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Abstract. Some locally finite simple Lie algebras are graded by finite (pos-
sibly nonreduced) root systems. Many more algebras are sufficiently close to
being root graded that they still can be handled by the techniques from that
area. In this paper we single out such Lie algebras, describe them, and suggest
some applications of such descriptions.

1. Introduction

In this work we will give an alternative description of the diagonal direct limits of
classical simple Lie algebras. These direct limit algebras have appeared in several
papers [3, 6, 7, 8] and can be defined as follows. Suppose we have a countable
directed family of classical simple Lie algebras, and L is the limit algebra. We
can always restrict to the case where all the algebras are of the same kind (special
linear, symplectic, or orthogonal), say X ∈ {sl, sp, so} , and view the component
algebras as X(U), X(V ), etc., for appropriate vector spaces U, V , etc. The
distinguishing feature of diagonal direct limits is the following condition. When
ϕ : X(U) → X(V ) is a structure homomorphism of the directed family, then V is
an X(U)-module, and it should have a direct sum decomposition into irreducible
X(U)-submodules of the form

V = U⊕` ⊕ (U∗)⊕r ⊕K⊕z,

where the multiplicities `, r, z are nonnegative integers and K is the underly-
ing field, which will be assumed to be algebraically closed of characteristic zero
throughout the paper. (Note when U is isomorphic to its dual module U∗ , we
assume that r = 0.) It is an easy remark, in fact in [3], that for diagonal direct
limits the directed family of algebras can be chosen to form a chain

g(1) ϕ1→ g(2) ϕ2→ . . . → g(i) ϕi→ g(i+1) → . . . , (1)
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where assuming g(i) = X(V (i)), we have the decomposition of V (i+1) as a g(i) -
module given by

V (i+1) = (V (i))⊕`i ⊕
(
(V (i))∗

)⊕ri ⊕K⊕zi .

To obtain the decomposition of V (i+2) over g(i) , it is necessary to take the
product of terms in the structure sequence of triples {ti = (`i, ri, zi) | i = 1, 2, . . . } :

ti ∗ ti+1 = (`i, ri, zi) ∗ (`i+1, ri+1, zi+1) (2)

= (`i`i+1 + riri+1, `iri+1 + ri`i+1, (`i+1 + ri+1)zi + zi+1) .

It is then easy to see that the sequences {`i +ri} , {`i−ri} are multiplicative. The
multiplicativity of {`i + ri} was first used in [4] to produce uncountable families
of pairwise nonisomorphic simple Lie algebras of special linear type over arbitrary
fields. Many diagonal direct limits were classified in [18], and the final classification
of the algebras in question was accomplished in [8] in terms of the multiplicative
and limit properties of their structure sequences.

As a particular case, the authors of [8] recover the classification of the
direct limits of finite-dimensional matrix algebras. As V is the unique irreducible
module for EndV when V is finite-dimensional, here we can restrict our attention
to sequences p = {(pi, qi)} , where qi ≥ 0 and pi ≥ 1 for all i ≥ 0. Thus,

to initiate the sequence, there is some vector space V (0) = V = K⊕p0 . Then
V (i+1) = (V (i))⊕pi ⊕K⊕qi , and

(pi, qi) ∗ (pi+1, qi+1) = (pipi+1, pi+1qi + qi+1).

Each constituent algebra has the form E (i) = End V (i) . If we represent each E (i)

in matrix form, then the structure embedding ϕi : E (i) → E (i+1) is given by

A 7→ diag(A, . . . , A︸ ︷︷ ︸
pi

, 0, . . . , 0︸ ︷︷ ︸
qi

). (3)

Let us denote the limit algebra E = lim
−→

E (i) by E(p) when we want to emphasize

its dependence on p . We now enumerate some properties of the algebras E(p).

(1) E = E(p) has an involution, namely the limit a 7→ aτ of the standard

transpose map. Indeed, if we represent each E (i) in matrix form as in (3),
then ϕi(A

τ ) =
(
ϕi(A)

)τ
. Thus the ordinary transpose map is compatible

with the direct limit and therefore defines a “transpose” map τ : E → E ,
with the usual property (ab)τ = bτaτ .

(2) E has a trace map defined as follows. Suppose a ∈ E , say a = A ∈ E (i) . Set

t(a) =
1

p0 · · · pi−1

trA.

If also a = B ∈ E (j) , j > i , then we have (after renumbering the diagonal
blocks)

B = diag(A, . . . , A︸ ︷︷ ︸
pi···pj−1

, 0, . . . , 0).
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It follows that

1

p0 · · · pj−1

trB =
pi · · · pj−1

p0 · · · pj−1

trA =
1

p0 · · · pi−1

trA,

and so the definition of t(a) whether given by A or B agrees. Thus t(a) is
well-defined and satisfies the usual trace properties,

t(ab) = t(ba) (4)

t(κa+ λb) = κt(a) + λt(b), κ, λ ∈ K. (5)

(4) The natural module for E is defined in the following way. Using the
decomposition V (i+1) = (V (i))⊕pi⊕K⊕qi , we define the map ηi : V (i) → V (i+1)

by

ηi(v) = (v, . . . , v︸ ︷︷ ︸
pi

, 0, . . . , 0︸ ︷︷ ︸
qi

).

Then we can form the limit space V = lim
−→

V (i) using the ηi as the structure

maps. Now, for a ∈ E and β ∈ V , define a ∗ β by setting a ∗ β = Av
where a ∈ A ∈ E (i) , β = v ∈ V (i) for an appropriate i . If also a = B ∈
E (j) , β = w ∈ V (j) for some j > i then B = diag(A, . . . , A︸ ︷︷ ︸

pi···pj−1

, 0, . . . , 0),

w = (v, . . . , v︸ ︷︷ ︸
pi···pj−1

, 0, . . . , 0) after a uniform renumbering of the elements in both

tuples. Then we have Bw = (Av, . . . , Av︸ ︷︷ ︸
pi···pj−1

, 0, . . . , 0), which is the image of

Av under ηi · · · ηj−1 (with a backward renumbering of the elements of the
tuple). This shows that the element a ∗ β is well-defined, and makes V into
an E -module; that is, we have

(ab) ∗ β = a ∗ (b ∗ β)

(a+ b) ∗ β = a ∗ β + b ∗ β
a ∗ (β + γ) = a ∗ β + a ∗ γ

(λa) ∗ β = a ∗ (λβ) = λ(a ∗ β)

where a, b ∈ E , β, γ ∈ V , λ ∈ K .

(5) A natural nondegenerate symmetric bilinear form can be defined on V as
follows. Choose any such form b(0) on V (0)×V (0) and proceed by induction.
If b(i) is such a form on V (i) × V (i) , we define b(i+1) on V (i+1) × V (i+1) by
setting

b(i+1)(u, v) =
1

pi

b(i)(u, v) (6)

if u, v belong to the same copy of V (i) in the decomposition of V (i+1) given
by

V (i+1) = V (i) ⊕ · · · ⊕ V (i)︸ ︷︷ ︸
pi

⊕Kv(i)
1 ⊕ · · · ⊕Kv(i)

qi
. (7)
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Different copies of V (i) are assumed to be pairwise orthogonal, and b(i+1) (v
(i)
j , v

(i)
k ) =

δj,k (Kronecker delta) for j, k = 1, . . . , qi . Now if u, v ∈ V (i) , then ηi(u), ηi(v) ∈
V (i+1) and

b(i+1) (ηi(u), ηi(v)) =
1

pi

b(i)(u, v) + · · ·+ 1

pi

b(i)(u, v)︸ ︷︷ ︸
pi

= b(i) (u, v). (8)

Thus the definition is consistent, and we have a well-defined nondegenerate
symmetric bilinear form on V .

(6) If V = lim
−→

V (i) and beginning with some ` , there is a nondegenerate skew-

symmetric bilinear form c(i) on V (i) for i ≥ ` , and the numbers qi are all
even starting with i = ` , then by induction we can define such a form on
V (i+1) . We do this as in (4), by supposing that the different copies of V (i) in

(7) are pairwise orthogonal and are orthogonal to the vectors {v(i)
1 , . . . , v

(i)
qi } .

Since qi is even, we can also split Kv(i)
1 ⊕ · · · ⊕Kv(i)

qi into a sum of pairwise

orthogonal hyperbolic 2-dimensional subspaces (Kv(i)
1 ⊕ Kv(i)

2 ) ⊕ (Kv(i)
3 ⊕

Kv(i)
4 )⊕ · · · ⊕ (Kv(i)

qi−1 ⊕Kv(i)
qi ), with c(i+1) (v

(i)
1 , v

(i)
2 ) = 1 = −c(i+1) (v

(i)
2 , v

(i)
1 ),

etc.

Again,

c(i+1)(u, v) =
1

pi

c(i)(u, v)

if u, v belong to the same copy of V (i) in V (i+1) . As before, we can check
that the collection of forms {c(i) | i ≥ `} is compatible with the direct limit
and thus defines a nondegenerate skew-symmetric bilinear form on V .

These instruments enable us to introduce four Lie algebras related to the
associative algebra E = E(p). The first of them, gl(p), is simply the set of all
elements in E under the bracket operation [a, b] = ab − ba . The second is the
subalgebra sl(p) of gl(p), which is the kernel of the trace function t : E −→ K
in (2). Given a nondegenerate symmetric form b , as defined in part (4), and the
action of E on V as in (3), we can define so(p, b) as the set of all a ∈ gl(p) such
that b(a ∗α, β)+ b(α, a ∗β) = 0 for all α, β ∈ V . Similarly, we can define sp(p, c),
where c is a nondegenerate skew-symmetric bilinear form as in (5) above.

We have [gl(p), gl(p)] = sl(p), as this relation is true on the “finite compo-
nents” of gl(p). Similarly, one can check that so(p, b) and sp(p, c) are Lie sub-
algebras, and all three families consist of simple Lie algebras (as direct limits of
simple Lie algebras). If a = A ∈ E (i) , u, v ∈ V (i) , and b(i)(Au, v)+ b(i)(u,Av) = 0,
then by (8),

b(i+1)(ϕi(A)ηi(u), ηi(v)) + b(i+1)(ηi(u), ϕi(A)ηi(v))

= b(i+1)(ηi(Au), ηi(v)) + b(i+1)(ηi(u), ηi(Av))

= b(i)(Au, v) + b(i)(u,Av) = 0.

