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Abstract. We obtain a characterization of the Lie algebras admitting abelian
complex structures in terms of certain affine Lie algebras aff(A), where A is a
commutative algebra.

1. Introduction

An abelian complex structure on a real Lie algebra g is an endomorphism of g

satisfying
J2 = −I, [Jx, Jy] = [x, y], ∀x, y ∈ g. (1)

If G is a Lie group with Lie algebra g these conditions imply the vanishing of the
Nijenhuis tensor on the invariant almost complex manifold (G, J), that is, J is
integrable on G .

Our interest arises from properties of the complex manifolds obtained by
considering this class of complex structures on Lie algebras. For instance, an
abelian hypercomplex structure on g , that is, is a pair of anticommuting abelian
complex structures, gives rise to an invariant weak HKT structure (see [7] and [9]).

Abelian complex structures on Lie algebras were first considered in [1] where
a construction is given starting with a 2-step nilpotent Lie algebra and applying
successively a “doubling” procedure. It follows from results of [3] that aff(C),
the Lie algebra of the affine motion group of C , is the unique 4-dimensional Lie
algebra carrying an abelian hypercomplex structure. In [4] the particular class of
H-type Lie algebras was studied in detail and a precise answer was given to the
question of when such an algebra admits an abelian complex structure.

It was proved in [8] that a real Lie algebra admitting an abelian complex
structure is necessarily solvable. In the present article we give a characterization
of the solvable Lie algebras admitting an abelian complex structure in terms of
certain affine Lie algebras aff(A), A a commutative algebra (Theorem 5.3). These
affine Lie algebras are natural generalizations of aff(C) and the corresponding Lie
groups are complex affine manifolds. It turns out, using the classification given in
[13], that all 4-dimensional Lie algebras carrying abelian complex structures are
central extensions of affine Lie algebras.
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In § 6. we study obstructions to the existence of abelian complex structures.

2. Complex structures on affine Lie algebras

A complex structure on a real Lie algebra g is an endomorphism J of g satisfying

J2 = −Id, J [x, y]− [Jx, y]− [x, Jy]− J [Jx, Jy] = 0, ∀x, y ∈ g. (2)

Note that complex Lie algebras are those for which the endomorphism J satisfies
the stronger condition

J2 = −Id, J [x, y] = [x, Jy], ∀x, y ∈ g (3)

By a hypercomplex structure we mean a pair of anticommuting complex structures.

A rich family of Lie algebras carrying complex structures is obtained by
considering a finite dimensional real associative algebra A and aff(A) the Lie
algebra A⊕ A with Lie bracket given as follows:

[(a, b), (a′, b′)] = (aa′ − a′a, ab′ − a′b), a, b, a′, b′ ∈ A.

Let J be the endomorphism of aff(A) defined by

J(a, b) = (b,−a), a, b ∈ A. (4)

A computation shows that J defines a complex structure on aff(A). Note that
when A is a vector space with the trivial product structure ab = 0, a, b ∈ A
one obtains the abelian Lie algebra Rn ⊕Rn with the standard complex structure
J(a, b) = (b,−a). Furthermore, if one assumes the algebra A to be a complex
associative algebra, this extra assumption allows us to equip aff(A) with a pair
of anti-commuting complex structures. Indeed, the endomorphism K on aff(A)
defined by K(a, b) = (−ia, ib) for a, b ∈ A satisfies (2) and since JK = −KJ , J
and K define a hypercomplex structure.

Proposition 2.1. aff(A) carries a natural hypercomplex structure for any com-
plex associative algebra A.

The Lie groups having Lie algebras aff(A) carry invariant complex affine
structures. Indeed, the bilinear map ∇ given by ∇(a,b)(c, d) = (ac, ad) satisfies

∇(a,b)J(c, d) = J∇(a,b)(c, d), ∇(a,b)(c, d)−∇(c,d)(a, b) = [(a, b), (c, d)]

and R((a, b), (c, d)) = 0 where

R((a, b), (c, d)) = ∇[(a,b),(c,d)] − [∇(a,b),∇(c,d)]

is the curvature tensor. In particular, using results of Boyom [5], any such simply
connected Lie group can be embedded as leaf of a left invariant lagrangian foliation
in a symplectic Lie group.
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3. Abelian complex structures

An abelian complex structure on a real Lie algebra g is an endomorphism of g

satisfying
J2 = −I, [Jx, Jy] = [x, y], ∀x, y ∈ g. (5)

By an abelian hypercomplex structure we mean a pair of anticommuting abelian
complex structures.

