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Abstract.  The representation theory of a class of infinite-dimensional groups
which are inductive limits of inductive systems of linear algebraic groups leads to
a new invariant theory. In this article, we develop a coherent and comprehensive
invariant theory of inductive limits of groups acting on inverse limits of modules,
rings, or algebras. In this context, the Fundamental Theorem of the Invariant
Theory is proved, a notion of basis of the rings of invariants is introduced, and a
generalization of Hilbert’s Finiteness Theorem is given. A generalization of some
notions attached to the classical invariant theory such as Hilbert’s Nullstellensatz,
the primeness condition of the ideals of invariants are also discussed. Many
examples of invariants of the infinite-dimensional classical groups are given.
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1. Introduction

In the preface to his book, The Classical Groups: Their Invariants and Represen-
tations, Hermann Weyl wrote “The notion of an algebraic invariant of an abstract
group v cannot be formulated until we have before us the concept of a represen-
tation of ~ by linear transformations, or the equivalent concept of a “quantity of
type A.” The problem of finding all representations or quantities of v must there-
fore precede that of finding all algebraic invariants of ~.” His book has been and
remains the most important work in the theory of representations of the classical
groups and their invariants.

In recent years there is great interest, both in Physics and in Mathematics,
in the theory of unitary representations of infinite-dimensional groups and their
Lie algebras (see, e.g., [10], [9], [8] and the literature cited therein). One class of
representations of infinite-dimensional groups is the class of tame representations
of inductive limits of classical groups. They were studied thoroughly in the
comprehensive and important work of Ol’'shanskii [13].
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As in Weyl’s case with the classical groups, we also discovered a new type
of invariants when we studied concrete realizations of irreducible tame represen-
tations of inductive limits of classical groups [22, 23]. One type of invariants that
is extremely important in Physics is the Casimir invariants (see, e.g., [2]). Several
of their generalizations to the case of infinite-dimensional groups may be found in
[10], [14], [6], and [22]. However, to our knowledge, there is no systematic study of
the invariant theory of inductive limits of groups acting on inverse limits of mod-
ules, rings, or algebras. In this article we develop a coherent and comprehensive
theory of these invariants. To illustrate how they arise naturally from the rep-
resentation theory of infinite-dimensional groups we shall consider the following
typical examples.

Example 1.1.  Set V, = C>* and let A, = P(V},) denote the algebra of
polynomial functions on Vj. Set Gy = SOi(C) and GY = SOk(R). Then Gy
(resp. GY) acts on V; by right multiplication, and this induces an action of Gy,
(resp. GY) on Ag. Then the ring of Gy (resp. GY)-invariants is generated by
the constants and p? = Zle where (Xi,...,X;) = X €V, and the G-
invariant differential operators are generated by A = p2(D) = ZZ L 07, where
2
9; = 8X2
harmonic homogeneous of degree d), i.e., polynomials that are annihilated by Ay,
then for £ > 2 we have the “separation of variables” theorem

Py = Y @) OH (1.1)

i=0,... [m/2]

7

If H;, (resp. H{) denote the subspace of harmonic polynomials (resp.

where P (V}) denotes the subspace of all homogeneous polynomials of degree
m > 0, and [m/2] denotes the integral part of m/2. Moreover, each (pg)@H,(j”‘Q“
is an irreducible G} (resp. GY)-module of signature (Zn —2i,0,... ,Q) Now
5/

observe that a polynomial in k variables (Xj,...,X}) can be considered as a
polynomial in [ variables (Xi,...,X)) for £ <[ in the obvious sense. It follows
that A, can be embedded in A; so that the inductive limit A of A, can be
considered as the algebra of polynomials in infinitely many variables; in the sense
that an element of A is a polynomial in n variables, where n ranges over N. Let
G =Upe, Gk (resp. G° =2, G}); then G acts on A in the following sense:

If g € G then g € Gy, for some k; if f € A then f € A;, for some [.
We may always assume that & < [ and g € G, so that g - f is well-defined.
Thus under the identification defined above, it makes sense to define H? as the
subspace of A which consists of all harmonic homogeneous polynomials of degree
d. Then it was shown in [23] that H? is an irreducible G-(resp. G°)-module.
But now what are the G-invariants? It is easy to see that no elements of A
as well as no polynomial differential operators can be G-invariant. Now observe
that if we let p denote the formal sum Y ° X7 and X = (Xy,...,X},...)
denote the formal infinite row matrix, then Xg, ¢ E G (i.e., g € Gy, for some k),
equals ((Xl, oo s X2)g, Xii1, - - ), and it follows p° is formally G-invariant. Set
AN =3"720; and let A\ operate on A as follows:

If fe Athen fe A, for some k€ N, and Af:= ALf.

Thus f € A is harmonic if Af =0, and H? = {f € A?| Af =0}.
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This intuitive generalization of invariants can be rigorously formalized by
defining p° as an element of the inverse (or projective) limit A, of the algebras
Ap. Then A, is an algebra over C and one can define an action of G on A..
The subalgebra J of all elements of A,, which are pointwise fixed by this action
is called the algebra of G-invariants, and p° € J. It turns out that this can be
done in a very general context.

It is also well-known that the ideal in Aj, generated by p{ is prime if k& > 2.
It will be shown that the ring of G-invariants in A, is generated by the constants
and by p°, and the ideal in A, generated by pg is prime.

Example 1.2.  This example will be studied in great detail in Subsection 4.7.,
but since we want to use it to motivate the need to introduce a topology on A
in Section 2., we shall give a brief description below.

Let Xj = (z;;) € CP* and let Aj denote the algebra of polynomial
functions in the variables z;;. Let G = GL;(C); then G}, operates on Ay, via the
co-adjoint representation. Set

0 = Tr(X}), 1 <n<k;

then the subalgebra of all G-invariants is generated by the constants and by the
algebraically independent polynomials T}, ..., TF. Let G denote the inductive
limit of the G;,’s and let A, denote the inverse limit of the A;’s. Let T™ denote
the inverse limit of 7}?; then it will be shown that {T";n € N} is an algebraically
independent set of G-invariants. However, if we let (T™;n € N) denote the
subalgebra of A, generated by the T™’s, and J denote the subalgebra of G-
invariants in A, then we can only show that (I";n € N) is dense in J under
the topology of inverse limits defined on A, . In general, we can give examples
of ideals that are not closed in A, (see Example 2.12). Thus in order to have a
notion of basis for the rings of invariants it is necessary to introduce a topology
on As.

It turns out that, in general, the topology introduced in Section 2. is the
most natural and the only nontrivial that one can define on inverse limits of
algebraic structures.

In the spirit of Hilbert’s Fourteenth Problem (see [12]) we shall also prove a
sufficient condition for our rings of G-invariants to be finitely generated (Theorem
3.6). Some of the results in this article were presented in [20], [21] and [24].

2. Inverse limits of algebraic structures as topological spaces

Let T be an infinite subset of the set of natural numbers N. Let C be a category.
Suppose for each i € T there is an object A; € C and whenever ¢ < j there is a
morphism ] : A; — A; such that

(i) wpi: A; — A; is the identity for every i € I,
(i) if i < j <k then pf = il o k.

Then the family {A;; /Lf } is called an inverse spectrum over the index set I
with connecting morphisms ! .
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Form [[,.; A; and let p; denote its projection onto A;. The subset

{a=(a)€ HAz‘ | a; = pi(a) = pl o pj(a) = 1l (a;), whenever i < j}
i€l

is called the inverse (or projective) limit of the inverse spectrum {A;; p!} and is
denoted by A (or limA;). The restriction p;|a, : A — A; is denoted by p;

and is called the i*" canonical map. The elements of A, are called threads.

