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1. Introduction

One of the fundamental facts in the theory of finite dimensional Lie groups is
the theorem stating that the group multiplication in such groups is described
(locally, in exponential coordinates) by the Baker-Campbell-Hausdorff series (B-
C-H series for short).

Since the B-C-H series depends on linear combinations of iterated Lie
brackets of two Lie algebra variables, the theorem provides an explicit realization
of the main principle of Lie group theory - the one-to-one correspondence of
structural elements in a Lie group and in the associated Lie algebra.

This way of relating Lie groups with Lie algebras seems to be especially
suitable in infinite dimensions. However the attempts in this direction have not
been successful so far due to the following serious obstacles:

First, there is the problem of convergence of the B-C-H series. For
Banach-Lie algebras (and in particular for finite dimensional ones) the problem
was solved by E. V. Dynkin ([3]) (cf. Section 2 for exact formulation). He
proved that in this case the B-C-H series converges absolutely for variables in
some universal neighbourhood of zero in the product. Consequently, the B-C-H
formula defines a local Banach-Lie group attached to a Banach-Lie algebra. The
method depends on the Banach structure and it cannot be applied for topological
Lie algebras (in fact it may then happen that in each neighbourhood of zero there
are pairs of elements for which the series diverges).

Another problem is that the exponential map may not be locally surjec-
tive for ‘Lie groups’ of infinite dimension, e.g. for the group of all C∞ diffeo-
morphisms of a compact manifold (cf. [7], [8]). This also excludes application of
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classical scheme.
The aim of the present paper is to indicate a new method of overcoming

these obstacles. The procedure relies on the concept of ‘groups of strings’, the
main subject of this note.

Before we pass to the details we shall briefly sketch the idea.
To circumvent the first of the above-mentioned obstacles let us observe

that the convergence problem of the B-C-H series disappears if a Lie algebra K

has a suitable graded structure. Namely suppose that K =
∞∏
j=1

Mj is the product

of linear spaces Mj , j = 1, 2, . . . , and that the Lie bracket in K satisfies the
conditions:

(1.1) [Mj ,Mk] ⊂Mj+k

(algebras of this form will be called N-gradation Lie algebras* below).
The B-C-H series with variables in an N-gradation Lie algebra has the

property that each coordinate of the terms of this series is zero for large indices
and so the series converges in the product topology for each choice of topologies
on the coordinates.

This is due to the graded structure of the series. Namely the n -th
coefficient of the B-C-H series is a linear combination of (n−1)-fold Lie brackets
and thus (1.1) implies that the coordinates of this coefficient with indices less
than n vanish. Moreover the sum of the series depends continuously on the
arguments in each product topology. It is well known (cf [2] Chapter II sec.6.5
Proposition 4) that then the globally convergent B-C-H series defines on K a
global (topological) group structure. The resulting group will be denoted by
exp(K).

In view of this we propose the following procedure enabling us to relate
the group multiplication in a topological group G from an appropriate class S
with the multiplication in exp(K) for a suitably chosen N-gradation Lie algebra
K .

(I) The class S is composed of topological groups having ‘rich’ families of
continuous one-parameter subgroups. ( We shall make this precise later
on.)

(II) With a topological group G of class S we canonically associate S(G),
a topological group with an action of the real numbers satisfying some
natural conditions (in what follows groups of this type are called ‘groups
of strings’), in such a way that

(1.2) G = S(G)/Γ

where Γ is a suitable closed normal subgroup of S(G). Let us observe
that for G connected the existence of exponential coordinates implies

* Saying ‘N-gradation’ instead of the more expected ‘N-graded’ we want to
stress that the Lie algebra in question has an N-gradation but it is a Lie algebra
and not a graded Lie algebra, and moreover the gradation is a special one - e.g.
it is complete with respect to the convergence of B-C-H series.
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(1.2), and that (1.2) may be thought of as a weak (but global) analogue
of such coordinates.

(III) With an arbitrary topological group of strings P one may canonically
associate an N-gradation Lie algebra L(P ).

(IV) If P satisfies the condition that the intersection of the closed descending
central series of P is trivial then P may be homomorphically injected
in exp(L(P )).
The above condition called the ‘analyticity condition’ is an algebraic

counterpart of analyticity in the sense of analytic function theory observed (or ab-
sent) for differential geometry-based models of ‘infinite dimensional Lie groups’.

As a result of I,II,III and IV, for a group G of class S , its group
multiplication may be (globally but only in the analytic case) described as the
quotient of the B-C-H multiplication restricted to a subgroup of exp

(
L(S(G))

)
.

In particular this applies to Banach-Lie groups. Moreover the N-gradation Lie
algebra L(S(G)) then admits a simple description in terms of the Lie algebra g
of G . This provides a new interpretation of the fundamental theorem mentioned
at the beginning of the paper.

It remains to specify what the class S is.
In our opinion the condition of having a manifold structure is too restric-

tive when trying to build a general Lie group theory. Instead we propose to con-
sider topological groups which have ‘rich’ families of continuous one-parameter
subgroups. For the purpose of this paper appropriate is the class S composed
of those connected topological groups for which the set of all elements which
are in the image of some one-parameter subgroup generates the whole group
algebraically. (For a discussion see Section 3 and Section 7.)

The idea of giving priority to one-parameter subgroups of topological
groups (rather then to a differentiable structure) has already appeared in some
papers e.g. [1], [9], [11].

The paper is organized as follows: In Section 2 we fix notation, briefly
discuss the B-C-H series and introduce the main objects: groups of strings and
N-gradation Lie algebras.

In Section 3 we discuss four types of examples of groups of strings. Es-
pecially important are two of them: the groups of strings attached to topological
groups and the groups of strings attached to Lie algebras.

Section 4 deals with topological groups of strings. The notion of analyt-
icity for such groups is introduced.

In Section 5 we introduce the concept of the N-gradation Lie algebra
L(P ) attached to a topological group of strings P (Theorem 5.3) and we describe
the integration procedure for such Lie algebras (Proposition 5.7).

The resulting Lie functor is studied in Section 6. It culminates in The-
orem 6.9 which provides a representation of an arbitrary topological group of
strings P as an algebraic extension :

(1.3) 0 −→ P̄∞
j−→ P

π−→ S∆ −→ 0,

where S∆ is the maximal subgroup of strings in exp(L(P )) for the attached
N-gradation Lie algebra L(P ), and P̄∞ is the intersection of the closures of the
central descending series subgroups of P .
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In Section 7 we indicate further applications of groups of strings.

2. Notation and basic definitions

Throughout the paper we shall denote the set of real numbers by R, the set of
integers by Z and the set of positive integers by N.

For elements f1, f2, . . . of a group we shall use the abbreviations {f1, f2}
for f1 · f2 · f−1

1 · f−1
2 and {f1, . . . , fk} for {f1, {f2, . . . {fk−1, fk} . . .}} .

Similarly, for a Lie algebra with Lie bracket [·, ·] we denote by [a1, . . . , ak]
the iterated bracket [a1, [a2, . . . , [ak−1, ak] . . .] .