We observe that one can rewrite condition (2) as follows

J([x, y]− [Jx, Jy]) = [Jx, y]− [x, Jy] ∀x, y ∈ g. (6)

Thus, abelian complex structures are integrable. Moreover, from (6) one has that if
[x, y]− [Jx, Jy] 6= 0 for some x, y then the commutator subalgebra has dimension
≥ 2. In particular, if g is a real Lie algebra with 1-dimensional commutator [g, g]
then every complex structure on g is abelian (compare with Proposition 4.1 in
[2]).

There exist algebraic restrictions to the existence of abelian complex struc-
tures. We recall the following result

Proposition 3.1. [8] Let g be a real Lie algebra admitting an abelian complex
structure. Then g is solvable.

Given a complex structure J on a Lie algebra g , the endomorphism J
extends to the complexification gC = g⊕ ig giving a splitting

gC = g1,0 ⊕ g0,1

where
g1,0 = {X − iJX : X ∈ g} and g0,1 = {X + iJX : X ∈ g}

are complex Lie subalgebras of gC . Using (5) one verifies that abelian complex
structures are those for which the subalgebras g1,0 and g0,1 are abelian, and
conversely.

In order to give another characterization of abelian complex structures we
need first to consider the following general class of complex structures on matrix
algebras.

Let V be a real vector space, dim V = 2n , and fix a complex endomorphism
I of V (i.e. I2 = −Id). Let us denote by LI , (resp. RI ) the endomorphism
of gl(V ) defined as LI(u) = I ◦ u (resp. RI(u) = u ◦ I ), u ∈ gl(V ). It is
straightforward to show that LI (resp. RI ) defines a complex structure on gl(V ),
that is, it satisfies (2). Moreover, the subalgebra glC(V ) of endomorphisms of V
commuting with I is LI and RI invariant and the restriction of LI or RI to this
subalgebra satisfies (3).

Consider next an arbitrary Lie algebra g and assume that J is an endomor-
phism of g satisfying J2 = −Id . In particular, dim g = 2n . Consider on g∗ the
induced endomorphism, that we denote also by J , given by Jα = −αJ, α ∈ g∗ .
According to the previous observation, R−J is integrable on gl(g) and LJ is in-
tegrable on gl(g∗). It follows after a computation that J is an abelian complex
structure on g if and only if the adjoint representation

ad : (g, J) → (gl(g), R−J)
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is holomorphic, that is, ad (Jx) = R−J(ad (x)) for all x ∈ g . Equivalently, the
coadjoint representation

ad∗ : (g, J) → (gl(g∗), LJ)

is holomorphic, that is, ad∗ (Jx) = LJ(ad∗ (x)) for all x ∈ g . This paragraph can
be summarized as follows:

Theorem 3.2. Let J be a complex structure on the real Lie algebra g. Then
the following conditions are equivalent:

i) J is abelian.

ii) The complex subalgebras g1,0 and g0,1 of gC are abelian.

iii) The adjoint representation ad : (g, J) → (gl(g), R−J) is holomorphic.

iv) The coadjoint representation ad∗ : (g, J) → (gl(g∗), LJ) is holomorphic.

The simplest examples of non abelian Lie algebras carrying abelian complex
structures are provided by:

Examples 3.3. i) aff(R), the Lie algebra of the affine motion group of R
(the bidimensional non-abelian Lie algebra), aff(R) = span{x, y} , with bracket
[x, y] = x and J given by Jx = y .

ii) R × hn , where hn stands for the 2n + 1−dimensional Heisenberg Lie
algebra, R×hn = span{w, z, xi, yi, i = 1, . . . , n} , with non zero bracket [xi, yi] = z
and J given by Jz = w , Jxi = yi, i = 1, . . . , n .