In this article C can be either the category of modules, vector spaces, rings,
or algebras over a field; then clearly if A, # @ it belongs to the same category
of the A;. For example if each A; is an algebra over the field F then A, is an
algebra over F with the operations defined as follows:

For a = (a;), b= (b;) in A, and ¢ in F,

(@+0b);:=(a; +b;), (ab); :=ab;, (ca);:= ca,.

These operations are well-defined since the connecting morphisms ,uf are algebra
homomorphisms. It follows that the canonical maps are also morphisms. In general
the inverse limit A,, can be made into a topological space as follows:

Endow each A; with the discrete topology. Then the Cartesian product
[L;ci Ai has a nontrivial product topology. Since each mapping ug is clearly
continuous it follows that the projection maps p;, and hence, the canonical maps p;
are continuous. It follows from Theorem 2.3, p. 428, of [5] that the sets {u; *(U) |
all 7 € T, all subsets U of A;} form a topological basis for A,,. We have the
following refinement.

Lemma 2.1. The space A equipped with the topology defined above satisfies
the first axiom of countability with the sets {u~(a;) | all i € I} forming a countable
topological basis at each point a = (a;) of As. Moreover, u;l(aj) C oy Hay)
whenever i < 7.

Proof. Let a = (a;) € V, where V is open in A, . Then there exist an
i € T and a subset U; of A; such that a € u;'(U;) € V. This implies that
a; = pi(a) € U;, and therefore, y; '(a;) C p;'(U;) C V. Since the set {a;} is
open in A;, u; (a;) is a basic open set in A, containing a. This shows that
Ay is first countable. Now let ¢ < j and let b € p;'(a;). Then b; = p;(b) €
15(p; ' (a;)) = {a;}, or bj = a;. This implies that b; = 1) (b;) = pil(a;) = a;, and
thus b € u; '(a;). This shows that ,uj_l(aj) C o Hay). [

Remark 2.2. In this article when we refer to the topological space A,, we
mean that A, is equipped with the topology defined by the topological basis
{w; "(a;) | all i €I, and all a = (a;) € A}, unless otherwise specified.

For S any subset of A let S denote the closure of S in A, . Lemma 2.1
implies the following

Lemma 2.3. Let S C Ay. Then x € S if and only if there is a sequence {x"}
m S converging to x.
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Proof.  See [5, Theorem 6.2, p. 218]. ]

Theorem 2.4.  Let {2"} be a sequence in Ay . Then ™ — x if and only if for
every 1 € I there exists a positive integer N;, depending on i, such that x} = x;
whenever n > Nj.

Proof. By definition the sequence {x"} converges to x if: “for every neighbor-
hood U of x AN Vn > N : 2" € U”. By Lemma 2.1 it is sufficient to consider
the neighborhoods of z of the form g; !(x;), Vi € I. This means that 2" — = if
and only if

“VieldN,Vn>N,:x! =ux;". ]

Theorem 2.5. If A belongs to the category C of modules, rings, etc., then
the operations in A., are continuous.

Proof.  For example, A, is an algebra over a field and the operation is the
multiplication in A,,. Let f: Ay X Ay — A be the map defined by

fla,b) =a-b, Va,be Ay.

Since A, is first countable it follows that A, X A, is first countable. It follows
from Theorem 6.3, p. 218, of [5] that f is continuous at (a,b) if and only if
f(a™,b") — f(a,b) for each sequence (a",b") — (a,b). By Theorem 2.4

“a" — aifand only if Vi € I INVn > N/ : a;' = a;”,
“p" — b if and only if Vi € I AN V¥n > NP : b = b;".

Thus Vi € T let N; = max(N#, N?); then Vn > N; we have a? = a; and b} = b;.
This implies that

“Yiel E'NZ Vn Z Nz (CL : b)z = a; - bz = a? . b;n = (CLn . bn)i”
which implies that f(a",b") — f(a,b), or f is continuous at (a,b). [

For each ¢ € I, let S; C A; and assume that ,u{(Sj) C S; whenever i < j.
Then {S;; 1|5, } is an inverse spectrum over I. Theorem 2.8, p. 423, of [5] implies
that the inverse limit S, is homeomorphic to the subspace A, N Hieﬂ S;. In this
article we shall identify S,, with this subspace.

Theorem 2.6.  Let S be any subset of A, and let S; = p;(S), all i € 1; then
S =3S.

Proof. Let s € S; then s; = pi(s) € S;, Vi € I, and pl(s;) = pi} o pi?(s) =
pi(s) = s;. Thus ,ug(Sj) C S; and S C S,. Let us show that S, is closed in
As. Let s° € S,; then Lemma 2.3 implies that there exists a sequence {s"} in
Ss converging to s”. By Theorem 2.4 it follows that for every i € I, there exists
N; such that s = s whenever n > N;. This implies that s{ € S; for every i € I,
and hence, s° € S,,. Thus S is closed, and it follows that S C S.. Now let
5 € Sy : then by definition, for every i € I, there exists an element s* € S such
that s; = st. Now the set {s’ | i € I} is a sequence in S since I is an infinite subset
of N. For any i,j € I such that j > i; then s/ = ,ui(s;) = 1i}(s;) = s;. Tt follows
that, for every i € I, there exists N; = ¢ such that sg = s; whenever 7 > N; = 1.
Theorem 2.4 implies that s’ — s, and thus s € S. Therefore, S, C S, and hence
S =5. m



406 ToON-THAT AND TRAN

In the following theorems C is the category of (unital) rings but whenever
it is appropriate the theorems remain valid if C is either the category of modules,
vector spaces or algebras over a field IF. The proofs of Theorems 2.7 and 2.8 and
Corollary 2.9 are straightforward.

Theorem 2.7.  Let {R;; ,ug | i € I} be an inverse spectrum in the category C of
unital rings. Then R, ts a unital ring and the following hold:

(i) Iffor alli €1, S; are subrings of R; such that 1}(S;) C S; whenever j > i,
then S is a subring of Re.

(ii) If S is a subring of Ro and S; = ;(S), all i € I, then each S; is a subring
of R;. Moreover, Sy is also a subring of R such that S, = S.

Theorem 2.8.  Let {R;; 1) | i € I} be an inverse spectrum in the category C of
commutative and unital rings. Then the following hold:

(i) If for all i € T, I; are ideals of R; such that 1l(I;) C I, whenever j > i,
then I is an ideal of R .

(i) If I is an ideal of Re, if I; = pi(I), and if the canonical homomorphisms
Wi : Reo — R; are surjective, then each I; is an ideal of R;. Moreover, I
is also an ideal of R such that I, = 1.

Let R be a unital commutative ring and let S # & be any subset of R.
Let (S) denote the subring generated by S ; i.e., the smallest subring containing
S. Similarly if S # @ is a subset of R there exists a smallest ideal containing S.
This ideal is called the ideal generated by S and is denoted by (S). The set S is
then called a system of generators of this ideal. In fact an element of (S) can be
written as » ¢ .. 7;5; where 1, € R, and s; € S.

Corollary 2.9.  Let S be any non-empty subset of Ry and set (S), = pi((5)),
(9); = 1i((9)), all i € I. Then the following hold:

(i) lim (S),

(2
—

s the smallest closed subring of Ro, that contains S'.