Definition 2.1. An R- group is a group P which is additionally equipped
with multiplication by real numbers

R× P 3 (s, f) 7→ s ∗ f ∈ P

which is related to the group multiplication in P by the following conditions
valid for s, t ∈ R and f, f1, f2 ∈ P :

s ∗ (t ∗ f) = (st) ∗ f(a)
1 ∗ f = f, 0 ∗ f = e(2.1) (b)
s ∗ (f1f2) = (s ∗ f1)(s ∗ f2)(c)

where e is the unit of P .
The R-groups form a category with R-homomorphisms, R-subgroups,

etc. having the obvious meaning.
The additional condition, which is valid in linear spaces:

(2.2) (s+ t) ∗ φ = (s ∗ φ)(t ∗ φ) for all s, t ∈ R,

does not hold true for all φ ∈ P in a general R-group P . The elements φ ∈ P
for which (2.2) holds are called exponential and the set of all such elements in P
will be denoted by E(P ).

Definition 2.2. A group of strings is an R- group P in which E(P ) generates
P .

The following proposition, which is partially well known, will be used
frequently in what follows.

Proposition 2.3. Let P be a group of strings. The following conditions are
equivalent:

(a) P is a linear space.
(b) E(P ) = P .
(c) P is commutative.
(d) (−1) ∗ f = f−1 for all f ∈ P .
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For the proof see [14] Proposition 2.3.

The Baker-Campbell-Hausdorff series is a real power series in non-com-
mutative formal variables x, y which is obtained as the composition Θ = W ◦Z
where

W (z) = log(1 + z) =
∞∑
n=1

(−1)n+1 z
n

n

and

Z(x, y) = exey − 1 =
∑
j+k≥1

xj

j!
yk

k!
.

Gathering together terms of a given order we obtain

(2.3) Θ(x, y) =
∞∑
m=1

Θm(x, y)

where Θm(x, y) is the (finite) sum of all homogeneous terms of order m .
One of the cornerstones of Lie theory is the observation (cf. [2],[13])

that each Θm is a Lie polynomial, i.e. it may be expressed as a finite linear
combination of (m− 1)-fold commutators of x and y . In particular Θ1(x, y) =
x+ y and Θ2(x, y) = 1

2 (xy − yx).
If K is a Lie algebra then substituting for the formal variables x and y

in (2.3) arbitrary elements of K and replacing the commutators by Lie brackets
in K we obtain the evaluated series with the terms Θm(x, y) in K .

It is known ([2], [3]) that for an arbitrary Banach-Lie algebra K which is
normed in such a way that ‖ [a, b] ‖≤‖ a ‖ · ‖ b ‖ we have

∑∞
m=1 ‖ Θm(x, y) ‖≤

∞ for (x, y) ∈ Q where Q = {(x, y) ∈ K×K :‖ x ‖ + ‖ y ‖≤ ln2} . In particular
this implies that the function Q 3 (x, y) → Θ(x, y) ∈ K is jointly continuous
and defines a local Lie group structure on Q .

Let K =
∞∏
j=1

Mj be an N-gradation Lie algebra. Then K is said to be

a topological N-gradation Lie algebra if K is a topological Lie algebra, each Mj

is a topological vector space and the topology of K is the product topology. As
observed in Introduction, for each pair of elements of a topological N-gradation
Lie algebra the B-C-H series converges, providing K with the structure of a
topological group exp(K).

Proposition 2.4. (cf. [12] Proposition 7 and Proposition 8 (a)).
(a) The group structure in exp(K) may be completed to an R-group structure

by the R-multiplication defined for s ∈ R and f = (a1, a2, . . .) ∈ exp(K)
by

(2.4) (s ∗ f)(t) = (s1a1, s
2a2, . . . , s

nan, . . .).

(b) The set E(exp(K)) consists of all elements for which ai = 0 for i ≥ 2 .

Proof. The proof of (a) is straightforward and we omit it.
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(b): By the form of the B-C-H series for each f ∈ exp(K) the function

(2.5) R 3 t→ t · f ∈ exp(K)

(where ‘t·f ’ denotes the product of t and f in the linear space K ) is a continuous
one parameter subgroup of exp(K). Moreover each continuous one-parameter
subgroup is of this form.

In fact, given a continuous one-parameter subgroup R 3 t → φ(t) ∈
exp(K), let x = φ(1). Then for ψ(t) = t · x we get φ(1) = ψ(1) and from the
uniqueness of square root operation in exp(K) one gets that φ(t) = ψ(t) for
all t having finite binary expansions. By continuity of φ and ψ this extends to
arbitrary t .

Now note that by (2.2) each ‘multiplicative line’ R 3 s → s ∗ f ∈ P
passing through an exponential element f is simultaneously a one-parameter
subgroup. By the above characterization of one-parameter subgroups in exp(K)
this amounts to the condition

s ∗ f = (s1a1, s
2a2, . . . , s

nan, . . .) = s · f = (s1a1, s
1a2, . . . , s

1an, . . .)

valid for each s ∈ R . This implies (b).

Let K be an N-gradation Lie algebra. Then K contains a subalgebra K0

consisting of all elements in K which have a finite number of non-zero coordinates
only. Clearly K0 is dense in K in the product of discrete topologies on each
Mj . K0 will be referred to as the direct sum subalgebra.

Let K , L be (topological) N-gradation Lie algebras. A Lie algebra
homomorphism ψ : K → L is said to be an N-gradation homomorphism, (a
continuous N-gradation homomorphism) if ψ acts (continuously) coordinatewise.
It is clear that each N-gradation homomorphism restricts to a homomorphism
ψ0 : K0 → L0 of the corresponding direct sum subalgebras, and conversely each
coordinatewise acting (continuous) homomorphism ψ0 : K0 → L0 extends to
a continuous N-gradation homomorphism ψ : K → L . Also observe that ψ
being a continuous N-gradation homomorphism is equivalent to the following
condition:

(2.6) ψ([a, b]) = [ψ(a), ψ(b)] for each a ∈Mj , b ∈Mk.

3. Examples

In this section we indicate a few ways in which groups of strings may be in-
troduced. We take it for granted that the arising structures indeed satisfy the
postulates (2.1) (a)-(c), and (2.2), leaving the standard verifications to the reader.

A. Groups of strings over a topological group

Examples of this type are linked with families Ω of continuous one-
parameter subgroups of a topological group G .

First we specify the groups S(G) appearing in (1.2), simultaneously
explaining the formula. Let G be a connected topological group and Λ(G) be
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the family of all continuous one-parameter subgroups of G . Let exp : Λ(G) 3
φ→ φ(1) ∈ G be the evaluation map. In order to describe G in terms of Λ(G),
it is reasonable to consider groups for which

(3.1) exp(Λ(G)) generates G.

(Note that the set exp(Λ(G)) consists of all elements of G which are in the image
of some one-parameter subgroup.)

To put (3.1) in a more suitable algebraic form, consider the family
C(R, G) of all continuous G -valued functions on the real line R. Then C(R, G)
with pointwise multiplication is a group and Λ(G) ⊂ C(R, G).

Definition 3.1. Let S(G) be the subgroup of C(R, G) generated by Λ(G).
The elements of S(G) will be called strings and S(G) will be called the group of
strings over G .

We claim that S(G) with R-multiplication defined by (s ∗ f)(t) = f(st)
for s, t ∈ R and for f ∈ S(G) is an R -group. Moreover the set of exponential
elements of S(G) coincides with Λ(G). Thus S(G) is a group of strings in the
sense of Definition 2.2. In particular, if G is abelian, then Proposition 2.3 implies
that S(G) is a linear space and S(G) = Λ(G).

Observe that exp is a homomorphism of S(G) into G and note that
(3.1) is equivalent to the statement:

(3.2) exp : S(G)→ G is surjective.

