

(αu+βv)(γu+δv) = 0, for αδ − βγ = 1. (16)
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It follows by 2-p-associativity that

(γu+ δv)2
∗ ∗ e

1
~

(au2+bv2+2cuv) = 0,

(αu + βv) ∗ (γu+ δv) ∗ e
1
~

(au2+bv2+2cuv) = 0.
(17)

The second identity of (17) yields (a, b, c)M(a, b, c) = 0, if c2 − ab+ 1 = 0, which
corresponds to (15), and the first identity of (17) yields

(γ2, δ2, γδ)M(a, b, c) = 0, c2 − ab+ 1 = 0.

Hence M(a, b, c) has rank 1 at the point c2−ab+1 = 0, but the rank of M(a, b, c; s)

is 2 there. Setting u′ = αu + βv , v′ = γu+ δv , we call 2e
2i
~
u′v′ the vacuum w.r.t.

(u′, v′). Thus, it makes sense to call the bar-vacuum 2e−
2i
~
u′v′ the vacuum w.r.t.

(−v′, u′).

We consider a holomorphic singular distribution Dµ on C3 × C∗ given by

Dµ(a, b, c; s) = {(a′, b′, c′)M(a, b, c; s)| (a′, b′, c′) ∈ C3}.

Let π : C3 × C∗ → C
3 be the natural projection. Set

Vµ = {(a, b, c); c2−ab+1 = 0} (phase part of vacuums). (18)

Then, 2e
1
~

(au2+bv2+2cuv), (a, b, c) ∈ Vµ is a vacuum. Though Dµ is singular on the
submanifold Vµ×C∗ , it gives an ordinary involutive distribution on (C3−Vµ)×C∗ .
Hence, there is the 3-dimensional maximal integral holomorphic submanifold M3

of Dµ through the origin (0, 0, 0; 1). Since

M(a, b, c)−1 =
1

(1+c2−ab)2

 −(c− i)2, −b2, −b(c− i)
−a2, −(c+ i)2, −a(c+ i)

2a(c− i), 2b(c+ i), c2+ab+1

 ,
the distribution Dµ on (C3−Vµ)× C∗ is given by 1, 0, 0; 1

2
∂a log(1 + c2 − ab)

0, 1, 0; 1
2
∂b log(1 + c2 − ab)

0, 0, 1; 1
2
∂c log(1 + c2 − ab)

 .
Hence M3 is given by

(a, b, c;
√

1+c2−ab)⇐⇒
√

1+c2−ab e
1
~

(au2+bv2+2cuv), (a, b, c) ∈ C3−Vµ. (19)

Since
√

is two-valued function, M3 is in fact a non-trivial double cover of C3−Vµ ,
(see also Proposition 5 below).

3.2. Singular distributions in the normal ordering.

Since uv = u◦v+ i~
2

, we have au2 +2cuv+bv2 = au2 +2cu◦v+bv2 +~ci . In

this subsection, we compute e
t
~

(au2+bv2+2cuv)
∗ = ecite

t
~

(au2+bv2+2cu◦v)
∗ by the ΨDO-

product formula (1). Setting

e
t
~

(au2+bv2+2cuv)
∗ = s(t)e

1
~

(a(t)u2+b(t)v2+2c(t)u◦v)
◦ , (20)
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and computing as in §3.1, we have:

d

dt

∣∣∣
t=0
e
t
~

(a′u2+b′v2+2c′uv) ∗ se
1
~

(au2+bv2+2cuv)

=
1

~

(a′u2 + b′v2 + 2c′(u◦v +
i~

2
)) ∗ se

1
~

(au2+bv2+2cu◦v)
◦

={1

~

(a′u2 + b′v2 + 2c′(u◦v +
i~

2
)) +

i

~

(2b′v + 2c′u)◦(2au+ 2cv)

+
−1

~

1

2
(2b′)((2au+ 2cv)2 + 2a~)}◦se

1
~

(au2+bv2+2cu◦v)
◦ .

(21)

The r.h.s. of (21) equals

1

~

(a′, b′, c′)N(a, b, c; s)


u2

v2

2u◦v
~

 ◦se 1
~

(au2+bv2+2cu◦v)
◦ , (22)

where

N(a, b, c; s) =

 1, 0, 0; 0
−4a2, (1 + 2ci)2, 2ai(1 + 2ci); −2a
4ai, 0, 1 + 2ci; i

 . (23)

We denote by N(a, b, c) the submatrix of the first three columns of N(a, b, c; s).

The determinant of N(a, b, c) is (1+2ci)3 , which is zero at e
1
~

(au2+bv2+iu◦v)
◦ . This is

in fact a phase part of a vacuum computed in the normal ordering w.r.t. a certain
canonical conjugate pair, (see Proposition 22 below). Let Dν be the the singular
distribution given by N(a, b, c; s). Let

Vν = {(a, b, c); 1 + 2ci = 0} (phase part of vacuums). (24)

Since

N(a, b, c)−1 =
1

(1 + 2ci)2

 (1 + 2ci)2, 0, 0,
−4a2, 1, −2ai

−4ai(1 + 2ci), 0, 1 + 2ci

 ,
Dν is an ordinary involutive distribution on (C3 − Vν)× C∗ given by

Dν(a, b, c) = {(a′, b′, c′; c′i

1 + 2ci
); (a′, b′, c′) ∈ C3}.

The maximal integral holomorphic submanifold N3 of Dν through the origin
(0, 0, 0; 1) is given by

(a, b, c;
√

1 + 2ci)⇐⇒
√

1 + 2ci e
1
~

(au2+bv2+2cu◦v)
◦ . (25)

Since
√

is a two-valued function, N3 is the non-trivial double cover of C3−Vν .
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4. ∗-exponential functions and vacuums

We now consider the evolution equation (4) for an arbitrary quadratic form as an
integral curve of the distributions mentioned in §3. To define the ∗-exponential

function e
t(au2+bv2+2cuv)
∗ , we set e

t(au2+bv2+2cuv)
∗ = F (t, u, v), and consider the evo-

lution equation

∂

∂t
F (t, u, v) = (au2+bv2+2cuv)∗F (t, u, v), F (0, u, v) = 1. (26)

First, we compute the r.h.s. of (26) by the Moyal product formula (3). Keeping
in mind that a real analytic solution of (26) in t is unique if it exists, we assume
that F (t, u, v) has the form s(t)ea(t)u2+b(t)v2+2c(t)uv) . Then, we solve the system of
ordinary differential equations:

(a′(t), b′(t), c′(t); s′(t)/s(t)) = (a, b, c)M(a(t), b(t), c(t); s(t)),

(a(0), b(0), c(0);s(0)) = (0, 0, 0; 1).
(27)

Lemma 4. (Cf. [1], [13]) The solution of (26) is given by

ft(x) =
1

cosh(~
√
ab−c2t)

exp
x

~

√
ab−c2

{
tanh(~

√
ab−c2 t)

}
,

where x = au2 + bv2 + 2cuv.

Lemma 4 holds even in the case ab−c2 = 0 as we may set

1

~

√
ab−c2

tanh(~
√
ab−c2 t) = t,

by a Taylor expansion. By Lemma 4, we have

e
t
~

(au2+bv2+2cuv)
∗ =

1

cosh(
√
ab−c2 t)

e
1
~

(au2+bv2+2cuv)
(

1√
ab−c2

tanh(
√
ab−c2 t)

)
=

1

cos(
√
c2−ab t)

e
1
~

(au2+bv2+2cuv)
(

1√
c2−ab

tan(
√
c2−ab t)

)
.

