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Abstract. Using the tools introduced in [2] we investigate topological
semigroup compactifications of closed connected submonoids with dense in-
terior of Sl(2,R ). In particular, we show that the growth of such a compact-
ification is always contained in the minimal ideal, and describe the subspace
of all minimal idempotents (typically a two-cell) and the maximal subgroups
(these are always isomorphic with a compactification of R ). For a large
class of such semigroups we give explicit constructions yielding all possible
topological semigroup compactifications and determine the structure of the
compactification lattice.
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1. Introduction

Let S be a topologized semigroup and κ:S → Sκ a continuous homomorphism
into a compact (Hausdorff) topological semigroup Sκ . If κ(S) is dense in Sκ

then the pair (Sκ, κ) is said to be a topological semigroup compactification of
S . Given a class S of such semigroups S we are faced with the following basic
tasks:

(i) For any semigroup S ∈ S find, up to equivalence, all topological semi-
group compactifications, if possible, give explicit constructions. In par-
ticular, give a construction yielding the universal topological semigroup
compactification, the Bohr compactification of S . (This universal object
always exists, by the Adjoint Functor Theorem.)
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(ii) With every compact topological semigroup go various special objects:
the set of idempotents, the maximal subgroups, the minimal ideal and
its subobjects. Describe these for the compactifications of S and relate
them to interesting objects connected with S and its structural features.

(iii) It is not difficult to see that the topological semigroup compactifications
of a fixed semigroup S form a lattice. Describe the structure of this
lattice in terms of “known” lattices.

Success in carrying out this program should benefit the structure theory as well
as the harmonic analysis on S . In the following two well known examples the
above questions can be answered in a very complete and satisfactory manner:

A. The class of all abelian locally compact topological groups. (Cf., e.g., Hewitt-
Ross [10], p.430ff) Here we have the following simple construction: given an
abelian locally compact topological group G we pick any subgroup Hd of the
discretization (Ĝ)d of the dual group Ĝ and let Gκ = (Hd)̂ . Then Gκ is compact
and there is a natural morphism κ:G → Gκ with dense image. Conversely, every
topological semigroup compactification of G can be obtained in this way, and the
lattice of all such compactifications is isomorphic with the lattice of all subgroups
of (Ĝ)d . The Bohr compactification corresponds to the full group (Ĝ)d . (The
objects addressed in (ii) are trivial in the case of groups.)

B. The class of all convex cones in a finite dimensional real vector space. Ex-
plicit constructions yielding the Bohr compactification Cb of a finite dimensional
(closed) cone C have been given by M. Friedberg [8,9] and, later on, by one of
the authors [16]. It has been shown that the idempotents of the Bohr compac-
tification of a finite dimensional cone C are in one-to-one correspondence with
the faces of the dual cone C∗ and that the ‘accessible idempotents’ (those in
the closure of a one parameter subsemigroup) in the growth of the compactifica-
tion correspond exactly to the exposed faces of C∗ . We cannot enter here into
the details of the compactification lattice of C , this lattice can be described in
terms of the lattice of subcones of the dual cone and the compactification lattices
of finite dimensional vector spaces over R . To give the reader a rough idea of
what is going on we only remark that the H -reduced compactifications of C are
in one-one correspondence to the subcones of C∗ . Similar to the situation in
case A the key element in the discussion is the existence of a separating fam-
ily of semicharacters on C . (A general exposition of various relations between
compactifications and dual objects is planned for a forthcoming paper.)

The natural nonabelian analogues of cones in real vector spaces are the
closed divisible subsemigroups of connected Lie groups, these are exactly the
exponential Lie semigroups. The exponential Lie semigroups are classified in the
memoir [12], where also a fairly complete description of their structure is given.
A reduced exponential Lie semigroup S (i.e., an exponential Lie semigroup S
containing no nontrivial normal subgroup of the Lie group generated by S ) can
always be dissected into (1) a direct product of one or more exponential Lie
semigroups living in Sl(2,R) and (2) an exponential Lie semigroup living in a
group which is an almost direct product of a centerfree diagonally metabelian
Lie group with a covering group of a compact Lie group. The compactifications
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of divisible semigroups of type (2) are quite amenable, special cases such as the
“affine triangle” have been studied for decades (cf., e.g., [6],[13],[14], [17]).

Thus the first step for carrying out our program (i)–(iii) for divisible
subsemigroups of Lie groups is to investigate the topological semigroup com-
pactifications of divisible subsemigroups of Sl(2,R). It soon turns out, however,
that for this task we need a very detailed knowledge of general structural fea-
tures such as asymptotic behavior and the rectangular structure of Sl(2,R) [2],
perfectness and aliens [3], congruences in subsemigroups of Lie groups [4]. Also,
the appropriate methods and ideas are developped best in a context as general as
might be presumed, namely in the class of closed connected proper submonoids
S of Sl(2,R) with dense interior. In the rest of the introduction we now always
assume that S belongs to this class.

The central and most general result of these notes is that for every com-
pactification (Sκ, κ) of S we have (a) Sκ = κ(S)∪M(Sκ), (b) there is a continu-
ous and surjective map ε assigning to every asymptotic direction of S (that is, to
every element in the asymptotic rectangular band) a minimal idempotent of Sκ ,
and (c) all maximal subgroups of Sκ contain a dense homomorphic image of R .
If we mod out the maximal subgroups of Sκ then ε becomes a homomorphism,
and there are only four possibilities for the kernel congruence.

In the generic case S is contained in a perfect exponential semigroup,
hence is perfect itself. For this case we give an explicit construction yielding
all possible topological semigroup compactifications of S , we show that the
idempotents in the compactifications correspond to the asymptotic directions
in S , and we describe the compactification lattice of S as the union of copies
of three well known lattices: the lattice of all compactifications of R , the four
element diamond lattice, and the lattice formed by the empty set and the closed
ideals of S .

Similar results hold if S is not perfect, in this case the compactification
lattice is isomorphic with the lattice of all closed ideals containing the alien
elements of S . These two cases cover already all divisible subsemigroups S .

In the remaining case, where S itself, but not its exponential hull, is
perfect, we still can give fairly detailed information, but one important detail is
missing: we do not know whether the above mapping ε can be injective (and
if so, why). Up to now we only have examples for such semigroups where the
minimal ideal of the Bohr compactification is singleton. (Nevertheless: Under a
slight restriction it can be shown that every maximal subgroup in a topological
semigroup compactification of such a semigroup S must be trivial.)

Acknowledgements. We want to express our gratitude to our friend and
teacher Karl H. Hofmann with whom we had many enjoyable and encour-
aging discussions about the subject. Thanks go also to the Deutsche Forschungs-
gemeinschaft DFG for providing financial support to Brigitte E. Breckner.
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2. A topological Rees extension

2.1. The aim of this section is to introduce a generalization of the usual one
point compactification, where instead of a zero element we attach a more general
compact semigroup, which acts as an ideal. (A variant of this construction was
given already in [15], see 4.11 on page 35–36.) Clearly, this construction will yield
a compact topological semigroup only if S is perfect, that is, its multiplication is
a perfect mapping (a closed continuous map with compact fibers; cf. [7] p.236).

Since every semigroup acts on each of its ideals by left and right trans-
lations we have to consider two-sided semigroup actions.

2.2. Actions of semigroups on semigroups. Let X , Y be semigroups.
Then a map α: (X × Y ) ∪ (Y ×X) → Y , (a, b) 7→ ab , is said to be a two-sided
semigroup action of X on Y , or an s-action for short, if the associativity rules

(x1x2)y = x1(x2y) and y(x1x2) = (yx1)x2

x1(yx2) = (x1y)x2 and (y1x)y2 = y1(xy2)
x(y1y2) = (xy1)y2 and y1(y2x) = (y1y2)x

hold for any choice of x1, x2, x ∈ X and y1, y2, y ∈ Y .

If X contains an identity 1 then we require, in addition, that 1y = y1 =
y , for all y ∈ Y . If X and Y are topological semigroups then our s-action will
be assumed to be continuous.

Clearly, the restriction λ [µ ] of α to X × Y [Y × X ] is a left [right]
action of X on Y .

2.3. Example. (i) Let G` , Gr be closed subgroups of a topological group G ,
write L for the homogeneous space G/G` of left cosets gG` , g ∈ G , and R for
the homogeneous space Gr\G of right cosets Grg , g ∈ G . Then the product
space Y = L × R is a topological semigroup with respect to the rectangular
multiplication (x, y)(x′, y′) = (x, y′), and the natural actions

G× Y → Y, (g, (g′G`, Grg
′′) 7→ (gg′G`, Grg

′′),
Y ×G → Y, ((g′G`, Grg

′′), g) 7→ (g′G`, Grg
′′g)

combine to an s-action of G on Y (which is jointly continuous).

(ii) If X is a subsemigroup of G and Y1 ⊆ G/G` , Y2 ⊆ Gr\G with
XY1 ⊆ Y1 and Y2X ⊆ Y2 then the s-action of G on Y defined in (i) restricts
naturally to an s-action of X on Y1 × Y2 .

In the next section we shall use an example of type 2.3(ii) in the case
where X is a subsemigroup of G = Sl(2,R), and G` [Gr ] is the subgroup of all
upper [lower] triangular matrices.
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2.4. Remark. (i) Every s-action of X on Y defines, in the obvious way, an
associative multiplication on the disjoint union Z = X ∪ Y . Pick a, b ∈ X ∪ Y .
If both a and b belong to either X or Y then their product is defined by the
multiplication already given on X or Y , respectively; otherwise it is defined by
the s-action of X on Y . Note that in the so defined semigroup S the subset Y
is an ideal.

(ii) If X and Y are topological semigroups and the s-action is continuous
then the semigroup Z of (i) will be a topological semigroup if it is provided with
the sum topology. In order to make Z a compact semigroup we have, however,
to use a coarser topology, even if we assume that Y is compact. In the present
paper we get this coarser topology with the aid of a ‘gluing map’ ϕ:X → Y ,
which is asymptotically an equivariant homomorphism. To express this general
idea more precisely we need some preparations.

2.5. Notational conventions. (i) In the following all topological spaces will
be assumed to be Hausdorff.

(ii) If X is a locally compact topological space, and 〈xi〉 is a net in X ,
then lim xi = ∞ , or xi → ∞ for short, will mean that 〈xi〉 has no convergent
subnet in X . In other words, if we think of X as embedded in its one point
compactification X ∪ {∞} then lim xi = ∞ in the usual sense.

2.6. A gluing construction for locally compact spaces. Let X , Y be
(disjoint) locally compact spaces, K a compact subset of X , and let ϕ:X \K →
Y be a continuous map.

Then we denote with Xtϕ Y the topological space whose underlying set
is the disjoint union Z = X ∪ Y , endowed with the topology a basis of which is
given by the sets U ∪ V , where

(i) U is open in X , V is open in Y ,
(ii) the closure of ϕ−1(V ) \ U in X is compact (or empty).

Note that, by construction, the open sets of the space X are open also in Z
and that the intersections of Y with the open sets of Z are exactly the open
sets in the original topology of Y . In particular, the inclusions X → Z and
Y → Z are homeomorphic embeddings. Furthermore, Z is Hausdorff. To see
this, it suffices to consider points x ∈ X , y ∈ Y . Pick a relatively compact open
neighborhood U of x in X . Then y lies in the open subset (X \ U) ∪ Y of Z
and U ∩ ((X \ U) ∪ Y ) = Ø. Thus Z is Hausdorff.

2.7. Proposition. Suppose that in the above gluing construction 2.6 the space
Y is compact. Then for the topological space Z = XtϕY the following assertions
hold:

(i) Z is compact.

(ii) In the given topology of Z a net 〈xi〉 with xi ∈ X converges to an
element y ∈ Y if and only if the following two conditions hold:

(a) lim xi = ∞ in X ,
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(b) lim ϕ(xi) = y in Y .

(iii) The following assertions are equivalent:
(c) For each non-empty open subset V of Y the set ϕ−1(V ) is not

relatively compact in X.

(d) X is dense in Z .