(i) If the canonical homomorphisms p; are surjective, all i € I, then lim(S); is

the smallest closed ideal of Rs that contains S'.

A subset LL of the index set T is called cofinal in Tif Viel dlelL:i <.
Since I C N it is clear that . C I is cofinal in T if and only if L is an infinite
subset of 1.

Let {A;; uf} be an inverse spectrum in a category C and let I be cofinal
in I. Then Theorem 2.7, p. 431, of [5] implies that limA;c; is homomorphic to

limA;c,. Clearly both limits are in the category C and they are also isomorphic.

So we may without loss of generality assume that limA;c; = limA;c .



TON-THAT AND TRAN 407

Theorem 2.10.  If for every v € I, R; s an integral domain, then R s an
integral domain. If the connecting homomorphisms ; are surjective, all i € I,
then every principal ideal I in the integral domain R, is closed.

Proof. If a,b € R, are such that a-b =0 then a;-b; = (a-b); = 0 for all 7 € L.
Since each R; is an integral domain either a; = 0 or b; = 0. We may suppose
without loss of generality that a; = 0 for infinitely many indices ¢ € I. Since this
set of indices is cofinal in I, Theorem 2.7 of [5] implies that a = 0. This implies
that R, is an integral domain. Now let I be a principal ideal of the integral
domain R., and let a be a generator of I. Since each p; is surjective, Theorem
2.8(ii) implies that each I; = p;(I) is an ideal in R;. For each s; € I; there exists
an s € I such that p;(s) = s;. Since [ is a principal ideal there exists r € R,
such that s = ra. This implies that s; = r;a;, and thus each I; is a principal ideal
in R; with a; as a generator. Let b € I ; then b; € I;, all ¢ € I. Therefore, for
each 7 € I there exists r; € R; such that b; = r;a;. We have, for all j > 1,

ria; = by = il (by) = pl (rja;) = i (r;)pel(ay), or (2.1)
ria; = il (r;)a;.

If I = {0} then obviously I is closed in R. If I # {0} then we may assume
without loss of generality that a; # 0 for sufficiently large 7. For such an 7, Eq.
(2.1) implies that 1} (r;) = r; since I; is an integral domain. Set r = (r;); then
since pl(rj) = r; whenever j > i it follows that r € Ry, and b = ra € I. Thus
I =1, and I is closed. [ ]

Theorem 2.11.  For each i € I let I; be an ideal of R; such that ,LL'Z(I]') C I
whenever 7 > 1. If I, are prime for infinitely many i € I then I is a prime ideal

of Reo -

Proof.  Since the set L of indices | € I for which [, are prime is infinite
liml,c; = limlc, as remarked above. Thus we may assume without loss of

generality that [; are prime for all ¢ € I. Suppose a,b € R, such that ab € I.
Then by definition a;b; = (ab); € I;, Vi € 1. Since each I; is prime either a; € I;
or b; € I;. Suppose that there are infinitely many j € I such that a; € I;. Then
for each i € T there exists j > 4 such that a; € I;. Since y!(I;) C I; it follows
that a; = ul(a;) € I;. Since i is arbitrary it follows that a = (a;) € I. If there
is only a finite number of j € I such that a; € I; there must be infinitely many
j € I such that b; € J;, and the same argument as above shows that b € /.
Thus, ab € I, implies either a € I, or b € I, and therefore I, is prime. |

Example 2.12. We are giving below a class of examples which is typical of the
category of objects that we will study in the remainder of this article.

Let R denote a commutative unital ring. Let k be a positive integer and
let Ay denote the free commutative algebra R[Xj;] = R[(X;;)] of polynomials
with respect to the indeterminates Xj;;, where i is any integer > 1 and 1 <
j < k (see [3], Chapter 4, for polynomial algebras in general). Let (a); =
(o1, .+, Q1p, 21, . .., Qo ... ) be a multi-index of integers > 0 such that all but
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a finite number of the «;; are nonzero. Set X,ga)k = X' ... X7 ... Then the set

{X ,ga)k} is a basis for the R-module Ay when (a); ranges over all multi-indices
defined above. Set |(a)g| = >_;;ai;. Then every polynomial py € A can be
written in exactly one way in the form

Pk = Z C(Oé)k)((a)’C (2.2)
|(@)x[20

where c,), € R and the c(,), are zero except for a finite number; the ¢, are
called the coefficients of ps; the c(a)kX(a)k are called the terms of py. For | > k
every polynomial p; = > ¢a), X (@i of A; can be written uniquely in the form

Z Cla'), + Z C a//)lX o (23)

a/)l Ol”

where in each (o), all the mtegers a;; are zero whenever j > k, and in each (o),
there must be an integer o;; > 0 Whenever k < j <l. Identity each (), with an
element (a); and define the map pf 1 A — A by

Pr = ,U/L(pl) = Z C(oa’)lX(a/)l — Z C(a)kX(a)k- (24)
(@) (@)

Using Egs. (2.3) and (2.4) we can easily deduce that ul is an algebra homo-
morphism and we have u* = pl o u™ whenever k < [ < m. In fact A; can
be considered as a subalgebra of A; whenever k < [. Thus all the connecting
homomorphisms 4} are surjective. These connecting homomorphisms are called
truncation homomorphisms.

Let A, denote the inverse limit of the inverse spectrum {Ay;ut}. Then
since every element p € Aj can be considered as an element of A; for [ > k we
can identify p with a thread (p) in A, by defining p; = p whenever [ > k. Since
the set of all integers | > k is cofinal in I = N the thread (p) is well-defined. It
follows from Theorem 2.7 that A, is nonempty and each A is a subalgebra of
As. If R is an integral domain then Théoreme 1, p. 10, of [3] implies that each
Ag is an integral domain, and hence by Theorem 2.10, A, is an integral domain
and every principal ideal I in A, is closed.

For a fixed integer n > 1 let A, ; denote the algebra R[(X;;)] for 1 <i<n
and 1 < j < k; then obviously A, is a subalgebra of Ay such that pl(A,;) = Anx
whenever [ > k: Set A0 = hmkAn k; then Theorem 2.7 implies that Anoo is a
subalgebra of A

For each i 2 1 define pi, € Ay by pl = 25:1 X7. Consider the thread
fP= (p}) in Ay. As remarked above for each k, pi can be considered as an
element of A, so that if we set f** = pi then the set {f** | k € N} is a sequence
in A.. This sequence has a particular property in that its & term f** is a
stationary thread at k. We claim that hm f”C ft. Indeed, for every k there

exists Ny = k such that f' = pk(p}) = pi = fi whenever [ > k. Theorem 2.4
implies that klim fik = i In general, if S*¥ = Zlegi, k € N, is a convergent
—0Q

sequence in Au, then we write its limit as .°°, ¢*. Similarly, if P* =[], ¢' is
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a convergent sequence in A, then we write its limit as [[°, ¢*. Thus with this
convention we have f* =37, X2 all i € N.

We claim that the ideal I generated by the set {f* | i € N} is not closed in
As. Indeed, let S™ =>"" | X, f%; then {S™ | n € N} is a sequence in I such that

Z?zl Xzzflia k > n,
Zle me]f;u k S n.