This is equivalent to the condition (1.2). Since this condition is purely algebraic,
if we wish to stay within the class of topological groups, we may consider S(G)
with a suitable R-group topology for which exp is continuous. An example is the
compact-open topology. Other suitable topologies may be introduced depending
on particular properties of G . We leave a systematic discussion of this subject
to a subsequent paper.

The construction of S(G) may be generalized as follows: For Ω ⊂ Λ(G)
closed with respect to the *-multiplication we consider the subgroup SΩ(G) of
C(R, G) generated by Ω. Clearly SΩ(G) is a group of strings and a subgroup
of S(G).

B. The group of strings over a Lie algebra.

For a real Lie algebra g let gN be the family of all formal power series

f(s) =
∞∑
n=1

ans
n with coefficients in g . Let us equip gN with the Cauchy-Lie

bracket, i.e. for f(s) =
∞∑
n=1

ans
n and g(s) =

∞∑
n=1

bns
n ,

[f, g](s) =
∞∑
n=1

cns
n where cn =

∑
k+j=n

[aj , bk]

Then gN is an example of an N -gradation Lie algebra, i.e. gN =
∞∏
j=1

Mj where

Mj for j = 1, 2, 3, .. is the linear space of all series with only the j -th coefficient
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nonvanishing. Clearly the Cauchy-Lie bracket in gN satisfies then the condition
(1.1).

Let exp(gN) be the associated B-C-H group. According to Proposition
2.4 (a) this group structure may be complemented by the R-multiplication de-
fined for t ∈ R and f ∈ exp(gN) by

(3.3) (t ∗ f)(s) =
∞∑
n=1

tnans
n.

Moreover E(exp(gN)) consists of all the series with the first coefficient
x ∈ g and the remaining ones zero. We denote such a series by x⊗ s .

Definition 3.2. The subgroup of exp(gN) generated by all the elements x⊗s
with x ∈ g will be called the group of strings over g and denoted by S(g).

The following proposition together with its proof can be found in [13]
Proposition 3.3

Proposition 3.3. Let G be a Banach-Lie group with Lie algebra g . The
groups of strings S(G) and S(g) are algebraically isomorphic.

Comment: Both S(G) and S(g) may be considered in the various R-
group topologies where the compact-open topology seems to be natural for S(G)
whereas the product topology is easy to observe for S(g). Neither the isomor-
phism I introduced in the proof of the above proposition nor its inverse are
continuous with respect to those topologies. We intend to give more complete
discussion of this in the forthcoming paper [15].
C. The groups of strings associated with an N-gradation Lie algebra

This family generalizes examples introduced in subsection B.

Let K =
∞∏
j=1

Mj be an N-gradation Lie algebra and consider the induced

B-C-H group exp(K) with R-multiplication (2.4). Then by Proposition 2.4(b),
E(exp(K)) = M1 . Let ε be a subset of the linear space M1 closed under scalar
multiplication by real numbers. Let Sε(K) be the subgroup of exp(K) generated
by ε . Clearly Sε(K) is a group of strings.

D. Free groups of strings.

Definition 3.4. A pointed set (E, e) with a map ∗ : R × E → E is said to
be an R-set if in (2.1) the conditions (a),(b) hold true and moreover for each
φ ∈ E , φ 6= e , the map jφ : R→ E defined by jφ(t) = t ∗ φ is injective.

Definition 3.5. Let E be an R-set and P be a group of strings. A map
α : E → P , is said to be exponential if for s, t ∈ R and φ ∈ E ,

α(s ∗ φ) = s ∗ α(φ)

α((s+ t) ∗ φ) = (s ∗ α(φ))(t ∗ α(φ)).
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For an R-set (E, e) let Ē = E \ {e} and let the equivalence relation ‘∼ ’ in Ē
be defined by

φ1 ∼ φ2 iff φ1 = s ∗ φ2 for some s 6= 0.

The equivalence classes of ‘∼ ’ will be called ‘lines’ and will be denoted by φ̃ .
The family of all lines will be denoted by Ẽ . Let π : Ē → Ẽ be the quotient
map and let j : Ẽ → Ē be a right inverse to π , i.e. π◦j = id. Then φ ∼ j ◦π(φ)
for φ ∈ Ē and thus there is a unique mapping γ : Ē → R determined by the
condition φ = γ(φ) ∗ j ◦ π(φ).

Let XE be the linear space over R with the basis consisting of all the
elements f̃ ∈ Ẽ . The map r : E → XE is defined by r(φ) = γ(φ)φ̃ for φ 6= e
and r(e) = 0.

Clearly r depends on the choice of the selector j but all the maps
obtained in this way are in a sense equivalent. They are exponential and injective.
We shall refer to r as the rectifying representation of E .

Definition 3.6. Let (E, e) be an R-set. The free group of strings over E is
a group of strings FR

E together with exponential map iRE : E → FR
E such that

for each group of strings P and an exponential map α : E → P , there exists a
unique R-homomorphism β : FR

E → P with α = β ◦ iRE .

Proposition 3.7. For each R-set (E, e) there exist a unique free group of
strings FR

E over E . The map iRE : E → FR
E is injective.

Proof. Let FĒ be the free group over Ē . Let the map i : E → FĒ be defined
by i(e) = θ , where θ is the unit of FĒ and i(φ) = φ for φ 6= e .

For s ∈ R and f =
∏n
i=1 φ

εi
i with φi ∈ Ē and εi equal +1 or −1 define

the product s ∗ f =
n∏
i=1

(s ∗ φi)εi and put additionally s ∗ f = θ for f = θ .

Observe that this product satisfies (2.1)(a),(b),(c).
To obtain also the condition (2.2) for the elements of i(Ē), consider the

normal subgroup G(W ) of FĒ generated by the subset

W = {(s ∗ φ)(t ∗ φ)((s+ t) ∗ φ)−1 : s, t ∈ R and φ ∈ Ē}
and define FR

E = FĒ/G(W ) and j = π ◦ i , where π : FĒ → FR
E is the quotient

homomorphism.
We claim that FR

E is a group of strings with the required properties,
moreover j is exponential and injective.

First observe that W is invariant with respect to the above defined R-
product thus the quotient group may be equipped with the induced R-product
which by construction of W satisfies also (2.2) for φ ∈ j(E). In particular j is
exponential. Also note that j(E) generates FR

E .
Let a group of strings P and an exponential map α : E → P be given.

Because FĒ is a free group, there exists a homomorphism δ : FĒ → P such that
α = δ ◦ i , i.e. δ(f) =

∏n
i=1(α(φi))εi for f =

∏n
i=1 φ

εi
i ∈ FĒ .

Since α is an exponential R-map, δ is an R-map as well and G(W ) ⊂
ker δ . Thus δ induces the required R-homomorphism β . Taking XE for P and
the rectifying representation r for α , by the injectivity of r we deduce that j is
injective as well.
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4. Topological groups of strings

Definition 4.1. A topological group of strings P is a topological group and
a group of strings, such that the operation

R× P 3 (s, f)→ s ∗ f ∈ P

is jointly continuous.

Examples 4.2. As in Section 3, we leave it to the reader to verify that the
algebraic structures of groups of strings introduced there, enriched by the topolo-
gies indicated below, yield topological groups of strings in the sense of Definition
4.1.

(a) Let G be a topological group. Then S(G) with the compact-open
topology (i.e. the topology of uniform convergence on compact sets) is a topo-
logical group of strings.

(b) Let g be a topological Lie algebra. Equip gN and the associated
group exp(gN) with the product topology. Viewed as a topological subgroup of
exp(gN), S(g) becomes a topological group of strings.