Since the vectors v
(i)
1 , . . . , v

(i)
qi are orthogonal to the copies of V (i) , and each v

(i)
j

is annihilated by a , whenever b(i) is a-invariant, then so is b(i+1) .
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The algebras so(p, b) and sp(p, c) might appear to be dependent on the
choice of b and c . Actually, it follows from [8], that the isomorphism classes of
such algebras depend only on p because K is algebraically closed, and so in the
future, we will simply write so(p) and sp(p) for these Lie algebras.

2. Root Gradings

We recall from [13, 11] that a Lie algebra L over a field K of characteristic 0 is
said to be ∆-graded for a finite reduced root system ∆ = An , Bn , Cn , Dn , E6 ,
E7 , E8 , F4 , G2 if the following conditions hold:

(∆i) L contains a split simple subalgebra g = h⊕
(⊕

µ∈∆ gµ

)
whose root system

is ∆ relative to the split Cartan subalgebra h = g0 ;

(∆ii) L =
⊕

µ∈∆∪{0} Lµ where Lµ = {x ∈ L | [h, x] = µ(h)x for all h ∈ h} ; and

(∆iii) L is generated by its root subspaces Lµ , µ ∈ ∆.

It follows from (∆ii) that [Lµ,Lλ] ⊆ Lµ+λ if µ+λ ∈ ∆∪{0} and [Lµ,Lλ] =
0 otherwise, so that L has a grading by the elements in ∆ ∪ {0} . We say that g

is the grading subalgebra.

When ∆ = An , Dn , E6 , E7 , E8 , then as a g-module under the adjoint
action, L decomposes into a direct sum of submodules isomorphic to the adjoint
module g and the trivial module K . For the doubly-laced root systems ∆ = Bn ,
Cn , F4 , and G2 , the algebra L decomposes under ad g into a direct sum of copies
of g , M , and K , where M is the irreducible g-module whose highest weight is the
highest short root. In particular, when ∆ = Bn , we may identify g with so(V ),
where V is a (2n+1)-dimensional space with a nondegenerate symmetric bilinear
form, and g is the space of skew transformations relative to the form. In this
case, we may identify the g-module M with V , and g with the second exterior
power Λ2(V ) of V . The second symmetric power S2(V ) is not irreducible, but
S2(V ) = S ⊕K , where S is irreducible (and can be identified with the symmetric
transformations of trace zero on V ).

If ∆ = Cn , we may view g as being sp(V ), where V is a (2n)-dimensional
space with a nondegenerate skew-symmetric bilinear form, and g is the space of
skew transformations on V relative to that form. In this case, the second exterior
power of V decomposes into irreducible g-modules as Λ2(V ) = Λ⊕K and M ∼= Λ.
Here g ∼= S2(V ) as g-modules.

There is a parallel notion of a Lie algebra L graded by the nonreduced
root system ∆ = BCn introduced and studied in [2, 10]. Such Lie algebras L
are assumed to contain a split simple subalgebra g = h⊕

(⊕
µ∈∆g

gµ

)
whose root

system ∆g is of type Bn , Cn , or Dn relative to the split Cartan subalgebra h .
Additionally, conditions (∆ii) and (∆iii) above must hold in L , where ∆ is the
root system of type BCn , (which contains ∆g ). As before, the subalgebra g is
referred to as the grading subalgebra of L . When n ≥ 2 and ∆g 6= D2 , a Lie
algebra graded by BCn will decompose as a module for its grading subalgebra
g into a direct sum of copies of g , s , V , and K , where s = S for types Bn

and Dn , and s = Λ for type Cn . Conversely, any Lie algebra L containing
such a subalgebra g , having such a g-module decomposition, and satisfying (∆iii)
automatically will be a BCn -graded Lie algebra.
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Now suppose that we have a diagonal direct limit Lie algebra L = X(p)

for X ∈ {sl, sp, so} . If we fix any component g := g(i) = X(V ) of L in the direct
limit (1), then for any j > i we have V (j) = V ⊕`j ⊕ (V ∗)⊕rj ⊕ K⊕zj . In this case
gl(V (j)) will decompose as a g-module into a direct sum of submodules isomorphic
to V ⊗ V , V ⊗ V ∗ , V ∗ ⊗ V ∗ , V , V ∗ and K . Since g(j) = X(V (j)) ⊂ gl(V (j)), we
have that g(j) is equal to a sum of irreducible g-modules which are isomorphic to
the irreducible summands of those modules. Thus for X = sl , the only g-modules
that can occur in g(j) = sl(V (j)), are copies of g , K , V , S2(V ), Λ2(V ) and dual
modules of the last three.

As V ∼= V ∗ when L = X(p) for X = sp, so , we need only consider the
irreducible summands of V ⊗V along with the modules V and K in this case. In
particular, if dimV ≥ 5, then any such direct limit Lie algebra L is a BCn -graded
Lie algebra for n = b(dimV )/2c with grading subalgebra g = X(V ) (condition
(∆iii) automatically holds as L is simple). In summary we have

Lemma 2.1. (i) Assume L is a diagonal direct limit of the form L = X(p) for

X = sp or so . Fix a component g := g(i) = X(V ) of L with dimV ≥ 5. Then L
is a BCn -graded Lie algebra for n = b(dimV )/2c with grading subalgebra g .

(ii) Assume L is a diagonal direct limit of the form L = sl(p). Suppose

g := g(i) = sl(V ) is a component of L . Then as a g-module under the adjoint
action, L is a direct sum of copies of g , V , V ∗ , K , S2(V ), Λ2(V ), S2(V ∗) and
Λ2(V ∗).

We conclude this subsection with an indication of why the diagonal direct
limits are of special importance while studying root graded locally finite simple
Lie algebras.

The following lemma can be found in [19] (see also [7, Lemma 5.2]).

Lemma 2.2. Let g ⊂ g′ ⊂ g′′ be classical simple Lie algebras. Assume that
the rank of g is greater than 10 and the embedding g → g′′ is diagonal. Then the
embeddings g → g′ and g′ → g′′ are also diagonal.

Theorem 2.3. Assume L is a direct limit of Lie algebras of the form sl(V (i)),
and let g be one of the terms of this sequence of rank at least 10. If L is ∆-graded
by the root system ∆ of g, then L is a diagonal direct limit.

Proof. According to Lemma 2.2, it is sufficient to prove that the embedding
g → g′ is diagonal, where g′ is a term of the direct limit whose number is greater
than that of g . We have g = sl(V ), g′ = sl(V ′), and we want to establish that
if g′ as a g-module under the adjoint action has only irreducible submodules g

and K , then V ′ as a g-module has only irreducible submodules V , V ∗ , and K .
Indeed, suppose that

V ′ =
⊕

ω

V (ω), (9)

where V (ω) denotes the highest weight g-module with highest weight ω . Then

sl(V ′)⊕ F = V ′ ⊗ (V ′)∗ (10)
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We choose a base ∆ = {α1, . . . , αl} of simple roots for the root system Al of g ,
and let {ω1, . . . , ωl} denote the corresponding fundamental dominant weights. As
sl(V ′) decomposes into copies of g and K which have highest weights ω1 +ωl and
0 respectively, the same must be true for the summands on the right side of (10).
If ω = m1ω1 + . . . + mlωl 6= 0 (all mi ≥ 0) occurs as a highest weight in the
decomposition (9), then ωT := mlω1 + . . .+m1ωl 6= 0 occurs in the decomposition
of (V ′)∗ . In this case, V (ω)⊗ V (ωT ) is a direct summand of the right-hand side
of (10), so that ω + ωT is among nonzero dominant weights of the left-hand side.
It follows that

(m1 +ml)ω1 + (m2 +ml−1)ω1 + . . .+ (ml +m1)ωl = ω1 + ωl. (11)

Now it is immediate that we have only two options for ω – namely, ω = ω1 and
then V (ω) ∼= V , or ω = ωl and then V (ω) ∼= V ∗ . This proves the diagonality of
embedding g → g′ .

The proof of this theorem actually demonstrates a stronger result. It must
be in the decomposition of (9) that only copies of V (ω1) or only copies of V (ωl)
occur. In other words, the structure triples must have the form (`i, 0, 0) or
(0, ri, 0). The second case immediately reduces to the first as indicated in [8,
Sec. 4]. So we may assume that all triples are of the form (`i, 0, 0). Structure
sequences with this property give what have been called pure limits, as discussed
next.

3. Locally Finite Lie Algebras Graded by
the Root Systems of Type A

In this section, we examine certain direct limits of type A that fall into the pattern
of root gradings. Here we will suppose that the structure sequence has the form
l = {(`i, 0, 0) | i = 1, 2, . . .} . In [8] these limits are called pure. Then we may
assume there is a sequence n = {n0, n1, . . . , nt−1, nt, . . .} of natural numbers with
n0 ≥ 2 and nt = nt−1`t for all t = 1, 2, . . . . We set n = n0 and mt = nt/n , and
let m = {m1,m2, . . . } . Then we can define sln and Mm as the direct limits of the
sequences of special linear Lie algebras slnt and the associative matrix algebras
Mmt , respectively. This is equivalent to a diagonal construction as in previous
sections. Indeed, the present procedure can be thought of as starting with a
vector space V (0) = K⊕n0 of dimension n0 ≥ 2 over K and defining K-spaces
V (t) = (V (t−1))⊕`t . The Lie algebras of interest are g(t) = sl(V (t)), which we can
identify with the special linear Lie algebra slnt with entries in K upon choosing
a basis. The corresponding associative algebra is E (t) = EndV (t) , which can be
identified with the matrix algebra Mnt .

A matrix algebra Mn(A) with entries in a unital associative algebra A can
be viewed as a Lie algebra under the commutator product

[aEi,j, bEk,l] = δj,kabEi,l − δl,ibaEk,j,

and sln(A) is the Lie subalgebra of Mn(A) generated by the matrices aEi,j , i 6= j ,
a ∈ A .

If ϕ : A −→ B is a homomorphism of associative algebras then Φ = sl(ϕ) :
sln(A) −→ sln(B) with ϕ applied entrywise is a homomorphism of Lie algebras
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(an easy check). Now let us consider two natural sequences of homomorphisms of
Lie algebras giving sln = lim

−→
slnt and sln(Mm) and establish an isomorphism of

these sequences. Thus, we have the following:

sln
Φ1−→ sln(Mm1)

Φ2−→ sln(Mm2) −→ . . . −→ sln(Mmt−1)
Φt−→ sln(Mmt) −→ (12)

arising from

Mm0

ϕ1−→ Mm1

ϕ2−→ Mm2 −→ . . . −→ Mmt−1

ϕt−→ Mmt −→ . . . , (13)

where ϕt(a) = diag(a, . . . , a︸ ︷︷ ︸
`t

) for a ∈ Mmt−1 . There is an analogous sequence of

Lie homomorphisms,

sln
ϑ1−→ sln1

ϑ2−→ sln2 −→ . . . −→ slnt−1

ϑt−→ slnt −→ . . . , (14)

which can be defined in the same way. If we can find isomorphisms σt : sln(Mmt) −→
slnt so that σtΦt = ϑtσt−1 , then we will establish the following result.