(28)

The ambiguity of ±
√
ab− c2 does not affect the result.

By (28), we have in particular, if c2 6= ab , then e
π

~

√
c2−ab

(au2+bv2+2cuv)

∗ = −1,

although e
π

2~
√
c2−ab

(au2+bv2+2cuv)

∗ diverges in the Weyl ordering. Let Πµ be the subset

of C3 where e
1
~

(au2+bv2+2cuv)
∗ is singular in the Weyl ordering:

Πµ = {(a, b, c) ∈ C3;
√
c2 − ab = π(Z+

1

2
)}.

The ∗-exponential mapping exp∗ is a holomorphic mapping of C3−Πµ into M3 .
Using (19) and Lemma 4, we have
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Proposition 5. M3 is a non-trivial double cover of C3 − Vµ , and

M3 = {±
√
c2−ab+1 e

1
~

(au2+bv2+2cuv); c2−ab+1 6= 0}.

{e
1
~

(au2+bv2+2cuv)
∗ } covers the open dense subset

M3 − {−e
1
~

(au2+bv2+2cuv); c2 − ab = 0, (a, b, c) 6= (0, 0, 0)}

of M3 .

Proof. Suppose Q ∈ M3 . Set πQ = (a, b, c). Then c2−ab+1 6= 0. Since the
exceptional values of tan z are ±i , there exists θ such that tan θ =

√
c2 − ab . By

(28), we have

√
c2−ab+1e

1
~

(au2+bv2+2cuv) = e
θ

~

√
c2−ab

(au2+bv2+2cuv)

∗ .

Recall that limθ→0
tan θ
θ

= 1. For c2 − ab = 0, 1√
c2−abθ is taken to be 1.

Remark that e
t(au2+bv2+2cuv)
∗ ∈ M3 , whenever this is defined. The differing

periodicities of cosine and tangent imply that if c2 − ab 6= 0, then

π−1π{e
1
~

(au2+bv2+2cuv)
∗ ; (a, b, c) 6∈ Πµ} = {±e

1
~

(au2+bv2+2cuv)
∗ ; (a, b, c) 6∈ Πµ}. (29)

However, we have to take
√

1 = 1 in the case c2 − ab = 0 to get the initial value
1 at t = 0. Thus we cannot get −e 1

~
(au2+bv2+2cuv) by the exponential function, if

(a, b, c) 6= (0, 0, 0). This proves the last assertion.

Note that e
2π
~
uv

∗ = −1 ∈M3 implies that the integral submanifold through
(0, 0, 0;−1) is in M3 . These arguments together with (19) give the first and second
assertions. �

In the following we denote by M3
∗ the set of elements of M3 expressed in

the form of ∗-exponential functions:

M3
∗ = {±e

1
~

(au2+bv2+c(u∗v+v∗u))
∗ ; its Weyl ordering ∈M3}.

Similarly, we denote for each canonical conjugate pair (u, v),

N3
∗ = {±e

1
~

(au2+bv2+c(u∗v+v∗u))
∗ ; its normal ordering ∈ N3}.

By the uniqueness of analytic solutions of the evolution equation (4), the

exponential law eisx∗ ∗ eitx∗ = e
i(s+t)x
∗ for a quadratic function in x holds whenever

both sides are defined. Using this, we have

Lemma 6. For s, σ ∈ C such that 1 + sσ(ab− c2) 6= 0, we have

e
s
~

(au2+bv2+2cuv) ∗ e
σ
~

(au2+bv2+2cuv) =
1

1 + sσ(ab−c2)
e

s+σ

~(1+sσ(ab−c2))
(au2+bv2+2cuv)

.

In particular, we have an idempotent element

2e
1

~

√
ab−c2

(au2+bv2+2cuv) ∗ 2e
1

~

√
ab−c2

(au2+bv2+2cuv)
= 2e

1

~

√
ab−c2

(au2+bv2+2cuv)
.

Recall that 2e
1

~

√
ab−c2

(au2+bv2+2cuv)
is a vacuum as defined in §2.
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Corollary 7. Vacuums are obtained as the limit point of ∗-exponential func-
tions; i.e.

2e
1

~

√
ab−c2

(au2+bv2+2cuv)
= lim

t→∞
ete

t

~

√
ab−c2

(au2+bv2+2cuv)

∗

is a vacuum for every (a, b, c) such that c2 − ab 6= 0.

This shows that vacuums may be regarded as certain equilibrium states (cf. [3]).

Remarks. Let Ad(g)h = g∗h∗g−1 . Using (10) and uniqueness of solutions, we
see that

Ad(±e
it
2~

(au2+bv2+2cuv)
∗ )

[
u
v

]
=
(

exp t

[
−c −b
a c

]) [u
v

]
. (30)

Remark that Ad(±e
it
2~

(au2+bv2+2cuv)
∗ ) has no singularity in t , and that the sign of

±e
it
2~

(au2+bv2+2cuv)
∗ makes no difference. Hence, the “group” generated by the ∗-

exponential functions of quadratic forms looks like a “double covering group” of
SLC(2), which is known to be simply connected.

Moreover, (30) is useful to make the product formula involving elements
f, g of Ep(C2), p < 2. We compute as follows:

(f ∗ ep(u,v)
∗ ) ∗ (g ∗ eq(u,v)

∗ ) = (f ∗ (ead(p(u,v))g)) ∗ (ep(u,v)
∗ ∗ eq(u,v)

∗ ).

This is well defined whenever e
p(u,v)
∗ ∗ eq(u,v)

∗ is well defined. Hence, we have only
to care about the product formula e

p(u,v)
∗ ∗ eq(u,v)

∗ .

The following lemma is useful to compute these transcendental products.
It is proved by showing that both quantities satisfy the same partial differential
equation with the same initial condition, but intuitively this is given by the trivial
identity v ∗ (u ∗ v)m = (v ∗ u)m ∗ v , which explains the name of the next lemma:

Lemma 8. (Bumping lemma)

v ∗ eitu∗v∗ = eitv∗u∗ ∗ v, eitu∗v∗ ∗ u = u ∗ eitv∗u∗ .

4.1. ∗-exponential functions by the normal ordering.

Although e
±π
~
uv

∗ diverge in the Weyl ordering, we prove in this subsection
that such elements make sense in the normal ordering. We now consider the
evolution equation (26) in the normal ordering. Assuming that

e
t
~

(au2+bv2+2cu∗v)
∗ = ψ(t)eφ1(t)u2+φ2(t)v2+2φ3(t)u◦v

◦ ,

we solve the system of ordinary differential equations:

φ′1(t) =
1

~

a+ 4icφ1(t)− 4~bφ1(t)2

φ′2(t) =
1

~

b+ 4ibφ3(t)− 4~bφ3(t)2

φ′3(t) =
1

~

c+ 2icφ3(t) + 2ibφ1(t)− 4~bφ1(t)φ3(t)

ψ′(t) =− 2~bφ1(t)ψ(t)

(31)

with the initial condition φi(0) = 0 and ψ(0) = 1.
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Proposition 9. There exists a unique analytic solution of (31) given by the
following form:

φ1(t) =
a

2~

sin(2
√
D t)√

D cos(2
√
D t)− ic sin(2

√
D t)

,

φ2(t) =
b

2~

sin(2
√
D t)√

D cos(2~
√
D t)− ic sin(2

√
D t)

,

φ3(t) =
i

2~

(
1−

√
D√

D cos(2
√
D t)− ic sin(2

√
D t)

)
,

ψ(t) = e−cit
( √

D√
D cos(2

√
D t)− ic sin(2

√
D t)

)1/2

(32)

where D = c2 − ab. (For the case D = 0, we set 1√
D

sin(2
√
D t) = 2t via Taylor

expansion.) The sign ambiguity of
√
D does not affect the result, but the ±

ambiguity of ( )1/2 remains in the expression of ψ(t).