(c) For K =
∏∞
j=1Mj a topological N-gradation Lie algebra an analo-

gous procedure yields the structure of a topological group of strings on each of
the groups Sε(K) (see Section 3.C).

In the structure of a topological group of strings P a special role is played
by the closed central descending sequence

(
P̄j
)
j≥1

.
The central descending sequence (Pj)j≥1 of a group P is the sequence

of its normal subgroups such that the j -th subgroup is generated by all the
commutators {f1, . . . , fk} with k ≥ j (for a full discussion of central descending
series see e.g. [6]).

The closed central descending sequence of a topological group P is the
sequence of normal subgroups which are the closures of the subgroups in the
central descending sequence of P .

In the following two propositions let P be a topological group of strings
with the central descending series (Pj)j≥1 and the closed central descending
series

(
P̄j
)
j≥1

. We omit the simple proof of the first proposition:

Proposition 4.3. (a) The members of the central descending sequence as well
as of the closed central descending series are R-subgroups.

(b) Each Pj is generated by the elements {φ1, . . . , φk} with k ≥ j where
φi ’s are exponential elements.

Proposition 4.4. Let φ1, φ2, . . . , φj ∈ E(P ) .
(a) For each positive integer n ,

(4.1) n ∗ {φ1, φ2, . . . , φj} = ({φ1, φ2, . . . , φj})n
j

mod Pj+1.
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(b) For each f ∈ P̄j and each n ∈ N there exists ∆j,n(f) ∈ P̄j+1 such that

(4.2) f = (
1
n
∗ fn

j

) ·∆j,n(f).

Proof. (a) It is known (cf. [10] and [12] Lemma 12 ) that for arbitrary f, g ∈ P
and h ∈ Pj−1 we have {f · g, h} = {f, h} · {g, h} mod Pj+1 . It follows that for
every positive integer n one gets the following mod Pj+1 equalities:

n ∗ {φ1, φ2, . . . , φj} = {n ∗ φ1, n ∗ φ2, . . . , n ∗ φj} =

= {φn1 , φn2 , . . . , φnj } = {φ1, {φn2 , . . . , φnj }}n.

Hence applying an induction argument we get (4.1).
(b) Pj being commutative mod Pj+1 , from (4.1) we infer that for each

f ∈ Pj ,

f = (
1
n
∗ fn

j

) mod Pj+1.

Since both sides of the above equality depend continuously on f , we may extend
it to a mod P̄j+1 equality valid for f ∈ P̄j , which is equivalent to (4.2).

Let us observe that part (a) of the Proposition 4.4 as well as the statement
obout the central descending series in the Proposition 4.3 work just as well for
groups of strings which are not topological.

Definition 4.5. A topological group of strings P is said to be analytic if

(4.3) P̄∞ =
∞⋂
j=1

P̄j = {e}.

Proposition 4.6. Let P be a topological group of strings and let T = P/P̄∞ .
Then T is analytic.

Proof. We claim that P̄j = π−1(T̄j).
Indeed, since π : P → T is surjective, π(Pj) = Tj . The continuity of π

implies that π(P̄j) ⊂ T̄j and π(P̄j) is dense in T̄j . To prove that

(4.4) π(P̄j) = T̄j

we only need to show that π(P̄j) is closed. Since P̄∞ ⊂ P̄j one has π(P̄j) =
T \π(P \ P̄j) and since P \ P̄j is open, π(P \ P̄j) is also open. So π(P̄j) is closed.

Now (4.4) implies that π−1(T̄j) = P̄j · P̄∞ . But P̄∞ ⊂ P̄j and the claim
follows.

To finish the proof suppose that F ∈ T̄j for j = 1, 2, . . . . Let h ∈
π−1(F ). Then h ∈ P̄j for j = 1, 2, . . . , hence h ∈ P̄∞ = kerπ . Thus F =
π(h) = e ,
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5. The N-gradation Lie algebra of a topological group of strings

Throughout this section P will be a topological group of strings with the closed
central descending series

(
P̄j
)
j≥1

. We shall follow the convention that (∼ (·))
denotes the quotient class of (·).

Let Mj = P̄j/P̄j+1 . The group Mj is abelian. Since P̄j and P̄j+1 are
R-subgroups, Mj is an R-group as well.

We shall change the multiplication in Mj (denoted by ‘*’) introducing
the new one by :

(5.1) s ? (∼ f) =
(
j
√
|s|
)
∗ (∼ fsgn(s)) for s ∈ R and f ∈ P̄j

(the new multiplication will be referred to as the modified multiplication).
(2.1) (a)-(c) hold for the ∗ -multiplication on Mj . Since Mj is abelian

the modified multiplication satisfies conditions (2.1) (a)-(c) as well.
Now observe that for (∼ f) = (∼ {φ1, φ2, . . . , φj}) ∈ Mj where each

φi ∈ E(P ), the following condition holds:

(5.2) m ? (∼ f) = (∼ f)m for m = sgn(n)|n|j where n ∈ Z

Indeed, by (4.1)

m ? (∼ f) = j
√
|n|j ∗ (∼ fsgn(m)) = |n| ∗ (∼ fsgn(n)) = (∼ f |n|

jsgn(n)) = (∼ f)m.

Since Mj is abelian (5.2) holds also for products of elements of the con-
sidered form and their inverses. The both sides of (5.2) depending continuously
on f and all such products forming a dense subgroup of Mj (c.f also Proposition
5.5 below) we infer that (5.2) holds true on Mj .

In this case the following criterion which applies the Waring-Hilbert
theorem cf [4] works:

Proposition 5.1. Let M be a topological R-group. M is a linear topological
space if and only if there exists j ∈ N such that for each f ∈ M and m of the
form m = sgn(n)|n|j with n ∈ Z

(5.3) m ? f = fm

Proof. For the proof see [12] Lemma 13.

Corollary 5.2. Each of Mj j = 1, 2, . . . , equipped with the modified multipli-
cation, is a linear topological space.
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Consider now the (topological) product

(5.6) L(P ) =
∞∏
j=1

Mj .

It is known ([1],[5],[8]) that L(P ) has a structure of Lie ring whose additive part is
given by coordinatewise abelian multiplication and the Lie bracket is introduced
as the common extension of the family of biadditive maps

[·, ·]k,m : Mk ×Mm →Mk+m k,m ∈ N

where [(∼ f), (∼ g)]k,m = (∼ {f, g}) and (∼ (·)) denotes the corresponding
quotient class of (·).

Theorem 5.3. (cf [12] Section 7). Let P be a topological group of strings.
Equip L(P ) with the two coordinatewise defined R-products:

‘the quotient product’ - defined for each Mj as the quotient R-product .
‘the modified product’ - defined for each Mj by the formula (5.1).
Then

(a) The topological Lie ring structure on L(P ) is compatible with the modified
product yielding together an N-gradation topological Lie algebra structure
on L(P ) .

(b) The topological group structure on exp(L(P )) is compatible with the
quotient product yielding together an R-group structure on exp(L(P ))
with

(5.7) E(expL(P )) = (M1, 0, 0, 0, . . .).

Proof. (a) By Corollary 5.2 the modified multiplication defines a linear
structure on L(P ). This structure is compatible with the Lie bracket. Indeed
since the modified multiplication is compatible with the addition , and Lie bracket
is biadditive [n?a, b] = n? [a, b] for n ∈ N . Hence [s?a, b] = s? [a, b] for rational
s and by continuity of the bracket this property extends to each real s . Similarly
one proves homogeneity for the second argument.