Theorem 3.1. Assume l = (`1, `2, . . . ) and n = (n0 = n, n1, n2, . . . ), where
n ≥ 2, the li are positive integers, and nt = nt−1`t . Set m = (m1,m2, . . . ) where
mt = nt/n for all t = 1, 2, . . . . Then sln(Mm) ∼= sln = lim

−→
slnt .

Proof. First we note that there is an isomorphism σt : Mn(Mmt) −→ Mnt

of associative algebras. This is a standard argument: there is a basis εp,qEi,j

(1 ≤ p, q ≤ mt , 1 ≤ i, j ≤ n) of Mn(Mmt), where Ei,j is a matrix unit in Mn ,
and εp,q is a matrix unit of Mmt considered as the coefficient. But we can also
view Ei,j as the coefficient and εp,q as a matrix unit. Having this in mind, we
define σt as the linear transformation whose image of εp,qEi,j is an (nt×nt)-matrix
split into square blocks of size n . Thus, there are mt = nt/n blocks in each row
and column. The (p, q) entry of σt(εp,qEi,j) is Ei,j , and all other entries are 0.
Observe that

εp,qEi,jεp′,q′Ei′,j′ = δj,i′δq,p′εp,q′Ei,j′ ,

so the image of the product under σt is the matrix whose (p, q′) entry is δj,i′δq,p′Ei,j′

and all other entries are 0.

The product σt (εp,qEi,j)σt (εp′,q′Ei′,j′) involves the (p, q) block times the
(p′, q′) block. So it gives 0 unless q = p′ , and in that case, the result is Ei,jEi′,j′ =
δj,i′Ei,j′ in the (p, q′) place. This is the same as the image of the product above.
Thus, σt is a homomorphism. But since both algebras are simple and of the same
dimension over K , σt is an isomorphism.

The map σt also is an isomorphism of the corresponding Lie algebras, and
thus restricts to an isomorphism σt : sln(Mmt) −→ slnt of their commutators.

Now we want to check that the relation ϑtσt−1 = σtΦt holds. Let us start
with εp,qEi,j ∈ sln(Mmt−1). Then

Φt(εp,qEi,j) =
(
εp,q + εp+mt−1,q+mt−1 + · · ·+ εp+(`t−1)mt−1,q+(`t−1)mt−1

)
Ei,j (15)

(we recall that mt = `tmt−1 and nt = mtn). The image of this element under σt

will be the matrix which is the sum of `t identical blocks Ei,j in positions (p, q),
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(p + mt−1, q + mt−1),. . . , (p + (`t − 1)mt−1, q + (`t − 1)mt−1). If instead we first
apply σt−1 to εp,qEi,j , we obtain an (nt−1 × nt−1)-matrix with block Ei,j at the
(p, q) location. Applying ϑt means placing the matrix just obtained `t times down
the diagonal of an (nt×nt)-matrix. This means that the matrix Ei,j now appears
at the positions (p, q), (p+mt−1, q+mt−1),. . . , (p+(`t−1)mt−1, q+(`t−1)mt−1),
which gives the same matrix as above. So the proof of Theorem 3.1 is complete.

It is well-known [17, 13, 1] that any Lie algebra L of the form sln(A), where
A is an associative algebra, is An−1 -graded, and as such, has a realization as

L = (sln ⊗ A)⊕DA,A.

The multiplication is given by

[x⊗ a, y ⊗ a′] = [x, y]⊗ 1

2
(a ◦ a′) + (x ◦ y)⊗ 1

2
[a, a′] + (x|y)Da,a′

[Da,a′ , x⊗ b] = x⊗ [[a, a′], b] (16)

[Da,a′ , Db,b′ ] = D[[a,a′],b],b′ +Db,[[a,a′],b′],

where

a ◦ a′ = aa′ + a′a

x ◦ y = xy + yx− 2

n
tr(xy) (17)

(x|y) =
1

n
tr(xy) and

Da,a′(b) = [[a, a′], b].

As any ∆-graded Lie algebra L is perfect (L = [L,L]), it has a universal

covering algebra L̂ (often called the universal central extension) which is also
perfect and is unique up to isomorphism. Any perfect Lie algebra which is a
central extension of L is a homomorphic image of L̂ . The algebra L̂ is the vector
space L̂ = (sln ⊗A)⊕{A,A} with {A,A} = (A⊗A)/J , where J is the subspace
of A ⊗ A generated by the elements a ⊗ b + b ⊗ a , ab ⊗ c + bc ⊗ a + ca ⊗ b for
all a, b, c ∈ A . We know from [9] that any derivation δ ∈ DerA has an action on
{A,A} by setting δ{a, b} = {δa, b}+ {a, δb} , and {A,A} can be made into a Lie
algebra by specifying

[{a, b}, {c, d}] = Da,b{c, d} = {[[a, b], c], d}+ {c, [[a, b], d]},

(see [12, Lemma 1.46]). The mapping {a, b} 7→ Da,b is a surjective homomorphism

[1, Lemma 4.10]. Now if we endow L̂ = (sln⊗A)⊕{A,A} with the multiplication
given by

[x⊗ a, y ⊗ a′] = [x, y]⊗ 1

2
(a ◦ a′) + (x ◦ y)⊗ 1

2
[a, a′] + (x|y){a, a′},

[{a, a′}, x⊗ b] = x⊗ [[a, a′], b], (18)

[{a, b}, {c, d}] = {[[a, b], c], d}+ {c, [[a, b], d]},
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then (L̂, π̂) with π̂ : L̂ −→ L given by π̂ : x⊗a 7→ x⊗a , π̂ : {a, a′} 7→ Da,a′ is the

universal covering algebra of L . The center of L̂ is the so-called full skew-dihedral
homology

HF(A) =

{∑
i

{ai, bi} ∈ {A,A}

∣∣∣∣∣ ∑
i

Dai,bi
= 0

}
,

which is often identified with the first (Connes) cyclic homology group HC1(A)
of A .

In our case A = Mm , and we can determine {A,A} precisely. Let us
suppose that A = Mm and At = Mmt . It should be noted first that if ϕ : A −→ B
is a homomorphism of associative algebras, then ϕ has a natural extension not

only to Φ = sln(ϕ) : sln(A) −→ sln(B) but also to Φ̂ = ŝln(ϕ) : ŝln(A) −→ ŝln(B),

defined by Φ̂(x⊗ a) = x⊗ ϕ(a) and Φ̂({a, a′}) = {ϕ(a), ϕ(a′)} . Clearly then

Φ̂([x⊗ a, y ⊗ a′]) = [x, y]⊗ ϕ

(
1

2
(a ◦ a′)

)
+ (x ◦ y)⊗ ϕ

(
1

2
[a, a′]

)
+(x|y){ϕ(a), ϕ(a′)}

= [x, y]⊗ 1

2

(
ϕ(a) ◦ ϕ(a′)

)
+ (x ◦ y)⊗ 1

2
[ϕ(a), ϕ(a′)]

+(x|y){ϕ(a), ϕ(a′)}
= [x⊗ ϕ(a), y ⊗ ϕ(a′)] = [Φ̂(x⊗ a), Φ̂(y ⊗ a′)].

Also,

Φ̂([{a, b}, x⊗ c]} = x⊗ ϕ([[a, b], c]) = x⊗ [[ϕ(a), ϕ(b)], ϕ(c)]

= [{ϕ(a), ϕ(b)}, x⊗ ϕ(c)] = [Φ̂({a, b}), Φ̂(x⊗ c)].

Finally,

Φ̂([{a, b}, {c, d}]) = {ϕ([[a, b], c]), ϕ(d)}+ {ϕ(c), ϕ([[a, b], d])}
= {[[ϕ(a), ϕ(b)], ϕ(c)], ϕ(d)}+ {ϕ(c), [[ϕ(a), ϕ(b)], ϕ(d)]}
= [{ϕ(a), ϕ(b)}, {ϕ(c), ϕ(d)}] = [Φ̂({a, b}), Φ̂({c, d})].

Now we are going to apply two functors, sln(.) and ŝln(.), to the sequence
in (13). This will produce the following diagram which will be shown to be
commutative, and each π̂t will be shown to be injective:

̂sln(Mm1)
Φ̂1−→ . . . −→ ̂sln(Mmt−1)

Φ̂t−1−→ ̂sln(Mmt)
Φ̂t−→ . . .

↓ π̂1 ↓ π̂t−1 ↓ π̂t

sln(Mm1)
Φ1−→ . . . −→ sln(Mt−1)

Φt−1−→ sln(Mmt)
Φt−→ . . .

If we verify the commutativity of the diagram and the injectivity of the

maps π̂t , then we will obtain that π̂ : ̂sln(Mm) −→ sln(Mm) is injective. As π̂ is
surjective, it is an isomorphism of Lie algebras. Now, since we know that the Lie
algebra sln(Mmt) is isomorphic to slnt for each t = 1, 2, . . . , all central extensions
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of this algebra are split. But each ∆-graded algebra, including ̂sln(Mmt) =
(sln ⊗Mmt)⊕{Mmt ,Mmt} , is generated by its gradation subspaces corresponding

to nonzero roots; hence if ̂sln(Mmt) is a split central extension of sln(Mmt), they
must coincide. Thus, all column maps in the diagram are isomorphisms. It remains
to check the commutativity of the diagram. For this we have

π̂t+1Φ̂t(x⊗ a) = π̂t+1(x⊗ ϕt(a)) = x⊗ ϕt(a),

Φtπ̂t(x⊗ a) = Φt(x⊗ a) = x⊗ ϕt(a),

π̂t+1Φ̂t({a, b}) = π̂t+1({ϕt(a), ϕt(b)}) = Dϕt(a),ϕt(b) = Φt(Da,b),

Φtπ̂t({a, b}) = Φt(Da,b),

as required.

As a consequence of these considerations and Theorem 3.1, we have estab-
lished the following:

Theorem 3.2. (i) Any An−1 -graded Lie algebra, n ≥ 3, with coordinate
algebra equal to the matrix algebra Mm is isomorphic to sln(Mm), hence to
sln , and has no non-split central extensions.

(ii) HC1(Mm) = 0.