Proof. (i) Consider a covering C = {Ui ∪ Vi}i∈I of Z by open subsets in
the basis defined in 2.6. Since Y is compact, there is a finite set F ⊆ I
such that Y =

⋃
f∈F Vf . For each f ∈ F there is a compact set Kf ⊆ X

with ϕ−1(Vf ) \ Uf ⊆ Kf . Let KF = K ∪
⋃

f∈F Kf . This set is compact,
hence there exists a finite set J ⊆ I such that KF ⊆

⋃
j∈J Uj . The family

{Uf ∪Vf}f∈F ∪{Uj ∪Vj}j∈J is finite and covers KF ∪Y , by construction. Also,
the set X \KF is covered by {Uf}f∈F , so we have found a finite subcovering of
C . Thus Z is compact.

(ii) Suppose first that lim xi = y in Z . Then for every compact subset
C of X the union W = (X \C) ∪ Y is an open neighborhood of y in Z , hence
eventually xi ∈ W ∩ X = X \ C , which shows (a). To prove (b), consider
an arbitrary open neighborhood V of y in Y . Since ϕ−1(V ) ∪ V is an open
neighborhood of y in Z , we have xi ∈ ϕ−1(V )∪V and hence ϕ(xi) ∈ V , for all
sufficiently large indexes i . Thus lim ϕ(xi) = y in Y .

Assume now that the conditions (a) and (b) are satisfied. Consider an
open set U ∪ V in the basis with y ∈ U ∪ V . Then y ∈ V and condition (b)
implies that there exists an index i1 ∈ I such that ϕ(xi) ∈ V whenever i ≥ i1 .
Thus xi ∈ ϕ−1(V ), for i ≥ i1 . On the other hand, we find a compact set C ⊆ X
satisfying ϕ−1(V ) \U ⊆ C . Condition (b) yields the existence of an i2 ∈ I such
that xi ∈ X\C , for i ≥ i2 . Choose an i0 ∈ I with i0 ≥ i1 and i0 ≥ i2 . If i ≥ i0 ,
then xi belongs to U (because xi ∈ ϕ−1(V ), xi /∈ C , and ϕ−1(V ) \ U ⊆ C ).
We conclude that lim xi = y in X tϕ Y .

Assertion (iii) is an immediate consequence of the definition of the topol-
ogy of Z .

2.8. Remark. (i) Note that 2.7(ii) says that the closure of X in Z is the union
of X with those points y ∈ Y for which there exist arbitrarily small compact
neighborhoods Ky such that ϕ−1(Ky) is not compact. The restriction of ϕ to
the set ϕ−1(Y \ clZ(X)) is a perfect map.

(ii) If K is contained in a compact set K1 and ϕ1 is the restriction of
ϕ to X \K1 then X tϕ Y = X tϕ1 Y (as topological spaces).

2.9. Construction. If in the above topological construction the space X
is a locally compact topological semigroup acting two-sidedly on a compact
topological semigroup Y then X tϕ Y becomes a semigroup if we introduce
the natural multiplication described in 2.4(i). In order to guarantee that this
multiplication is (jointly) continuous we have to assume in addition that X is
a perfect semigroup, that the s-action is continuous, and that ϕ satisfies the
following conditions:
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(i) ϕ is asymptotically a homomorphism, that is, if 〈(si, ti)〉 is a net in
X ×X with si →∞ and ti →∞ then

limϕ(siti) = (lim ϕ(si))(lim ϕ(ti))

whenever the limits lim ϕ(si) and lim ϕ(ti) exist in Y .
(ii) ϕ is asymptotically equivariant, that is, if 〈(si, ti)〉 is a net in X×X

with si →∞ then
limϕ(siti) = (lim ϕ(si))(lim ti)
limϕ(tisi) = (lim ti)(lim ϕ(si))

whenever lim ti exists in X and lim ϕ(si) exists in Y .
If X is dense in Z then by the continuous extension theorem (cf., e.g., [1],

p. 81, Theorem 1) these conditions indeed guarantee that Z = X tϕ Y becomes
a topological semigroup (details are left to the reader). Since no ambiguities are
to be feared we also denote this semigroup with X tϕ Y .

Obviously, our construction yields a topological semigroup compactifi-
cation of X . We formally write this compactification as (X tϕ Y, i), where
i:X → Z denotes the inclusion.

2.10. Remark. (i) In the simplest version of our construction the semigroup
Y is singleton and ϕ is the constant map X → Y . Here our assumptions boil
down to the condition that X is perfect, and we get the familiar one point
compactification of X with a zero element at infinity.

(ii) If Y is compact but X is not dense in Z = X tϕ Y then it is not
clear that the assumptions in our construction imply the joint continuity of the
multiplication in Z .

(iii) The crux of the construction lies in finding an appropriate mapping
ϕ . The existence of a map ϕ satisfying 2.9(i),(ii) can be interpreted as an
“asymptotic property” of the topological semigroup X .

2.11. Induced compactifications. If X1 is a closed subsemigroup of
X then the above compactification (X tϕ Y, i) of X naturally induces the
compactification (i(X1), i1) of X1 , where i1:X1 → i(X1), i1(x) = i(x). Set
Y1 = i(X1) ∩ Y . If ϕ−1(ϕ(X1 \K) \ Y1) is relatively compact then the induced
compactification can be written as (X1 tϕ1 Y1, i1), where ϕ1:X1 \ K1 → Y1 ,
ϕ1(x) = ϕ(x), and K1 is a compact subset of X1 which contains K ∩X1 as well
as X1 ∩ϕ−1(ϕ(X1 \K) \ Y1). Note that ϕ−1(ϕ(X1 \K) \ Y1) is empty (in fact,
ϕ(X1 \K) \ Y1 = Ø) if for every open subset V of Y meeting ϕ(X1 \ K) the
set ϕ−1(V ) ∩X1 is not relatively compact .
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3. A natural s-action of Sl(2,R)

3.1. Our next goal is to apply the t-construction and Example 2.3(ii) to get
compactifications of subsemigroups of Sl(2,R). For this task it is convenient to
change to the Lie algebra setting. We also need some preparations from [2].

3.2. Notation and basic facts. (i) Throughout these notes R+ will denote
the set of strictly positive reals, and R+

0 the set of nonnegative reals.
(ii) We abbreviate Sl(2,R) to Sl2 . Following [11] we write H =

(
1 0
0 −1

)
,

P =
(
0 1
0 0

)
, Q =

(
0 0
1 0

)
. Furthermore, we denote the Killing form of sl(2, R) by

Kill and put Kill+ = {X ∈ sl(2, R) | det(X) = − 1
8Kill(X, X) < 0} . The set

Hyp = {X ∈ sl(2, R) | −det(X) = 1} = {gHg−1 | g ∈ Sl2}

is called the fundamental hyperboloid. For a point X ∈ Hyp let pX [qX ]
denote the one-dimensional eigenspace of adX with eigenvalue 2 [-2]. Then
hor(X) = X+pX is called the horizontal line through X , and vert(X) = X+qX is
called the vertical line through X . Explicit formulas for the so defined mappings
hor and vert can be found in [2], 4.5.

(iii) The set of all horizontal [vertical] lines in Hyp is denoted with Hor
[Vert ]. We let G` be the parabolic subgroup {1,−1} exp(RH + RP ), and,
similarly, Gr = {1,−1} exp(RH + RQ). We identify Hor with the flag manifold
Sl2/G` , and Vert with Gr\Sl2 , so that hor(H) corresponds to G` , and vert(H)
to Gr . Note that under this convention hor(gHg−1) [vert(gHg−1)] is identified
with gG` [Grg

−1 ].
(iv) The map c:Hyp → Hor×Vert , X 7→ (hor(X), vert(X)), is a topo-

logical embedding and the rectangular multiplication of Hor×Vert restricts to a
partial product ♦ on Hyp which we call the diamond product. If hor(X) meets
vert(Y ), equivalently: if hor(X) 6= − vert(Y ), then hor(X) ∩ vert(Y ) = {X ♦Y } .
For example, it can be checked easily that H ♦(αH + βP + γQ) = H + 2β

1+αP
whenever α 6= −1.

(v) The restriction of the exponential map to Kill+ is a diffeomorphism
onto the open set of all matrices in Sl2 with trace > 2. We denote with rlog the
reduced logarithm exp(Kill+) → Hyp which to every element exp(X), X ∈ Kill+ ,
assigns the normalized vector −det(X)−1 ·X . The map rlog will be the essential
ingredient in defining the asymptotic homomorphism ϕ of our construction.

3.3. A partial s-action on Hyp . We now turn to the s-action of 2.3(i) in the
special case where G = Sl2 and G` , Gr are defined as in 3.2(iii) above. This
s-action induces a partial s-action ◦ of Sl2 on Hyp by the rules

g ◦X = c−1(gc(X)), and X ◦g = c−1(c(X)g),

whenever gc(X) ∈ c(Hyp), c(X)g ∈ c(Hyp), respectively. In terms of the
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diamond product:

g ◦X = (gXg−1)♦X and X ◦g = X ♦(g−1Xg),

whenever the diamond products involved exist. Note that our partial s-action is
continuous.

We are interested in asymptotic properties of the action ◦ . These involve,
however, the application of the function rlog , which implies that we have to
restrict our partial s-action to a suitable open domain. Moreover, we need a
little lemma enabling us to simplify the necessary calculations.

3.4. Lemma.

(i) If U is a neighborhood of the identity in Sl2 then {gHg−1 | g ∈ U} is a
neighborhood of H in Hyp .

(ii) If 〈Xn〉 is a sequence in Hyp converging to H then there exist a subse-
quence 〈Xm〉 of it and a sequence 〈gm〉 in Sl2 such that lim gm = 1 and
gmXmg−1

m = H for every index m .

Proof. (i) By [2], 4.6(ii), we know that the homogeneous space Sl2/Z exp(RH)
(where Z = {1,−1} is the center of Sl2 ) is homeomorphic with Hyp via the
map g · Z exp(RH) 7→ gHg−1 . The assertion follows now from the openness of
the canonical quotient map Sl2 7→ Sl2/Z exp(RH).

(ii) We choose a compatible metric d on Sl2 and write Um = {g ∈
Sl2 | d(1, g) < 1

m} . By (i) we find a subsequence 〈Xm〉 of 〈Xn〉 such that
Xm ∈ {gHg−1 | g ∈ Um} for every m . Then for suitable gm ∈ Um we have
Xm = gmHg−1

m and the assertion follows.

3.5. The standard domain. We let

dom`
def= {(g,X) ∈ Sl2×Hyp | ∃T > 0 : g exp(tX) ∈ exp(Kill+) whenever t > T},

domr
def= {(X, g) ∈ Hyp×Sl2 | ∃T > 0 : exp(tX)g ∈ exp(Kill+) whenever t > T},

and define the standard domain of ◦ to be the union dom = dom` ∪domr . The
following assertions hold:

(i) (g,X) ∈ dom` if and only if (−X, g−1) ∈ domr .

(ii) If (g,X) ∈ dom` then (hgh−1, hXh−1) ∈ dom` , for every h ∈ Sl2 .

(iii) (g,H) ∈ dom` if and only if g ∈ O = {
(
a b
c d

)
∈ Sl2 | a > 0} .

(iv) If (g,X) ∈ dom` then the diamond product (gXg−1)♦X exists. In
particular, dom` is a domain of the partial left action defined in 3.3.

(v) All of the three sets dom` , domr and dom are open.

Proof. Assertion (i) is immediate, (ii) holds by the invariance of exp(Kill+)
under inner automorphisms, (iii) follows from 8.8 of [2].
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(iv) In view of (ii) we can assume without loss of generality that X = H .
Thus g ∈ O , by (iii). Using the formula 4.5 of [2] for hor(gHg−1) we see that
hor(gHg−1) 6= − vert(H), so the diamond product (gHg−1)♦H exists.

(v) By (i) and (ii) it suffices to show that dom` is a neighborhood
of (g,H) if (g,H) ∈ dom` . For an element (g,H) ∈ dom` let U be a 1 -
neighborhood in Sl2 and V a neighborhood of g such that h−1V h ⊆ O for
every h ∈ U . Hence V ⊆

⋂
h∈U hOh−1 . For arbitrary x ∈ V and h ∈ U there

exist y ∈ O and T > 0 such that x = hyh−1 and y exp(tH) ∈ exp(Kill+), for
every t > T . Hence x exp(thHh−1) = h(y exp(tH))h−1 ∈ exp(Kill+), for every
t > T . Thus, by 3.4(i), the set V ×{hHh−1 | h ∈ U} is a neighborhood of (g,H)
contained in dom` .