(b) Let us observe that for f ∈ P̄j and s ∈ R

(5.8) ∼ (s ∗ f) = s ∗ (∼ f) = sj ? (∼ f)

It follows by Proposition 2.4 that the quotient multiplication induces on
exp(L(P )) an R-group structure and (5.7) holds.

Proposition 5.4. Let P be a topological group of strings. For each j ∈ N

(5.9) P̄j = Pj · P̄j+1.

Proof. Let δj : P̄j → Mj be the quotient R-homomorphism. Because Mj is
a linear space for each f ∈ P̄j and each integer k

(5.10) δj(fk) = k ? δj(f).
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Using δj (5.8) may be written in the form

(5.11) δj(s ∗ f) = sj ? δj(f)

Observe that to show (5.9) it will be suficient associate to each f ∈ P̄j an element
fj ∈ Pj , such that

(5.12) δj(f) = δj(fj)

We shall define such fj by the following inductive procedure: Let
∆1(f) = f and let ∆i+1(f) = (2 ∗∆i(f))(∆i(f))−2i , for i = 1, 2 . . . , j − 1.

Put finally fj = λj ∗∆j(f) where λj is a properly chosen real number.
We claim that ∆i(f) ∈ Pi for each i . Indeed, by (4.1) 2 ∗ h =

h2i mod Pi+1 for h ∈ Pi . This inductively implies our claim. In particular
fj ∈ Pj . Let us observe next that if f ∈ P̄j then for i = 1, 2, . . . ∆i(f) ∈ P̄j as
well, so by (5.10) and (5.11) we get

δj(fj) = δj(λj ∗∆j(f)) = λjj ? δj((2 ∗∆j−1(f))(∆j−1(f))−2j−1
) =

= λjj · (2
j − 2j−1) ? δj(∆j−1(f)) = . . . = (λjj ·

j−1∏
i=1

(2j − 2i)) ? δj(f).

It follows that for λj = (
j−1∏
i=1

(2j − 2i))
−1
j the condition (5.12) holds true.

Proposition 5.5. For P a topological group of strings, with the attached
topological N-gradation Lie algebra L(P ) define

(5.13) τ : E(P ) 3 φ→ ((∼ φ), 0, 0, . . .) ∈ L(P ).

Then
(a) τ(E(P )) generates the direct sum subalgebra (L(P ))0 .
(b) If P is analytic τ is injective.

Proof. (a) By Proposition 5.4 the elements {φ1, φ2, . . . , φj} where φi ∈ E(P )
generate P̄j modulo P̄j+1 . By definition of the sum operation and Lie bracket in
L(P ) this means that the corresponding brackets [τ(φ1), τ(φ2), . . . , τ(φj)] span
linearly Mj .

(b) We have to show that for P analytic and φ1, φ2 ∈ E(P ), φ1P̄2 =
φ2P̄2 implies φ1 = φ2 . This results from the more general fact : for φ1, φ2 ∈
E(P )

(5.14) (φ1 · φ2 ∈ P̄2)⇒ (φ1 · φ2 ∈
∞⋂
j=1

P̄j).

For (5.14) it suffices to show that for each j ∈ N , j ≥ 2

(φ1 · φ2 ∈ P̄j)⇒ (φ1 · φ2 ∈ P̄j+1).

Let δj : P̄j → Mj be the quotient R -homomorphism. Proceeding by induction
we shall show that (φ1 · φ2 ∈ P̄j) implies δj(φ1 · φ2) = 0.

For this observe that by (4.2) φ2
1 · φ2

2 = 2 ∗ (φ1 · φ2) = (φ1 · φ2)2j · ∆j

where ∆j ∈ P̄j+1 . Thus δj(φ2
1 · φ2

2) = δj(φ1 · φ2)2j = 2jδj(φ1 · φ2).
Simultaneously φ2

1 ·φ2
2 = φ1 ·φ2 ·(φ−1

2 ·φ1 ·φ2)φ2 and δj((φ−1
2 ·φ1 ·φ2)φ2) =

δj(φ1 · φ2). Thus 2δj(φ1 · φ2) = 2jδj(φ1 · φ2) and (b) follows.
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Before presenting examples of L(P ) attached to various P , let us discuss
‘the integration problem’ for topological N-gradation Lie algebra.

For K =
∞∏
j=1

Mj a topological N-gradation Lie algebra, let exp(K) be

its associated B-C-H group. For k ∈ N consider the map

dk : exp(K) 3 f = (a1, a2, . . .)→ ak ∈Mk

and observe that dk restricted to
∏∞
j=kMj is given by the limit dk(f) =

lim
n→∞

1
n
∗ fn

k

.

In the following we shall need

Lemma 5.6. Let f = {φ1, φ2, . . . , φj} ∈ exp(K) where j ≥ 2 and φi ∈ M1

for each i . Then

di(f) = 0 for 1 ≤ i < j(5.15)
dj(f) = [φ1, . . . , φj ].(5.16)

Proof. The proof is straightforward (with the use of the induction argument)
and it will be left to the reader.

Consider now K =
∞∏
j=1

Mj a topological N -gradation Lie algebra such

that the set of j-fold commutators [M1, . . . ,M1] spans Mj for each j . Let ε be
an R-subset of M1 which spans linearly M1 , and let Sε be the topological group
of strings generated by ε (c.f Section 3C)

Proposition 5.7. L(Sε) = K .
Proof. Observe that dk(f) = 0 for k ∈ N and f ∈ (S̄ε)k+1 by (5.15). Note
also that Lemma 5.6 and the B-C-H formula imply that for f1, f2 ∈ (S̄ε)k

(5.17) dk(f1 · f2) = dk(f1) + dk(f2).

Hence dk for each k ∈ N induces a linear map d̃k : (S̄ε)k/(S̄ε)k+1 3 (∼ f) →
dk(f) ∈Mk .

Note that dk((∼ {φ1, φ2, . . . , φk})) = [φ1, φ2, . . . , φk] for φ1, φ2, . . . , φk ∈
ε and since ε spans linearly M1 , d̃k is surjective.

We claim that d̃k is injective as well. For this representing dk in the form

dk(f) = lim
n→∞

1
n
∗ fn

k

, and using (4.2) we get a decomposition f = dj(f) ·∆(f),

where ∆(f) is in the closure of (Sε)k+1 in exp(K), (Note that neither dk(f)
nor ∆(f) have to be in Sε ). Nevertheless if f ∈ (S̄ε)k and dk(f) = 0 the
decomposition implies that f = ∆(f) ∈ (S̄ε)k+1 which proves the claim.

To finish the proof observe that the bijective linear map

α : L(Sε) 3 ((∼ f1), (∼ f2), . . .)→ (d1(f1), d2(f2), . . .) ∈ K

is also an N-gradation Lie algebra homomorphism. Indeed, the B-C-H formula
implies that for f ∈ (S̄ε)j and g ∈ (S̄ε)k , dj+k(∼ {f, g}) = [dj((∼ f)), dk((∼ g))]
what is just needed (cf. (2.6)).
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Corollary 5.8. Let a topological group of strings P be given with the N-
gradation Lie algebra L(P ) and let τ be defined by (5.13). Let ∆ = τ(E(P )) and
let S∆ be the topological group of strings generated by ∆ . Then L(P ) = L(S∆) .