Note that taking the complex conjugate of (32), we obtain the formula of
∗-exponential function in the anti-normal ordering. By this observation, we have
the following:

Lemma 10. In every ordering, the ∗-exponential function e
1
~
au2+bv2+2cuv
∗ has

singularities in (a, b, c) ∈ C3 . However, there is no common singularity of the
normal ordering and of the Weyl ordering.

Noting that 2uv = u∗v+v∗u = 2u∗v+ i~ = 2u◦v+ i~ , we can use Lemma 9

to obtain the formula of e
t
~

(au2+bv2+c(u∗v+v∗u))
∗ . Remark that e

t
~

(au2+bv2+2cuv)
∗ is a

curve contained in N3 , that is,
√

1 + 2i~φ3(t) = ecitψ(t) must hold by (25). This
can be checked by direct calculation. For the special case ab = 0, we have

e
t
~

(au2+bv2+2cu◦v)
∗ = e

1
4ci~

(e4cit−1)(au2+bv2)+ 1
2i~

(e2cit−1)2u◦v
◦ , ab = 0, (33)

because by setting
√
c2 = c , (33) gives the real analytic solution of (31) with initial

data 1. Remark (33) has no singularity in t ∈ C . Using (33), we have

e
t
~

(au2+bv2+c(u∗v+v∗u)
∗ = ecite

1
4ci~

(e4cit−1)(au2+bv2)+ 1
2i~

(e2cit−1)2u◦v
◦ , ab = 0. (34)

By recalling that u∗v + v∗u = 2u∗v + i~ again, Proposition 9 gives a very

strange formula of e
π
2~

(au2+bv2+c(u∗v+v∗u))
∗ for c2 − ab = 1:

Lemma 11. In the normal ordering w.r.t. (u, v), the ∗-exponential function

e
π
2~

(au2+bv2+c(u∗v+v∗u))
∗ for c2−ab = 1 is given identically as

√
−1e

2i
~
u◦v

◦ .

4.2. Polar element.

Here a new question arises whether the sign ambiguity of
√
−1 of Lemma

11 can be eliminated for all a, b, c ∈ C . Our conclusion in this subsection is that
the ambiguity can not be eliminated.
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Note first that e
π
2~

(au2+bv2+c(u∗v+v∗u))
∗ diverges in the Weyl ordering for c2−

ab = 1. By Lemma 11, e
π
2~

(au2+bv2+c(u∗v+v∗u))
∗ is independent of a, b, c whenever

c2−ab = 1. Thus, it must be viewed as a single element. We call it the polar
element and denote by ε00 . We have in particular that

ε00 ∗ ε00 = −1, Ad(ε00) = −I, (35)

but ε00 has several strange features.

4.3. It looks like a contradiction.

It is clear that π(ε00) = (0, 0, i). Moreover ε00∗ε00 = −1 by the exponential
law. But this does not imply that ε00 =

√
−1, because the following holds by the

bumping Lemma 8:

Proposition 12. u ∗ ε00 + ε00 ∗ u = 0, v ∗ ε00 + ε00 ∗ v = 0. In particular, ε00

commutes with every t
~
(au2 + bv2 + 2cuv), and hence with e

t
~

(au2+bv2+2cuv)
∗ .

Moreover, since (a, b, c) = (0, 0, 1) and (0, 0,−1) are arcwise connected in
the set c2−ab = 1, Lemma 11 gives

e
π
2~

(u∗v+v∗u)
∗ =

√
−1e

2i
~
u◦v

◦ = e
− π

2~
(u∗v+v∗u)

∗ .

Considering the exponential law of the ∗-exponential function e
t

2~
(u∗v+v∗u)

∗ for t ∈
C− {singular set} , we must set by (34)

e
π
2~

(u∗v+v∗u)
∗ = ie

2i
~
u◦v

◦ , e
− π

2~
(u∗v+v∗u)

∗ = −ie
2i
~
u◦v

◦ .

If one wants to fix the sign ambiguity, the exponential law gives

−1 = e
π
2~

(u∗v+v∗u)
∗ ∗ e

π
2~

(u∗v+v∗u)
∗ = e

π
2~

(u∗v+v∗u)
∗ ∗ e−

π
2~

(u∗v+v∗u)
∗ = 1.

Remark that (−v, u) is a canonical conjugate pair and the set of all canonical

conjugate pairs is arcwise connected. Thus, it seems rigorous to set ε00 = ie
2i
~
u◦v

◦ =

ie
2i
~

(−v)�u
� , but this causes the same trouble. Therefore, we must conclude that

the sign ambiguity in Proposition 9 cannot be eliminated. One has to set ε00 =
√
−1e

2i
~
u◦v

◦ with the sign ambiguity. It is better to understood ε00 as a “two-
valued” element. But since such a notion does not exist in the set theory, it seems
to be impossible to define ε00 as a point in a point set. Because of this anomalous
character of ε00 we had spent a great deal of time to check our calculation, and
come to a conclusion that the polar element ε00 should be understood as a “two-
valued” element. Remark that if one considers m-tensor powers of our system, we
have an element

∏m
i=1 ε

(i)
00 which should be treated as a 2m -valued element. In §5,

we claim this anomalous element is still useful in the calculation of ∗-products.

Olver [Ol] gives some examples of local Lie groups which do not form
groups, because the associativity breaks down globally. Though these are examples
within point sets, the set up in [Ol] seems similar and helpful to understand this
ambiguity. We have to study such phenomena more closely, in order to understand
the difficulties we must overcome to treat exact deformation quantizations, (cf. also
[R]).

To understand ε00 rigorously within set theory, we give several formulations
in §7.
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5. Product formulas, restriction to real forms

We now study the “group” generated by eaH+bX+cY
∗ , using the Weyl ordering and

the polar element ε00 . We will see that the ∗-product

eaH+bX+cY
∗ ∗ea′H+b′X+c′Y

∗

is defined in general only up to the sign ambiguity of
√
· , and that the ambiguity

can only be eliminated locally.

5.1. Product formula with ± ambiguity and singularity.

We first want to establish the product formula with ± ambiguity. If we
use the Weyl ordering, Proposition 2 implies that the general product formula for
quadratic exponential functions can be obtained from the two cases as follows:

etu
2 ∗ eau2+bv2+2cuv, eτuv ∗ eau2+bv2+2cuv.

Solving (27) with the general initial condition

(a(0), b(0), c(0); s(0)) = (a, b, c; 1), (36)

we see that the first case can be written as

e
t
~
u2

∗ ∗ e
1
~

(au2+bv2+2cuv) =
1√

1 + bt
e

1
~(1+bt)

{(a+(ab−c2−2ci+1)t)u2+bv2+2(c−ibt)uv} (37)

where the ambiguity in ±
√

1 + bt cannot be eliminated for all t, b . Note also
that the discriminant of (a + (ab − c2 − 2ci + 1)t)u2 + bv2 + 2(c − ibt)uv is

(c2−ab+1)(1+bt)−(1+bt)2 . Thus, e
t
~
u2 ∗
√
c2−ab+1 e

1
~

(au2+bv2+2cuv) is contained
in M3 as the discriminant of the phase function is +1.)