Set S = > 0 Xiif" and let us show that S € A, and lim S™ = S. First

consider {(XF , X;ifi)r | k € N}. Then pk(3\_, Xiifi) = S2F | Xiifi whenever
I > k. Thus (X5, Xufi)s) is a thread in Ay, and S = (X, Xiifi)i). Now
we have from Eq. (2.5) “Vk €N IN, =k Vn>k: S =S, which means that
limS*=Sel.

n—oo

Sy = uk(S") = ZMk(Xn)Mk(fi) = { (2.5)

Now let us show that S ¢ I. A general element in [ is of the form g =
> iy W f* where B € Ao, 1 < i <m. Then g, = pui(g) = 2270, p(P')(f*) =
Yoy hi fi where the hj, belong to Ay, 1 <i < m. Thus each hj is a polynomial
in the indeterminates X,s, 1 <r <n;, 1 <s<k. Let n =max{n; | 1 <i<m};
then clearly n is independent of k. Now choose k > n; then S, = Zle Xiifh,
and S cannot be an element ¢ in [ since the term Xy f,f; of S}, does not occur

in gk -

3. Invariant theory of inductive limits of groups acting on inverse
limits of rings

Let I be an infinite subset of the set of natural numbers N. Let C be a category.
Let {Y; | ¢« € I} be a family of objects in the category C. Suppose for each pair of
indices i, j satisfying ¢ < j there is a morphism \;; : ¥; — Y} such that

(i) Ay :Y; — Y, is the identity for every i € I,
j j

Then the family {Y;; \;;} is called a direct (or inductive) system with index
set I and connecting morphisms \;;.

The image of y; € Y; under any connecting morphism is called a successor
of y;. Let Y = UieHY,- and call two elements y; € Y; and y; € ¥; in Y
equivalent whenever they have a common successor in the spectrum. This relation,
R, is obviously an equivalence relation in Y. The quotient Y/R is called the
inductive (or direct) limit of the spectrum, and is denoted by Y (or li_r)nYi). Let
P U Yo — Y™ be the projection; its restriction p|Y; is denoted by A; and is
called the canonical morphism of Y; into Y*°. In general, Y*° may not have the
same algebraic structure as the Y;, but in many instances it does. For example, if
{G;; \ij} 1s an inductive system of groups, the inductive limit of the operations on
(&; defines on liinGi a group structure. Similar results hold for inductive limits of

rings, modules, algebras, or Hilbert spaces; for details see [4, p. 139].

Now assume that for each k € I we have a linear subgroup Gy of GL;(C)
such that Gy, is naturally embedded (as a subgroup) in G, k < [; then we can
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define the inductive limit G*° = Uke]1 G, and the connecting morphisms A are
just the embedding isomorphisms of G}, into Gj.

Let A, be the inverse limit of an inverse spectrum {A;; ,uf } of a category
of objects considered in Section 2.. Suppose that each Ay is acted on by the group
G-

Lemma 3.1.  Assume that the homomorphisms M? and \ji satisfy the following
condition

g+ (5 (ar)) = 15 (Nje(9) - ax), (3.1)
forall g € G, ar € Ay and k> j. Then there is a well-defined action of G on
A given by

(9-a)p =g ar,
(g-a)y = Nen(9) - an, if n >k, (32)
(9-a); = 5(g-ar), if j <k, '

Vg € Gk, Va= (ak) € A.

Proof.  First, let us prove that ¢-a € A, whenever g € Gy and a € A,,. For
this we need to show that (g-a); = ul((g-a);) whenever [ > i.
If [ >4 >k then by Eq. (3.1) we have
(

(g - a)) = pw(Malg) - ar) = pi(xa(Mig)) - ar)
= Mi(9) - #ﬁ(al)) = Mi(9) @i = (g - a)i.
If [ > k > i then by definition we have
15 ((g - a)) = p(Mwalg) - ar) = pf (g (Aa(g) - ar))
= 1 (g - pilar)) = pi(g - ax) = (g- a)s.
If £ > 1 > then by definition we have
pi((g - a)) = pi(pi (g - ar)) = pi(g - ar) = (g - a)i.
Now let us show that Eq. (3.2) defines an action of G* on A,,. Let g; € G;
and gy € Gy. If i < k we may identify g; with A\i(g1), if £ <@ we may identify

g2 with Ag;(g2). So we may assume without loss of generality that ¢i,ge € G.
We must show that

(9192) -a= g1 (g2 - a), for all a = (ax) € Aw.
For n > k we have
((9192) - @)n = Men(9192) - an = (Mkn(91) Akn(92)) - an
= Men(91) * (Mkn(92) - an) = Men(91) - (92 @) = (91 - (92 @))n-
For j < k we have
((g192) - a); = 15 ((9192) - ax) = 1 (g1 - (g2 - ar))
= M?(Ql (g2 a)r) = (g1 (92 a));.
Let e; denote the identity element of G; for all ¢ € 1. Then the unique

element e € G such that e = \;(e;) for all ¢ € I is obviously the identity of G*,
and we can easily verify that e-a =a, Va € A. [ |
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Definition.  An element a, € A; is said to be Gy -invariant if gy - a;, = a;, for
all gr € Gi. An element a = (a;) € A is said to be G -invariant if g-a = a
for all g € G*.

The proofs of Lemmas 3.2 and 3.3 are straightforward.

Lemma 3.2.  An element a = (a;) € Ax is G -invariant if and only if each
ar 18 Gy -tnvariant.

Lemma 3.3. If © € Ay is Gy-invariant then /Lé“(:c) is Gj-invariant for all
Jj<k.

Now let F = R or C and consider the free commutative algebra F[X}] =
F[(X;;)], i > 1,1 < j <k, of polynomials as described in Example 2.12. For every
p € F[(X;;)] let p denote the polynomial function obtained by substituting X;;
by z;; € F. Since I is an infinite field the mapping p — p of F[Xj] onto F[xzy]
is an algebra isomorphism (cf. [3, Proposition 9, p. 27]). Thus we can identify
F[Xk] with Flzx] = Ai and continue to call elements of Ay polynomials for the
sake of brevity. Let ul be the truncation homomorphisms described in Example
2.12. Let A, denote the inverse limit of the inverse spectrum {Ag;ul}. Let
{Gr; Ay} be an inductive system of groups such that each G}, acts on A;. Then
it can be easily verified that condition (3.1) is satisfied, and thus the action of
G* on A, given in Lemma 3.1 is well-defined. We have now the Fundamental
Theorem of the Invariant Theory of inductive limits of groups acting on inverse
limits of polynomial algebras. Since the action of each Gy on Ay is such that
g-(p+a) =9gp+9-q, g-(cp) =clg-p), and g- (pg) = (9-p)(g-q) for all
g € G, p,q € A, and c € F, it follows that the action of G* on A, has the
same algebraic structure (see [4, Section 6, p. 140]). This implies immediately that
the subset of all G*-invariants in A, is a subalgebra of A .

Theorem 3.4.  For each k €1 let J;, denote the subalgebra of Gy -invariants in
Ayg. Let J denote the subalgebra of G* -invariants in Ay . Then Jo, =limJ, = J,

and hence, J is closed in Ay .

Proof.  For each k € I, Theorem 2.7(ii) implies that p(.J) is a subalgebra of
Aj. Lemma 3.2 implies that ug(J) C Ji for all £ € [. Lemma 3.3 implies that
pt (J;) C Ji, whenever | > k. Now Theorem 2.7(i) implies that J,, is a subalgebra
of Ay, and Theorem 2.7(ii) implies that liinuk(J) is also a subalgebra of A .

Obviously we have limuy(J) C Jo. Lemma 3.2 implies that Jo, C J. Theorem
2.7(ii) implies that lim(J) = J. Thus, finally we have the chain of inclusions.