3.6. Remark. The set dom does not contain all points where our partial
s-action is defined. For example, let g = −1 . Then the diamond products
(gHg−1)♦H = H ♦H = H and H ♦(g−1Hg) = H exist, but neither of (g,H),
(H, g) lies in the standard domain.

3.7. Elementary properties of our partial s-action. The following asser-
tions are immediate consequences of the definition of ◦ , proofs are left to the
reader.

(i) If (g,X) ∈ dom` then g ◦X ∈ vert X , if (X, g) ∈ domr then X ◦g ∈
horX .

(ii) h(g ◦X)h−1 = (hgh−1)◦(hXh−1) for every (g,X) ∈ dom` and every
h ∈ Sl2 .

(iii) X ◦g = −(g−1 ◦(−X)) for every (X, g) ∈ domr .

3.8. Asymptotic formulas.

(i) For any (g,X) ∈ dom` we have the equality

g ◦X = lim
g′→g

t→+∞
X′→X

rlog(g′ exp(tX ′)).

In particular, g ◦X = limt→+∞ rlog(g exp(tX)) .

(ii) For any (X, g) ∈ domr the equality

X ◦g = lim
t→+∞
X′→X
g′→g

rlog(exp(tX ′)g′)

holds. In particular, X ◦g = lim
t→+∞

rlog(exp(tX)g) .

Proof. (i) We first show that

(∗) g ◦X = lim
g′→g

t→+∞

rlog(g′ exp(tX)).
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For this we may assume (by 3.7(ii)) that X = H . Let g =
(
a b
c d

)
. We have seen

in 3.5(iii) that a > 0. Remark 8.8 of [2] implies that

lim
g′→g

t→+∞

rlog(g′ exp(tH)) = H +
2c

a
Q.

On the other hand, a straightforward calculation yields (gHg−1)♦H = H + 2c
a Q ,

so (∗) holds.
We prove now the asserted equality assuming again that X = H . Con-

sider the sequences 〈gn〉 in Sl2 , 〈tn〉 in R+ , and 〈Xn〉 in Hyp such that gn → g ,
tn → +∞ , and Xn → H . Applying 3.4(ii) there is a subsequence 〈Xm〉 of 〈Xn〉
and a sequence 〈hm〉 in Sl2 converging to 1 such that hmXmh−1

m = H , for every
index m . Then

rlog(gm exp(tmXm)) = h−1
m rlog(hmgmh−1

m exp(tmH))hm

converges to g ◦H by (∗), which finishes the proof.
Assertion (ii) follows from (i) above and 3.7(iii).

3.9. Remark. In the proof of 3.8 we encountered the special formula
(
a b
c d

)
◦H =

H + 2c
a Q , which is valid for

(
a b
c d

)
∈ Sl2 with a > 0. This formula has other

interesting consequences, which we record for later use:

(i) Let (g,X) ∈ dom` [ (X, g) ∈ domr ] . Then g ◦X = X [X ◦g = X] if and
only if g ∈ exp(R hor(X)) [ g ∈ exp(R vert(X)) ] .

(ii) Suppose that the diamond products X ♦Y and Y ♦X exist. Then

lim
t→∞

X′→X

exp(tX ′)◦Y = lim
t→∞

Y ′→Y

X ◦ exp(tY ′) = X ♦Y.

If X 6= Y ♦X [Y 6= X ♦Y ] then exp(R+Y )◦X [Y ◦ exp(R+X) ] is the
open line segment between X and Y ♦X [Y and Y ♦X ] .

(iii) If (
(
a b
c d

)
,H + γQ) ∈ dom` then

(
a b
c d

)
◦(H + γQ) = H + 4c+2dγ

2a+bγ Q .

(iv) If (H + βP,
(
a b
c d

)
) ∈ domr then (H + βP )◦

(
a b
c d

)
= H + 4b+2dβ

2a+cβ P .

Proof. (i) follows from the formula
(
a b
c d

)
◦H = H + 2c

a Q after conjugating the
element X to the element H .

(ii) The equality lim
t→∞

X′→X

exp(tX ′)◦Y = X ♦Y can be checked by a straight-

forward calculation after conjugating Y to H . In view of 3.7(iii) this equality
yields the second one. For the last assertion of (ii) we now have only to observe
that t 7→ exp(tY )◦X is injective.

(iii) An easy calculation shows that(
a b
c d

)
◦(H + γQ) = eγ/2·adQ

(
e−γ/2·adQ

((
a b
c d

))
◦H

)
= H +

4c + 2dγ

2a + bγ
Q,

and this establishes the assertion. Assertion (iv) follows from (iii) and formula
3.7(iii).
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4. Compact Rees extensions of subsemigroups of Sl(2,R)

4.1. In the present section we apply the general construction of Section 2
to produce topological semigroup compactifications of subsemigroups of Sl2 .
This construction will yield, in particular, explicit descriptions for all injective
compactifications for a large class of perfect subsemigroups of Sl2 (including the
exponential ones).

The following theorems summarize some results about exponential sub-
semigroups of Sl2 and about the diamond product, needed for our constructions
below. (Cf. [2] 3.8, 5.5, 7.12, 8.9, 8.10(i), 9.4(i) and [3] 6.13.)

4.2. Theorem. Let W be the Lie wedge of a closed three dimensional exponen-
tial subsemigroup Σ of Sl2 . Then W is a three dimensional Lie semialgebra in
sl(2, R) and Σ = expW and the following assertions are equivalent:

(i) Σ is perfect.
(ii) W is contained in {0} ∪ Kill+ .
(iii) W ∩Hyp = rlog(Σ \ {1}) is a compact connected rectangular band semi-

group with respect to the diamond product ♦ .

4.3. Theorem. Suppose that X, Y ∈ Hyp such that both diamond products
X ♦Y and Y ♦X exist. Then

X ♦Y = lim
(s,t)→(∞,∞)

(X′,Y ′)→(X,Y )

rlog
(
exp(sX ′) exp(tY ′)

)
.

4.4. Conventions I. Throughout the rest of this section we assume that
W is the Lie wedge of a closed perfect exponential subsemigroup Σ of Sl2 with
dim Σ = 3. We write (slightly at variance with the notation in [2]) D = W ∩Hyp ,
also, D is considered as a semigroup with respect to ♦ . In the terminology of
[2] (7.2), D is the closure of a type 0 rectangular domain. By 3.8 the partial
s-action ◦ restricts to an s-action of Σ on D , which we also denote with ◦ .

4.5. Proposition. Let ϕ: Σ \ {1} → D be defined by ϕ(s) = rlog(s) . Then the
following assertions hold:

(i) The map ϕ is asymptotically a homomorphism and asymptotically equi-
variant.

(ii) For every X ∈ D the set ϕ−1(X) = exp(R+X) is not relatively compact
in Σ .

Proof. (i) That ϕ is asymptotically a homomorphism is immediate from 4.3.
That ϕ is asymptotically equivariant follows from 3.8.

Assertion (ii) is obvious.
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4.6. Remark. It is also possible (though less convenient) to define ϕ in terms of
a global function ϕ∗: (exp(Kill+)\{1}) → (G/G`)× (Gr\G), where G = Sl2 and
G` , Gr are as in 3.2(iii). The map ϕ∗ is defined by ϕ∗(g) = (g`G`, Grgr), where
g` , gr are elements with g ∈ g` exp(R+

0 H + RP )g−1
` ∩ g−1

r exp(R+
0 H + RQ)gr .

(Note that the cosets g`G` , Grgr are uniquely defined.) The functions ϕ and
ϕ∗ are related to each other via the map c:Hyp → (G/G`)× (Gr\G) of 3.2(iv),
by the formula c(ϕ(s)) = ϕ∗(s), for all s ∈ Σ \ {1} .

4.7. The semigroup ΣD . By 4.5 Construction 2.9 yields a (topological) semi-
group compactification (Σ tϕ D, i) of Σ, with inclusion map i . We henceforth
abbreviate Σ tϕ D to ΣD .

4.8. Remark. (i) Note that ΣD is a nonabelian compact uniquely divisible
(UDC) topological semigroup. It is a three dimensional analogue of the so-called
“affine triangle”{(

x y
0 1

)
∈ M(2, R) | 0 ≤ x, 0 ≤ y, x + y ≤ 1

}
.

The semigroup ΣD is a foliated union of copies of the affine triangle.
(ii) In particular, if X ∈ D then i(exp(R+

0 X)) = i(exp(R+
0 X)) ∪ {X} .

Thus if X 6= Y ∈ D then i(exp(R+
0 X)) ∩ i(exp(R+

0 Y )) = {1} .
(iii) The minimal ideal D of ΣD is a rectangular band, so all maximal

subgroups of ΣD are trivial.
(iv) Let ρ be a finite dimensional representation of ΣD , such that ρ(1)

is the identity. By Theorem 2.1 of [4] any congruence on Σ is either a Rees
congruence or the identity, so det ◦ρ(Σ) = {1} . This means that the matrices
in ρ(Σ) have determinant 1, hence are invertible. It follows that ρ(ΣD) is a
compact topological group, which implies ρ(ΣD) = {1} , since every continuous
homomorphism of Σ into a compact topological group is trivial (see Proposition
6.2 below). Thus all finite dimensional representations of ΣD are trivial.

(v) The so-called ABC-theorem of Brown and Friedberg [5] states,
among other things, that if S satisfies all of the following conditions (a)–(e) then
S has a faithful real n -dimensional representation:

(a) E(S) = {1} ∪M(S).
(b) M(S) is homeomorphic to an (n− 1)-cell.
(c) The centralizer of each idempotent e ∈ M(S) is isomorphic with

the (multiplicative) semigroup [0, 1].
(d) S \M(S) admits left cancellation.
(e) M(S) is a left zero semigroup.

Since conditions (a)–(d) are obviously satisfied for S = ΣD and n = 3 the above
observation (iv) shows that the ABC-theorem is no longer valid if condition (e)
is omitted.

We next pass to a construction where the H -classes are nontrivial.
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4.9. Conventions II. To avoid tedious calculations we henceforth also assume
that D = W ∩ Hyp contains the element H . This can always be enforced by
applying a suitable inner automorphism, so we do not lose generality. We write

h := hor(H) ∩D, v := vert(H) ∩D.

Note that D = v♦h .

4.10. The paragroup M(D,K) . Let (K, k) be a topological group compact-
ification of the additive group of real numbers. Then we turn the compact space
M(D,K) = v×K × h into a paragroup, with multiplication

(X, g, Y )(X ′, g′, Y ′) = (X, gσ(Y, X ′)g′, Y ′),

where, for any Y = H + βP ∈ h , X ′ = H + γQ ∈ v we let

σ(H + βP, H + γQ) = k(log(1 +
βγ

4
)).

To justify the definition of the sandwich map σ , note first that for Y,X ′ as
above we always have 4 + βγ 6= 0. This follows from [2] 4.15 and the fact
that the diamond product X ′♦Y exists. By 4.2 the set D is connected, so we
conclude that 4 + βγ has the same sign for all pairs (H + βP, H + γQ) ∈ h× v ,
this sign must be positive since (H,H) ∈ h× v .

4.11. The s-action of Σ on M(D,K) . With the aid of the s-action ◦ of
Σ on D we next define an s-action of Σ on M(D,K): For s =

(
a b
c d

)
∈ S and

(H + γQ, g,H + βP ) ∈ v×K × h we put

s(H + γQ, g,H + βP ) = (s◦(H + γQ), k(log(a +
bγ

2
))g,H + βP )

(H + γQ, g,H + βP )s = (H + γQ, gk(log(a +
cβ

2
)), (H + βP )◦s).

Note that the condition s exp(t(H + γQ)) ∈ exp(Kill+) [exp(t(H + βP ))s ∈
exp(Kill+)] for every t ∈ R+ implies that a + bγ

2 > 0 [a + cβ
2 > 0]. It is readily

verified by direct calculation that our definition indeed yields an s-action of Σ
on M(D,K).

4.12. Example. Suppose that s = exp(tX), where X = (H + γQ)♦(H + βP )
and t > 0. Then we get

s(H + γQ, g, H + βP ) = (H + γQ, k(t)g,H + βP ).

A similar formula holds for (H + γQ, g,H + βP )s .