4. Lie Superalgebras Having a Prescribed Decomposition
Relative to sln (n ≥ 4)

Before we proceed to investigate locally finite simple Lie algebras which are of a
more general form than those discussed in the previous sections, we need some
results on certain Lie algebras which generalize An−1 -graded Lie algebras. As
these results hold in the wider context of Lie superalgebras, we will phrase them
in that language with an eye towards further applications in the future.

Our object of study here will be Lie superalgebras L = L0̄⊕L1̄ over a field
K of characteristic zero satisfying the following requirements:

(a) L0̄ contains a subalgebra g which is isomorphic to sln for n ≥ 4;

(b) As a g-module, L is a direct sum of copies of g , V = V (ω1) (the natural
n-dimensional module of g with highest weight ω1 ), its dual module V ∗ =
V (ωn−1), and trivial modules;

(c) Relative to the Cartan subalgebra h of g of diagonal matrices, L decomposes
into weight spaces, and L is generated by the weight spaces corresponding
to the nonzero weights.

Thus, there are Z2 -graded vector spaces A,B,C,D such that

L = (g⊗ A)⊕ (V ⊗B)⊕ (V ∗ ⊗ C)⊕D,

where D is the sum of the trivial g-modules (it is the centralizer of g in L , hence
a subalgebra). We identify the subalgebra g with g⊗ 1 ⊆ g⊗ A . Thus,

L0̄ = (g⊗ A0̄)⊕ (V ⊗B0̄)⊕ (V ∗ ⊗ C0̄)⊗D0̄

L1̄ = (g⊗ A1̄)⊕ (V ⊗B1̄)⊕ (V ∗ ⊗ C1̄)⊗D1̄



254 Bahturin and Benkart

Because g ∼= V (ω1 + ωn−1) and

V (ω1 + ωn−1)⊗ V (ω1) = V (2ω1 + ωn−1)⊕ V (ω2 + ωn−1)⊕ V (ω1)

V (ω1)⊗ V (ωn−1) = V (ω1 + ωn−1)⊕ V (0)

V (ω1)⊗ V (ω1) = V (2ω1)⊕ V (ω2)

V (ω1 + ωn−1)⊗ V (ωn−1) = V (ω1 + 2ωn−1)⊕ V (ω1 + ωn−2)⊕ V (ωn−1)

V (ωn−1)⊗ V (ωn−1) = V (2ωn−1)⊕ V (ωn−2),

there exists a supercommutative product

a× a′ → a ◦ a′ ∈ A

superanticommutative products

a× a′ → [a, a′] ∈ A
a× a′ → 〈a, a′〉 ∈ D

and products
a× b→ ab ∈ B
a× c→ ca ∈ C
b× c→ (b, c) ∈ A
b× c→ 〈b, c〉 ∈ D
d× a→ da ∈ A
d× b→ db ∈ B
d× c→ dc ∈ C

for a, a′ ∈ A , b ∈ B , c ∈ C , and d ∈ D so that the product in L is given by

[x⊗ a, y ⊗ a′] = [x, y]⊗ 1

2
a ◦ a′ + x ◦ y ⊗ 1

2
[a, a′] + (x|y)〈a, a′〉

[x⊗ a, u⊗ b] = xu⊗ ab = −(−1)āb̄[u⊗ b, x⊗ a]

[v∗ ⊗ c, x⊗ a] = v∗x⊗ ca = −(−1)āc̄[x⊗ a, v∗ ⊗ c]

[u⊗ b, v∗ ⊗ c] = (uv∗ − 1

n
tr(uv∗)I)⊗ (b, c) +

1

n
tr(uv∗)〈b, c〉

= (uv∗ − 1

n
v∗uI)⊗ (b, c) +

1

n
v∗u〈b, c〉 (19)

= −(−1)b̄c̄[v∗ ⊗ c, u⊗ b]

[d, x⊗ a] = x⊗ da = −(−1)d̄ā[x⊗ a, d]

[d, u⊗ b] = u⊗ db = −(−1)d̄b̄[u⊗ b, d]

[d, v∗ ⊗ c] = v∗ ⊗ dc = −(−1)d̄c̄[v∗ ⊗ c, d]

[d, d′] ∈ D

for x, y ∈ g , u ∈ V , v∗ ∈ V ∗ . All other products are zero. When we write such
expressions, we assume that the elements in A,B,C , and D are homogeneous, and
ā = ı̄ if a ∈ Aı̄ , etc. The action x, u→ xu of g on V is just matrix multiplication,
as we may identify V with Kn , that is, with n×1 matrices over K . We identify V ∗

with 1× n matrices over K , and v∗x above is just the matrix product. Similarly,
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uv∗ is the product of the two matrices u, v∗ as is v∗u ; and (x|y) and x ◦ y are as
in (17).

The prototype of such a Lie superalgebra is the special linear Lie superal-
gebra L = sln,m viewed as a sln -module. In this case, L ∼= sln ⊕ (V ⊗ W ∗) ⊕
(V ∗ ⊗W )⊕

(
slm ⊕Kd

)
, where W is the natural m-dimensional module for slm ,

W ∗ is its dual, and d is the (n + m) × (n + m) matrix which is mIn − nIm .
The spaces W and W ∗ are odd (W = W1̄ , W ∗ = (W ∗)1̄ ). Here A = K and
g ⊗ A ∼= sln so we have not bothered to write A . As another example, we can
consider the Lie algebra L = sln+1 regarded as a module for g = sln , which we
identify with the (n× n)-matrices of trace 0 in the northwest corner of L . Then
L ∼= sln ⊕ V ⊕ V ∗ ⊕Kd where d is the diagonal (n+ 1)× (n+ 1)-matrix with n
1’s and −n down its main diagonal.

We wish to derive properties of the products in (19). For this we define

aa′ :=
1

2
a ◦ a′ + 1

2
[a, a′].

Therefore,

a ◦ a′ = aa′ + (−1)āā′a′a (20)

[a, a′] = aa′ − (−1)āā′a′a.

From

[x⊗ a1, [y⊗ a2, z⊗ a3]] = [[x⊗ a1, y⊗ a2], z⊗ a3] + (−1)ā1ā2 [y⊗ a2, [x⊗ a1, z⊗ a2]]

we obtain that

[x, [y, z]]⊗ 1

4
a1 ◦ (a2 ◦ a3) + x ◦ [y, z]⊗ 1

4
[a1, a2 ◦ a3] +

1

2
(x|[y, z])〈a1, a2 ◦ a3〉

+[x, y ◦ z]⊗ 1

4
a1 ◦ [a2, a3] + x ◦ (y ◦ z)⊗ 1

4
[a1, [a2, a3]]

+
1

2
(x|(y ◦ z))〈a1, [a2, a3]〉 − (−1)(ā2+ā3)ā1(y|z)x⊗ 〈a2, a3〉a1 = (21)

[[x, y], z]⊗ 1

4
(a1 ◦ a2) ◦ a3 + [x, y] ◦ z ⊗ 1

4
[a1 ◦ a2, a3]

+
1

2
([x, y]|z)〈a1 ◦ a2, a3〉+ [x ◦ y, z]⊗ 1

4
[a1, a2] ◦ a3 +

1

2
(x ◦ y|z)〈[a1, a2], a3〉

+(x|y)z ⊗ 〈a1, a2〉a3 + (x ◦ y) ◦ z ⊗ 1

4
[[a1, a2], a3]

+(−1)ā1ā2 [y, [x, z]]⊗ 1

4
a2 ◦ (a1 ◦ a3) + (−1)ā1ā2y ◦ [x, z]⊗ 1

4
[a2, a1 ◦ a3]

+(−1)ā1ā2
1

2
(y|[x, z])〈a2, a1 ◦ a3〉+ (−1)ā1ā2 [y, x ◦ z]⊗ 1

4
a2 ◦ [a1, a3]

+(−1)ā1ā2y ◦ (x ◦ z)⊗ 1

4
[a2, [a1, a3]] + (−1)ā1ā2

1

2
(y|x ◦ z)〈a2, [a1, a3]〉

−(−1)ā2ā3(x|z)y ⊗ 〈a1, a3〉a2.



256 Bahturin and Benkart

Now suppose that x = E1,2, y = E2,3 and z = E3,1 in (21). Then we see that

(E1,1 − E2,2)⊗
1

4
a1 ◦ (a2 ◦ a3) + (E1,1 + E2,2 −

2

n
I)⊗ 1

4
[a1, a2 ◦ a3] (22)

+
1

2n
〈a1, a2 ◦ a3〉+ (E1,1 − E2,2)⊗

1

4
a1 ◦ [a2, a3]

+(E1,1 + E2,2 −
2

n
I)⊗ 1

4
[a1, [a2, a3]] +

1

2n
〈a1, [a2, a3]〉 =

(E1,1 − E3,3)⊗
1

4
(a1 ◦ a2) ◦ a3 + (E1,1 + E3,3 −

2

n
I)⊗ 1

4
[a1 ◦ a2, a3]

+
1

2n
〈a1 ◦ a2, a3〉+ (E1,1 − E3,3)⊗

1

4
[a1, a2] ◦ a3

+(E1,1 + E3,3 −
2

n
I)⊗ 1

4
[[a1, a2], a3] +

1

2n
〈[a1, a2], a3〉

+(−1)ā1ā2(E3,3 − E2,2)⊗
1

4
a2 ◦ (a1 ◦ a3)

−(−1)ā1ā2(E2,2 + E3,3 −
2

n
I)⊗ 1

4
[a2, a1 ◦ a3]− (−1)ā1ā2

1

2n
〈a2, a1 ◦ a3〉

+(−1)ā1ā2(E2,2 − E3,3)⊗
1

4
a2 ◦ [a1, a3]

+(−1)ā1ā2(E2,2 + E3,3 −
2

n
I)⊗ 1

4
[a2, [a1, a3]] + (−1)ā1ā2

1

2n
〈a2, [a1, a3]〉.

Now as n ≥ 4, the elements E1,1 − E2,2, E1,1 − E3,3 , and E1,1 + E2,2 − 2
n
I are

linearly independent. Moreover,

E3,3 − E2,2 = (E1,1 − E2,2)− (E1,1 − E3,3)

E2,2 + E3,3 −
2

n
I = (E1,1 + E2,2 −

2

n
I)− (E1,1 − E3,3)

E1,1 + E3,3 −
2

n
I = (E1,1 − E2,2)− (E1,1 − E3,3) + (E1,1 + E2,2 −

2

n
I).