JCJ=limu(J) C Jy C J. (3.3)

Then the Theorem now follows immediately from Eq. (3.3). u

In the Invariant Theory of the Classical Groups the subalgebra of invariants
is generated by an algebraically independent set of polynomials. We shall gener-
alize this result by introducing a notion of algebraic basis for an inverse limit of
polynomial algebras.
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Definition. 1. A family {f*}.ea of elements in A, is said to be alge-
braically independent if the relation p({f*}) = 0, where p is a polynomial
in F{X“}|aear where X* is an indeterminate, implies p = 0. The family is
said to be algebraically dependent if it is not algebraically independent.

It is clear from the definition of a polynomial that a family is algebraically
independent if and only if every finite subfamily of this family is algebraically
independent.

2. A family {f®},en of elements in A, is said to generate Ay if ({f*}acn) =
A, where ({f*}aea) denotes the subalgebra generated by the f*, and the
bar denotes the closure in the topology of inverse limits defined in Section 2.

3. An algebraically independent family of elements in A,, that generates A,
is called an inverse limit basis of A .

4. For the standard definition of an algebraically independent family of poly-
nomials see [3, p. 95].

Theorem 3.5.  Let {f*}aca be a family of elements in A . If for every
finite subset of indices {c,... ,an} C A there exists an integer k € 1, possibly
depending on n, such that the subset of polynomials {fi*,... , fi™} is algebraically
independent in Ay, then {f*}aen is algebraically independent in A .

Proof.  Suppose p({f*}) = 0, p € F{X*}aen; then p(f,... f*) =0
for some finite subset of indices {ay,...,a,}. By hypothesis there exists an
integer k such that {f;',..., fi"} is algebraically independent in Ay. Since
the canonical map pp : As — Ay is an algebra homomorphism it follows that

ay Qan,

p(fet, ..., fim) =0. Hence p = 0 and the theorem is proved. [

Theorem 3.6.  Let {f*}aen be a family of elements in Ay . If there exists
ko € T such that the family of polynomials {f }aen is algebraically independent
in Ay, then {f“}aen is also algebraically independent in As and ({f*}aen) is
closed in A .

Proof.  The fact that {f®},eca is algebraically independent follows immediately
from Theorem 3.5. By Lemma 2.3 to prove that ({f®}.ca) is closed we suppose
that ¢ is the limit of a sequence {¢"} in ({f*}aen) and verify that € ({f*}aen)-

By Theorem 2.4, ¢ — ¢ if and only if for every @ € I there exists a positive
integer NN;, depending on ¢, such that ¢! = ¢, whenever n > N;. In particular,
for i = k¢ there exists N, such that Y, = Pk, Whenever n > Ny, . Thus for
© > ko we can choose N; > Ny, . Therefore for n > N; we have

i = =pa({fi'}) = 0 ({f* )i,

where p, is a polynomial depending on n. Since ,u}%o is an algebraic homomor-
phism, r, = o, = wi, (©F) = po({f})- The fact that {fZ }aea is algebraically
independent implies that all the polynomials p,, are the same for sufficiently large
n. Let p denote such a polynomial. Then we have ¢; = (p({f*})); for all i € L.
This means that ¢ € ({f*}aca), and this achieves the proof of the theorem. =
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Remark 3.7.  Suppose {f*}aen is a family of elements in A, such that
{ff}aen is an algebraic basis for the polynomial algebra A; for all i > ky for
some ko € I, i.e., the family {f?}.en is algebraically independent in A; and
({f?}aer) = A;. Then Theorem 3.6 implies that {f*}.ea is also an algebraic ba-
sis for A . Thus in this case the notion of algebraic basis and inverse limit basis
for A coincide, and the notion of (inverse limit) basis does indeed generalize the
notion of algebraic basis.

Corollary 3.8. We preserve the notations of Theorem 3.4. Suppose {j*}aea
is a family of elements in J such that {j}aea is an algebraic basis for Jy for all
k> ko. Then {j*}aca is an algebraic basis for J.

Proof. By Theorem 3.4, J = J,, and Theorem 3.6 implies that {j*},ca is an
algebraic basis for J,. Thus the corollary is proved. ]

Example 3.9. Let A be the algebra of polynomials in k£ variables z, ..., xg
in F. Let {A;pt} denote the inverse spectrum with connecting homomorphisms
o Ay — A, 1>k, I,k € N. The g are truncation homomorphisms, which
in this case can be defined simply by setting ul(z;) = z; for 1 < j < k and
ph(x;) = 0 for k < j <, and by extending algebraically to all polynomials in
A;. Let A, denote the inverse limit of the inverse spectrum {Ay;ut}. Then the
set {2} e, where (@) =z ... 2% and (a) = (aq,... ,qp) is a multi-index,
forms an inverse limit basis for A,, when («) ranges over all multi-indices, and
k=1,2,..., etc.

Now let Gy C GLg(C) be a reductive algebraic group, let Vj be a complex
vector space of dimension k on which Gy acts linearly. Let C[Vj] denote the
ring of all polynomial functions on Vj,. Let C[V;]%* denote the subring of all G-
invariant polynomial functions. Then we have the following Hilbert’s Finiteness
Theorem: There exist s algebraically independent G -invariants pi,...,ps such
that C[Vi]* = C[py, ... ,ps]. (See [7] and [16]). Set Aj, = C[V4] and J, = C[V;]%*.
We preserve the notation of Theorem 3.4 and assume in addition that each Gy, k €
I, is a reductive linear algebraic group. Then by Hilbert’s Finiteness Theorem there
exists a set of algebraically independent polynomials {f2}aeca, that generates Jj,
where the index set Ay is a finite subset of N. It follows that, for all pairs (I, k)
such that [ > k, we may assume that Ay C A;. Set A = [J,;Ax. In general if
the Vi are infinite-dimensional then the J; may not be finitely generated but we
still have A, C A; for [ > k.

Theorem 3.10.  For each k € 1 let {f{}aen, be a set of generators for Ji. If
f* = limfQ then the family {f*}aca generates J. In particular, if {f{}aca, 1S

an algebraic basis for Jy then {f*}aen is an inverse limit basis for J.

Proof.  Let J' = ({f*};a € A); then by assumption ug(J') = Ji, for all k£ € L.
By Theorem 2.6, J' = J.,. By Theorem 3.4, J, = J. Therefore J' = J. Now if
in addition the sets {f}aca, are algebraically independent, then by assumption
every finite subset of indices {ai,...,a,} of A is contained in Aj for some
k € I; therefore, the set {f,",..., fi™} is algebraically independent. Theorem 3.5
implies that the set {f% « € A} is algebraically independent. Thus by definition
{f% a € A} is an inverse limit basis for J. ]
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Remark 3.11. In some examples in Section 4., for each k£ € I the set of
generators {f{}aea, are not algebraically independent yet the set {f*}aea can
be shown to be algebraically independent.

We conclude this section by generalizing to the case of inverse limits of poly-
nomial algebras one of the most fundamental theorems in the theory of polynomial
algebras, namely, Hilbert’s Nullstellensatz. This theorem plays an important role
in the theory of algebraic invariants.

Let I be a proper ideal in the polynomial ring in k£ complex variables
C[Z] = Clz1, ..., zk]. Then the algebraic variety of I is defined as the set

V) ={ZeC"|pZ)=0,VpecI}.
If V is a subset of C* then the ideal of V is the ideal in C[Z] defined by
IV)={peClZ]|p(Z)=0,VZ €V}
The nilradical of I is defined as the set
VI ={peC[Z]|p" €I for some integer n > 1}.