Remarking e
t
~
u2

∗ = e
t
~
u2

, we have the following:

Lemma 13. For Q ∈ M3 such that π(Q) = e
1
~

(au2+bv2+2cuv) , Q is written in

the form
√
c2−ab+1 e

1
~

(au2+bv2+2cuv) , and the product e
t
~
u2 ∗ Q is an element of

M3 , if bt 6= −1.

As in (37), we have in the Weyl ordering that

e
t
~
v2

∗ ∗ e
1
~

(au2+bv2+2cuv) =
1√

1 + at
e

1
~(1+at)

{au2+(b+(ab−c2+2ci+1)t)v2+2(c+iat)uv}, (38)

and hence we have the result similar to Lemma 13.

Note that e
t
~

2uv
∗ =

√
1 + s2 e

s
~

2uv , where s = tan t . Solving (27) with the
initial condition (36), we have in the Weyl ordering that

e
s
~

2uv ∗ e
1
~

(au2+bv2+2cuv) =

1√
1−2cs+(c2−ab)s2

e
1

~(1−2cs+(c2−ab)s2)
(a(1+is)2u2+b(1−is)2v2+(c−(c2−ab−1)s−cs2)2uv)

(39)
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where the ambiguity in ±
√

1−2cs+(c2−ab)s2 cannot be eliminated.

Note the following identity for the computation of the discriminant of the
phase function of (39):(

1−2cs+(c2−ab)s2
)2

+
(
c−(c2−ab−1)s− cs2

)2 − ab(1+is)2(1−is)2

=(c2−ab+1)(1 + s2)
(
(c2−ab)s2 − 2cs+ 1

)
.

(40)

Using (39) and (40) for the computation of 1+discriminant, we see:

Lemma 14. If Q1, Q2 ∈M3 are such that

π(Q1) = e
s
~

2uv, π(Q2) = e
1
~

(au2+bv2+2cuv),

then
Q1 = ±

√
1 + s2 e

s
~

2uv, Q2 = ±
√
c2−ab+1 e

1
~

(au2+bv2+2cuv)

with 1 + s2 6= 0, c2 − ab+ 1 6= 0. Furthermore, if 1− 2cs+ (c2 − ab)s2 6= 0, then
the ∗-product Q1 ∗Q2 is defined as an element of M3 .

Though every product formula in the Weyl ordering has some singularity,
this does not mean that the ∗-product cannot be defined at such points. Recall
that every quadratic form Q(u, v) is written in the form (αu+βv)2 if ab− c2 = 0,
or the form λ(αu+βv)(γu+δv) with αδ−βγ = 1 otherwise. Solving the evolution
equation by using the ΨDO-product formula (1) via the standard procedure of Lie
theory, we have the following product formula in the normal ordering:

e
t
~
u2

◦ ∗ e
1
~

(au2+bv2+2cuv)
◦ = e

1
~

((a+t)u2+bv2+2cuv)
◦ ,

e
t
~
uv
◦ ∗ e

1
~

(au2+bv2+2cuv)
◦ = e

1
~

(a(1+it)2u2+bv2+(c+(ci+ 1
2

)t)2uv)
◦ .

(41)

This shows that every product can be computed without ambiguity by a canonical
conjugate pair whose choice depends on the elements to be calculated. However,
since we have to use various canonical conjugate pairs to write elements in the
above standard form, this does not imply that ∗-products can be defined without
ambiguity.

Here, we close this subsection with a remark on associativity. Although
all of our formulas above are written in the form e

1
~

(au2+bv2+2cuv) , we can replace
(a, b, c) by (~a, ~b, ~c). After this replacement, all formulas (except the formula

involving elements like e
2i
h
uv , where one cannot eliminate ~ in the expression) are

changed into formulas which are real analytic in ~ and these are meaningful at
~ = 0.

If ~ is viewed as a formal parameter and all formulas are considered as
formal power series in ~ , we see that associativity holds, and the sign ambiguities
disappear in the product formula. Using a Taylor expansion in ~ , we have:

Proposition 15. The associativity

(eau
2+bv2+2cuv ∗ ea′u2+b′v2+2c′uv) ∗ ea′′u2+b′′v2+2c′′uv

=eau
2+bv2+2cuv ∗ (ea

′u2+b′v2+2c′uv ∗ ea′′u2+b′′v2+2c′′uv)

holds if both sides are defined.
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5.2. Product formulas involving the polar element.

Even though ε00 is viewed as a two-valued element, we can derive product
formulas. We begin with the following lemma, which shows that the mapping
a→ ε00 ∗ a is better to be understood as a 2-to-2-mapping:

Lemma 16. If D = c2 − ab 6= 0, then

ε00 ∗ e
1
~

(au2+bv2+2cuv) =
1√

c2−ab
e
− 1
~(c2−ab)

(au2+bv2+2cuv)
.

Proof. Set s = tan t . Then we have e
± t
~

2uv
∗ =

√
1 + s2 e

s
~

2uv . We remark that
s → ±∞ as t → ±π

2
. Multiplying

√
1 + s2 to (39) and taking the limit s2 → ∞

yields Lemma. �

Since the ambiguity in
√
c2−ab depends on the choice of paths for s2 →∞ ,

the equality of Lemma 16 is better to be understand as

ε00 ∗ ±e
1
~

(au2+bv2+2cuv) =
±1√
c2−ab

e
− 1
~(c2−ab)

(au2+bv2+2cuv)
.

Remark that ε00 commutes with every e
1
~

(au2+bv2+2cuv) and ε00
2
∗ = −1. Thus, ε00∗

gives a 2-to-2-diffeomorphism of M3 −M3
0 onto itself, where

M3
0 = {e

1
~

(au2+bv2+2cuv)
∗ ; c2 − ab = 0}.

For a point P of M3
0 , the computation of ε00 ∗ P is reduced to the case

P = e
1
~
au2

. Since we see for t 6= ±π
2

that

e
t
~

2uv
∗ ∗ e

1
~
au2

=
√

1 + s2 e
1
~

(a(1+is)2u2+2suv), tan t = s, (42)

this is written in the form of a ∗-exponential function and is therefore a member of

M3 . As t→ ±π
2

, then the r.h.s of (42) diverges. Hence, we see that e
±π
~
uv

∗ ∗ e 1
~
au2

cannot be a member of M3 . Thus, we see that M3 ∩ ε00∗M3
0 = Ø.

In the normal ordering w.r.t. (u, v), we see by (41)

ε00 ∗ e
1
~
au2

◦ =
√
−1e

1
~
au2

◦ , ε00 ∗ e
1
~

(au2+bv2+2cuv)
◦ =

√
−1e

1
~

(au2+bv2+(i−c)2uv)
◦ .

Since ε2
00 = −1, we see that N3

∗ = ε00 ∗N3
∗ for every canonical conjugate pair. In

other words, we see that

N3
∗ ⊂M3

∗ ∪ (ε00∗M3
∗ ) for every canonical conjugate pair. (43)

Note that e
1
~
t(αu+βv)2

∗ ∈ N3
∗ in the normal ordering w.r.t. a certain canonical

conjugate pair u′ = αu + βv, v′ = γu + δv , and ε00∗N3
∗ = N3

∗ . Therefore, every
element of ε00∗M3

0 is contained in N3
∗ w.r.t. a certain canonical conjugate pair.