Comment: In the both Proposition 5.7 and Corollary 5.8 the equalities
L(Sε) = K and L(P ) = L(S∆) have only algebraic meaning. This also applies

to the equality L(S(a)) =
∞∏
j=1

aj in the following example.

Examples 5.9. (a) Let a be a topological Lie algebra and let S(a) be the
group of strings over a considered with the product topology restricted from

exp(aN). Proposition 5.7 implies that L(S(a)) =
∞∏
j=1

aj , where (aj)j≥1 is the

central descending series of the Lie algebra a .
(b) Let G be a Lie group with the Lie algebra g . Identifying S(G) with

S(g) according to Proposition 3.3 and endowing S(g) with the product topology

like in (a) we get L(S(G)) =
∞∏
j=1

gj , where (gj)j≥1 is the central descending

series of the Lie algebra g of G .

6. The Lie functor

In this section we follow the notation of Section 5. Let P and Q be topological
groups of strings. Let Mj = P̄j/P̄j+1 and Nj = Q̄j/Q̄j+1 .

Proposition 6.1. For a continuous R-homomorphism Ψ : P → Q the
formulas

(6.1) Mj 3 (∼ f)→ (∼ Ψ(f)) ∈ Nj

define an N-gradation Lie algebra homomorphism L(Ψ) .

Proof. Since Ψ is a continuous homomorphism it maps subgroups of the
closed central descending series in P into the corresponding subgroups in Q . It
follows that for each j ∈ N the maps (6.1) are properly defined. The family
of maps (6.1) may then be extended by linearity to L(P )0 providing, due to
the form of the Lie structure of L(P )0 and L(Q)0 a homomorphism preserving
gradation. This homomorphism may then be extended by continuity (in the
product topology) to the whole of L(P ), yielding an N-gradation Lie algebra
homomorphism.

In the following example we are only suggesting the situation leaving the
verification of the details to the reader.

Example 6.2. (a) Let G , H be Lie groups with Lie algebras g and h . Let ψ :
G→ H be a Lie group homomorphism and let ψ̃ : g → h be the corresponding
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homomorphism of Lie algebras. Put Ψ : S(G) 3 f → ψ ◦ f ∈ S(H). Clearly Ψ
is an R-homomorphism of groups of strings.

Representing L(S(G)) and L(S(H)) as in Example 5.9 (b), we may
describe L(Ψ) in the form

(6.2) L(Ψ)(x1, x2, . . .) = (ψ̃(x1), ψ̃(x2), . . .)

where (gj)j≥1 is the central descending series of the Lie algebra g and xj ∈ gj
for j = 1, 2, . . .

(b) Let g and h be topological Lie algebras and S(g), S(h) be the
corresponding groups of strings considered in the product topology. For a homo-
morphism ψ̃ : g → h the formula

(6.3) Ψ̃ : gN 3 (
∞∑
j=1

xjt
j)→

∞∑
j=1

ψ̃(xj)tj ∈ hN

defines a homomorphism of N-gradation Lie algebras. The same formula may be
understood as giving an R-homomorphism of groups exp(gN) and exp(hN). Re-
stricting this homomorphism to S(g) we obtain the homomorphism Ψ̃ : S(g)→
S(h) corresponding to ψ̃ . The formula (6.3) restricted to the Lie subalgebra
appearing in (6.2) also describes the homomorphism L(Ψ̃).

Concerning the integration of Lie algebra homomorphisms the following
necessary condition is to be noted:

Proposition 6.3. Given an N-gradation Lie algebra homomorphism ψ :
L(P )→ L(Q) , if ψ = L(Ψ) for some continuous R-homomorphism Ψ : P → Q
then the following ‘initial condition’ holds:

(?) There exists an R-map Ψ0 : E(P )→ E(Q) such that

(6.4) ((∼ Ψ0(φ)), 0, 0, . . .) = ψ((∼ φ), . . .).

Proof. Define Ψ0 as the restriction of Ψ to E(P ).

The following example shows that for a given N-gradation Lie algebra
homomorphism there may be no map satisfying (6.4).

Example 6.4. Let P = SΩ(G) (cf. Section 3A) for G = SO(3,R) (i.e for the
group of rotations of R3 ) where Ω is composed of 3 families of one-parameter
subgroups of G - of all rotations about 3 fixed pairwise orthogonal axes. It
is well-known that the exponential map exp : S(G) → G restricted to SΩ(G)
is surjective (the construction of ‘Euler angles’). It may also be proved (cf.
Proposition 5.7) that in this case L(S(G)) = L(P ). Picking an automorphism
L(Ψ) of L(P ) of the form (6.2) where Ψ : S(G) 3 f → ψ ◦ f ∈ S(G) and ψ is
an automorphism of G which fails to preserve the chosen set of 3 one-parameter
subgroups of G one finds that L(Ψ) fails to admit any ‘initial condition’ (with
respect to E(P )).

Comment: We silently assume here that E(P ) = Ω. The precise argu-
ments for that are given in the proof of Theorem 6.10 below, where Ω is changed
by ∆.



376 Wojtyński

We shall show that ‘the initial condition’ is sufficient for the existence of
Ψ provided the group Q is analytic. First let us examine the problem for free
groups of strings.

For P and Q topological groups of strings consider E(P ) and E(Q) with
the structures of R-sets (cf. Definition 3.4) induced from P and Q and let FR

E(P )

and FR
E(Q) be free groups of strings over E(P ) and E(Q) respectively. Denote

by iRP : E(P ) → FR
E(P ) and iRQ : E(Q) → FR

E(Q) the canonical exponential
embeddings.

Since the inclusion maps iP : E(P )→ P and iQ : E(Q)→ Q are expo-
nential (in the sense of Definition 3.5) they induce surjective R-homomorphisms
πP : FR

E(P ) → P and πQ : FR
E(Q) → Q .

Proposition 6.5. (a) Every R-map Ψ0 : E(P )→ E(Q) extends to a unique
R-homomorphism γ : FR

E(P ) → FR
E(Q) .

(b) An R-map Ψ0 : E(P )→ E(Q) extends to an R-homomorphism P → Q
provided γ(ker(πP )) ⊂ ker(πQ) or equivalently if for f ∈ FR

E(P ) ,

(6.5)
(
πP (f) = 0

)
⇒
(
(πQ ◦ γ)(f) = 0

)
.

Proof. (a) Since the composite R-map iRQ ◦Ψ0 : E(P )→ FR
E(Q) is exponential

it induces by Definition 3.6 the required R-homomorphism γ .
(b) Since by (a), γ extending Ψ0 exists and moreover P = FR

E(P )/ker(πP )
and Q = FR

E(Q)/ker(πQ), the condition γ(ker(πP )) ⊂ ker(πQ) implies
(b).

To apply the above algebraic result to the topological case we shall need
the following two lemmas, the first one specifying the result of Proposition 5.4
to the particular situation considered.

Lemma 6.6. Let δPj : P̄j →Mj and δQj : Q̄j → Nj be the quotient homomor-

phisms. Define (FR
E(P ))j = (πP )−1(P̄j) and (FR

E(Q))j = (πQ)−1(Q̄j) .

For each j ≥ 2 there exist maps pPj : (FR
E(P ))j → (FR

E(P ))j and pQj :

(FR
E(Q))j → (FR

E(Q))j such that

(a) γ ◦ pPj = pQj ◦ γ on (FR
E(P ))j ,

(6.6) (b) δPj ◦ πP = δPj ◦ πP ◦ pPj on (FR
E(P ))j ,

(c) δQj ◦ π
Q = δQj ◦ π

Q ◦ pQj on (FR
E(Q))j .