For the next proposition we recall that by 3.5(iii) we have a > 0 for every(
a b
c d

)
∈ Σ.
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4.13. Definition and Proposition. Let M(D,K) be the paragroup of 4.10.
Then we define a continuous map Φ:Σ \ {1} → M(D,K),

s =
(

a b

c d

)
7→ Φ(s) = (ϕ(s)♦H, k(log(a)),H ♦ϕ(s)).

(Since the choice of D,K will always be clear from the context we shall omit
any reference to D,K in the notation for Φ.)

The following assertions hold:

(i) The map Φ is asymptotically a homomorphism and asymptotically equi-
variant.

(ii) For every non-empty open subset V of M(D,K) the set Φ−1(V ) is not
relatively compact in Σ .

Proof. (i) To verify that Φ is asymptotically a homomorphism choose nets
〈si =

(
ai bi

ci di

)
〉 and 〈s′i =

(a′i b′i
c′

i
d′

i

)
〉 in Σ such that si → ∞ , s′i → ∞ , Φ(si) →

(H +γQ, g, H +βP ), and Φ(s′i) → (H +γ′Q, g′,H +β′P ). We have to show that
the net 〈Φ(sis

′
i)〉 converges to (H + γQ, gk(log(1 + βγ′

4 ))g′,H + β′P ). By 4.5(i)
the map ϕ is asymptotically a homomorphism, so ϕ(si) → (H +γQ)♦(H +βP )
and ϕ(s′i) → (H +γ′Q)♦(H +β′P ) imply that ϕ(sis

′
i) → (H +γQ)♦(H +β′P ).

Thus it remains to verify that

(∗) k(log(aia
′
i + bic

′
i)) → gk(log(1 + βγ′

4 ))g′.

To accomplish this, observe first that the equality aia
′
i + bic

′
i = ai

(
1 + bi

ai

c′i
a′

i

)
a′i

implies that

k(log(aia
′
i + bic

′
i)) = k(log(ai))k

(
log

(
1 + bi

ai

c′i
a′

i

))
k(log(a′i)).

Since rlog(si) = ϕ(si) → (H + γQ)♦(H +βP ) = 1
4+βγ ((4−βγ)H +4βP +4γQ)

we obtain (using the formula for the exponential function) that

lim
bi

ai
=

4β
4+βγ

1 + 4−βγ
4+βγ

=
β

2
.

Similarly, rlog(s′i) = ϕ(s′i) → (H + γ′Q)♦(H + β′P ) implies that lim c′i
a′

i
= γ′

2 .
So, (∗) holds, hence Φ is asymptotically a homomorphism.

We now show that Φ is asymptotically equivariant. Pick nets 〈si =(
ai bi

ci di

)
〉 and 〈s′i =

(a′i b′i
c′

i
d′

i

)
〉 in Σ such that si → s =

(
a b
c d

)
∈ S , s′i → ∞ , and

Φ(s′i) → (H +γ′Q, g,H +β′P ). We show that Φ(sis
′
i) → s(H +γ′Q, g,H +β′P ).

The convergence Φ(s′i) → (H + γ′Q, g,H + β′P ) implies that ϕ(s′i) →
(H + γ′Q)♦(H + β′P ), and, by 4.5(i), that ϕ(sis

′
i) → s◦(H + γ′Q)♦(H + β′P ).

Thus it remains to prove that

(∗∗) k(log(aia
′
i + bic

′
i)) → k

(
log

(
a + bγ′

2

))
g.
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The equality aia
′
i + bic

′
i = (ai + bi

c′i
a′

i
)a′i implies that

k(log(aia
′
i + bic

′
i)) = k

(
log

(
ai + bi

c′i
a′

i

))
k(log(a′i)).

We have seen above that lim c′i
a′

i
= γ′

2 , so we obtain (∗∗), and thence Φ(sis
′
i) →

s(H+γ′Q, g,H+β′P ). By the same arguments Φ(s′isi) → (H+γ′Q, g,H+β′P )s ,
thus Φ is asymptotically equivariant.

(ii) Let V be a non-empty open subset of M(D,K). Consider an
arbitrary element (Y, g, Z) ∈ V and an open subset U of K containing g such
that

{Y } × U × {Z} ⊆ V.

Let X = Y ♦Z = αH + βP + γQ . We know from 8.2 of [2] that 1 + α > 0.
The properties of the compactifications of the additive group R imply that there
exists a sequence 〈rn〉 of positive reals converging to +∞ such that k(rn) ∈ U
for every n ∈ N . Since 1 + α > 0 we find for every n ∈ N a positive real tn
such that cosh(tn) + α sinh(tn) = ern . Then tn → ∞ . Since Φ(exp(tnX)) =
(Y, k(rn), Z) ∈ V for every n ∈ N we conclude that Φ−1(V ) is not relatively
compact in Σ.

4.14. The semigroup ΣD,K . By 4.13 Construction 2.9 yields a (topological)
semigroup compactification (Σ tΦ M(D,K), j) of Σ with inclusion map j . We
henceforth abbreviate Σ tΦ M(D,K) to ΣD,K .

4.15. Connections between ΣD and ΣD,K . The map ΣD,K → ΣD defined
by

a 7→ a for a ∈ S

(X, g, Y ) 7→ X♦Y for (X, g, Y ) ∈ M(D,K)

is a continuous and surjective homomorphism whose kernel congruence is the
H -relation on M(D,K).

4.16. Induced compactifications of a subsemigroup of Σ . If S is a
closed subsemigroup of Σ then our compactifications (ΣD, i) and (ΣD,K , j)
naturally induce compactifications of S , namely (i(S), iS) and (j(S), jS), where
iS(x) = i(x) and jS(x) = j(x) for all x ∈ S .

4.17. Proposition. Let S be a closed subsemigroup of our exponential semi-
group Σ . We write ϕ′ for the restriction of ϕ to S \{1} , and D′ = ϕ′(S \ {1}) .
Then i(S) = i(S) ∪ D′ and the compact semigroup i(S) can be written as the
t-product S tϕ′ D

′ .

Proof. Since rlog(sn) = rlog(s), for every s ∈ S \ {1} , n ∈ N , and sn → ∞
this assertion follows by a straightforward application of the definition of the
t-product (cf. 2.11).
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4.18. For the next proposition we recall from [2] 10.1, that the umbrella set
Umb(A) of a subset A in a Lie group G is defined to be the set of all elements
X in the Lie algebra of G such that exp(tX) ∈ A for all suitably large positive
reals t , say, t ≥ T . (Cf. also 5.2 below.)

4.19. Proposition. We retain the assumptions and the terminology of 4.17 ,
and suppose, in addition, that S has dense and connected interior and that
Umb(S) = R+

0 D . Then

(i) D′ = D and j(S) = j(S) ∪M(D,K) ;

(ii) Φ(S \ {1}) = M(D,K) , and the compact semigroup j(S) can be written
as the t-product S tΦ′ M(D,K) , where Φ′ denotes the restriction of Φ
to S \ {1} .

Proof. (i) The equality D′ = D follows from the fact (cf. [2], 10.5) that the
algebraic interior of Umb(S) coincides with Umb(Int S).

If X is an interior point of D (in Hyp) then exp([T,∞[X) ⊆ IntS for
some T > 0, thus the proof of 4.13(ii) shows that the closure of j(exp([T,∞[X))
contains the set {X ♦H} × K × {H ♦X} . This implies that M(D,K) ⊆ j(S)
and the assertion follows.

(ii) The proof of (i) yields the inclusion M(D,K) ⊆ Φ(S \ {1}). Asser-
tion (ii) follows now from 2.11.

5. Compactifications of subsemigroups of Sl(2,R): Basic Facts

5.1. Notation. (i) Unless stated explicitly otherwise, throughout this section
we let S be a closed proper (i.e., S 6= Sl2 ) subsemigroup of Sl2 with dense and
connected interior. Note that the interior of a connected subsemigroup of Sl2 is
always connected if it clusters at the identity (cf., e.g., [2], 3.2).

(ii) We use the standard notation for semigroups. In particular,
— E( ) stands for the set of idempotents,
— M( ) for the minimal ideal (if it exists),
— H( ) for H -classes.

(iii) We consider a (topological semigroup) compactification of S , for which we
write (Sκ, κ), or Sκ for short. The universal such compactification, the Bohr
compactification of S , is denoted by (Sb, bS), or Sb .

(iv) Since no ambiguities are to be feared we denote both the left and the right
natural action of S on its compactification Sκ by the dot “.”. Thus s.x = κ(s)x
and x.s = xκ(s) for every x ∈ Sκ and s ∈ S .

(v) If 0 6= X ∈ sl(2, R) with exp(R+X) ∩ S 6= Ø then eX denotes the
(unique) idempotent in the minimal ideal of the compact abelian semigroup
κ(exp(R+X) ∩ S). Since there is no danger of confusion we usually do not specify
the particular compactification.
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5.2. Frequently used facts about umbrella sets. (Cf. [2] 10.3, 3.4, 10.5)

(i) If A is a subsemigroup of G and expX lies in the interior of A then
X ∈ Umb(A).

(ii) If G = Sl2 and A is an open and connected proper subsemigroup of G
then

(a) A ⊂ exp(Kill+),
(b) Umb(A) = R+ rlog(A) and Umb(A) ⊆ Umb(A) ⊆ Umb(A),
(c) Umb(A) is the interior of an exponential Lie wedge, i.e., a wedge

in Kill+ which is the intersection of at most four half spaces, each
bounded by a Borel algebra.

(d) If X ∈ Umb(A) ∩ Hyp and a ∈ A then the pairs (X, a) and
(a,X) lie in the standard domain and {X ◦a, a◦X} ⊂ Umb(A).

5.3. Proposition. Let x = exp(X) be an interior point of S and suppose that
〈ni〉 is a net of positive real numbers with limni = +∞ and such that the limit
` = lim κ(exp(niX)) exists. Then

(i) `Sκ` = MX , where MX is the minimal ideal of the compact abelian
semigroup κ(exp(R+

0 X) ∩ S) ;

(ii) ` lies in the minimal ideal M(Sκ) of Sκ , and MX = H(eX) ;

(iii) there is a unique continuous homomorphism k: R → H(eX) with k(t) =
eX . exp(tX) whenever exp(tX) ∈ S , under this homomorphism the im-
age of S ∩ exp(RX) is dense in H(eX) ;

(iv) if y = expY ∈ S and X, Y lie in the span of a single horizontal [vertical ]
line then eXeY = eY [ eXeY = eX ] , that is, eX and eY lie in the same
minimal right [ left ] ideal.

Proof. Let SX := exp(R+
0 X)∩S . We observe first that if 〈ti〉 is a net of positive

real numbers such that lim ti = +∞ and the limit m = lim κ(exp(tiX)) exists,
then m ∈ MX . To see this, consider an arbitrary element exp(aX) ∈ SX . The
equality exp(tiX) = exp(aX) exp((ti − a)X) holds in SX for sufficiently large
ti . We conclude that m ∈ exp(aX).κ(SX). This implies that m ∈ MX .

(i) We know that Int S ⊆ exp(Kill+), so there exists an inner automor-
phism of sl(2, R) taking rlog(x) to H . Thus it suffices to show the assertion
under the assumption that X = tH , where t > 0. Pick s =

(
a b
c d

)
∈ S . Then

a > 0, by 3.5(iii), and we find

exp(niX)s exp(niX) =
(

etni 0
0 e−tni

) (
a b
c d

) (
etni 0
0 e−tni

)
=

(
e2tnia b

c de−2tni

)
=

(
1 0

c
ae−2tni 1

) (
ae2tni 0

0 e−2tni

a

) (
1 b

ae−2tni

0 1

)
.
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Since x ∈ IntS we conclude that for ni sufficiently large the elements

ui =
(

1 0
c
ae−2tni 1

)
x and vi = x

(
1 b

ae−2tni

0 1

)
lie in IntS as well. Note that lim ui = lim vi = x .

Now we pass to a suitable subnet such that the elements

yi
def=

(
ae2ni−2t 0

0 e−2ni+2t

a

)
lie in S and such that y = lim κ(yi) exists. Then y ∈ MX and therefore

`.s.` = lim κ(exp(niX)s exp(niX)) = lim ui.κ(yi).vi = x.y.x ∈ MX .

Thus we have shown that `.S.` ⊆ MX . We conclude that

MX = `MX` ⊆ `Sκ` = `.S.` ⊆ MX .