Thus, the coefficient of E1,1 − E2,2 in (22) says that

1

4
a1 ◦ (a2 ◦ a3) +

1

4
a1 ◦ [a2, a3]

=
1

4
[a1 ◦ a2, a3] +

1

4
[[a1, a2], a3]

+(−1)ā1ā2
1

4
a2 ◦ (a1 ◦ a3)− (−1)ā1ā2

1

4
a2 ◦ [a1, a3],

or
a1 ◦ (a2a3) = [a1a2, a3] + (−1)ā1(ā2+ā3)a2 ◦ (a3a1).

Simplifying, we obtain

a1(a2a3)− (a1a2)a3 = (−1)ā1(ā2+ā3)
(
a2(a3a1)− (a2a3)a1

)
−(−1)ā3(ā1+ā2)

(
a3(a1a2)− (a3a1)a2

)
.

Letting (a1, a2, a3) = a1(a2a3) − (a1a2)a3 , the associator, and multiplying this
equation by (−1)ā1ā3 shows that

(−1)ā1ā3(a1, a2, a3)− (−1)ā1ā2(a2, a3, a1) + (−1)ā2ā3(a3, a1, a2) = 0.
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Cyclically permuting gives

(−1)ā1ā2(a2, a3, a1)− (−1)ā2ā3(a3, a1, a2) + (−1)ā1ā3(a1, a2, a3) = 0,

and adding these two relations shows that

(a1, a2, a3) = 0.

As a consequence we deduce that

Proposition 4.1. A with the product a × a′ → aa′ is an associative superal-
gebra (i.e. a Z2 -graded associative algebra).

Let us return to (21) but this time substitute x = E1,2 , y = E2,1 , and
z = E2,3 . As [y, z] = 0 = y ◦ z , equation (21) in this instance reduces to

0 = −E2,3 ⊗
1

4
(a1 ◦ a2) ◦ a3 − E2,3 ⊗

1

4
[a1 ◦ a2, a3] + E2,3 ⊗

1

4
[a1, a2] ◦ a3

+
n− 4

n
E2,3 ⊗

1

4
[[a1, a2], a3] + E2,3 ⊗

1

n
〈a1, a2〉a3

+(−1)ā1ā2E2,3 ⊗
1

4
a2 ◦ (a1 ◦ a3) + (−1)ā1ā2E2,3 ⊗

1

4
[a2, a1 ◦ a3]

+(−1)ā1ā2E2,3 ⊗
1

4
a2 ◦ [a1, a3] + (−1)ā1ā2E2,3 ⊗

1

4
[a2, [a1, a3]]

so that

0 = −1

2
(a1 ◦ a2)a3 +

1

4
[a1, a2] ◦ a3 +

n− 4

4n
[[a1, a2], a3] +

1

n
〈a1, a2〉a3

+(−1)ā1ā2
1

2
a2 ◦ (a1a3) + (−1)ā1ā2

1

2
[a2, a1a3],

which implies that

〈a1, a2〉a3 = [[a1, a2], a3]. (23)

Remark 4.2. We note that the results in Proposition 4.1 and in (23) alter-
nately could be derived from known results for An−1 -graded Lie algebras using
Grassmann envelopes, as (g⊗ A)⊗D is a subalgebra of L . See also [14].

We turn our attention next to discovering properties of the spaces B , C
and D . First consider

[x⊗ a1, [y ⊗ a2, u⊗ b]] = [[x⊗ a1, y ⊗ a2], u⊗ b] (24)

+ (−1)ā1ā2 [y ⊗ a2, [x⊗ a1, u⊗ b]]

with x = E1,2 , y = E2,3 and u = e3 (a standard basis element of V ). This gives

e1 ⊗ a1(a2b) = e1 ⊗
1

2
(a1 ◦ a2)b+ e1 ⊗

1

2
[a1, a2]b

from which we see that
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Proposition 4.3. B is an A-module: a1(a2b) = (a1a2)b.

Now (24) with x = E1,2 , y = E2,1 , u = e1 , says that

e1⊗ a1(a2b) = e1⊗
1

2
(a1 ◦ a2)b+ (E1,1 +E2,2−

2

n
I)e1⊗

1

2
[a1, a2]b+ e1⊗

1

n
〈a1, a2〉b.

This gives the result
〈a1, a2〉b = [a1, a2]b (25)

for all a1, a2 ∈ A , b ∈ B . Likewise

[v∗ ⊗ c, [x⊗ a1, y ⊗ a2]] = [[v∗ ⊗ c, x⊗ a1], y ⊗ a2] (26)

+ (−1)a1c[x⊗ a1, [v
∗ ⊗ c, y ⊗ a2]]

with x = E1,2 , y = E2,3 , and v∗ = e∗1 produces the relation

e∗3 ⊗
1

2
c
(
a1 ◦ a2 + [a1, a2]

)
= e∗3 ⊗ (ca1)a2

which says

Proposition 4.4. C is a right A-module: c(a1a2) = (ca1)a2 .

Choosing instead x = E1,2 , y = E2,1 and v∗ = e∗1 in (26) shows that

e∗1 ⊗
(1

2
c(a1 ◦ a2) +

n− 2

n
e∗1 ⊗

1

2
c[a1, a2]− (−1)(ā1+ā2)c̄ 1

n
〈a1, a2〉c

)
= e∗1 ⊗ (ca1)a2.

Consequently,
〈a1, a2〉c = (−1)(ā1+ā2)c̄c[a1, a2]. (27)

Now let us tackle substitutions of the identity

[x⊗ a, [u⊗ b, v∗ ⊗ c]] = [xu⊗ ab, v∗ ⊗ c]− (−1)ā(b̄+c̄)[u⊗ b, v∗x⊗ ca], (28)

which rephrased gives

[x, uv∗]⊗ 1

2
a ◦ (b, c) + x ◦

(
uv∗ − 1

n
tr(uv∗)I

)
⊗ 1

2
[a, (b, c)]

+(x|uv∗)〈a, (b, c)〉 − (−1)ā(b̄+c̄) 1

n
tr(uv∗)x⊗ 〈b, c〉a

=
(
xuv∗ − 1

n
tr(xuv∗)I

)
⊗ (ab, c) +

1

n
tr(xuv∗)〈ab, c〉 (29)

−(−1)ā(b̄+c̄)

((
uv∗x− 1

n
tr(uv∗x)I

)
⊗ (b, ca) +

1

n
tr(uv∗x)〈b, ca〉

)
Starting with x = E1,2 , u = e2 , v∗ = e∗3 , we see that

a(b, c) = (ab, c). (30)

Proceeding with x = E1,2 , u = e3 , and v∗ = e∗1 , we determine that

−E3,2 ⊗
1

2
a ◦ (b, c) + E3,2 ⊗

1

2
[a, (b, c)] = −(−1)ā(b̄+c̄)E3,2 ⊗ (b, ca),
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which implies
(b, c)a = (b, ca). (31)

It is apparent from (29), that

〈a, (b, c)〉 = 〈ab, c〉 − (−1)ā(b̄+c̄)〈b, ca〉. (32)

Also, we see by setting u = e1, v
∗ = e∗1 , and x = E2,3 in (29) that

〈b, c〉a = [(b, c), a]. (33)

In fact, relations (30-33) imply that (29) holds.

Next we compute the Jacobi identity

[[u1 ⊗ b1, v
∗ ⊗ c], u2 ⊗ b2] = −(−1)b̄2c̄[u1 ⊗ b1, [u2 ⊗ b2, v

∗ ⊗ c]], (34)

which says(
u1v

∗ − 1

n
tr(u1v

∗)I

)
u2 ⊗ (b1, c)b2 +

1

n
tr(u1v

∗)u2 ⊗ 〈b1, c〉b2

= (−1)b̄1b̄2+b̄1c̄+b̄2c̄

((
u2v

∗ − 1

n
tr(u2v

∗)I
)
u1 ⊗ (b2, c)b1

+
1

n
tr(u2v

∗)u1 ⊗ 〈b2, c〉b1

)

Therefore, as v∗u = tr(uv∗) for all u ∈ V , v∗ ∈ V ∗ ,

v∗u2u1 ⊗
(
(b1, c)b2 − (−1)b̄1b̄2+b̄1c̄+b̄2c̄ 1

n
〈b2, c〉b1 + (−1)b̄1b̄2+b̄1c̄+b̄2c̄ 1

n
(b2, c)b1

)
= v∗u1u2 ⊗

(
(−1)b̄1b̄2+b̄1c̄+b̄2c̄(b2, c)b1 −

1

n
〈b1, c〉b2 +

1

n
(b1, c)b2

)
giving

〈b1, c〉b2 = (b1, c)b2 + (−1)b̄1b̄2+b̄1c̄+b̄2c̄n(b2, c)b1 (35)

There is an analogous relation for C :

〈b, c1〉c2 = −(−1)b̄c̄1nc1(b, c2)− (−1)(b̄+c̄1)c̄2c2(b, c1). (36)

Now observe that the Jacobi identity with d and various other substitutions
show the following hold:

d(aa′) = d(a)a′ + (−1)ād̄ad(a′)

d(ab) = d(a)b+ (−1)ād̄ad(b)

d(ca) = d(c)a+ (−1)c̄d̄cd(a) (37)

d(b, c) = (d(b), c) + (−1)b̄d̄(b, d(c))

[d, 〈b, c〉] = 〈d(b), c〉+ (−1)b̄d̄〈b, d(c)〉.

To summarize these results we have the following:



260 Bahturin and Benkart

Theorem 4.5. Let L = L0̄ ⊕ L1̄ be a Lie superalgebra over a field K of char-
acteristic zero satisfying the assumptions of (4.). Then there exist an associative
superalgebra A with unit element, a (Z2 -graded) left A-module B , a (Z2 -graded)
right A-module C , and a Lie superalgebra D over K, such that

L = (g⊗ A)⊕ (V ⊗B)⊕ (V ∗ ⊗ C)⊕D, (38)

where D is the sum of the trivial g-modules. The multiplication is as in (19), where
the maps b× c→ (b, c) ∈ A and b× c→ 〈b, c〉 ∈ D satisfy (30-37). Conversely, a
Z2 -graded algebra L as in (38), where A is an associative superalgebra with unit
element, B is a (Z2 -graded) left A-module, C is a (Z2 -graded) right A-module,
and D is a Lie superalgebra with a representation on the superspace A⊕ B ⊕ C ,
is a Lie superalgebra if the multiplication is as in (19), and relations (23), (25),
(27), (30-33), and (35-37) hold.