Combining these arguments with (43), we see that

M3
∗ ∪ (

⋃
(u,v)

N3
∗ ) = M3

∗ ∪ (ε00∗M3
∗ ) (44)
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where the union is taken over all canonical conjugate pairs which are pairwise
linearly related.

By (44), we have to consider the “set” obtained by “gluing” M3
∗ and ε00∗M3

∗
by the “2-to-2-diffeomorphism” ε00∗ given by Lemma 16.

5.3. General product formulas.

By the argument in § 5.1, we have two cases that Q1∗ Q2 are not defined
in the Weyl ordering:

e
t
~
u2 ∗
√
c2−ab+1 e

1
~

(au2+bv2+2cuv), for 1 + bt = 0,

and

√
1 + s2 e

s
~

2uv ∗
√
c2−ab+1 e

1
~

(au2+bv2+2cuv), for 1− 2cs+ (c2 − ab)s2 = 0.

By Lemma16 and (37) we obtain the following:

Corollary 17. If 1 + bt = 0, then

e
t
~
u2∗(ε00∗

√
c2−ab+1 e

1
~

(au2+bv2+2cuv)) = e
1

~(c2−ab+1)
((a+(ab+(ci−1)2)t)u2+bv2+2(c−ibt)uv)

and the r.h.s. can be written in the form e
1
~

(αu+βv)2 ∈M3
0 .

If 1− 2cs+ (c2 − ab)s2 = 0, then by (40) again, we have

(ε00∗
√

1 + s2 e
s
~

2uv) ∗
√
c2−ab+1 e

1
~

(au2+bv2+2cuv)

=e
1

~(c2−ab+1)(1+s2)
(a(1+is)2u2+b(1−is)2v2+(c−(c2−ab−1)s−cs2)2uv)

.

The r.h.s. can be written in the form e
1
~

(αu+βv)2
, since the discriminant of the

r.h.s. vanishes.

As a consequence, we have the following:

Theorem 18. M3
∗ ∪ (ε00 ∗M3

∗ ) is closed under the ∗-product. Moreover, the
set {eaH+bX+cY

∗ ; a, b, c ∈ C} generates M3
∗ ∪ (ε00 ∗M3

∗ ).

For the proof, it is enough to remark the following: For Q1, Q2 ∈ M3 , if
Q1 ∗Q2 is not defined in the Weyl ordering, then Q1∗ (ε00∗Q2) or (Q1∗ ε00)∗Q2

is defined in the Weyl ordering as an element of M3 and

Q1∗ (ε00∗Q2) = (Q1∗ ε00)∗Q2

holds, whenever both sides are defined. If Q1∗Q2 , Q1∗(ε00∗Q2), and (ε00∗Q1)∗Q2

are defined, then we have Q1∗(ε00∗Q2) = (ε00∗Q1)∗Q2 = ε00∗(Q1∗Q2). Moreover,
(ε00 ∗Q1) ∗ (ε00∗Q2) is defined as −Q1 ∗Q2 .

M3
∗ ∪ (ε00 ∗M3

∗ ) is “locally” isomorphic to SLC(2). As is noted at (30),
M3
∗ ∪ ε00 ∗M3

∗ may be viewed as a non-trivial double cover of SLC(2), although it
cannot be treated as a point set.

Looking at the product formulas (37), (38), (39) and Lemma 16 more care-
fully, we see the following:
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Theorem 19. If the coefficients a, b, c are restricted in the real number R and if
we consider (ia, ib, ic) ∈ C3 , or (a, b, ic) ∈ C3 , then all product formulas are closed

in these subspaces respectively. That is, {e
i
~

(au2+bv2+2cuv)
∗ } and {e

1
~

(au2+bv2+2ciuv)
∗ }

generate Lie subgroup-like objects under the ∗-product whose Lie algebras are
slR(2), su(1, 1) respectively.

Since the first homotopy groups π1 of SLR(2), SU(1, 1) are both Z , we
see that the sign ambiguity can be treated as genuine double coverings in such
subgroup-like objects. Hence, we see that M3

∗ ∪ (ε00 ∗M3
∗ ) contains the double

covering group of SLR(2) = Sp(2;R), which can be regarded as the metaplectic
group Mp(2;R). Thus, M3

∗ ∪ (ε00 ∗M3
∗ ) may be viewed as the complexification

of Mp(2;R). It is obvious that there is no such Lie group in the standard group
theory. Similarly, M3

∗ ∪ (ε00 ∗M3
∗ ) contains the double covering group of SU(1, 1).

6. Intertwiners and their extensions

Recall that ε00 was defined by using different orderings. To understand the anoma-
lous element ε00 , and anomalous phenomena related to ∗-exponential functions of
quadratic forms, we introduce the notion of intertwiners.

We mentioned in §4 that ε00 is viewed as a two-valued element w.r.t.
a canonical conjugate pair (u, v). If we take another canonical conjugate pair

u′ = au + bv, v′ = cu + dv with ad − bc = 1, then e
π
2~

(u′∗v′+v′∗u′)
∗ must equal

√
−1e

2i
~
u′ �v′

� where � indicates that this element is expressed in the normal or-
dering w.r.t. (u′, v′). We view ε00 as the collection of expressions in the various

normal orderings. Thus, it is not clear whether one may identify
√
−1e

2i
~
u◦v

◦ with
√
−1e

2i
~
u′ �v′

� . (See Proposition 23 for our conclusion.)

To consider this problem, we consider intertwiners between varoius ordering
expressions. In particular, we consider the intertwiner between normal ordering
and the Weyl ordering w.r.t (u, v).

6.1. Intertwiners or coordinate transformations.

The construction of intertwiners is based on the following expressions of
the ∗-exponential function eαu+βv

∗ obtained as follows by solving the evolution
equation (4):

eαu+βv
∗M =eαu+βv

· , (in Weyl ordering)

eαu+βv
∗N =e

i~
2
αβeαu+βv

◦ , (in normal ordering)

eαu+βv
∗N̄ =e−

i~
2
αβeαu+βv

• , (in antinormal ordering).

We define the intertwiner from the Weyl ordering to the normal ordering w.r.t.
(u, v) by the densely defined linear operator

I◦· = e
i~
2
∂u∂v . (45)

In particular, we note that I ◦· (f ∗M g) = (I ◦· f) ∗N (I ◦· g), if both sides are defined,
where ∗M , ∗N denote the Moyal-product and ΨDO-product respectively. This is
because that both sides are the expressions of f ∗ g in different orderings.
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Suppose (u, v) and (u′, v′) are related by

u′ = au+ bv, v′ = cu+ dv, ad− bc = 1, u = du′ − bv′, v = −cu′ + av′.

The ∗-exponential function is given by eα
′u′+β′v′
∗ = e

i~
2
α′β′eα

′u′+β′v′
� w.r.t. a canoni-

cal conjugate pair (u′, v′), where � indicates the normal ordering expression w.r.t.

(u′, v′). Thus, we must identify e
i~
2
αβeαu+βv

◦ with e
i~
2
α′β′eα

′u′+β′v′
� . Hence, we have

to define the intertwiner I �◦ from the normal ordering w.r.t. (u, v) to that w.r.t.
(u′, v′) as follows:

I�◦f = e
i~
2
∂u′∂v′−

i~
2
∂u∂vf. (46)

To make precise, we must consider the exponential of the operator

∂u′∂v′ − ∂u∂v = −bd∂2
u + (ad+ bc− 1)∂u∂v − ac∂2

v .