Hence `Sκ` = MX .
(ii) By (i) eXSκeX = `Sκ` = MX is a group. We know from the general

theory of compact semigroups that an idempotent e of a compact topological
semigroup C lies in the minimal ideal of C if and only if eCe is a group. Thus
eX ∈ M(Sκ) and ` ∈ MX = eXSκeX = H(eX) ⊆ M(Sκ).

(iii) By (ii) we have a continuous homomorphism k0: [t0,∞[→ H(eX),
t 7→ eX . exp(tX), where t0 is a positive real such that exp([t0,∞[·X) ⊂ S .
Define

k(t) =
{

eX . exp(tX) if t ≥ t0,
exp(2t0X).(eX . exp(2t0 − t)X)−1 if t < t0.

Then k is a homomorphism and its restriction to ]t0,∞[ is continuous, so it is
continuous everywhere. It is easily checked that k(t) = eX . exp(tX) whenever
exp(tX) ∈ S .

(iv) As in the proof of (i) we assume that X = tH . We show the assertion
for X, Y lying in the span of the same horizontal line, the other case follows by
taking transposes. Then Y = t′(H +βP ) for suitable reals t′, β . Replacing y by
yn for some n ∈ N we enforce that x′: = exp t′H lies in the interior of S . Then

yxni = xni exp(t′(H + βe−2nitP ))

and, since x′ is an inner point of S , for large indexes i the point exp(t′(H +
βe−2nitP ) lies in S . Applying κ and passing to limits we thus find that y.` =
`.x′ ∈ H(`) and the assertion follows.

5.4. Lemma. Let 〈xi〉 be a net in IntS with lim xi = ∞ and such that the
limits ` = lim κ(xi) and X = lim rlog(xi) exist. Suppose that X ∈ Umb(IntS) .
Then the following assertions hold:

(i) ` ∈ eXSκeX .

(ii) ` lies in the minimal ideal M(Sκ) of Sκ .

(iii) ` ∈ H(eX) .
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Proof. (i) Since X ∈ Umb(IntS) we find, by virtue of 10.3(ii) in [2], a neigh-
borhood U of X in sl(2, R) and a positive number t0 such that for all Y ∈ U
and all t ≥ t0 the exponential image exp(tY ) is contained in IntS . For conve-
nience, we write Xi = rlog(xi). Then xi = exp(tiXi) for some ti ∈ R+ . Since
limxi = ∞ , we have that lim ti = +∞ . Fix some number t > t0 . Then for
sufficiently large indexes i we have Xi ∈ U and ti − t ≥ t0 , so the elements
exp(tXi) and exp((ti − t)Xi) lie in S . Passing to a suitable subnet we enforce
that y = lim κ(exp((ti − t)Xi)) exists. Then

exp(tX).y = lim κ(exp(tXi))κ(exp((ti − t)Xi)) = limκ(exp(tiXi)) = `.

Similarly y. exp(tX) = ` . Thus ` ∈ exp(tX).Sκ ∩ Sκ. exp(tX) for all t > t0 .
Plugging in a net 〈tj〉 with κ(exp(tjX)) → eX and passing to limits we therefore
see that ` ∈ eXSκeX , as asserted.

Assertions (ii) and (iii) follow from (i) and Proposition 5.3.

5.5. Remark. For the next lemma note that for every net 〈Xi〉 in Hyp with
limXi = ∞ there exist a subnet 〈Xj〉 and positive reals λj such that 〈λjXj〉
converges to a nonzero nilpotent matrix.

We also recall that Sl+2 denotes the set of all matrices in Sl2 with non-
negative entries. It is known from [2] 10.5 that every proper subsemigroup of Sl2
with dense and connected interior is contained in an exponential subsemigroup,
hence, by [2] 3.8, is conjugate to a subsemigroup of Sl+2 .

5.6. Lemma. Suppose that S is contained in Sl+2 and let 〈xi〉 be a net in
IntS such that xi → ∞ and rlog(xi) → ∞ in Umb(S) . We assume that
limλi rlog(xi) = P for a suitable net 〈λi〉 of positive reals. Then for every
x =

(
v w
y z

)
∈ IntS

(i) lim rlog(xxi) = −H + 2 v
y P ,

(ii) lim rlog(xix) = H + 2 z
y P .

Proof. Put rlog(xi) = αiH + βiP + γiQ . Then βi, γi are nonnegative and thus
the relation α2

i +βiγi = 1 implies that γi ≤ 1/βi . Since λiβi → 1 we must have
βi →∞ and γi → 0.

Write xi =
(
ai bi

ci di

)
= exp(ti rlog(xi)) for some positive ti . We claim that

bi → +∞ . If this is not the case, then 〈bi〉 has a convergent subnet 〈b`〉 . The
formula for the exponential function (see, for example, 2.5 of [2]) implies then
that t` → 0, hence 〈a`〉 , 〈c`〉 , and 〈d`〉 are bounded, which contradicts the
assumption that xi →∞ . Thus bi → +∞ .

The formula for rlog (see 2.5 of [2]) says that for g =
(
a b
c d

)
rlog (g) =

( a−d
u

2b
u

2c
u −a−d

u

)
with u =

√
(a + d)2 − 4.

Thus βi = 2bi√
(ai+di)2−4

. Since βi → +∞ and bi → +∞ we therefore get



Breckner and Ruppert 93

ai+di

bi
→ 0, hence

ai

bi
→ 0 and

di

bi
→ 0. Also

ci

bi
=

γi

βi
→ 0.

Now rlog(xxi) =
(

α∗i β∗i
γ∗i −α∗i

)
with

α∗i =
vai + wci − (ybi + zdi)√

(vai + wci + ybi + zdi)2 − 4
−→ −1

β∗i = 2
vbi + wdi√

(vai + wci + ybi + zdi)2 − 4
−→ 2

v

y

γ∗i = 2
yai + zci√

(vai + wci + ybi + zdi)2 − 4
−→ 0.

This establishes (i). The proof of (ii) is left to the reader.

5.7. Notation. In the following we use the abbreviation (slightly at variance
with the notation in [2]) D := Umb(S)∩Hyp = rlog(S ∩ exp(Kill+)). The set D
is called the set of regular directions in S .

5.8. Theorem. Let S be a closed proper subsemigroup of Sl2 with dense and
connected interior. Let 〈xn〉 be a net in IntS with lim xn = ∞ and such that
the limit ` = lim κ(xn) exists. Then there exists a subnet 〈xi〉 of 〈xn〉 such that
one of the following assertions holds:

(i) X = lim rlog(xi) exists and lies in the interior of D in Hyp . Then
` ∈ H(eX) ⊆ M(Sκ) , where eX is the unique minimal idempotent in the
closure of κ(exp(R+X) ∩ S) .

(ii) X = lim rlog(xi) exists and lies in the interior of one of the horizontal
line segments belonging to the boundary of D in Hyp . Then Sκ` ⊆
M(Sκ) .

(iii) X = lim rlog(xi) exists and lies in the interior of one of the vertical line
segments belonging to the boundary of D in Hyp . Then `Sκ ⊆ M(Sκ) .

(iv) Either 〈rlog(xi)〉 converges to a corner point of D or rlog(xi) → ∞ .
Then Sκ`Sκ = M(Sκ) .

Proof. We first pass to a subnet 〈xi〉 such that either X = lim rlog(xi) exists
or rlog(xi) →∞ .

(i) This follows from Lemma 5.4 and the fact that IntD = Umb(Int S)∩
Hyp (cf. [2] 10.5(ii)).

(ii) We conclude from 3.9(i),(ii) that s◦X lies in the interior of D
whenever s lies in the dense subset IntS \ exp(R hor(X)) of S . For such an
element s we have lim sxi = ∞ and, by 3.8(i), rlog(sxi) = s◦X . Applying
(i) we see that (IntS \ exp(R hor(X))).` ⊆ M(Sκ). Since M(Sκ) is closed and
κ(IntS \ exp(R hor(X))) is dense in Sκ this implies the assertion.
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(iii) follows from (ii) by applying the anti-automorphism x 7→ x−1 .
(iv) By minimality it obviously suffices to show Sκ`Sκ ⊆ M(Sκ).
Assume first that X = lim rlog(xi) is a corner point of D . Then by

3.9(i),(ii) the point s◦X lies in the interior of one of the vertical line segments
belonging to the boundary of D in Hyp , provided s ∈ IntS \ exp(R hor(X)).
Thus, by (iii) we see that (Int S \ exp(R hor(X))).`Sκ ⊆ M(Sκ), and, conse-
quently, Sκ`Sκ ⊆ M(Sκ).

Assume now that rlog(xi) → ∞ . Then, not losing generality, we
also assume that S ⊆ Sl+2 and that we can find positive numbers λi such
that λi rlog(xi) → P . By Lemma 5.6(i) we know that for every s lying in a
dense subset of S the limit lim rlog(sxi) lies in the interior of the line segment
vert(−H) ∩D . For all such points s we infer from (iii) that s.`Sκ ⊆ M(Sκ), so
the assertion follows from the compactness of M(Sκ).

5.9. Large elements. In the following an element s ∈ Sκ is said to be S -large,
or large for short, if it is the limit s = lim κ(xn) where 〈xn〉 is a net in S with
limxn = ∞ . Note that the set of large elements is the intersection

⋂
κ(A),

where each A is a cocompact set in S . Since, by our general assumption,
S is a subsemigroup of a group it follows without difficulty that the S -large
elements form a closed ideal in Sκ which contains the growth Sκ \ κ(S) of the
compactification Sκ .

5.10. Theorem. Let S be a closed proper subsemigroup of Sl2 with dense and
connected interior. Then an S -large element m ∈ Sκ lies in the minimal ideal
M(Sκ) if and only if m ∈ SκmSκ . In particular, if S contains the identity then
every S -large element m belongs to M(Sκ) .

Proof. By 5.8 we know that, in any case, SκmSκ ⊆ M(Sκ). This establishes
our assertion.

5.11. Example. If in the above theorem S is not a monoid then the growth of
a compactification of S need not be contained in the minimal ideal.

(i) We first remark that for any topological semigroup with constant
multiplication xy = z0 the Bohr compactification is equivalent with the Stone-
Čech compactification, with constant multiplication x′y′ = β(z0). In this case
the minimal ideal of the Bohr compactification never meets the growth of the
Bohr compactification, and the growth is nonvoid whenever S is completely
regular but noncompact.

(ii) If S is any topological semigroup on a locally compact normal space
such that the Rees quotient S/S2 is not compact then S has a topological
semigroup compactification whose growth is nonvoid and does not meet the
minimal ideal. This follows from (i) and the fact that S1 = S/S2 is a semigroup
with constant multiplication. (Since S is defined on a normal space the Rees
quotient S/S2 is completely regular, hence its Stone-Čech compactification is an
embedding, with nonvoid growth since S/S2 is noncompact.) By the universality
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of the Bohr compactification this implies that the growth of Sb cannot be
contained entirely in its minimal ideal.

(iii) Let S be the semigroup consisting of the matrices in Sl+2 where both
diagonal entries are ≥ 2. This semigroup is connected and has dense interior,
since it can be written also as the set of all matrices of the form

s(a, b, u) =
(

a b
(u− 1)/b u/a

)
, u ≥ 2a ≥ 4, b > 0.

Note that s(a, b, u) ∈ S2 always implies a ≥ 4, thus the Sl2 -closed set C =
{s(2, b, 4) | b > 0} is properly contained in S \ S2 , so C is not relatively
compact in S . Thus by (ii) the growth of S in its Bohr compactification is not
contained in the minimal ideal. In fact, (bS | C, bS(C)) is equivalent with the
Stone-Čech compactification of the reals and bS(C) does not meet the minimal
ideal.

6. Injectivity and Noninjectivity of Compactifications

6.1. Theorem. Suppose that (Sκ, κ) is a topological semigroup compactification
of a closed connected proper submonoid S of Sl2 with dense interior, and write
I

def= κ−1(M(Sκ)) .

(i) An element s ∈ S lies in I if and only if there exists an s′ 6= s with
κ(s) = κ(s′) . If I is nonempty then κ(I) = {z} , where z is the zero
element of Sκ .

(ii) The restriction of κ to S \ I is a homeomorphic embedding.
(iii) The following assertions are equivalent:

(a) κ is injective.
(b) κ is a homeomorphic embedding.
(c) I is empty.
(d) κ is not surjective.