Proof. We have shown one direction already. For the converse, observe that
the associativity of A along with (23) implies the Jacobi (super)identity (21) for
three elements from g ⊗ A . The fact that B is a left A-module and (25) imply
that (24) holds. Similarly, (26) follows from the fact that C is a right A-module
and (27). Then (30-33) give (28); while (35) is equivalent to (34) holding. The
Jacobi (super)identity for two elements from V ∗ ⊗ C and one from V ⊗ B , is
equivalent to (36). Commutators of three elements from V ⊗B or three elements
from V ∗⊗C are 0. As D is a Lie superalgebra and elements from D are assumed
to satisfy (37), then L is a Lie superalgebra.

5. Locally Finite Lie Algebras That Are Close to
Root Graded Lie Algebras

Some locally finite simple Lie algebras are not root graded for any root system but
closely resemble root graded Lie algebras. The one-sided limits of special linear Lie
algebras, which are a particular kind of diagonal limit, provide a natural class of
such algebras. For one-sided limit algebras, if g = sln for n ≥ 4 is a certain fixed
term of the sequence (1), then each V (i) has a decomposition V (i) = V ⊕`i ⊕K⊕zi

into copies of the natural n-dimensional g-module V and of the trivial g-module
K for nonnegative `i, zi . Then the Lie algebra g(i) decomposes as a g-module in
the following way:

g(i) = g⊕ai ⊕ V ⊕bi ⊕ (V ∗)⊕ci ⊕K⊕di . (39)

Consequently, the limit Lie algebra L = lim
−→

g(i) admits a decomposition

L = (g⊗ A)⊕ (V ⊗B)⊕ (V ∗ ⊗ C)⊕D (40)

for g = sln as in the previous section. The general properties of the spaces A , B ,
C , D have been described in Section 4. (But here the Z2 -gradings are trivial.)
However, we can determine more precise information about these algebras and
modules in this case.

Let V = K⊕p0 be a vector space, and set E = EndV . We consider E
as the initial term of the sequence of algebras E(i) = EndV (i) where V (0) = V
and V (i) =

(
V (i−1) ⊗ P (i)

)
⊕Q(i) for some spaces P (i) , Q(i) of dimensions pi , qi ,
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respectively, i = 1, 2, . . . . We also define embeddings ϕ(i) : E(i−1) −→ E(i) by
setting, for x ∈ E(i−1) ,

ϕ(i)(x)
(
v(i−1) ⊗ a(i) + b(i)

)
= x(v(i−1))⊗ a(i). (41)

Here v(i−1) ∈ V (i−1) , a(i) ∈ P (i) , b(i) ∈ Q(i) , and ϕ(i) : E(i−1) −→ E(i) is a
homomorphism of algebras. In appropriate bases for V (i−1) and V (i) , if X is the
matrix of x , then (X , . . . ,X︸ ︷︷ ︸

pi

, 0, . . . , 0︸ ︷︷ ︸
qi

) is a matrix for ϕ(i)(x), and the direct limit

of the family {E(i), ϕ(i)} is the direct limit E = E(p) of associative matrix algebras
corresponding to the sequence p = {(pi, qi)} as in Section 1. If we restrict ourselves

to the Lie subalgebras L(i) = sl(V (i)) ⊂ E(i) under the bracket operation, then
ϕ(i) induces a homomorphism of Lie algebras ϕ(i) : L(i−1) −→ L(i) , and in this way
we obtain a one-sided diagonal direct limit L of the family {L(i), ϕ(i)} of special
linear Lie algebras (see [8]).

To obtain the structure of L we need to determine the structure of E . First
of all, we give each E(i) a grading by the semigroup Γ of matrix units of 2 × 2
matrices. For any algebra A , this amounts to writing A as the direct sum of
subspaces A = A1,1 ⊕ A1,2 ⊕ A2,1 ⊕ A2,2 such that Ai,jAi′,j′ = 0 if j 6= i′ and
Ai,jAj,j′ ⊂ Ai,j′ . Simple algebras with this decomposition property often have
been referred to as generalized matrix algebras. Such gradings arise naturally on
an algebra A with identity element 1 and an idempotent e , if one sets A1,1 = eAe ,
A1,2 = eA(1− e), A2,1 = (1− e)Ae , A2,2 = (1− e)A(1− e). This is just the Peirce
decomposition of A with respect to e . In particular, if A = EndX and we fix a
vector space decomposition X = Y ⊕ Z , then taking the idempotent e ∈ A equal
to the projection of X onto Y along Z produces a Γ-grading of A .

Lemma 5.1. Suppose A,B are associative K-algebras with unit elements and
Γ-gradings by the idempotents e,f , respectively. If ϕ : A −→ B is a homomor-
phism (a K-linear transformation satisfying ϕ(aa′) = ϕ(a)ϕ(a′)), then ϕ is a
Γ-graded homomorphism provided that ϕ(1)f = fϕ(1) = ϕ(e).

Proof. Indeed, if x = eae ∈ eAe for some a ∈ A , then

fϕ(x)f = fϕ(e)ϕ(a)ϕ(e)f = fϕ(1)ϕ(e)ϕ(a)ϕ(e)ϕ(1)f

= ϕ(e)2ϕ(a)ϕ(e)2 = ϕ(e2ae2) = ϕ(x).

Therefore, ϕ(eAe) ⊆ fBf . If x = ea(1− e) for some a ∈ A , then

fϕ(x)(1− f) = fϕ(1)ϕ(e)ϕ(a)ϕ(1− e)ϕ(1)(1− f)

= ϕ(e)ϕ(e)ϕ(a)ϕ(1− e)
(
ϕ(1)− ϕ(e)

)
= ϕ(ea(1− e)) = ϕ(x),

so that ϕ(eA(1− e)) ⊆ fB(1− f). The remaining two cases can be handled in a
similar manner.

Suppose now that V (0) = V = K⊕p0− is a vector space as before, and
V (i) = (V (i−1) ⊗ P (i)) ⊕ Q(i) for i = 1, 2, . . . . To obtain a Γ-grading on E(i) =
EndV (i) , we decompose space V (i) as V (i) = U (i)⊕W (i) according to the following
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procedure. We set U (0) = V (0) = V , W (0) = 0, and for i ≥ 1, we suppose that
U (i) =

(
U (i−1) ⊗ P (i)

)
⊆
(
V (i−1) ⊗ P (i)

)
⊆ V (i) and W (i) =

(
W (i−1) ⊗ P (i)

)
⊕

Q(i) ⊆
(
V (i−1) ⊗ P (i)

)
⊕Q(i) ⊆ V (i) . Applying induction we have the following

V (i) =
(
V (i−1) ⊗ P (i)

)
⊕Q(i) =

((
U (i−1) ⊕W (i−1)

)
⊗ P (i)

)
⊕Q(i)

=
(
U (i−1) ⊗ P (i)

)
⊕
((
W (i−1) ⊗ P (i)

)
⊕Q(i)

)
= U (i) ⊕W (i).

In particular,

U (i) = V ⊗ P (1) ⊗ · · · ⊗ P (i)

W (i) =
i∑

j=1

Q(j) ⊗ P (j+1) ⊗ · · · ⊗ P (i).

Each E(i) becomes Γ-graded by the idempotent e(i) which is the projection
onto U (i) along W (i) . Now, by our definition, ϕ(i)(1) is exactly the projection of
V (i) onto V (i−1) ⊗ P (i) along Q(i) because

ϕ(i)(1)
(
v(i−1) ⊗ a(i) + b(i)

)
= 1(v(i−1))⊗ a(i) = v(i−1) ⊗ a(i).

We have
V (i−1) ⊗ P (i) =

(
U (i−1) ⊗ P (i)

)
⊕
(
W (i−1) ⊗ P (i)

)
and e(i) is the projection of V (i) onto U (i) along W (i) =

(
W (i−1) ⊗ P (i)

)
⊕ Q(i) .

As e(i−1) is the projection of V (i−1) onto U (i−1) along W (i−1) ,

ϕ(i)(e(i−1))
(
u(i−1) + w(i−1))⊗ a(i) + b(i)

)
= u(i−1) ⊗ a(i).

Thus, ϕ(i)(1)e(i) = ϕ(i)(e(i−1)) = e(i)ϕ(i)(1), and by Lemma 5.1, each ϕ(i) is a
Γ-graded homomorphism. Consequently, the direct limit E of {E(i), ϕ(i)} can
be endowed with a natural Γ-grading. In particular, a ∈ Er,s if and only if there
exists such i > 0 such that a ∈ (E(i))r,s . So we have that E is a Γ-graded (simple)
associative algebra.

Now, via the same construction giving E , we define another associative
algebra E , but starting with the initial vector space V (0) = K . (This just amounts

to setting p0 = 1.) Thus, the spaces V
(i)

decompose into the direct sum of

subspaces U
(i) ∼= P (1) ⊗ · · · ⊗ P (i) and W

(i)
, where W

(i)
is the same as W (i)− .

The direct limit E = lim−→{E(i)
, ϕ(i)} is another Γ-graded algebra.

Finally, we consider a one-dimensional extension Ṽ of the “initial” space
V , which we write simply as Ṽ = V ⊕ K . We endow Ẽ = End Ṽ with the Γ-
grading defined by the projection of Ṽ on V along the line K . Our first result in
this section will express E in terms of Ẽ and E . To do this we need to introduce
an auxiliary construction.

Given any semigroup Ξ and two Ξ-graded associative algebras A , B , one
can consider the vector space

C =
⊕
ξ∈Ξ

(Aξ ⊗Bξ).

This carries a natural multiplication by setting, for x ∈ Aξ , y ∈ Bξ , x
′ ∈ Aξ′ ,

y′ ∈ Bξ′ : (x⊗ y)(x′ ⊗ y′) = (xx′)⊗ (yy′). Let us denote C by AΞB .
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Lemma 5.2. C = AΞB is a Ξ-graded associative algebra with Cξ = Aξ ⊗Bξ.

Proof. Obvious.

Now we return to our endomorphism algebras and establish the desired
connection between the algebras E , E and Ẽ . We set S = ẼΓE , using the Γ-

grading as above. If S(i) = ẼΓE
(i)

, then the following is true.

Theorem 5.3. For each i ≥ 1, there is a natural Γ-graded isomorphism Ψ(i) :
S(i) −→ E(i) , and it extends to a Γ-graded isomorphism

Ψ : S = ẼΓE −→ E .

Proof. For a vector space X = Y ⊕ Z , every α ∈ EndX can be written in
the form α = α1,1 + α1,2 + α2,1 + α2,2 with respect to the Γ-grading arising from
the projection idempotent onto Y along Z . Here (EndX)1,1 can be identified
naturally with EndY , (EndX)1,2 with Hom (Z, Y ), (EndX)2,1 with Hom (Y, Z),
and (EndX)2,2 with EndZ . The products are natural, as well. For example,
α2,1α1,2 corresponds to the composition of mappings α1,2 ∈ Hom (Z, Y ) and α2,1 ∈
Hom (Y, Z) and thus is an element of EndZ , which corresponds to (EndX)2,2 .