The Lie algebras introduced in i) and ii) have one dimensional commutator.
Moreover, every Lie algebra with one dimensional commutator is a trivial central
extension of one of these (see Theorem 4.1 in [2]). Hence we obtained the following
result:

Proposition 3.4. Every even dimensional Lie algebra with one dimensional
commutator carries an abelian complex structure.

The next family of examples will play a crucial role in the characterization
given in Theorem 5.3.

Example 3.5. Consider the Lie algebra aff(A) defined in §2. where A is a
commutative algebra. Let J be the complex structure on aff(A) defined by
equation (4). Then one verifies that J is an abelian complex structure. We
note that when A = R or A = C , we obtain the Lie algebra of the affine motion
group of either R or C . Moreover, if A is a complex commutative algebra then the
complex structure K(a, b) = (ia,−ib) which anticommutes with J is also abelian,
hence in this case we obtain an abelian hypercomplex structure.

Proposition 3.6. If A is a complex commutative algebra then the natural
hypercomplex structure on aff(A) is abelian.

The 4-dimensional Lie algebras admitting abelian complex structures are
essentially affine algebras aff(A) for some commutative algebra A (see Proposi-
tion 5.1). In the general situation these algebras are also involved as building
blocks (Theorem 5.3).
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A particular case of the construction just considered occurs when one as-
sumes A to be the set of complex matrices of the form

0 a1 a2 . . . ak−1 ak

0 0 a1 . . . ak−2 ak−1

. . . . . . . . . . . . . . . . . . . . . .
0 0 0 . . . a1 a2

0 0 0 . . . 0 a1

0 0 0 . . . 0 0

 .

A is commutative and aff(A) is k -step nilpotent, therefore existence of abelian
complex structures imposes no restriction on the degree of nilpotency (compare
with [8]).

Proposition 3.7. For any positive integer k there exists a k -step nilpotent Lie
algebra carrying an abelian hypercomplex structure.

We observe that all known examples of Lie algebras carrying abelian com-
plex structures are two-step solvable, but we do not know if this holds in general.

4. Main theorem

In this section we give a characterization of solvable Lie algebras admitting abelian
complex structures. It is our aim to show that the building blocks of such algebras
are the affine algebras considered in Example 3.5).

Proposition 4.1. Let s be a solvable Lie algebra with an abelian complex struc-
ture J admitting a decomposition s = u+Ju with u an abelian ideal. Then (s/z, J)
is holomorphically isomorphic to aff(A) for some commutative algebra A.

Proof. We note first that if s is as in the statement then u ∩ Ju ⊂ z , z the
center of s . Indeed, if x = Jx′ ∈ u ∩ Ju then [x, u] = 0, u ∈ u , and

[x, Ju] = [Jx′, Ju] = [x′, u] = 0, u ∈ u

showing that x ∈ z .

Let A = {ad (Jx) : x ∈ u} and let f : s → aff(A) be defined by

f(x + Jy) = (ad (Jy) , ad (Jx)).

If x′ + Jy′ = x + Jy then both, J(x′ − x) and J(y′ − y), belong to z , hence f is
well defined. Clearly, z is contained in the kernel of f , since x + Jy ∈ z implies
that x and Jy are in z . Conversely, if ad (Jy) = 0 = ad (Jx), then x and Jy are
in z since J is abelian. We verify next that f is a Lie algebra homomorphism. If
x + Jy, x′ + Jy′ ∈ s , then

f [x + Jy, x′ + Jy′] = (0, ad (J([x, Jy′] + [Jy, x′]))).

On the other hand,

[(ad (Jy), ad (Jx)), (ad (Jy′), ad (Jx′))] = (0, ad (Jy) ad (Jx′)|u − ad (Jy′) ad (Jx)).
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Now,

ad (J([x, Jy′] + [Jy, x′]))|u = −ad ([x, Jy′] + [Jy, x′])J |u
= ad (Jy) ad (Jx′)|u − ad (Jy′) ad (Jx)|u

since ad (Jx)J |u = 0 for x ∈ u , and

ad (J([x, Jy′] + [Jy, x′]))|Ju = 0 = ad (Jy) ad (Jx′)|Ju − ad (Jy′) ad (Jx)|Ju.