Proof. (i) It is shown in [4] 2.1 that every closed congruence on a closed
connected submonoid with dense interior of Sl2 is either the identity or a Rees
congruence. Thus assertion (i) holds whenever the kernel congruence of κ is not
the identity, that is, if κ is not injective.

Suppose now that κ is injective and assume that x ∈ I . If x = 1 then
Sκ = M(Sκ) and M(Sκ) contains a central idempotent, so Sκ is a group. Now
the following general proposition, recorded also for later use, shows that Sκ is
singleton, in contradiction to the injectivity of κ .

6.2. Proposition. Let S be a connected subsemigroup with dense interior of
a connected noncompact simple Lie group G . Then every continuous homomor-
phism of S into a compact topological group is trivial.

Proof. By [11] VII.3.28 the free topological group on S is a covering group of G .
Since every connected noncompact simple Lie group is minimally almost periodic
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this implies that the free topological group on S has no nontrivial continuous
homomorphisms into a compact topological group. By the definition of the free
topological group on S this finishes the proof.

6.3. Proof of 6.1(i) (ctd). Next we suppose that κ(x) ∈ M(Sκ) with
x 6= 1 . Then the centralizer of x is nowhere dense in Sl2 and we can find a point
s ∈ S with x2sx 6= xsx2 . But κ(x).S.κ(x) ⊆ H(κ(x)), hence, since the maximal
subgroups of Sκ are abelian, κ(x2sx) = κ(x)κ(xsx) = κ(xsx)κ(x) = κ(xsx2).
Since this contradicts the injectivity of κ we conclude that I must be empty
whenever κ is injective and the assertion follows.

(ii) Suppose that 〈sn〉 is a net in S \ I such that lim κ(sn) = κ(s), for
some s ∈ S \ I .

If 〈sn′〉 were a subnet of 〈sn〉 with lim sn′ = ∞ then, by Theorem 5.10,
κ(s) ∈ M(Sκ), a contradiction to s ∈ S \ I .

By (i) every convergent subnet of 〈sn〉 must converge to s , so we conclude
that lim sn = s and the proof is finished.

(iii) The proof of (i) also shows the implication (a) =⇒ (c). The impli-
cation (c) =⇒ (b) is a consequence of (ii), and (b) =⇒ (a) is trivial. From (i)
and the inclusion Sκ \ κ(S) ⊆ M(Sκ) we infer that κ is surjective if I 6= Ø, so
(d) =⇒ (c). Since S does not contain any idempotent except 1 we also have
(a) =⇒ (d).

The following corollary is only a handy reformulation of some of the
assertions in 6.1, its proof is therefore omitted.

6.4. Corollary. Let S be a closed connected proper submonoid of Sl2 with
dense interior and let (Sκ, κ) be a (topological) semigroup compactification of
S . Then the following assertions are equivalent and imply that Sκ contains a
zero element:

(i) The compactification map κ:S → Sκ is not injective.

(ii) There exists a closed (nonvoid) ideal I of S such that κ is constant on
I .

(iii) κ:S → Sκ is surjective.

(iv) κ(S) meets the minimal ideal M(Sκ) .

6.5. Aliens. Recall from [3] that an element s in a locally compact semigroup
S is called an alien if it is the limit of a net 〈xnyn〉 , where xn →∞ or yn →∞ .
The set of all aliens in S is denoted by Al(S). A locally compact topological
semigroup is perfect if and only if it contains no aliens. If z is an alien then for
any compactification map κ the image κ(z) is a large element in the sense of
Section 5.9.
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6.6. Corollary. Let S be a closed connected submonoid of Sl2 with dense inte-
rior. Then S contains aliens if and only if none of its compactification maps is
injective. Equivalently: S is perfect if and only if there exists a compactification
(Sκ, κ) such that κ(S) does not meet the minimal ideal M(Sκ) .

Proof. This follows from 5.10 and 6.4.

6.7. Corollary. Let S be a closed subsemigroup of Sl2 with dense and connected
interior. Then the following assertions are equivalent:

(i) Sb = M(Sb) .

(ii) All elements of S are aliens in S .

Proof. The assertion is trivial in the case S = Sl2 , so we assume S 6= Sl2 .
(i) =⇒ (ii) By [3], 5.2, 5.5, and 5.6 (cf. also 6.9 below), we know that the large
ideal compactification maps the non-aliens of S onto non-minimal elements, so
(i) implies (ii).

(ii) =⇒ (i) Note first that by definition, every point s ∈ S is the limit
of products sntn with lim sn = lim tn = ∞ . Applying this fact to the factors
sn we see that every s ∈ S is also the limit of triple products xnynzn with
limxn = lim yn = lim zn = ∞ . Passing to suitable subnets we enforce that the
limits u = lim bS(xn), v = lim bS(yn), and w = lim bS(zn) exist. We conclude
that bS(s) = uvw ∈ SbvSb , hence, by Theorem 5.8, Sb = M(Sb).

6.8. Example. (Cf. [3], 7.6) The set{(
a b
c d

)
∈ Sl+2 | a + c ≥ b + d, c ≥ d

}
is a closed subsemigroup of Sl2 with dense and connected interior, and all of its
elements are aliens, thus, by the above corollary, its Bohr compactification is a
paragroup. In fact, its Bohr compactification is a singleton set: We have seen in
[3],7.6 that for every element s in a dense subset of the semigroup and all n ∈ N
there exist elements yn , zn in the semigroup such that

s = lim
(

n 0
1/n 1/n

)
yn = lim zn

(
1/n 0
n n

)
.

This means that the Bohr compactification map maps s onto e.s = s.f , where
e and f are fixed idempotents. It follows that the Bohr compactification of our
semigroup is a left group as well as a right group, hence is a group. But since
Sl2 is simple and noncompact this group must be singleton, by 6.2.

6.9. Large ideals. The following definitions and facts are taken from [3],
section 5.

(i) Let S be a noncompact locally compact topological semigroup. An
ideal I of S is said to be a large ideal if S \ I is compact. Note that for closed
large ideals I the Rees quotient S/I is always a compact topological semigroup.
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(ii) If the intersection of all closed large ideals in S is nonempty then it
is an ideal in S . If S is a subsemigroup of a topological group (more generally,
if S is c-perfect ([3], 2.4)) then every element in this intersection is an alien.

(iii) Every non-alien element in a noncompact locally compact subsemi-
group of a topological group G has a neighborhood which is the complement of
a large ideal.

6.10. Large ideal compactifications. In the following assertions (i)–
(iii) we let S be a noncompact locally compact subsemigroup of a topological
group G (or, more generally, a noncompact c-perfect locally compact topological
semigroup).

(i) Let A be a (possibly void) subset of S . Then the set IA of all
closed large ideals of S containing A is directed under ⊇ since for I, J ∈ IA
the intersection I ∩ J also lies in IA . The intersection

⋂
IA is the closed ideal

generated by A ∪ Al(S).
(ii) The limit S`A of the projective system {S/I}I∈IA exists and is a

compact semigroup (cf. Theorem 2.22 of [6]), we write `A for the corresponding
morphism S → S`A . If A is empty then we call the ensuing compactification
the (universal) large ideal compactification of S and denote it by (S`, `) or S`

for short.
(iii) The compactifications S`A with A 6= Ø are in 1-1-correspondence

with the closed ideals of S which contain Al(S). In particular our discussion
shows that for every closed ideal I of S containing Al(S) there exists a compact-
ification (Sκ, κ) such that the restriction of κ to I is constant and the restriction
of κ to S \ I is a topological embedding.

6.11. Notation. (i) We write NONINJ(S) for the set of equivalence classes
(Sκ, κ) of compactifications of S with κ noninjective, augmented by the large
ideal compactification (S`, `). (Note that ` is injective if and only if Al(S) = Ø.)
We provide NONINJ with the usual order of compactifications.

(ii) We write ALID(S) for the set of all closed ideals of S which contain
Al(S), augmented by the empty set if Al(S) = Ø. The set ALID(S) is endowed
with the usual order ⊆ .

6.12. Theorem. Let S be a closed connected submonoid of Sl2 with dense
interior. Then the following assertions hold:

(i) The map NONINJ(S) → ALID(S) , assigning to (Sκ, κ) the set I =
κ−1(M(Sκ)) , is an order anti-isomorphism.

(ii) If Al(S) 6= Ø then the Bohr compactification of S is equivalent with the
large ideal compactification.

Note that the ordered sets NONINJ(S) and ALID(S) form complete lattices.

Proof. (i) follows from 6.4 and the remarks in 6.10.
(ii) The assertion trivially holds if S = Sl2 . So let us suppose that S 6=

Sl2 . We already know by 5.10 that Sb = bS(S) ∪M(Sb) and that bS(Al(S)) ⊆
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M(Sb). Since Al(S) is nonvoid we know by 6.1 and 6.6 that M(Sb) is a singleton.
So the natural morphism Sb → S` separates the points of Sb and the assertion
follows.

7. Idempotents and Directions

7.1. We start this section with the observation that the map of 5.1(v), assigning
to every X ∈ rlog(S ∩ exp(Kill+)) the idempotent eX , is continuous and can be
extended continuously to the set D = rlog(S ∩ exp(Kill+)) of regular directions
in S . A further extension, dealing also with ‘non-regular directions,’ will be
given in 7.5 below.

7.2. Proposition. Assume that S is a closed connected proper submonoid
of Sl2 with dense interior. Then there exists a unique continuous map ε:D →
E(M(Sκ)) with the following property (a):

(a) If 〈xi〉 is a net in S ∩ exp(Kill+) with

lim xi = ∞, lim rlog(xi) = X, lim κ(xi) = m ∈ Sκ,

then m ∈ H(ε(X)) .

Proof. We first pick a point X ∈ D and claim that there exists a unique
idempotent ε(X) ∈ M(Sκ) such that (a) holds.

The definition of Umb immediately implies that there exists a net 〈xi〉
in S ∩ exp(Kill+) such that lim xi = ∞ , lim rlog(xi) = X , we may also assume
that lim κ(xi) = m ∈ Sκ exists. By 5.10, m ∈ M(Sκ), so there exists a minimal
idempotent ε(X) with m ∈ H(ε(X)). To show that the definition of ε(X) does
not depend on the choice of 〈xi〉 , suppose that ` = lim κ(yj) for another net 〈yj〉
in S∩exp(Kill+) with lim yj = ∞ , lim rlog(yj) = X . Then, by 5.10, ` ∈ M(Sκ),
so we have to prove that ` ∈ mSκm . Pick (a, b) ∈ IntS × IntS such that
a◦X ◦b ∈ IntD , the set of all such pairs is dense in S×S (cf. 3.9(i),(ii)). By the
asymptotic formulas 3.8 and by Lemma 5.4, we have {a.`.b, a.m.b} ⊆ H(ea◦X ◦b)
and therefore a.`.b ∈ (a.m.b)Sκ(a.m.b). Taking limits a → 1, b → 1 proves our
claim.

We now show that ε is continuous. Consider a net 〈Xi〉 of Umb(Int S)∩
Hyp converging to X ∈ D . Then there exists a net 〈ti〉 of positive reals
with ti → ∞ and such that exp(tiXi) ∈ IntS for every index i . Clearly,
lim exp(tiXi) = ∞ and we have

ε(Xi) = eXi
∈ exp(tiXi).H(eXi

). exp(tiXi).

Then, by (a), every limit of a convergent subnet of the net 〈eXi
〉 must be equal

to ε(X), hence every convergent subnet of 〈eXi
〉 has the limit ε(X). This shows

that lim ε(Xi) = ε(X). The asserted continuity now follows from the fact that
Umb(IntS) ∩ Hyp is dense in D .
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7.3. Basic properties of the map ε . We retain the assumptions of 7.2.

(i) If x = exp(tX) ∈ S with X ∈ Hyp , t > 0 , then X ∈ D and eX = ε(X) .

(ii) If two elements X, X ′ of D lie on the same horizontal [vertical ] line
then the corresponding idempotents ε(X), ε(X ′) lie in the same minimal
right [ left ] ideal of Sκ .

(iii) If X, Y ∈ D and the diamond products X ♦Y and Y ♦X exist then
ε(X)ε(Y ) ∈ H(ε(X ♦Y )) , or, equivalently,
ε(X ♦Y )ε(Y ) = ε(X)ε(X ♦Y ) = ε(X ♦Y ) .