Proof. For fixed j ≥ 2 proceeding as in the proof of Proposition 5.4 we
associate with a given f ∈ (FR

E(P ))j (respectively f ∈ (FR
E(Q))j the element

fj ∈ (FR
E(P ))j (resp. fj ∈ (FR

E(Q))j).
Since the construction of fj makes use only of the group multiplication

and of the R-product, (6.6) (a) holds. The properties (6.6)(b) and (c) translate
(5.12) into the present context.
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Lemma 6.7. Let f ∈ (FR
E(P ))j . Then

(6.7) δQj ◦ π
Q ◦ γ(f) = ψ ◦ δPj ◦ πP (f),

where ψ is the homomorphism from the Proposition 6.3.

Proof. f ∈ (FR
E(P ))j implies γ(f) ∈ (FR

E(Q))j , thus πQ ◦γ(f) ∈ Qj ⊂ Q̄j and
both sides of (6.7) are well defined.

Since the maps in (6.7) are homomorphisms, it suffices to consider f of
the form {φ1, . . . , φj} where φi ’s are in E(P ). Then the left hand side of (6.7)
takes the form:

δQj ◦ π
Q ◦ γ({φ1, . . . , φj}) = δQj ◦ π

Q({γ(φ1), . . . , γ(φj)}) =

= (∼ {Ψ0(φ1), ..,Ψ0(φj)}) = [(∼ Ψ0(φ1)), . . . , (∼ Ψ0(φj))]

Similarly for the right hand side:

ψ((∼ {φ1, . . . , φj})) = ψ({(∼ φ1), . . . , (∼ φj)}) = [ψ((∼ φ1)), . . . , ψ((∼ φ1))]

The final expressions for the left and right hand sides are equal due to
the ‘initial condition’.

Theorem 6.8. Let P and Q be topological groups of strings and Q be
analytic. Let an N-gradation Lie algebra homomorphism ψ : L(P ) → L(Q)
be given, satisfying the ‘initial condition’ (6.4). Then:

(a) There exists unique R-homomorphism Ψ : P → Q extending Ψ0 .
(b) The homomorphism Ψ satisfies Ψ(P̄j) ⊂ Q̄j for j = 1, 2, 3, . . . . The

induced homomorphism of N-gradation Lie algebras is equal to ψ .
(c) If ψ is injective and P is analytic then also Ψ is injective.

Proof. (a) Observe first that if Ψ exists, it is determined for f = φ1 ·φ2 ·. . .·φn ,
with φi ’s in E(P ), by the formula Ψ(f) = Ψ0(φ1) · Ψ0(φ2) · . . . · Ψ0(φn). We
claim that (due to the ‘initial condition’) the right hand side does not depend
on the representation of f as a product of exponential elements. As indicated in
Proposition 6.5 (b) this amounts to (6.5). Let us observe next, that for analytic
Q one may replace (6.5) by the following sequence of implications holding for
j = 1, 2, 3, . . . and f ∈ FR

E(P ) :

(6.8)
(
πP (f) ∈ P̄j+1

)
∧
(
(πQ ◦ γ)(f) ∈ Q̄j)

)
⇒
(
(πQ ◦ γ)(f) ∈ Q̄j+1

)
.

We show (6.8) by induction on j .
j=1: Let f = φ1 · . . . · φn and δP1 ◦ πP (f) = 0. We claim that

(δQ1 ◦ πQ ◦ γ)(f) = 0. Indeed, with the ‘initial condition’ in the form δQ1 ◦
πQ(Ψ0(φ)) = ψ ◦ δP1 ◦ πP (φ) one gets

δQ1 ◦ πQ ◦ γ(φ1 · . . . · φn) = (δQ1 ◦ πQ)(Ψ0(φ1) · . . . ·Ψ0(φn))

= (δQ1 ◦ πQ)(Ψ0(φ1)) + . . .+ (δQ1 ◦ πQ)(Ψ0(φn))

= ψ ◦ δP1 ◦ πP (φ1)) + . . .+ ψ ◦ δP1 ◦ πP (φn)

= ψ(δP1 ◦ πP (φ1) + . . .+ δP1 ◦ πP (φn))

= ψ ◦ (δP1 ) ◦ πP )(f) = 0.
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Induction step: For j ≥ 2, f ∈ FR
E(P ) let δPj ◦ πP (f) = 0 and let

δQj−1 ◦ πQ ◦ γ(f) = 0. We claim that δQj ◦ πQ ◦ γ(f) = 0. By the induction

assumption γ(f) ∈ (FR
E(Q))j , thus consecutive use of (6.6) (c), (6.6) (a), Lemma

6.7 and (6.6) (b), taking into account that δPj ◦ πP (f) = 0, yields

δQj ◦ π
Q ◦ γ(f) = δQj ◦ π

Q ◦ pQj ◦ γ(f) = δQj ◦ π
Q ◦ γ ◦ pPj (f) =

= ψ ◦ δPj πP ◦ pPj (f) = ψ ◦ δPj ◦ πP (f) = 0

(b) The conditions (6.8) mean that Ψ(P̄j) ⊂ Q̄j for j = 1, 2, 3, . . . .
Moreover if F = πP (f) ∈ P̄j the equality δQj ◦ πQ ◦ γ(f) = ψ ◦ δPj πP (f) = 0
shown in (a) means that ∼ (Ψ(F )) = ψ(∼ (F )) i.e. that the homomorphism ψ
is induced by Ψ.

(c) To show that Ψ is injective provided ψ is injective and P is analytic
we may procede like in (a) but in the opposite direction, i.e we shall show by
induction on j the sequence of implications

(6.9)
(
(πQ ◦ γ(f) ∈ Q̄j+1) ∧ (πP (f) ∈ P̄j)

)
⇒
(
(πP ◦ γ)(f) ∈ P̄j+1

)
.

j = 1: Let f = φ1 · . . . · φn and Ψ0(φ1) · . . . · Ψ0(φn) ∈ Q̄2 . We claim
that f ∈ P̄2 i.e. that (δP1 ◦ πP )(φ1 · . . . · φn) = 0. Since ψ is injective this is the
same as to show that (ψ ◦ δP1 ◦ πP )(φ1 · . . . ·φn) = 0. With the ‘initial condition’
in the form ψ ◦ δP1 ◦ πP (φ) = δQ1 ◦ πQ(Ψ0(φ)) one gets

ψ ◦ δP1 ◦ πP (φ1 · . . . · φn) = (δQ1 ◦ πQ)(Ψ0(φ1) · . . . ·Ψ0(φn))

= (ψ ◦ δP1 ◦ πP )(φ1) + . . .+ (ψ ◦ δP1 ◦ πP )(φn)) = δQ1 ◦ πQ(Ψ0(φ1)) + . . .+

+δQ1 ◦ πQ(Ψ0(φn)) = δQ1 ◦ πQ(Ψ0(φ1) · . . . ·Ψ0(φn)) = 0

Induction step: For j ≥ 2, f ∈ FR
E(P ) let (δQj π

Q ◦ γ)(f) = 0 and let
δPj−1 ◦ πP (f) = 0. We claim that δPj ◦ πP (f) = 0 and since ψ is injective this
amounts to showing that ψ ◦ δPj ◦ πP (f) = 0.