Then it can be easily shown that /I is the intersection of all prime ideals in
C[Z] which contain I. Then Hilbert’s Nullstellensatz can be simply stated as
Z(V(I)) = VT (See [7, p. 142]).

For each k € N let Ay = C[Z]p. For | > k let pt : A, — A; denote
the truncation homomorphism. Let Ay = liinAk. Let iy : C* — C! denote the
embedding defined by ix(2) = in(21,... ,26) = (\zl,... 26,0, ,Q), VZ e CF.

-

l
Let C* = [,y C* denote the inductive limit of the spectrum {C*;4y}. Then it

is easy to show that
p(in(2)) = [ P)(2), Vp € A, VZ €C* VEIEN, 12k (34)

Then for every f = (fx) € Aw and every Z € C®, i.e., Z € C* for some k € N,
we define

f(2) = fi(Z). (3.5)
Eq. (3.4) implies that Eq. (3.5) is well-defined, i.e., the complex number f(Z) is
independent of k. This allows us to define the following concept: For any subset
Vof C®let Z(V)={f €A | f(Z)=0,VZ € V}.

Lemma 3.12.  For any V C C* the set Z(V') is an ideal in As,. Moreover
Z(V) is closed.

Proof. If f,f' € Z(V), h € Ay and ¢ € C, then (f 4+ ¢f')(Z) = f(Z) +
cf'(Z2) =0,VZ € C®,and (hf)(Z) = h(Z)f(Z) =0. Thus Z(V) is an ideal in
Ay

Suppose a sequence {f"} C Z(V) converges for f € A,,. Then by Theorem
2.4 we have

“YkeN, AN, Vn> Ny: £ = fi.

This implies that for every k, fi(Z) = f(Z) = 0 for all Z € V* where
Vk = V' nCk. This means that f(Z) = 0, VZ € V, and thus f € Z(V).
]
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Now let I be an ideal in A, and set V(I) = {Z € C> | f(Z) = 0,
Vfel}t. It f=1(fi)) €l then Z e V() if Z e C* for some k € N, and
f(Z) = fe(Z) = 0. Choose k to be the smallest integer such that Z € C*\CF!
and define V¥(I) = {Z € C¥ | fi(Z) =0, ¥V f € I}. Then V*(I) may be empty
but we always have V*(I) C V{(I), VI > k, and V(I) = [,y V*(I). Indeed,
Z € V(I) if and only Z € V*(I) for some k € N. And if [ > k then Eq. (3.3)
implies that Z € V!(I). Thus if V(I) is not empty then there exists a smallest
integer ko such that V*(I) = @ for k < kg and V*(I) D Vko(I) # @ for k > k.
Thus in any case we can write V(1) = U,y V().

Theorem 3.13. (The Nullstellensatz for inverse limits of polynomial rings)
Let I be an ideal in As and let I, = pg(I), Vk € N. Then Z(V(I)) = lim(\/Tj).

Proof.  The proof of the theorem consists of the following logically equivalent
statements: Let f = (fz); then

“FeZ(VI)) < “f(Z)=0, VYZeV(I)
— “f(Z)=0, VZecV¥I), VkeN
— “fi(Z)=0, VYZecVHI), Vke N

— “fr e VI, VEk €N’ (by the classical form
of the Nullstellensatz)

= f € lim(VT). n

Corollary 3.14.  In Theorem 3.13 suppose in addition that I s closed and that
each I is radical. Then Z(V(I)) = 1.

Proof. We have Z(V (1)) = lim(\/I;,) = lim([}) = [, =1 = 1. n

—

4. Invariant theory of the infinite-dimensional classical groups

In this section we apply the results of Sections 2. and 3. to the invariant theory
of inductive limits of the classical groups and the symmetric groups as they act
on inverse limits of polynomials in many variables. Our basic reference is [26].
As remarked by H. Weyl, the results are valid in any field of characteristic zero,
but since in all our examples the underlying field is C, we shall restrict ourselves
to this case. Also, as noted by H. Weyl, “nothing of algebraic import is lost by
unitary restriction” (for Weyl’s “unitarian trick” see [25, Lemma 4.11.13, p. 349)]),
and by the principle of permanence of the identities we shall consider only the case
of the complex classical groups acting on polynomial algebras over C. Also, all
theorems in this section are consequences of results in previous sections, especially
of Corollary 3.8 and Theorem 3.10. Thus we shall only give a detailed proof for
the case O (C).
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4.1. Invariant theory of the orthogonal group O (C).
For k € N let O (C) = {g € GL; (C) | g7! = ¢'} and set G}, = O (C).
For k <[ define the connecting isomorphism Ay of G} into G; by

k -k
Akt (g) = k{ ( g 0 ) , for all g € Gj. (41)
1—k{ 0 1

Let O* (C) = G* = U,y Gr denote the inductive limit of the inductive system
{Gk ; Mu}. Let X denote the matrix of indeterminates X;;, i > 1, 1 < j < k.
Let X }g denote the ™ row of X;. We shall consider both cases when 1 < i < n
and when the index set {i} is unbounded. As in Example 2.12 we let Ay = C[X}]
and ul: Ay — Ay, k,1 € N, | > k, denote the truncation homomorphisms. Let
Ao denote the inverse limit of the inverse spectrum {Ak : ,ufk}

For a fixed k, G} acts on Ay by right translation, i.e.,

(9,p) — g-p,  where (g-p)(Xy):=p(Xeg), g € Gy, p € Ay. (4.2)

Then according to [26, Theorem (2.9A), p. 53], the subalgebra J) of G-invariants
in Ay is generated by 1 and the homogeneous quadratic polynomials

k
liliQ = (XlilaXl?) = ZthXizja VilviQ > 1. (43)

J=1

If 1 <iy,ip <n <k, then the f,im are algebraically independent. Otherwise,
all relations between them are algebraic consequences of relations of the following
type (see [26, Theorem (2.17.A), p. 75]):

(X)X )
: : = 0. (4.4)
(X)X
X
Example 4.1.  Suppose that 1 < ¢ < 3, £k = 2, and X3 = | Y |, where
Z

X,Y, Z are two-dimensional row vectors. Then J; is generated by 1 and
(X, X), (X)), (X,2), (V\Y), (Y,2), (£, 2)

and the relations between these generators are algebraic consequences of the rela-
tion
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Let us verify that there is a well-defined action of G* on A, given by Eq. (3.2)
of Lemma 3.1; i.e., we must verify Eq. (3.1) for g € G, p € A, and | > k. We
have

9+ (1, (0)] (X&) = [k (0)] (Xig).

Since p € A;, p is a polynomial in the indeterminates Xj;, for 1 < i < m and
1 < j <. By identifying the indeterminates X;; with the variables X;; € C we
can write

p(X1) =p(XiiXiy),

where X is an m x [ matrix, X is an m X k matrix, and X; ; is an m x (I — k)
matrix. And gt (p) (Xz) is just p (X :0). Therefore,

1 (p) (Xig) = p(Xig 10).
On the other hand,

1, (Aet (9) - ) (Xe) = [ (9) - ] (X5 1 0)
—p([ino] (g (1) )> =p(Xrgi0).

Since these relations hold for all X; € C™**¥ and g € G}, we have

w (N (9) ) =g (uh(®), VYgeGr pe A, 1>k,

which is exactly the relation (3.1).
Let

fi1i2 - ZXHJX@QW V’il,iz Z 1 (45)
7=1

Then we have the following Fundamental Theorem of Invariants for O (C) acting
on A.