If
g� (u, v) = e

i~
2

(−bd∂2
u+(ad+bc−1)∂u∂v−ac∂2

v)f◦ (u, v),

then g� (u, v) is the normal ordering of f◦ (u, v) w.r.t. (u′, v′). By the decomposi-
tion

e−bd∂
2
u+(ad+bc−1)∂u∂v−ac∂2

v = e−bd∂
2
ue(ad+bc−1)∂u∂ve−ac∂

2
v ,

we may treat these intertwiners separately. We remark that these intertwiners are
well defined if ~ is a formal parameter. For a real parameter ~ , intertwiners are
first defined on the space C[u, v] , and then extended as follows:

Theorem 20. For every 0 < p ≤ 2, I �◦ extends to a continuous linear isomor-
phism of Ep(C2) onto itself. I �◦ is also an algebra isomorphism of (Ep(C2)◦ ; ∗)
onto (Ep(C2)� ; ∗).

Proof. We first remark that by [18], Proposition 6.1, the system of seminorms
(5) can be replaced by the following system of seminorms: Set τ = 1

p
, and for

f =
∑
am,nu

mvn we define

‖f‖τ,s =
∑
m,n

|am,n|(m+ n)τ(m+n)sτ(m+n), s > 0.

This system defines the same Fréchet space as Ep(C2) for every p > 0.

We show eα∂u∂v , eβ∂
2
u and eγ∂

2
v extend to continuous linear isomorphisms

of Ep(C2) onto itself for every 0 < p ≤ 2. For every f =
∑
am,nu

mvn , we see that

eα∂u∂vf =
∑
m,n,k

αk

k!

(m+ k)!

k!

(n+ k)!

k!
am+k,n+ku

mvn.

Hence,

‖eα∂u∂vf‖τ,s =
∑
m,n

∑
0≤k≤m∧n

αk

k!

m!

(m−k)!

n!

(n−k)!
|am,n|(m+n−2k)τ(m+n−2k)sτ(m+n−2k)

<
∑
m,n

∑
0≤k≤m∧n

αk

k!
(mn)(1−τ)ksτ(m+n)|am,n|(m+n)τ(m+n).
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If 1
2
≤ τ , then we have (mn)(1−τ) ≤ K(m+ n). Thus, we have

‖eα∂u∂vf‖τ,s ≤ |am,n|(m+n)τ(m+n)(eK/ταs)τ(m+n).

Since e−α∂u∂v is the inverse of eα∂u∂v we have that for every p ≤ 2, eα∂u∂v is a
linear isomorphism of Ep(C2) onto itself. By the similar proof, we obtain the same
result for eβ∂

2
u and eγ∂

2
v .

We now choose α, β, γ appropriately so that eα∂u∂veβ∂
2
ueγ∂

2
v defines an in-

tertwiner I �◦ . Since it is clear that I �◦ is an algebra isomorphism of C[u, v] onto
itself, the continuity of I �◦ gives the second half of the theorem. �

It is remarkable that the composition of intertwiners gives another inter-
twiner, symbolically denoted as I �

′
� I

�
◦ (f) = I �

′
◦ (f) for f ∈ E2(C2). This holds

even for f = eau
2+bv2+2cuv if both sides are defined. This is because both sides are

real analytic w.r.t. ~ and the formula holds on the formal level w.r.t. ~ .

6.2. Strange characters of extended intertwiners.

However, these intertwiners do not extend to the space E2+(C2). In such
spaces, intertwiners are defined only for exponential functions of quadratic forms
f = eau

2+bv2+2cuv . It is not clear to what extent intertwiners can be defined.

Normal orderings have less symmetries than Weyl ordering. Thus, it seems
to be natural to make the following definition:

Definition 21. Let A and B be elements of Ep , defined by normal ordering
expressions w.r.t. some canonical conjugate pairs. We denote by A◦ , B� normal
ordering expressions of A , B w.r.t. (u, v; ◦), (u′, v′; �) respectively. We define
the notion of equal A = B , if and only if I �◦ (A◦ ) = B� through the intertwiner
between normal ordering expressions w.r.t. these canonical conjugate pairs.

However, as it will be seen below, it occurs that intertwiners are defined
only as 2-to-2 mappings because of the ambiguity of the sign of

√
. This shows

that Definition 21 is not strictly defined. We have to understand intertwiners as
2-to-2 mappings.

Consider the differential equation

∂

∂t
f = i~∂u∂vf, (47)

A real analytic solution in t is unique, if it exists. The solution with the initial
function eau+bv is given by ei~abteau+bv .

To obtain the solution with initial function e
1
~

(αu2+βv2+2γuv) , we set:

f = s(t)e
1
~

(φ1(t)u2+φ2(t)v2+φ3(t)2uv).

Then, (47) is rewritten as a system of ordinary differential equations:

(φ′1(t),φ′2(t), φ′3(t); s′(t))

=
(
4iφ1(t)φ3(t), 4iφ2(t)φ3(t), 2i

(
φ1(t)φ2(t) + φ3(t)2

)
; 2is(t)φ3(t)

)
.

(48)

We see that
φ1(t) = αe4i

∫ t
0 φ3(τ)dτ , φ2(t) = βe4i

∫ t
0 φ3(τ)dτ
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Setting x(t) =
∫ t

0
φ3(τ)dτ , we have

x′′(t) = 2iαβe8ix(t) + 2ix′(t)2, x(0) = 0, x′(0) = γ.

We regard x as an independent variable and set φ3(t) = p(x(t)). Then since
φ3 = x′ , we have x′′(t) = p dp

dx
. It follows that

1

2

dp2

dx
− 2ip2 = 2iαβe8ix, p(0) = γ,

and we have p2(x) = (γ2 − αβ)e4ix + αβe8ix. Thus, we obtain

e~ti∂u∂ve
1
~

(αu2+βv2+2γuv)

=
1√

1−4iγt−4(γ2−αβ)t2
e

1
1−4iγt−4(γ2−αβ)t2

1
~

(αu2+βv2+(γ−2i(γ2−αβ)t)2uv)
,

(49)

where the ambiguity of the sign of
√

1− 4iγt+ 4(αβ − γ2)t2 will be discussed in
§6.3.

Set t = 1
2
. Then, we have the intertwiner I ◦· from the Weyl ordering to the

normal ordering:

(a′, b′, c′; s′) = I◦· (a, b, c; s) =
1

1−2ic−D
(a, b, c− iD; s

√
1−2ic−D), (50)

where D = c2 − ab .

Proposition 22. I ◦· (e
1
~

(au2+bv2+2cu·v)
· ) is singular if and only if (1−ci)2+ab = 0.

It is easy to see that D′ = (c′)2 − a′b′ = D
1−2ic−D , and the inverse mapping

I ·◦ = (I ◦· )−1 is given by setting t = −1
2
. Indeed, we have

I ·◦ (a
′, b′, c′; s) =

1

1 + 2ic′ −D′
(a′, b′, c′ + iD′; s′

√
1 + 2ic′ −D′ ).

To confirm the result, we check that applying the intertwiner I ◦· given by (50)
through (49) to the l.h.s. of (28) gives the normal ordering expression given in
Proposition 9.