By the induction assumption (f) ∈ (FR
E(P ))j , thus consecutive use of

(6.6) (b), Lemma 6.7, (6.6)(a) and (6.6)(c), taking into account that (δQj ◦ πQ ◦
γ)(f) = 0 yields

ψ ◦ δPj ◦ πP (f) = ψ ◦ δPj ◦ πP ◦ pPj (f) =

δQj ◦ π
Q ◦ γ ◦ pPj (f) = δQj ◦ π

Q ◦ pQj ◦ γ(f) = δQj ◦ π
Q ◦ γ(f) = 0

Remark 6.9. Note that in the case of analytic Q there is at most one function
Ψ0 : E(P )→ E(Q) satisfying (6.4).

Indeed, by Proposition 5.5 (b) each equivalence class mod Q̄2 contains
at most one representative from E(Q).
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Theorem 6.10. Let P be a topological group of strings with Lie algebra L(P ) .
Let S∆ be the subgroup of exp(L(P )) introduced in Corollary 5.8. There exists a
surjective R-homomorphism π : P → S∆ with ker(π) = P̄∞ , i.e. the following
sequence is exact

(6.9) 0 → P̄∞
j→ P

π→ S∆ → 0 .

Proof. First observe that L(P ) = L(P/P̄∞). Also note that by Proposition
4.6, P/P̄∞ is analytic. It follows that the proof reduces to showing that for P
analytic, P is isomorphic to S∆ . Assume thus that P is analytic and let

α : L(S∆) 3 ((∼ f1), (∼ f2), . . .)→ (d1(f1), d2(f2), . . .) ∈ L(P )

be the isomorphism introduced in Proposition 5.7 and let τ be defined by (5.13).
Since ∆ ⊂ E(S∆), we may regard τ as an E(S∆)-valued map and note that it
provides an initial condition for the isomorphism α−1 . Indeed, for f ∈ S∆ of
the form ((∼ φ), 0, 0, . . .), we have d1(f) = (∼ φ). Thus by Theorem 6.8 (a)
there exists a homomorphism Ψ : P → S∆ extending τ and induced by α−1 .

We claim that ∆ = E(S∆). Indeed, since P is analytic and α−1 is
injective also Ψ is injective by Theorem 6.8 (b). Let φ ∈ E(S∆). Then φ = Ψ(f)
and for s1, s2 ∈ R :

Ψ((s1 + s2) ? f) = (s1 + s2) ?Ψ(f) = (s1 ?Ψ(f))(s2 ?Ψ(f) =

= Ψ(s1 ? f)Ψ(s2 ? f) = Ψ((s1 ? f)(s2 ? f)).

Since Ψ is injective this implies f ∈ E(P ) and thus φ ∈ τ(E(P )) = ∆.
Note now that τ is surjective by the definition of ∆, and by Proposition

5.5 (b) it is injective as well. Thus τ and its inverse provide the initial conditions
for α−1 and α respectively. Since both groups P and S∆ are analytic we obtain
(applying Theorem 6.8) two homomorphisms: Ψ : P → S∆ induced by the initial
condition τ and Ψ̄ : S∆ → P induced by the initial condition τ−1 . Clearly Ψ̄
has to be the inverse of Ψ.

Comment: Theorem 6.10 corresponds (in a different context) to the
Theorem 28 of [12].

Remark 6.11. The exact sequence (6.9) where S∆ is equipped with the prod-
uct topology restricted from exp(L(P )) need not be an extension of topological
groups. A posteriori S∆ may be considered with the quotient topology result-
ing from the identification with P/P̄∞ . This gives to the extension (6.9) also
topological meaning.

7. Concluding remarks

The axioms defining a module M over a ring Q necessarily imply that the
underlying group of M is abelian. It appears that relaxation of the distributivity
condition

(q1 + q2) ·m = (q1 ·m)(q2 ·m)
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to the one assumed only for m in some generating subset of the underlying group
of M furnishes (in the case Q = R) a family of interesting noncommutative
models - the groups of strings.

As pointed out in Section 3, there are two parallel important classes
of examples of groups of strings : those connected with topological groups and
those connected with Lie algebras. The interplay of these two kinds, suggested
by Proposition 3.3, is the potential source of a new approach to Lie group theory.
It constitutes the main motivation for studying groups of strings.

Groups of strings fit into the existing body of Lie theory, e.g. they
explain the algebraic background of some classical formulas. For instance the
formulas (4.2) (for P = S(G) equipped with the compact-open topology, G a
Lie group, j = 1 and f being the product of two one-parameter subgroups
of G) is connected with the classical Trotter formula defining the sum of two
one-parameter subgroups:

φx+y(t) = lim
n→∞

(
φx

(
t

n

)
φy

(
t

n

))n
where

i : g 3 x→ φx ∈ Λ(G)

is the mapping assigning to a left invariant vector field x its integral curve φx
satisfying φx(0) = e .

Similarly for j = 2 and f = {φ1, φ2} , (4.2) explains another Trotter
formula defining the Lie bracket of one-parameter subgroups.

Groups of strings give a continuous transition from combinatorial to
differential-geometric parts of Lie theory. We shall illustrate this claim by the
following example (since the full explanation would demand too much of space
we shall leave it without further comments):

Example 7.1. Let (E, e) be an R-set and let FR
E be the free group of strings

over E (cf. Definition 3.6). Moreover let FR
E be equipped with a suitable

topology (e.g. the pull back topology resulting from the injective homomorphism
β : FR

E → MGẼ into the Magnus group). Then the N-gradation Lie algebra of
FR
E is isomorphic to the free Lie algebra over (E, e).

It is our belief that nonanalyticity (understood as irregular behaviour
of the Lie functor) observed for some important models of ‘infinite dimensional
Lie groups’ like C∞ diffeomorphisms of smooth compact manifolds (cf [7]) has
as background nonanalyticity of the corresponding topological groups of strings.
We illustrate this by the following conjecture:

For M be a compact smooth manifold, let G be the group of all smooth
diffeomorphisms of M and let g be the Lie algebra of all smooth vector fields on
M . Let us consider each of these objects with the suitable C∞ topology. Let
S(G) and S(g) be the corresponding topological groups of strings.

Conjecture. The group of strings S(g) is isomorphic to the maximal
string subgroup of exp(L(S(G))). In particular (by Theorem 6.10) the following
sequence is exact:

0 → (S(G))∞
j→ S(G) π→ S(g) → 0.
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Note that by Proposition 3.3, for Banach-Lie groups, S(G) and S(g) are
isomorphic.

The groups of strings, as presented here, evolved from its initial status
described in the paper [12] where the idea of abstract group of strings and their
connection with N-gradation Lie algebras already appeared. The lack of some
important steps (e.g. Proposition 5.5 (b) and Proposition 5.7 of the present
paper) left [12] with no final conclusions such as Theorems 6.8 and 6.10 of this
note. The present treatment is more algebraic. It puts an emphasis on the B-C-H
formula which is of algebraic nature, whereas in [12] the proofs are based on the
Trotter formulas which demand a topology. The actual presentation gives much
better insight into the subject and possibilities of applications.
Aknowledgement: The author is deeply indebted to the referee. His remark-
able efford enabled to remove errors and mistakes and resulted in many improve-
ments of the text. In particular the previous form of Theorem 6.8 and of the
proof of Theorem 6.10 has been changed.
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[13] —, Quasinilpotent Banach-Lie algebras are Baker–Campbell–Hausdorff ,
J. Funct. Anal. 153, (1998) 405–413.

[14] —, An introduction to string Lie theory, in: Martin Peinador, E., and J.
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