Theorem 4.2. (i) The set {1, fi%2 | iy, iy > 1} forms an inverse limit basis
for the subalgebra J of all O (C)-invariants in A .

(i) If 1 < d1,ie < n, then 1 and the sn(n+1) formal sums " form an
algebraic basis for the subalgebra J of all O™ -invariants in A .

Proof.  Part (i) follows from Theorem 3.10. Part (ii) follows from Corollary
3.8. n

4.2. Invariant theory of the special orthogonal group SO (C).

For k € N let G, = SO,(C) = {g € Ox(C) | det(g) = 1}. Then in general
the subalgebra .J, of GGi-invariants is generated by 1, the homogeneous quadratic
polynomials fi’j i, as defined by Eq. 4.3, and the determinants

X
(X, ..., X[5)] = det e (4.6)
Xk
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where we again identify the indeterminate X;; with the variable X;; € C (see
26, pp. 41-53]). But since for I > k, pb([(X]*,...,X;")]) = 0, it follows from
Theorem 3.10 and Corollary 3.8 that the Fundamental Theorem of Invariants for
SO>(C) acting on A, has exactly the same form as Theorem 4.2.

Theorem 4.3. ( The Nullstellensatz for the homogeneous ideal of invariants of
O>=(C) and SO*®(C)). In Theorem 4.2(ii) let I = (f"®?) denote the homogeneous
ideal in A generated by the %n(n + 1) elements f1%2, 1 < iy, is < n. If I}
denotes the ideal in Ay generated by the polynomials f,im, 1 <y, 19 <n, and
I =limly then we have Z(V(I)) = I .

Proof. Since obviously the canonical homomorphisms pu; : A, — Aj are
surjective Theorem 2.8(ii) implies that ug([) is anideal in Ag. Clearly, pux(I) C I,
and since ju,(f1%2) = f** it follows that p(I) = Ix. By [17, Theorem 2.5, p. 11]
the ideals I} are prime for k > 2n. Hence by Theorem 2.11, I, is a prime ideal
of Aw, and /I, = I. Therefore, by Theorem 3.13, Z(V(I)) = I,. [

4.3. Invariant theory of the symplectic group Sp~(C).

The symplectic group Gy = Sp,.(C) is defined as the group of all linear
transformations which leave a skew-symmetric bilinear form invariant. For our
purpose we choose the skew-symmetric bilinear form

[z, y] = (x1y2 — Tav1) + (T3ys — Tays) + -+ - + (Tok—1Y2k — TokYor—1) (4.7)

for all x,y € C'*2k,

If we let Sy denote the k x k block diagonal matrix

(1)
(11
(20)

then Eq. (4.7) can be written as [x,y] = xSky". Then Gy can be defined as

Gk = {g € C%X% | gSkgt = Sk} (49)

It can be easily verified that if g € Gj then automatically det(g) = 1.
For k < define the connecting isomorphism A of Gy into G; by

2%  2(1—k)
A (g) = 2k 9 0 , for all g € G. (4.10)
2(1-k){ 0 1

Let Sp™(C) = G* = [U,en G denote the inductive limit of the inductive system
{Gi; A} Let X, denote the matrix of indeterminates X;;, ¢ > 1, 1 < j < 2k.
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Let X! denote the it row of Xi. Let Y, denote the matrix of indeterminates
Yij,i>1,1<j<2k. Let ¥j denote the i row of Y;. Let A, = C[X},Y}] and
ph o Ay — Ay, 1 >k, denote the truncation homomorphisms. Let A, denote the
inverse limit of the inverse spectrum {Ag; ut}. For a fixed k, G, acts on Aj, via

(9,p) — g - p, where
(9 - p)(Xk, Vi) := p(Xrg, Yag”), (4.11)
g € Gka pE Ak7 g‘/ = (gil)t-

Then according to [26, Theorem (6.1.A), p. 167] the subalgebra Jj of G-invariants
in Ay is generated by 1 and by the homogeneous quadratic polynomials

2 — (X7 X2 = XS (X2, ip > i1 > 1,
= YY) = SR, ja> 521, (4.12)
B = (XY = XY i, > 1

These generators are not algebraically independent. All relations between them
are algebraic consequences of relations of the type (4.4) for the h;‘cj s and of the
types J1 = 0,...,J = 0 for the f,’fjs 's and gpfjjs ’s (see [26, Theorem (6.1.B),
p. 168] for the definition of J; =0,... ,Jx =0).

Similarly to the case G* = O%(C) we can easily verify that there is a
well-defined action of G* = Sp*™(C) on A.

Let X =1lmX,, Y = kh_)r{)lon, and S = I}LI&S;C Set

k—o0

fi = X §(Xi)t g >11 > 1,
iz = Y §(y i), Go > g1 > 1, (4.13)
hiit = X (Yt i, 1 > 1.

Then we have the following Fundamental Theorem of Invariants of Sp*™(C) acting
on A.

Theorem 4.4. (i) The set {1, fr2 72 Bt} forms an inverse limit basis
for the subalgebra J of all Sp*(C)-invariants in A .

(ii) If both X and Y have only a finite number of rows then the set
{1, faiz iz Rt} forms an algebraic basis for the subalgebra J of all
Sp>(C) -invariants in As .

Proof. Part (i) follows from Theorems 3.5 and 3.10. Part (ii) follows from
Corollary 3.8. [ |

If Xj is an n x 2k matrix for all £ € N, and Ay = C[Xy], then the
subalgebra Jj of Gj-invariant polynomials is generated by the set {1, f;*** | 1 <
i1 < iy <n}. Let I, = (f;*") denote the homogeneous ideal in Ay generated by
the sn(n — 1) homogeneous quadratic polynomials f;'"?, 1 < 4y < iy < n. For
k > n, the ideals I are shown to be prime in [18, Theorem 1.5, p. 269]. Hence by

Theorem 2.11, I, = lim/}, is a prime ideal in A, and we have
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Theorem 4.5. ( The Nullstellensatz for the homogeneous ideal of invariants of
Sp™(C)). Let Xy denote an n x 2k matriz of indeterminates, let Ay = C[Xj],
and Ao = limAy. Let I, = (f;*"?), and I = limI;. Let I denote the ideal in

Ao, generated by the %n(n — 1) dnvariants f1%2, 1 <i; < iy < n. Then we have

ZV()) =Iws.

4.4. Invariant theory of the general linear group GL>(C).

Let X (resp. Yj) denote the matrix of indeterminates X;; (resp. Yi),
1<i,1<j<k. Let X (resp. V) denote the i row of X} (resp. Y;). Let
Ay = C[ Xy, Yi]. Set Gy = GLi(C); then the action of Gj on Ay is also given by
Eq. (4.11). Then according to [26, Theorem (2.6.A), p. 45] the subalgebra of Gy-
invariants in Ay is generated by 1 and by the homogeneous quadratic polynomials

piviz  — (Xil,Yi2) — Xh(yh)t,

k ..
= Zj:l XileZij 11,12 Z 1.

If 1 < 141,19 < n < k then they are algebraically independent. Otherwise, all
relations between them are algebraic consequences of relations of the following

type:

SINTONNNNCERTES
GO (Y

As in the case of Sp™(C), we let GL*(C) = G*° = |J,cy G denote the inductive
limit of the inductive system {Gj; A\g;}. Then there is a well-defined action of G*
on A . Set

hi1i2 — (thyiz) — X“(Y”)t, Z'17Z'2 > 1. (4.16)

Then we have the Fundamental Theorem of Invariants of GL*(C) acting on A.