6.3. The case e−i~∂
2
u .

Remark first that the intertwiner from the normal ordering w.r.t. (u, v)

to that w.r.t.(u′, v′) = (u + v, v) is given by e−
i~
2
∂2
u . Consider now the operator

d
dτ
f = i~∂2

uf , and set

f = s(τ)e
1
~

(φ1(τ)u2+φ2(τ)v2+2φ3(τ)uv). (51)

Thus, we have

(φ′1(τ), φ′2(τ), φ′3(τ); s′(τ)) = (4iφ1(τ)2, 4iφ3(τ)2, 4iφ1(τ)φ3(τ); 2iφ1(τ)s(τ)).

The solution (51) with the initial data (φ1(0), φ2(0), φ3(0); s(0)) = (a, b, c; s) is
obtained as follows:

(φ1(t), φ2(t), φ3(t); s(t)) = (
a

1− 4iat
,
b+ 4iDt

1− 4iat
,

c

1− 4iat
;

s√
1− 4iat

) (52)
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where D = c2 − ab . Setting t = −1
2
, we obtain the intertwiner

(a′′, b′′, c′′; s′′) = I�◦ (a, b, c, s) =
1

1 + 2ia
(a, b−2iD, c; s

√
1+2ia). (53)

It is easy to see D′′ = (c′′)2 − a′′b′′ = D
1+2ia

. The inverse relation for (53) is given

by setting t = 1
2
:

(a, b, c; s) = (
a′′

1−2ia′′
,
b′′+2iD′′

1−2ia′′
,

c′′

1−2ia′′
;

s′′√
1−2ia′′

).

By a similar calculation, we can compute eti~∂
2
v : Consider the opera-

tor d
dτ
f = i~∂2

vf , and set f as in (51). The solution with the initial data
(φ1(0), φ2(0), φ3(0); s(0)) = (a, b, c; s) is given by:

(φ1(t), φ2(t), φ3(t); s(t)) =

(
a+ 4iDt

1− 4ibt
,

b

1− 4ibt
,

c

1− 4ibt
;

s√
1− 4ibt

)
. (54)

We obtain the intertwiner from the normal ordering w.r.t. (u, v) to that
w.r.t. (u, u+ v) is given by

I •◦ (a, b, c; s) =
1

1− 2ib
(a+ 2iD, b, c; s

√
1− 2ib).

We now combine these results. The general intertwiner is obtained by
composing (50), (52), (54). For instance, the intertwiner I �· from the Weyl ordering
to the normal ordering w.r.t. 1√

2
(u− v, u+ v) is given by

I �· (a, b, c; s) =
1

1+i(b−a)−D
(a−iD, b+iD, c;

√
1+i(b−a)−D).

It is remarkable that intertwiners between exponential functions of quadratic forms
contain always a sign ambiguity in the amplitude.

The following shows that the polar element is defined globally only as a
two-valued element:

Proposition 23. For a canonical conjugate pair u′ = au + bv, v′ = cu + dv
with ad− bc = 1, we have

e
i~
2

(−bd∂2
u+(ad+bc−1)∂u∂v−ac∂2

v)
√
−1e

2i
~
u◦v

◦ =
√
−1e

2i
~
u′ �v′

�

where � denotes the normal ordering w.r.t. (u′, v′).

7. Gluing via intertwiners

In this section we first want to glue C3×C∗ and C3×C∗ together by the intertwiner
I ◦· , where I ◦· is the intertwiner from the Weyl ordering to the normal ordering
w.r.t. (u, v). Let I ·◦ be the inverse of I ◦· . Let P ◦· , P ·◦ be the phase parts of the
intertwiners I ◦· , I ·◦ ;

P ◦· (a, b, c) =
1

1−2ic−D
(a, b, c− iD), P ·◦ (a

′, b′, c′) =
1

1+2ic′−D′
(a′, b′, c′ + iD′).
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Recall that
I ◦· (a, b, c; s) =

(
P ◦· (a, b, c);

s√
1−2ic−D

)
.

By Proposition 22 it is not hard to see that P ◦· (Vµ−{c=−i}) ⊂ Vν and P ·◦ (Vν−
{4a′b′=−1}) ⊂ Vµ . Then, the space of vacuums is preserved by the intertwiner.

To understand the gluing, we define Σ = {(x, y, z) ∈ C3 | z2−xy = 0} .
Make a copy C3 − Σ′ of C3 − Σ, and consider a holomorphic diffeomorphism

T0 : C3 − Σ→ C
3 − Σ′, T0(x, y, z) = − 1

z2 − xy
(x, y, z),

Gluing two copies of C3 by T0 , we obtain a complex 3-dimensional manifold B3 .

On the other hand, consider

∆ : C3 → C, ∆(x, y, z) = z2 − xy. (55)

Since ∆T0(x, y, z) = 1
∆(x,y,z)

, ∆ naturally extends to the mapping of B3 onto the

riemann sphere S2 = C ∪ {∞} . We denote this mapping also by ∆ : B3 → S2 .

We now consider the functions given by the intertwiners:

fµ(a, b, c) = 1− 2ic−D, fν(a
′, b′, c′) = 1 + 2ic′ −D′, (56)

where D = c2−ab , and D′ = (c′)2−a′b′ . Take new coordinate functions as follows:

(x, y, z) = (a, b,−(c+ i)), (x′, y′, z′) = (a′, b′, c′ − i).

We see easily that ∆(x, y, z) = −fµ(a, b, c), ∆(x′, y′, z′) = −fν(a′, b′, c′). Hence,
the manifold B3 glued by T0 is obtained also via the gluing diffeomorphism
Tµν : C3 − {fµ = 0} → C

3 − {fν = 0} :

(a′, b′, c′) = Tµν(a, b, c) =
1

fµ(a, b, c)
(a, b, c− iD). (57)

Indeed (57) is equivalent to(
a′, b′, c′ − i

)
= − 1

(c+i)2 − ab
(
a, b,−(c+ i)

)
.

Considering the path replacing i by si; s ∈ [0, 1] in the above equality, we see the
mapping fµ ∪ fν : B3 → S2 is homotopic to ∆. Therefore, we must consider the
gluing of C3×C∗ and C3×C∗ by T̃µν , where

T̃µν(a, b, c; s) =
( 1

fµ
a,

1

fµ
b,

1

fµ
(c− iD);

1√
fµ
s
)
. (58)

As we are looking for the group-like object generated by exponential func-
tions of quadratic forms, we want to glue C3−Vµ and C3−Vν by P ◦· (a, b, c). We
denote the glued manifold by B̃3 = B3−{vacuums} , where B̃3 is simply connected.
Through the adjoint mapping Ad(g), B̃3 is diffeomorphic to SLC(2). Hence, we
must glue (C3 − Vµ)×C∗ and (C3 − Vν)×C∗ by T̃µν given in (58). However, the
glued object is impossible to realize as a manifold, as we would obtain a nontrivial
double over of SLC(2).



Omori, Maeda, Miyazaki, Yoshioka 505

Thus, we need a little broad notion, perhaps similar to an object of a gerbe
of Giraud, or more precisely a flat unitary Diximier-Douady sheaf of groupoids
(cf. [Br]). Since these mathematical lingo does not fit directly to our context, we
prefer to use other terminology. This will be given in the next subsection.

7.1. Blurred C∗ -bundles.

We introduce a notion of blurred C∗ -bundles on S2 as follows: for a simple
open covering U = {Uα}α∈Λ of S2 , we give a system of holomorphic transition
functions tαβ : Uα ∩ Uβ → C∗ such that tαα = 1, tαβ = t−1

βα , but tαβtβγtγα ∈
{e 2πik

m ; k ∈ Z} on Uα ∩ Uβ ∩ Uγ 6= Ø. tαβ is viewed as a gluing diffeomorphism

Tαβ : Uβ×C∗ → Uα×C∗, Tαβ(p, z) = (p, tαβ(p)z).