Therefore,

ad (J([x, Jy′] + [Jy, x′])) = ad (Jy) ad (Jx′)− ad (Jy′) ad (Jx)

showing that f induces a Lie algebra isomorphism between s/z and aff(A).
Moreover, f is holomorphic since

fJ(x + Jy) = f(−y + Jx) = (ad (Jx) ,−ad (Jy)).

We show next, using a case by case verification, that the 4-dimensional Lie
algebras admitting abelian complex structures are fully described by the previous
proposition, that is, they are central extensions of affine algebras.

5. The 4-dimensional case

The 4-dimensional solvable Lie algebras s carrying complex structures were classi-
fied in [13] when dim[s, s] ≤ 2 and in [11] when dimension of dim[s, s] = 3. ¿From
this classification one verifies that the complex structures such that s1,0 and s0,1

are abelian occur only when dim[s, s] ≤ 2 (this also follows from Proposition 6.1
below). They all appear in the classification given in [13] and are denoted by
S1, S2, S8, S9, S10, S11 there. We list them below:

1. S0 : s = R4 .

2. S1 : s = h1 ⊕ R , a direct sum of ideals, where h1 is the 3-dimensional
Heisenberg algebra (see example 3.3 ii).

3. S2 : s = aff(R)⊕ R2 , a direct sum of ideals.

4. S8 : s = aff(R)⊕ aff(R), a direct sum of ideals.

5. S9 : s = aff(R)⊕ R2 , a semidirect sum (adjoint representation)

6. S10 :s = aff(R)⊕ aff(R), a semidirect product of algebras (adjoint represen-
tation).

7. S11 : s = aff(C), the complexification of aff(R).

The above Lie algebras, modulo their center, coincide with aff(A) for certain
commutative algebras A which are listed below:

1. S0 : A = 0 with the trivial structure.

2. S1 : A = R , R with the trivial structure.
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3. S2 : A = R , R with the standard structure.

4. S8 : A = {
(

a 0
0 b

)
, a, b ∈ R} .

5. S9 : A = {
(

a 0
b a

)
, a, b ∈ R} .

6. S10 : A = {
(

a b
b a

)
, a, b ∈ R} .

7. S11 : A = C , C with the standard structure.

The above paragraph can be summarized as follows:

Proposition 5.1. Let s be a 4-dimensional Lie algebra admitting an abelian
complex structure.
Then s/z is isomorphic to aff(A) for some commutative algebra A.

The next example shows that Proposition 4.1 does not exhaust the class of
Lie algebras carrying abelian complex structures.

Example 5.2. Let s = Rx1 ⊕ Ry1 ⊕ · · · ⊕ Rxk ⊕ Ryk ⊕ v with dim v = 2n ,
k, n ≥ 1. Fix a real endomorphism J of s such that J2 = −I and

Jxj = yj, j = 1, . . . , k, Jv ⊂ v. (7)

Let T1, . . . , Tk be a commutative family of endomorphisms of v satisfying

TiTj = −Ti J |v Tj J |v for all i, j.

This condition is satisfied, for instance, if Ti commutes with J |v for all i = 1, . . . , k .
Define a bracket on s as follows

[xj, v] = TjJv, [yj, v] = Tjv for all v ∈ v (8)

and extend it by skew-symmetry. It turns out that s equipped with this bracket
is a Lie algebra and J becomes an abelian complex structure on s . Observe that
s is not in general an affine algebra, but it has the following property: there exists
a J -stable ideal s1 = v isomorphic to aff(Rn) such that s/s1 is isomorphic to
aff(Rk), where both, Rn and Rk , are equipped with the trivial algebra structure.
The general situation is described by the following theorem.