Applying this to the particular case of Ṽ = V ⊕ K , we have that every
Φ ∈ Ẽ = End Ṽ can be expressed as Φ = φ + u + u∗ + λ , where φ ∈ EndV ,
u ∈ Hom(K, V ) ∼= V , u∗ ∈ Hom (V,K) ∼= V ∗ , λ ∈ End K ∼= K . The action of Φ

on v + κ ∈ Ṽ = V ⊕K , v ∈ V , κ ∈ K , is given by

Φ(v + κ) = [φ(v) + κu]︸ ︷︷ ︸
∈V

+ [u∗(v) + λκ]︸ ︷︷ ︸
∈K

.

Now in the case of E
(i)

= EndV
(i)

for V
(i)

= U
(i) ⊕ W

(i)
, we have

α(i) = α
(i)
1,1 + α

(i)
1,2 + α

(i)
2,1 + α

(i)
2,2 where α

(i)
1,1 ∈ EndU

(i)
, α

(i)
1,2 ∈ Hom (W

(i)
, U

(i)
),

α
(i)
2,1 ∈ Hom (U

(i)
,W

(i)
), α

(i)
2,2 ∈ EndW

(i)
, where for u(i) ∈ U (i)

, w(i) ∈ W (i)
,

α(i)(u(i) + w(i)) = [α
(i)
1,1(u

(i)) + α
(i)
1,2(w

(i))]︸ ︷︷ ︸
∈U

(i)

+ [α
(i)
2,1(u

(i)) + α
(i)
2,2(w

(i))]︸ ︷︷ ︸
∈W

(i)

.

Finally, for E(i) = EndV (i) we want to use

EndU (i) = End (V ⊗ U
(i)

) ∼= EndV ⊗ EndU
(i)

(42)

Hom (W (i), U (i)) = Hom (W (i), V ⊗ U
(i)

) (43)

∼= Hom (K, V )⊗ Hom (W
(i)
, U

(i)
)

∼= V ⊗ Hom (W
(i)
, U

(i)
)

Hom (U (i),W (i)) = Hom (V ⊗ U
(i)
,W (i)) (44)

∼= Hom (V,K)⊗ Hom (U
(i)
,W

(i)
)

∼= V ∗ ⊗ Hom (U
(i)
,W

(i)
)

EndW (i) = EndW
(i)
. (45)
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The isomorphisms in formulas (42)-(45) define the mappings Ψ
(i)
r,s , r, s = 1, 2 of the

Γ-graded components S
(i)
r,s = Ẽr,s⊗E

(i)

r,s of S(i) to the respective graded components

E
(i)
r,s of E(i) .

The explicit expressions for the action of Ψ are displayed below. In these
formulas we give the action only on the elements of V (i) of the form v⊗u(i) +w(i) ,

v ∈ V , u(i) ∈ U (i)
, w(i) ∈ W (i) ; for the other elements, the linearity and bilinearity

of the operations involved can be used to determine the images.

Ψ
(i)
1,1(ψ ⊗ α

(i)
1,1)(v ⊗ u(i) + w(i)) = ψ(v)⊗ α

(i)
1,1(u

(i)) ∈ V ⊗ U
(i)

= U (i) (46)

Ψ
(i)
1,2(u⊗ α

(i)
1,2)(v ⊗ u(i) + w(i)) = u⊗ α

(i)
1,2(w

(i)) ∈ U (i), (47)

Ψ
(i)
2,1(u

∗ ⊗ α
(i)
2,1)(v ⊗ u(i) + w(i)) = u∗(v)α

(i)
2,1(u

(i)) ∈ W (i), (48)

Ψ
(i)
2,2(κ⊗ α

(i)
2,2)(v ⊗ u(i) + w(i)) = κα

(i)
2,2(w

(i)) ∈ W (i). (49)

Again, we see that
Ψ(i)

r,s(S
(i)
r,s) ⊆ E(i)

r,s (50)

for all r, s = 1, 2. Now it is a routine computation to verify that Ψ(i) = Ψ
(i)
1,1 ⊕

Ψ
(i)
1,2 ⊕ Ψ

(i)
2,1 ⊕ Ψ

(i)
2,2 is in fact a homomorphism of S(i) into E(i) . Thanks to (50)

there are “only” eight cases to deal with. They are especially simple if both factors
come from S

(i)
1,1 or S

(i)
2,2 . To demonstrate one of the “harder” cases, we check what

happens for S
(i)
1,2 and S

(i)
2,1 . If we first multiply inside S(i) , then we obtain

(u⊗ α
(i)
1,2)(u

∗ ⊗ α
(i)
2,1) = uu∗ ⊗ α

(i)
1,2α

(i)
2,1

where uu∗ ∈ EndV is the linear transformation acting on v ∈ V as uu∗(v) =
u∗(v)u . (Note u∗(v) is just the matrix product u∗v .) Thus the action of the
image of the product on a sample element v⊗u(i) +w(i) of V (i) produces u∗(v)u⊗
(α

(i)
1,2α

(i)
2,1)(u

(i)). The product of the images of the factors yields

Ψ(i)(u⊗ α
(i)
2,1)
(
u∗(v)α

(i)
2,1(u

(i))
)

= u⊗ α
(i)
2,1

(
u∗(v)α

(i)
1,2(u

(i))
)

= u∗(v)u⊗
(
α

(i)
1,2(α

(i)
2,1(u

(i))
)
,

the same thing. All the remaining cases may be treated in a similar fashion.
Moreover, if we look at formulas (42)-(45) we can convince ourselves easily that
each Ψ(i) is actually an isomorphism of the respective algebras S(i) and E(i) (recall
that each E(i) is a simple algebra). Thus, we have proved the first claim of Theorem
5.3.

To establish the second claim we need to show that the family of iso-
morphisms Ψ =

{
Ψ(i)

}
is compatible with the structure mappings

{
ϕ(i)
}

and{
1Γϕ

(i)
}

, where 1 stands for the identity mapping of Ẽ and the Γ-product 1Γϕ
(i)

has quite a natural meaning: this is the same as the tensor product but on the
Γ-homogeneous components only. That is, we have to check that for any i ≥ 1
and every r, s = 1, 2 that

ϕ(i)Ψ(i−1)
r,s = Ψ(i)

r,s(1Γϕ
(i)
r,s). (51)
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holds on Γ-homogeneous elements. Since all mappings ϕ(i) and ϕ(i) are Γ-graded,

their restrictions ϕ
(i)
r,s : E

(i−1)
r,s −→ E

(i)
r,s and ϕ(i)

r,s : E
(i−1)

r,s −→ E
(i)

r,s are well-defined.

To prove (51) we have to apply both sides to the elements of V (i−1) . By
the above, it is sufficient to consider only the elements of the form

v(i) = v ⊗ u(i−1) ⊗ a(i) + w(i−1) ⊗ b(i) + c(i), (52)

where v ∈ V , u(i−1) ∈ U
(i−1)

, w(i−1) ∈ W (i−1) , a(i), b(i) ∈ P (i) , c(i) ∈ Q(i) . It is
important to indicate the homogeneous decomposition of v(i) = u(i) + w(i) . We
have

u(i) = v ⊗ u(i−1) ⊗ a(i) and w(i) = w(i−1) ⊗ b(i) + c(i). (53)

It is necessary to consider four cases, and in each one we apply both sides of
(51) to an element of S(i−1) to obtain two linear transformations of V (i) . Then we
have to apply both these transformations to (52). Since their patterns are similar,
we put more emphasis on the r = 1, s = 1 case, and in the remaining cases,
simply write down the final conclusion.

Case 1: r = 1, s = 1. The result of applying both sides of (51) to a

homogeneous element of S(i−1) of degree 1, 1, i.e. to an element ψ ⊗ α
(i−1)
1,1 , is a

linear transformation from E
(i)
1,1 . Hence we only have to consider how it acts on

u(i) = v ⊗ u(i−1) ⊗ a(i) in (53). Let us start with the left-hand side. According to
(41), we have((

ϕ(i)Ψ
(i−1)
1,1

)
(ψ ⊗ α

(i−1)
1,1 )

) (
v ⊗ u(i−1) ⊗ a(i)

)
=
(
ψ(v)⊗ α

(i−1)
1,1 (u(i−1))

)
⊗ a(i).

Now if we consider the right-hand side, then we have to use (46), with the transfor-

mation (1Γϕ
(i))(ψ ⊗ α

(i−1)
1,1 ) = ψ ⊗ ϕ(i)(α

(i−1)
1,1 ). From (41), we obtain the element

ψ(v)⊗
(
α

(i−1)
1,1 (u(i−1))⊗ a(i)

)
. So, in this case, we are done.

Case 2: r = 1, s = 2. This case involves applying both sides of (51)

on a homogeneous element u ⊗ α
(i−1)
1,2 of S(i−1) of degree 1, 2, then computing

the action on w(i) = w(i−1) ⊗ b(i) + c(i) in (53). The final result on both sides is

u⊗ α
(i−1)
1,2 (w(i−1))⊗ b(i) .

Case 3: r = 2, s = 1. The effect of applying (51) to a homogeneous

element u∗ ⊗ α
(i−1)
2,1 of S(i−1) of degree 2, 1 and computing the action on u(i) =

v ⊗ u(i−1) ⊗ a(i) in (53) is u∗(v)⊗ α
(i−1)
2,1 (u(i−1))⊗ a(i) for both sides.

Case 4: r = 2, s = 2. The result of applying both sides of (51) to an

element κ⊗α(i−1)
2,2 ∈ S(i−1) of degree 2, 2 and then acting on w(i) = w(i−1)⊗b(i)+c(i)

in (53) gives κα
(i−1)
2,2 (w(i−1))⊗ b(i) on both sides.

We have shown that the sets
{
Ψ(i)

}
and

{
ϕ(i)
}

have the desired prop-

erties. Finally, we conclude that the family
{
Ψ(i) | i = 1, 2, . . .