Set tαβ(p) = e2πiλαβ(p), λαβ(p) ∈ C , where λαβ = −λβα , λαα = 0.

For Uα ∩ Uβ ∩ Uγ 6= Ø, we set `αβγ = (δλ)αβγ so that tαβtβγtγα = e2πi`αβγ .
Then, ` = {`αβγ} is a Čech 2-cocycle over 1

m
Z . Two such systems {U , {tαβ}} ,

{U , {t̃αβ}} are said to be equivalent, if {`αβγ} and {˜̀αβγ} defines the same coho-
mology class in H2(S2, 1

m
Z). We call this equivalence class a blurred C∗ -bundle

over S2 and denote this by M( 1
m

)

S2 . This notion seems to be a simple example of
gerbe of Giraud (cf. [Br] §4 and §7).

Proposition 24. If {U , {tαβ}}, {U , {t̃αβ}} are equivalent, then {tmαβ} and

{t̃mαβ} define the same C∗ -bundle.

Proof. Suppose there is a 1-cochain {ξαβ} ⊂ 1
m
Z such that

˜̀
αβγ − `αβγ = ξαβ + ξβγ + ξγα.

Setting λαβ−λ̃αβ−ξαβ = Mαβ so that t̃−1
αβtαβe

−2πiξαβ = e2πiMαβ , we see that {Mαβ}
is a Čech 1-cocycle over holomorphic functions O . Note that H1(S2,O) = {0} .
Thus, we set Mαβ = ηα − ηβ , where ηα, ηβ are holomorphic functions on Uα, Uβ
respectively. The replacing t̃αβ by e2πiηα t̃αβe

−2πiηβ is a gauge transformation. Since

λαβ − ξαβ = ηα + λ̃αβ − ηβ,

and e2πmξαβ = 1, {t̃mαβ} and {tmαβ} define the same C∗ -bundle over S2 . �

Thus, if H2(N ; 1
m
Z) = {0} , then the restriction M( 1

m
)

N on a subset N of

S2 gives a genuine C∗ -bundle over N . We see that restrictions M( 1
m

)

S2

∣∣
C

and

M( 1
m

)

S2

∣∣
C′

, where C′ = S2 − {0} , are trivial C∗ -bundles. We denote also by M(1)

S2

the C∗ -bundle defined by using {tmαβ} as transition functions. The projections

π :M( 1
m

)

S2 → S2 , π̃ :M(1)

S2 → S2 are well defined. M( 1
m

)

S2 is naturally viewed as a

m-covering space of M(1)

S2 . We call M( 1
m

)

S2 the blurred m-covering space of M(1)

S2 .

Now, we define the blurred C∗ -bundle M( 1
2

)

S2 such that M(1)

S2 is the tauto-
logical C∗ -bundle of C2 − {0} , and consider the desired glued object as the pull

back of M( 1
2

)

S2 . Consider the pull-back ∆∗M( 1
2

)

S2 of M( 1
2

)

S2 via the map ∆ : B̃3 → S2

given by (55). We remark that blurred bundles over B3 are always considered
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as pull-back bundles. That is, we use only coverings of B3 obtained by the pull
back ∆′−1U by ∆′ which is homotopically equivalent with ∆. Hence, this will be

denoted by ∆∗M( 1
2

)

S2 .

7.2. Involutive distributions.

Let ∆∗M( 1
2

)

S2 be a blurred C∗ -bundle over a manifold B3 . Though this
forms neither a manifold nor has an underlying point set, several notions defined
on manifolds extend under the condition that they are invariant under the 2-to-2
local coordinate transformations.

The projection ∆∗M( 1
2

)

S2 → B3 is well defined. The notion of distributions

is also well defined on ∆∗M( 1
2

)

S2 , and a notion of involutive distribution can be
given. An involutive distribution is understood as a horizontal distribution of a
flat connection on an object of a gerbe.

If an involutive distribution is restricted to an open subset N where the

restriction ∆∗M( 1
m

)

S2

∣∣
N

is a genuine C∗ -bundle, then we can take an integral
submanifold as a point set. By viewing S2 as the riemann sphere C∪C′ glued by

z ↔ z′ = 1
z
, the restricted bundles ∆∗M( 1

m
)

S2

∣∣
∆−1C

, ∆∗M( 1
m

)

S2

∣∣
∆−1C′

, form genuine
C
∗ -bundles respectively.

The distributions Dµ and Dν are glued together by T̃µν , and give a distribu-

tion on ∆∗M( 1
2

)

S2 . If one understands this distribution as a horizontal distribution
of a connection, then the curvature of this connection is identically 0. In spite of
this, integral submanifolds M3 and N3 given in §3.1, §3.2 cannot be glued together
as a manifold. How the union M3

∗ ∪ N3
∗ is considered ? Apparently we have no

way to explain such an object directly in set theoretical terms. The only possible
way is to give the alternative collection of usage, or axioms in total generality. The
notion of gerbes is the one of this direction.

¿From this point of view, we prefer the following explanation, because this
is simple and intuitive: M3

∗ ∪ N3
∗ is the maximal “blurred integral submanifold”

of Dµ ∪ Dν , glued together by a 2-to-2 local diffeomorphism. This looks like a
non-trivial double cover of SLC(2).

7.3. ∗-exponential mapping.

In §4, we showed in that the ∗-exponential mapping exp∗ is a holomorphic
mapping of C3 − Πµ into M3 ⊂ (C3 − Vµ)×C∗ . Let Πν be the subset where

e
1
~

(au2+bv2+2cuv)
∗ is singular in the normal ordering w.r.t. (u, v). Then, exp∗ :
C

3−Πν → (C3 − Vν)×C∗ is a holomorphic mapping, and exp∗(C
3−Πν) ⊂ N3

∗ .
Since Πµ∩Πν = Ø, the ∗-exponential mapping is defined from C

3 into the “space”

∆∗M( 1
2

)

S2 .

8. Concluding remarks

We have seen that Dµ ∪ Dν can be viewed as a horizontal distribution of

a connection defined on ∆∗M( 1
2

)

S2 . Since this is involutive, the curvature of this

connection vanishes identically on B̃3 . However, it is natural for physicists to say
that the curvature tensor is supported only on equilibrium states (cf. Cor. 7).

The maximal integral submanifold M3
∗ ∪ (ε00 ∗M3

∗ ) contains the double
covering group of SLR(2) = Sp(2;R), which may be regarded as the metaplectic
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group Mp(2;R). Thus, M3
∗ ∪ (ε00∗M3

∗ ) may be viewed as a complexification of
Mp(2;R). It is obvious that there is no such Lie group in the standard group
theory. Moreover, M3

∗ ∪ (ε00∗M3
∗ ) contains the double covering group of SU(1, 1)

as a real form different from Mp(2;R).

As a matter of course, M3 ∪ (ε00∗M3) cannot be recognized as a genuine
object of mathematics based on the point set theory, since it is not a point set.
In spite of this, we want to claim that such objects should have an appropriate
position in rigorous mathematics after relaxing the definition of manifolds.

Strange elements such as ε00 are not recognized as an element in set theory.
However, for physicists such elements are easily acceptable, because they are
computable. Physicists may have already used such elements heuristically in the
calculus of Feynmann diagrams. We might think that the connection between
mathematics and physics is not so straight forward in set theoretical mathematics.
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