Theorem 5.3. Let s be a real Lie algebra and let J be an abelian complex
structure on s. Then there exists an increasing sequence {0} = s0 ⊂ s1 ⊂
· · · ⊂ sr−1 ⊂ sr = s of J -stable ideals of s such that sj/sj−1 is holomorphically
isomorphic to a central extension of aff(Aj) with the abelian complex structure
given by equation (4), for some commutative algebra Aj , 1 ≤ j ≤ r .
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Proof. We proceed by induction on dim s . The theorem is trivially satisfied if
dim s = 2. If dim s > 2, we assume that the theorem is true for all Lie algebras
of dimension strictly less than dim s . Since J is abelian, s must be solvable
(Proposition 3.1). Let u be a non zero abelian ideal in s , then s1 = u + Ju

is a solvable Lie algebra satisfying the hypothesis of Proposition 4.1. Hence s1

is holomorphically isomorphic to a central extension of aff(A1) with the abelian
complex structure given by equation (4) for some commutative algebra A1 . If
s1 = s we are done. Otherwise, since s1 is a J -invariant ideal of s , the inductive
hypothesis applies to the Lie algebra s/s1 with the induced abelian complex
structure.

6. Some obstructions

As a consequence of Proposition 1.5 in [12], if n is a nilpotent Lie algebra admitting
an abelian complex structure then [n, n] must have codimension ≥ 3. On the other
hand, we exhibited in §5.2 solvable Lie algebras s with [s, s] of codimension 2k ,
k ≥ 1, admitting abelian complex structures. The following result implies that if
[s, s] has codimension 1 and dim s > 2 then abelian complex structures do not
exist on s .

Proposition 6.1. Let s be a solvable Lie algebra such that [s, s] has codimen-
sion 1 in s. If s admits an abelian complex structure then s is isomorphic to
aff(R).

Proof. Let J be an abelian complex structure on s and set

s = Ra⊕ n

where n = [s, s] and a can be chosen so that Ja ∈ n . Then

n = Im ad (a) + [n, n] = Im ad (Ja) + [n, n]

= R[a, Ja] + Im ad (Ja)|n + [n, n] = R[a, Ja] + [n, n]
(9)

and we get n′ ⊂ [n, n′] , hence n′ = [n, n′] . Now, n is nilpotent, so we must have
n′ = {0} and therefore n = R[a, Ja] . This implies the result.

As a consequence of the above proposition we obtain a large family of Lie
algebras which do not carry abelian complex structures. In fact, consider a nilpo-
tent Lie algebra n , dim n > 1, admitting a non-singular derivation D and set
s = Ra⊕ n where the action of a on n is given by D . It follows from the propo-
sition that there is no abelian complex structure on s . A particular case of this
construction is given by Damek-Ricci extensions of H-type Lie algebras (see [6]).
In particular, the solvable Lie algebras corresponding to the rank one symmetric
spaces of non-compact type [10] do not admit abelian complex structures, though
it is well known that they do admit complex structures (equation (2)).

Abelian complex structures are frequent on two-step nilpotent Lie algebras
(see [1] and [4]), but even in this case the following restriction is encountered:
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Proposition 6.2. Let n be a two-step nilpotent Lie algebra such that

2 dim[n, n] = n(n− 1), where n = dim n− dim z ≥ 3

and z is the center of n. Then n does not admit an abelian complex structure.

Proof. We assume that n admits an abelian complex structure J . Fix a
Hermitian inner product 〈 , 〉 on n and consider the orthogonal decomposition
n = z⊕ v . Being J abelian, it follows that both, z and v , are J -stable. Define a
linear map j : z → End (v), z 7→ jz , where jz is determined as follows:

〈jzv, w〉 = 〈z, [v, w] 〉, ∀v, w ∈ v. (10)

Observe that jz, z ∈ z , are skew-symmetric so that z → jz defines a linear map
j : z → so(v) and the restriction of j to [n, n] is injective. It follows from Lemma
1.1 in [4] that J commutes with jz for all z ∈ z , which is a contradiction. In
fact, our assumption on dim[n, n] says that the map j : z → so(v) is surjective.
Therefore, since n ≥ 3, the only endomorphisms of v commuting with all jz ,
z ∈ z , are real multiples of the identity.

Recall that a two-step nilpotent Lie algebra n is said to be free, of rank n , when
z = [n, n] and 2 dim z = n(n− 1), where n = dim n− dim z . The above result says
that the free two-step nilpotent Lie algebras of rank n ≥ 3 do not admit abelian
complex structures.
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