}
is a Γ-graded

isomorphism of algebras S and E , as required. This completes the proof of The-
orem 5.3.
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Now we are in a position to formulate a “Coordinatization Theorem” for
one-sided direct limits of special linear Lie algebras. It was mentioned earlier that
if L is such a limit, then L is a Lie subalgebra of the associative algebra E studied
above regarded as a Lie algebra under the commutator product. Viewed as a
module over its subalgebra g = sl(V ), L is a g-submodule of E . We can apply

Theorem 5.3 and write E as E ∼= S = (End Ṽ )ΓE . Then expressing End Ṽ as
EndV ⊕ V ⊕ V ∗ ⊕K produces a decomposition for E ,

E =
(
(EndV )⊗ E1,1

)
⊕ (V ⊗ E1,2)⊕ (V ∗ ⊗ E2,1)⊕ (K⊗ E2,2). (54)

It is convenient to express the multiplication in E in terms of the decom-
position in (54). Using the notation from the proof of Theorem 5.3, we list all the
nonzero products:

(1) (ψ ⊗ α1,1)(ψ
′ ⊗ β1,1) = ψψ′ ⊗ α1,1β1,1

(2) (ψ ⊗ α1,1)(u⊗ α1,2) = ψu⊗ α1,1α1,2

(3) (u⊗ α1,2)(v
∗ ⊗ α2,1) = uv∗ ⊗ α1,2α2,1

(4) (u⊗ α1,2)(κ⊗ α2,2) = κu⊗ α1,2α2,2

(5) (v∗ ⊗ α2,1)(ψ ⊗ α1,1) = v∗ψ ⊗ α2,1α1,1

(6) (v∗ ⊗ α2,1)(u⊗ α1,2) = v∗u⊗ α2,1α1,2

(7) (κ⊗ α2,2)(v
∗ ⊗ α2,1) = κv∗ ⊗ α2,2α2,1

(8) (κ⊗ α2,2)(λ⊗ β2,2) = κλ⊗ α2,2β2,2 .

Recall that the products ψψ′ , ψu , v∗ψ are just matrix multiplication, so
for example, the linear function v∗ψ is defined as (v∗ψ)(u) = v∗ψu for u ∈ V .

The algebra E1,1 has an identity e , which is the limit of the idempotents
e(i) . Moreover, the image of E = EndV in S under Ψ−1 can be identified with
EndV ⊗e . Indeed, for any ψ ∈ E and v(1) = v⊗a(1)+b(1) with v ∈ V , a(1) ∈ P (1) ,
b(1) ∈ Q(1) , we have(

Ψ(1)(ψ ⊗ e(1))
)
(v ⊗ a(1) + b(1)) = ψ(v)⊗ a(1) = ϕ(1)(ψ)(v ⊗ a(1) + b(1)).

Thus,
Ψ(1)(EndV ⊗ e(1)) = ϕ(1)(EndV )

and
EndV ⊗ e(1) = ((Ψ)(1))−1ϕ(1)(EndV ).

Applying 1⊗ ϕ(2) to both sides of the latter equation and using (51), we obtain

EndV ⊗ e(2) = (1⊗ ϕ(2)(Ψ(1))−1)ϕ(1)(EndV ) = ϕ(2)ϕ(1)(EndV ).

Continuing in this fashion, we find that EndV can be identified in the limit with
EndV ⊗ e as claimed above.

For each r1,1 ∈ E1,1 , the subspace EndV ⊗r1,1 is a natural EndV -bimodule.
In addition, V ⊗ r1,2 is a natural left EndV -module for each r1,2 ∈ E1,2 ; V ∗⊗ r2,1
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is a natural right EndV -module for each r2,1 ∈ E2,1 ; and E2,2 is annihilated by
EndV .

These remarks enable us to describe the structure of the direct limit Lie
algebra L as a module for g = sl(V ). First, we decompose EndV as g ⊕ K
and let I denote the identity element of EndV and 1 the identity element of the
ground field K . Thus,

E =
(
(g⊕K)⊗ E1,1

)
⊕ (V ⊗ E1,2)⊕ (V ∗ ⊗ E2,1)⊕ (1⊗ E2,2) (55)

= (g⊗ E1,1)⊕ (V ⊗ E1,2)⊕ (V ∗ ⊗ E2,1)⊕
(
(I ⊗ E1,1)⊕ (1⊗ E2,2)

)
.

We digress to provide an alternate realization of L via traces. Recall from
(2) of Section 1, that there is a trace function t on E defined as follows. When
a ∈ E , say a = A ∈ E (i) , then t(a) = (p0 · · · pi−1)

−1trA , where “tr” denotes the
ordinary trace in EndV . It is immediate that L is precisely the subset of elements
of trace 0 in E . In entirely the same way (in fact, just by setting p0 = 1), there is
a trace function t on E , and the following holds.

Proposition 5.4. If x = ψ ⊗ α1,1 + u⊗ α1,2 + u∗ ⊗ α2,1 + 1⊗ α2,2 , then

t(x) = tr(ψ) t(α1,1) + t(α2,2). (56)

Proof. Since both t and t are stable under the structure homomorphisms of
the respective direct limits, it is sufficient to establish (56) on a finite “level” i

where all the components belong. Since u⊗α(i)
1,2 and u∗⊗α(i)

2,1 contribute nothing

to the trace, we only have to compute the trace of ψ⊗α(i)
1,1 + 1⊗α(i)

2,2 , which gives
the desired expression in (56).

Now set

D =
{
I ⊗ α1,1 + 1⊗ α2,2 ∈

(
I ⊗ E1,1

)
⊕
(
1⊗ E2,2

)
| nt(α1,1) + t(α2,2) = 0

}
.
(57)

Then D is the centralizer of g in L , and we have the main result of this section.

Theorem 5.5. Let p = {(pi, qi)} where the pi are positive integers, q0 = 0,
and the qi are nonnegative integers, and let q = {(pi, qi)} where qi = qi for

all i ≥ 0, pi = pi for all i ≥ 1 and p0 = 1. Set V (0) = K⊕p0 , and let

V (i+1) = (V (i))⊕pi ⊕ K⊕qi for all i ≥ 0. Similarly, assume V
(0)

= K⊕p0 , and

let V
(i+1)

= (V
(i)

)⊕pi ⊕ K⊕qi for all i ≥ 0. Then the direct limit L of the family
of special linear algebras sl(V (i)), i = 0, 1, . . . , with the structure homomorphisms
ϕ(i) defined in (41) decomposes as a module for g = sl(V ) (V = V (0) ) as

L = (g⊗ E1,1)⊕ (V ⊗ E1,2)⊕ (V ∗ ⊗ E2,1)⊕D, (58)

where E = E(q) is the Γ-graded simple associative algebra, which is the direct limit

of the algebras EndV
(i)

with similarly defined structure mappings ϕ(i) , and D is
as in (57). The bracket in L is completely determined by (1) - (8) above.
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The explicit form of the bracket in L can be derived from the formulas in
(19) using (1) - (8). We simply have to compute the Lie bracket in E viewed in the

form E = (End Ṽ )ΓE . The circle ◦ and bracket [ , ] operations have their usual
meaning in the sense of derived operations on the associative algebra E . Thus,
using our standard notation in this section, we have

[ψ ⊗ α1,1, ψ
′ ⊗ β1,1] = [ψ, ψ′]⊗ 1

2
(α1,1 ◦ β1,1) + (ψ ◦ ψ′)⊗ 1

2
[α1,1, β1,1]

+(ψ|ψ′)I ⊗ [α1,1, β1,1]

[ψ ⊗ α1,1, u⊗ α1,2] = ψu⊗ α1,1α1,2 = −[u⊗ α1,2, ψ ⊗ α1,1]

[v∗ ⊗ α2,1, ψ ⊗ α1,1] = v∗ψ ⊗ α2,1α1,1 = −[ψ ⊗ α1,1, v
∗ ⊗ α2,1]

[u⊗ α1,2, v
∗ ⊗ α2,1] =

(
uv∗ − 1

n
tr(uv∗)I

)
⊗ α1,2α2,1

+
1

n
tr(uv∗)I ⊗ α1,2α2,1 − tr(uv∗)1⊗ α2,1α1,2

= −[v∗ ⊗ α2,1, u⊗ α1,2].

Now if d = I ⊗ α1,1 + 1⊗ α2,2 , then

[d, ψ ⊗ β1,1] = ψ ⊗ [α1,1, β1,1] = −[ψ ⊗ β1,1, d]

[d, u⊗ α1,2] = u⊗ (α1,1α1,2 − α1,2α2,2) = −[u⊗ α1,2, d]

[v∗ ⊗ α2,1, d] = v∗ ⊗ (α2,1α1,1 − α2,2α2,1) = −[d, v∗ ⊗ α2,1]

[d, d′] ∈ D for any d, d′ ∈ D.

It is easy to see from last four equations that each element d = I ⊗ α1,1 +
1⊗α2,2 ∈ D induces a derivation of the algebras E1,1 and E2,2 and a derivation of
the bimodules E1,2 and E2,1 . All these transformations are induced by the inner
derivation of E by the element α1,1 + α2,2 .

6. Concluding Remarks

In our first paper [3], we studied irreducible highest weight representations of
locally finite simple Lie algebras. Our results in this paper allow us to construct
an entirely different kind of representation for some of the direct limit Lie algebras
considered here. More specifically, for the universal covering algebras L̂ from
Section 3., we have the following:

Theorem 6.1. Let L̂ be a Lie algebra of the form L̂ = (g⊗A)⊕{A,A}, with
g = sln for n ≥ 3; A a unital associative algebra; {A,A} = (A ⊗ A)/J , where
J the subspace spanned by the elements a ⊗ b + b ⊗ a, ab ⊗ c + bc ⊗ a + ca ⊗ b,
a, b, c ∈ A; and with product as in (18). If M is a module for Mn and W is a

left A-module then M ⊗W becomes an L̂-module under the action

(x⊗ a)(v ⊗ w) = xv ⊗ aw

{a, a′}(v ⊗ w) = v ⊗ [a, a′]w.

We leave this theorem without proof, since it is simply a direct verification
of the definitions, and also because we believe more general results can be achieved.
We postpone this until a subsequent paper.
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Recall from Theorem 3.2 that ̂sln(Mm) ∼= sln(Mm) ∼= sln = lim
−→

slnt . The

significance of Theorem 6.1 for the representation theory of sln can be seen because
of the vast number of irreducible modules for A = Mm (this is true of any
infinite-dimensional simple associative algebra [15, 16]). A good candidate for
an irreducible sln -module comes from taking the tensor product of irreducible
modules M = Kn and W .
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[14] Garćıa, E., and E. Neher, Jordan superpairs covered by grids and their Tits-
Kantor-Koecher superalgebras, Preprint 2001; Jordan preprint archive:
http://mathematik. uibk.ac.at/jordan/ (paper 98).

[15] Goodearl, K., e-mail communication, unpublished.



270 Bahturin and Benkart
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