Theorem 4.6. (i) The set {1,h""2} forms an inverse limit basis for the
subalgebra J of all GL*(C)-invariants in A .

(ii) If both X and Y have only a finite number of rows then the set {1,h"2}
forms an algebraic basis for J.

Proof. Same as in Theorem 4.4. ]

If X; is a p x k matrix and Y) is a ¢ x k matrix for all £ € N, let
I, = (h}*) (vesp. I = (h"%)) denote the ideal in A, (resp. A ) generated by
the pq invariants hi! (vesp. h12), 1 <i; < p, 1 < iy < q. For k > max(p, q)
the ideals I are shown to be prime in [19, Theorem 5.1, p. 213]. Hence by
Theorem 2.11, I, = lim/, is prime and we have the Nullstellensatz for GL>(C),

V() =Iv.
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4.5. Invariant theory of the special linear group SL*(C).

The setup is exactly the same as the general linear group GL*(C) except
that, in addition to the h}'*?’s in Eq. (4.14), the generators of the Gj-invariants
are

X v
(X, .. X)) =det | : |, and [(V/,...,Y)]=det| : |. (417
Xy Yk
However, the images of the determinants under the truncation homomorphisms g,
[ > k, are all zero. The Fundamental Theorem of Invariants and the Nullstellensatz
of SL>(C) acting on A, are exactly the same as those of GL*(C).
Before studying the co-adjoint action of GL*(C) we shall discuss the in-
variant theory of the infinite symmetric group since there is an intimate relation

between the invariant theory of Sy and that of the co-adjoint action of GL(C)
(see, e.g., [16, Theorem 1.5.7, p. 10]).

4.6. Invariant theory of the infinite symmetric group 5.

Let R be any commutative ring with unit. Let Ay = R[X}] denote the
polynomial ring in k variables (xy,...,z;) = Xj. Let S denote the symmetric
group of all permutations of the set {1,... ,k}. Then Sy acts on A via

{ (o,p) — 0 -p, 0 € Sk, p € Ay, where (4.18)

(0-p)(@1,...  7k) = P(To-1(1)s -+ > To1(k))-
Then the subring J; of Sp-invariant polynomials has an algebraic basis of the form

S0 =1,

1 )
Sk —Z1§i§kxw

2 _
Sk = Zl§i<j§k LiLj, (4.19)
SI% = Zl§i1<ig<i3§k Liy LigLiz,
S¥ = x0Ty

The polynomials S}, ..., SF are called the elementary symmetric functions (see

[26, p. 37] or [1, Theorem 3.4, p. 548]). Set

Tr= > af, 1<n<k (4.20)

then it can be shown [26, pp. 38-39] that the set {1}*;0 < n < k} also forms
an algebraic basis of Ji. In fact, there is a recursive formula expressing {7}'} in
terms of {S}}, and vice versa [26, p. 39).

We can embed Sy into S§; for k < [ by defining A\, : S, — S; as follows:

{U(i), 1<i<k,

GIOER S VoS, (4.21)
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Let S = U, Sk be the inductive limit of the inductive system {Sg; Ag}-

Let A, denote the inverse limit of the inverse spectrum {Ay; pt}, where
the connecting homomorphisms pul : A; — Ay, | > k, are the truncation homo-
morphisms. In fact, ul can be simply defined by setting

l(&})— L, 1§i§k37
FR\T) =30, k<i<l

Then it is straightforward to verify that

o 11,(p) = Hp(Au(0) - p).
Set
S" = Z TiyTiy =+ Tiy T”:Zx?, n=12 .., (4.22)
i1 <ig <+ <in ieN

then Theorem 3.10 implies the following

Theorem 4.7.  Fach of the sets {1,5™;n € N} and {1,T7";n € N} forms an
inverse limit basis for the subring J of all S -invariants in the ring A

See [11, Theorem (3.2), p. 3] for another proof that {S™} is algebraically
independent.

4.7. Invariant theory of the co-adjoint action of GL>(C).

Let X = (x;;) € CP* and let A, = C[X}] denote the algebra of all
polynomial functions in the variables z;;, 1 <, j < k. Set Gy = GL,(C); then
the adjoint representation of G on C¥** is defined by

q- X = gXpg ', Vge G X e Chk, (4.23)
The co-adjoint representation of Gy on Ay is defined by

(9,p) — g - p, where (g-p)(Xi) =p(g~" - Xi) = p(¢~ ' X1g), (4.24)
Vge Gy, p€ Ag. ’

If Xj, € CM* let xy, (t) = det(] —tX}) denote the characteristic polynomial of
X} in the indeterminate ¢t. Then we have

Xx, (t) = det(] —tX}) (4.25)
=1—SYXp)t+ S X2 + -+ (= 1)FSF(X )",

and it can be shown that

Xiviy - Xigay
Sp(Xy) =D det | Lo =) A, (4.26)
Xiwin 0 Kiin
where the sum is over all n-shuffles (i1, ... ,4,), i1 <iy <--+ <i,, 1 <n <k

If Y}, € CF* let Tr(Y) = S2F | Yy denote the trace of ¥ and define

=1 [
Ty =Tr(Xy), 1<n<k (4.27)

Let Jj denote the subalgebra of all G -invariant polynomials. Then we have
the following fundamental theorem for the theory of Gj-invariant polynomials.
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Theorem 4.8. The algebra Jy, is generated by the constants and the algebraical-
ly independent polynomials Si, ..., S¥. The same statement holds for T}, ... | TF.
Moreover, the following recursive formula also holds:

(—D"n+D)Spt = Y (-1'STt, n=0,1,... k-1 (4.28)
i+j=n
Proof.  See [16, Theorem 1.5.7, p. 10] and [26, p. 39]. ]

As in Subsection 4.4., it is easy to verify that there is a well-defined action
of G* = GL*(C) on Ay

Let S" = thk and " = hmT” Let X = lim X, denote the inductive
limit of Xj. Then S" and T" can be symbolically represented as

St= > AMX), T'=Tr(X"), neN (4.29)

11 <ig<-<ip

Then Theorem 3.10 implies the following

Theorem 4.9.  Each of the sets {1,5™;n € N} and {1,T7";n € N} forms an
inverse limit basis for the subalgebra J of all G* -invariants in the algebra A

Remark 4.10.  Although they are both bases for J, for practical applications
the basis {1,7";n € N} is more suitable because of its simpler form (see [22,
Remark 3.12]).

5. Conclusion

In this article we have developed a coherent and comprehensive invariant theory
of inductive limits of groups acting on inverse limits of the categories of modules,
rings, or algebras. On one hand, we have succeeded in generalizing Hilbert’s
finiteness theorem to many cases in our context. On the other hand, there are
many cases in which the bases of the rings of invariants are not finitely generated,
and in these cases the notion of an algebraic basis is not adequate. This led us to
introduce the notion of inverse limit basis which naturally involves a topology on
inverse limits. This is illustrated by examples in Subsections 4.6. and 4.7.. Also,
the example in Subsection 4.7. can be generalized to the case of the inductive
limit G* of the chain {G}}, where each G}, is a semisimple connected complex
analytic group acting on the algebra of polynomial functions on its Lie algebra via
the co-adjoint representation. Then the Chevalley restriction theorem (see, e.g.,
[25, Theorem 4.9.2, p. 335]) gives us a procedure to find a basis for the ring of
G -invariants. This was achieved in a more general context by Procesi in [15]. We
hope to generalize these invariants to our context in a future work.
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