(iv) If X ∈ D and s ∈ S then s.ε(X) ∈ H(ε(s◦X))) and
ε(X).s ∈ H(ε(X ◦s))) .

(v) If X ∈ D then vert(X)∩D = S ◦X , and E(Sκε(X)) = ε(vert(X) ∩D) .
Similarly, hor(X) ∩D = X ◦S , and E(ε(X)Sκ) = ε(hor(X) ∩D) .

(vi) If X is an interior point of D in Hyp then the sets hor(X) ∩ D and
vert(X) ∩D are compact line segments and the map

(vert(X) ∩D) × (hor(X) ∩D) → E(M(Sκ)),

(A,B) 7→ (ε(A)ε(B))−1ε(A)ε(B),

is continuous and surjective.
(vii) If ε(X) = ε(Y ) then for every Z ∈ D we also have ε(X ♦Z) = ε(Y ♦Z)

and ε(Z ♦X) = ε(Z ♦Y ) , provided that the diamond products exist.
(viii) If ε(X) = ε(Y ) then for every s ∈ S we also have ε(s◦X) = ε(s◦Y )

and ε(X ◦s) = ε(Y ◦s) .

Proof. Assertion (i) is left to the reader, (ii) follows from 5.3(iv) since ε is
continuous, and (iii) is a direct consequence of (ii) and the definition of the
♦ -product.

(iv) Let 〈xi〉 be a net in S∩exp(Kill+) such that xi →∞ , rlog(xi) → X ,
and lim κ(xi) = ε(X). Then rlog(sxi) → s◦X and rlog(xis) → X ◦s , by 3.8, so
the assertion follows now from 7.2.

(v) The assertions 3.7(i) and 3.9(ii) yield that vert(X) ∩D = S ◦X and
hor(X) ∩ D = X ◦S . Combined with (iv), these equalities finally imply that
E(Sκε(X)) = ε(vert(X) ∩D) and E(ε(X)Sκ) = ε(hor(X) ∩D).

(vi) The compactness of hor(X) ∩D and vert(X) ∩D follows from the
classification of rectangular domains in section 7 and example 5.3 of [2], it is
also not difficult to devise a direct proof. Now (v) implies that E(Sκε(X)) =
ε(vert(X) ∩ D) and E(ε(X)Sκ) = ε(hor(X) ∩ D), and therefore the continuity
as well as the surjectivity of the map in (v) follows from the general theory of
compact topological semigroups and the continuity of ε .

Assertion (vii) is an immediate consequence of (iii), (viii) follows from
(iv).
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7.4. A useful formula. We retain the assumptions of 7.2 and suppose that
the matrix H is an interior point of D in Hyp . We write k for the unique con-
tinuous homomorphism R → H(ε(H)) such that k(t) = ε(H). exp(tH) whenever
exp(tH) ∈ S (cf. 5.3(iii)). Then for every matrix s =

(
a b
c d

)
∈ S we have the

formula
ε(H)κ(s)ε(H) = k(log(a)) .

This formula will be applied in 7.9.

Proof. Let 〈ti〉 be a net in R+ with ti → ∞ and lim κ(exp(tiH)) = ε(H).
Then

(∗) exp(tiH)s exp(tiH) =
(

1 0
c
ae−2ti 1

) (
ae2ti 0

0 e−2ti

a

) (
1 b

ae−2ti

0 1

)
.

For any inner point u of S and all sufficiently large indexes i the points

u

(
1 0

c
ae−2ti 1

)
,

(
ae2ti 0

0 e−2ti

a

)
= exp((2ti + log(a))H),

(
1 b

ae−2ti

0 1

)
u

are contained in S . Note that ε(H)κ(exp((2ti + log(a))H)) = k(2ti + log(a)).
Now, applying κ to (∗) and passing to limits, we see that u.ε(H)κ(s)ε(H).u =
u.ε(H)k(log(a))ε(H).u . Since u can be chosen arbitrarily near the identity this
implies the assertion.

The next proposition shows that ε is compatible with the map c of
3.2(iv), in that it can be extended to a continuous map on the set of asymptotic
directions Asy(S) = c(D).

7.5. Proposition. Under the assumptions of 7.2 we always have a continuous
and surjective map ε̄: Asy(S) → E(M(Sκ)) which extends ε , that is, ε̄(c(X)) =
ε(X) , for all X ∈ D . This map has the following properties:

(i) If 〈xi〉 is a net in S ∩ exp(Kill+) with

limxi = ∞, lim c(rlog(xi)) = (h, v), limκ(xi) = m ∈ Sκ,

then m ∈ H(ε̄(h, v)) .

(ii) If (h, v), (h′, v′) ∈ c(D) then ε̄(h, v)ε̄(h′, v′) ∈ H(ε̄(h, v′)) .

(iii) ε̄ is injective if and only if ε is injective.

Proof. We pick an interior point Z ∈ D and claim that c(D) = hor(D♦Z) ×
vert(D♦Z). Indeed, for X ∈ D we have hor(X) = hor(X ♦Z) and vert(X) =
vert(Z ♦X), thus c(D) ⊆ hor(D♦Z) × vert(D♦Z). On the other hand, if
(h, v) ∈ hor(D♦Z) × vert(D♦Z) with h ∩ v 6= Ø then (h, v) ∈ c(D). Since
h∩ v = Ø implies that neither h nor v can meet the interior of D , we conclude
that c(D) misses at most two points of hor(D♦Z) × vert(D♦Z). (In fact, the
missing points must be corner points.)

We define ε̄(h, v) = e , where e is the unique idempotent in the H -class
of ε(U)ε(V ) and h ∩ vert(Z) = {U} , v ∩ hor(Z) = {V } . Obviously, ε̄ extends
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ε . By Corollary 7.3(vi), ε̄ is continuous and surjective. By continuity, assertion
(ii) follows from 7.3(iii).

(i) Let 〈xi〉 be a net with the properties of (i). Then we may and
do assume that the limits A = lim rlog(xi)♦Z and B = lim Z ♦ rlog(xi) exist,
note that then h ∩ vert(Z) = {A} and hor(Z) ∩ v = {B} . Now, by 7.3(iii),
ε(rlog(xi)♦Z) = ε(rlog(xi))ε(rlog(xi)♦Z) ∈ κ(xi)Sκ , so, by continuity, ε(A) ∈
mSκ . In the same way we see that ε(B) ∈ Sκm , thus ε(A)ε(B) ∈ mSκ∩Sκm =
H(m), which implies m ∈ H(ε(A)ε(B)) = H(ε̄(h, v)).

(iii) It is obvious that ε must be injective if ε̄ is injective Suppose now
that ε is injective but ε̄ is not. Then we have ε̄(h, v) = ε̄(h′, v′), for some
(h, v) ∈ c(D) \ c(D), (h′, v′) ∈ c(D). Let X be an inner point of D in Hyp .
If h 6= h′ then (h, vert(X)) and (h′, vert(X)) are distinct and lie in c(D), so
ε̄(h, vert(X)) 6= ε̄(h′, vert(X)), and (ii) implies a contradiction. Similarly, if
v 6= v′ then ε̄(hor(X), v) 6= ε̄(hor(X), v′) leads to a contradiction.

For the next result recall that a semigroup is called left [ right ] simple if it
contains no proper left [ right ] ideals.

7.6. Theorem. Let (Sκ, κ) be a topological semigroup compactification of a
closed connected proper submonoid S of Sl2 with dense interior, and suppose
that the map ε:D → E(M(Sκ)) of 7.2 is not injective. Then the minimal ideal
of Sκ is either left or right simple and all of its maximal subgroups are singleton.
More specifically, the following assertions are equivalent:

(i) ε(A) = ε(B) for two distinct elements A,B ∈ D which lie on the same
horizontal [ vertical ] line;

(ii) ε is constant along any horizontal [ vertical ] line, i.e., ε(hor(X) ∩ D)
[ ε(vert(X) ∩D) ] is singleton for every X ∈ D ;

(iii) the minimal ideal M(Sκ) is a minimal left [ right ] ideal.

Proof. If ε(A) = ε(B) then ε(A) = ε(A♦B) = ε(B) = ε(B♦A), provided that
the diamond products exist (by 7.3(vii)), thus if ε is not injective on D then it
is not injective either on a horizontal line or on a vertical line. We only treat the
case where A,B lie on the same horizontal line.

If (iii) holds then for every idempotent e ∈ M(Sκ) the map S →
H(e), s 7→ e.s.e is a continuous homomorphism mapping S onto a dense sub-
semigroup of the compact topological group H(e), so H(e) = {e} , by 6.2.

(i) =⇒ (ii) We assume that X lies in the interior of D and that ε(X) =
ε(Y ) for some Y ∈ D∩hor(X)\{X} . By 7.3(vii),(viii) our assumption (i) implies
that such pairs X, Y exist.

Since X is in the interior of D there exists a positive real T such that
exp(tX) ∈ S whenever t ≥ T . We know from 3.9(ii) that limt→∞ Y ◦ exp(tX) =
Y ♦X = X . By 3.9(i) and 7.3(viii), ε(X) = ε(X ◦ exp(tX)) = ε(Y ◦ exp(tX)),
for all t ≥ T , therefore ε must be constant on the set X ∪ Y ◦ exp([T,∞[·X)),
which is a non-degenerate line segment joining X and Y ◦ exp(TX) (see 3.9(ii)).
Thus the ε -class ε−1(ε(X))∩hor(X) of X has interior points in hor(X). Now we
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observe that ε−1(ε(X ◦s)) ⊇ ε−1(ε(X))◦s , so ε−1(ε(X ′)) ∩ hor(X) has nonvoid
interior in hor(X), for every X ′ ∈ X ◦S (recall that ◦ is the restriction of a
group action). Since hor(X) is separable this means that ε assumes at most
countably many different values on X ◦S , since X ◦S is pathwise connected we
conclude that ε is constant on X ◦S . But X ◦S is dense in hor(X) ∩ D (by
7.3(v)), so ε must be constant on hor(X) ∩ D . For arbitrary Z ∈ D we have
hor(Z) ∩D = Z ♦(hor(X) ∩D), so ε is constant also on hor(Z) ∩D , in view of
7.3(vii).

(ii) =⇒ (iii) Since for any X in the interior of D the map ε sends
(hor(X) ∩D) onto the set of all idempotents of the minimal right ideal ε(X)Sκ

(by 7.3(v),(vi)), the assertion follows from the general structure theorem about
the minimal ideal in a compact topological semigroup.

The implication (iii) =⇒ (i) follows from 7.3(ii).

7.7. Corollary. If there exist elements X, Y ∈ D , not lying in the same Borel
algebra, such that ε(X) = ε(Y ) then Sκ has a zero element.

Proof. This follows from 7.6 and the fact that the four points X , X ♦Y , Y ,
Y ♦X are distinct if X and Y do not lie in the same Borel subalgebra.

7.8. Notation. Suppose now that D is compact (or, equivalently, that Umb(S)
does not contain any nonzero nilpotent elements, cf 4.2). Let Σ = exp(R+

0 D) and
consider the maps iS :S → i(S) and jS :S → j(S) defined in 4.16. We abbreviate
i(S) to SD , and j(S) to SM . Recall that by 4.17 the compactification SD is
equivalent with the t-product S tϕ′ D , and that, by 4.19, the compactification
SM is equivalent with S tΦ′ M(D,K).

For the next theorem we define the following congruences LM , RM on
SD , which are derived from Green’s relations:

aLMb if
{

a = b or
a, b ∈ D and ab = a;

aRMb if
{

a = b or
a, b ∈ D and ab = b.

Note that the join LM ∨RM is the congruence which collapses the minimal ideal
D of SD to a zero element.

7.9. Theorem. Let S be a closed connected proper submonoid of Sl2 with dense
interior such that the set D of regular directions is compact, and let (Sκ, κ)
be a topological semigroup compactification of S with injective compactification
morphism κ . We suppose that the interior of D in Hyp contains the point H
(this can be always enforced by applying a suitable inner automorphism). We
write k for the homomorphism, constructed in 5.3(iii), R → K = H(eH) with
k(t) = eH . exp(tH) whenever exp(tH) ∈ S . Then the following assertions hold:

(i) If the map ε:D → E(M(Sκ)) , defined as in 7.2 , is not injective then
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k is constant and Sκ is isomorphic to SD/ρ , where ρ is one of the
congruences LM , RM or LM ∨RM .

(ii) If ε is injective then Sκ is isomorphic to SM , where M = M(D,K) .
An isomorphism is given by the map µ:SM = S ∪ M(D,K) → Sκ ,
where µ(s) = κ(s) if s ∈ S and µ(X ♦H, g, H ♦X) = ε(X ♦H)gε(H ♦X)
if X ∈ D, g ∈ K . The compactification (Sκ, κ) is equivalent with the
Bohr compactification if and only if (K, k) is equivalent with the Bohr
compactification of R .

Proof. Assertion (i) follows from Theorem 7.6 and Corollary 7.7.
(ii) We first show that the map µ is a continuous homomorphism. Since

the restriction of µ to S is obviously continuous, it suffices to show that κ(sn) →
ε(X ♦H)gε(H ♦X) whenever

〈sn =
(

an bn

cn dn

)
〉

is a net in S such that lim κ(sn) exists and

(†) sn → (X ♦H, g, H ♦X) in SM .

The definition of the topology of SM implies that (†) is equivalent to the
following condition:

sn →∞ , rlog(sn) → X , k(log(an)) → g .
Applying formula 7.4 and taking limits we see that

lim ε(H)κ(sn)ε(H) = lim ε(H)k(log(an))ε(H) = g.

Let 〈κ(si)〉 be a convergent subnet of 〈κ(sn)〉 . Since rlog(si) → X we have
(recall 7.2 and 7.3(iii))

limκ(si) = lim ε(X♦H)κ(si)ε(H♦X)
= lim ε(X♦H)ε(H)κ(si)ε(H)ε(H♦X)
= ε(X♦H)gε(H♦X)

.

So every convergent subnet of 〈κ(sn)〉 converges to ε(X ♦H)gε(H ♦X), thus
〈κ(sn)〉 converges itself to this element. It follows that µ is continuous, hence it
is also a homomorhism (being a homomorphism on the dense subset S ).

By definition, the map µ is injective on S as well as on M = M(D,K),
so by 6.1 it is injective on SM . The surjectivity follows by definition (or since
κ(S) is dense in Sκ ).

The rest of the assertion follows from the universality of the Bohr com-
pactification of R .

7.10. Corollary. We retain the assumptions and the notation of the above
Theorem 7.9. Let X = H + βP ∈ hor(H) ∩D and Y = H + γQ ∈ vert(H) ∩D .
Then ε(X)ε(Y ) = k(log(1 + βγ/4)) .

Proof. This formula follows from Theorem 7.9 and the definition of SM (7.8,
4.10).



Breckner and Ruppert 105

7.11. Proposition. Let S be a closed connected proper submonoid of Sl2 with
dense interior and assume that D is not compact. Assume also that the Lie
wedge of S contains a non-nilpotent element. (This assumption is automatically
satisfied if S is a Lie semigroup.) Then the minimal ideal of any compactification
Sκ of S consists of idempotents.

Proof. If ε fails to be injective then the assertion follows from 7.6. Suppose
now that ε is injective.

Applying a suitable inner automorphism of sl(2, R) we enforce that H
lies in the interior of D in Hyp . Since D is noncompact there exist X =
H + γQ ∈ D ∩ vert(H) and Y = H + βP ∈ D ∩ hor(H) such that X ♦Y does
not exist, or, equivalently, such that βγ = −4 (cf. [2] 4.15). We know that the
♦ product A♦B always exists if one of A , B lies in the interior of D (in Hyp).
Thus X and Y must lie on the boundary of D in Hyp , so X is an endpoint
of vert(H) ∩ D and Y is an endpoint of hor(H) ∩ D . Let X ′ = H + γ′Q be
the endpoint 6= X of vert(H) ∩ D , and Y ′ = H + β′P the endpoint 6= Y of
hor(H) ∩D .

By assumption we can find an element Z of D which also lies in the Lie
wedge of S . Since X ♦Y does not exist, Z cannot live both in hor(X) and in
vert(Y ). Similarly, if also X ′♦Y ′ does not exist then Z /∈ hor(X ′) ∩ vert(Y ′).
We assume that Z /∈ hor(X) and Z /∈ vert(Y ′), the other cases can be treated
analogously and are therefore left to the reader. For 0 < η ≤ 1 we next define

Xη = H + (1− η)γQ, Y ′η =
{

Y ′ if X ′♦Y ′ exists
H + (1− η)β′P otherwise

and note that the four elements Xη , X ′, Y, Y ′η generate a compact ♦ -subse-
migroup Dη of D . Thus exp(R+

0 Dη) is an exponential subsemigroup of Sl2 .
Moreover, if η is sufficiently small, say η ≤ η0 , then Z is contained in the
interior of Dη in D , so Sη = S∩exp(R+

0 Dη) is a closed submonoid of Sl2 whose
interior clusters at 1 . Since Sη ⊆ exp(Kill+) we conclude that Sη is connected
([2] 3.4(iv)). Clearly, our compactification (Sκ, κ) restricts to a topological
semigroup compactification of Sη . Moreover, H(eH) ⊆ κ(Sη).

As in 7.9 we now put K = H(eH) and write k for the induced compactifi-
cation morphism R → K . Pick any x0 ∈ K . We shall show that x0 = ε(Y )ε(X),
since x0 was arbitrary this means that K is a singleton and the assertion follows.

The set k(] − ∞, log(η0)]) is dense in K , thus we can find a net 〈ηn〉
in R with 0 < ηn ≤ η0 and lim ηn → 0, k(log(ηn)) → x0 . Now by 7.10
k(log(ηn)) = ε(H +βP )ε(H +(1−ηn)γQ) → ε(Y )ε(X) which finishes our proof.

7.12. Example. (cf. [17] 4.1(ii), [2] 6.5, 10.12) Let S be the semigroup of
all 2 × 2-matrices

(
a b
c d

)
with nonnegative entries in Sl2 and a ≥ 1. Then the

Bohr compactification of S is equivalent with the one-point compactification
S∞ = S ∪ {∞} .

Proof. We use our current notation for the special case κ = bS . Recall
that S is a perfect Lie semigroup with Lie wedge W = R+

0 H + R+
0 P + R+

0 Q
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([11], p. 419, [17] 4.1(ii), [3] 6.13) and that Umb(S) = RH + R+
0 P + R+

0 Q
([2] 10.12). Since D = Umb(S) ∩ Hyp is noncompact we conclude from 7.11
that the maximal subgroups in Sκ are singleton. Also, the set H + R+

0 P is a
horizontal line in D , the set H + R+

0 Q is a vertical line in D . Now the relation
exp(t(H + λP )) exp(sP ) = exp(e2tsP ) exp(t(H + λP )), for every s, t ∈ R+ ,
implies that eX = eXeP = eP eX = eP for every X ∈ H + R+

0 P . Similarly,
eY = eQ for all Y ∈ H + R+

0 Q , and the assertion follows from 7.7.

8. Summary of the main results

8.1. Theorem. Let (Sκ, κ) be a topological semigroup compactification of
a closed connected proper submonoid S of Sl2 with dense interior. Then the
following assertions hold:

(i) The S -large elements of Sκ lie in the minimal ideal M(Sκ) . Thus, in
particular, Sκ = κ(S) ∪M(Sκ) .

(ii) Let D = rlog(S ∩ exp(Kill+)) and write Asy(S) for the set c(D) of all
asymptotic directions in S . Then there exists a continuous surjection
ε̄: Asy(S) → E(M(Sκ)) which is a homomorphism mod H , that is,
ε̄(h, v)ε̄(h′, v′) ∈ H(ε̄(h, v′)) .

(iii) Exactly one of the following cases takes place:
(a) ε̄ is injective, hence a homeomorphism. In this case κ is an

embedding.
(b) ε̄(h, v) = ε̄(h′, v′) if and only if v = v′ . Then M(Sκ) consists

of right zeros of Sκ .
(c) ε̄(h, v) = ε̄(h′, v′) if and only if h = h′ . Then M(Sκ) consists

of left zeros of Sκ .
(d) M(Sκ) is singleton. In this case Sκ has a zero element.

(iv) Every maximal subgroup of Sκ is isomorphic with a compactification of
R .

Proof. Assertion (i) is part of Theorem 5.10 and (ii) is 7.5(i),(ii). Assertion
(iii) follows from 7.5(iii), 6.4, and 7.6. The last assertion is a consequence of
5.3(ii),(iii).

8.2. Explicit Constructions. As before we let (Sκ, κ) be a topological
semigroup compactification of a closed connected proper submonoid S of Sl2
with dense interior.

(i) If κ is not injective then there exists a closed ideal I of S such that
(Sκ, κ) is equivalent with the projective limit lim

←
(S/J, `J) , where J runs

over all closed large ideals of S which contain I , and for every J the
map `J is the quotient morphism S → S/J .
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(ii) If D is compact and ε̄ is injective then there exists a compactification
(K, k) of R and a conjugate S1 of S in Sl2 such that (Sκ, κ) is equiv-
alent with a t-product (SM

1 = S1 tM(D,K), jS1) , as described in 4.19.

(iii) If D is compact, κ is injective, and ε̄ is not injective then (Sκ, κ) is
equivalent with a quotient (SD/ρ, iρ) of (SD, iS) , where SD = S t D
is defined as in 4.17, and ρ is one of the congruences LM , RM or
LM ∨RM of 7.8.

Proof. (i) follows from 6.4 and 6.12, and (ii),(iii) are consequences of 7.9.

8.3. Remark. (i) The quotients SD/ρ can be defined also as t-products.
(Exercise)

(ii) Note that D is compact if and only if S is contained in a perfect ex-
ponential subsemigroup of Sl2 . At present we do not have explicit constructions
for the case where D is noncompact but S is perfect.

8.4. The lattice of all compactifications of S . Let S be a closed connected
proper submonoid of Sl2 with dense interior.

(i) If D is compact then we have complete information about the lattice
of all compactifications of S . As sketched in the diagram at the left this lattice
consists of three parts:

(1) On top we have the sublattice of those
compactifications where ε is injective. These com-
pactifications are characterized by the associated
compactification (K, k) of the reals, thus this part
of the lattice is isomorphic with the lattice of all
topological group compactifications of R , which,
in turn, is isomorphic with the lattice of all sub-
groups of the discretization Rd of R , ordered by
A ≤ B if A ⊆ B . The minimal element in the
lattice of injective compactifications is SD .

(2) Next comes the diamond lattice made
up of SD and its quotients SD/LM , SD/RM and
SD/(LM ∨RM ) = S∞ .

(3) On the bottom we have the lattice
formed by S∞ and all topological semigroup com-
pactifications with noninjective compactification
map. This lattice is isomorphic with the lattice
formed by the closed ideals of S and the empty
set, ordered by A ≤ B if A ⊇ B .

Sb = SM

"
" � ··· || ···@b

b

· · · · · · · · · · · · · · · · · · · · · · · ·
b

b@ ··· || ···� "
"

SD

�

SD/LM

@

@

SD/RM

�

S∞ = S ∪ {∞}
"

" � ··· || ···@b
b

· · · · · · · · · · · · · · · · · · · · · · · ·
b

b@ ··· || ···� "
"

{0}

(ii) If S is perfect but D is noncompact then the compactifications described
in (3) above form a full sublattice of the lattice of all topological semigroup
compactifications. At the moment we do not know whether this sublattice is a
proper sublattice. If the Lie wedge of S contains at least one regular matrix
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then by 7.11 all maximal subgroups of Sb are trivial, so part (1) of (i) has no
counterpart in this case.

(iii) If S is not perfect then we know from 6.6 and 6.12 that the compactification
lattice of S is anti-isomorphic with the ⊆-lattice ALIDS of all closed ideals
containing the aliens of S .

(iv) If S is an exponential semigroup then D is compact if and only if S is
perfect if and only if the Lie wedge of S contains no nonzero nilpotent elements.
Thus for exponential semigroups S with inner points in Sl2 there are exactly two
cases: (a) S is perfect— then D is compact and the compactification lattice has
the form described in (i) above; (b) S is nonperfect— then the compactification
lattice is as described in (iii). (Al(S) has been explicitly calculated in [3].)
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