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Abstract. An equivalence between categories of modules for a generalized
Kac-Moody algebra and modules for an appropriate parabolic subalgebra is
shown. In particular, properties such as the irreducibility and complete
reducibility of a module whose weights satisfy certain conditions can be
determined by restriction to a subalgebra.

1. Introduction

Generalized Kac-Moody algebras are Lie algebras determined by certain sym-
metrizable matrices as in [11], and [1]. Let g be a generalized Kac-Moody al-
gebra. In [10] some examples of irreducible highest weight modules for g which
are generalized Verma modules are given. These generalized Verma modules
are modules that are induced from an irreducible highest weight module for a
“parabolic” subalgebra p = (gs +h) @ u™, where gg is a generalized Kac-Moody
subalgebra of g (often gs can be chosen to be a Kac-Moody or semi-simple Lie
algebra). In this paper, we show that the converse is also true, that in fact any
irreducible g module whose weights satisfy the appropriate conditions is a gener-
alized Verma module for a parabolic subalgebra. More generally, it is shown that
a subcategory of the category O of g-modules is equivalent to a subcategory of
the category O of the Lie algebra t =gg + 5.

This result is most useful in cases where the subalgebra gg can be chosen
to be a semi-simple or Kac-Moody Lie algebra, so that some of the representation
theory for the generalized Kac-Moody algebra can be reduced to that of the semi-
simple or Kac-Moody subalgebra.

In §2 of this paper, we review the definition of generalized Kac-Moody
algebra, introduce notation and define the category of g modules that we use.
Section 3 contains the statement and proof of the main theorem. The equivalence
of categories is proven by using the functor determined by inducing a module for
the parabolic subalgebra p to g, and the functor determined by considering the
set of elements of a g-module V annihilated by u™. The method of proof is
similar to that in [4] (see also [5] and [12]). Section 4 contains some applications.
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2. The Setting

We recall the definition of a generalized Kac-Moody algebra. The definition
given here is similar to Borcherds’ original definition [1] and agrees with the
definition in [9]. A variety of other definitions exist, for example [2], [11], [13].
We refer the reader to [11] and [13] for general definitions involving Lie algebras
defined by symmetrizable matrices, of which generalized Kac-Moody algebras are
an example. Definitions and proofs regarding the basic structure of generalized
Kac-Moody algebras are presented in [1],[8], [9] and [10]. For the convenience
of the reader, we include the definitions that differ from the definitions for the
more familiar Kac-Moody algebras.

We define a generalized Kac-Moody algebra over C by specifying genera-
tors and relations. Let Z denote the nonnegative integers. Let I be a countable
index set, A = (a;j)i jer a matrix with entries in R satisfying the conditions:

1. A is symmetrizable.
2. If a;; > 0, then a;; = 2.
3. For all £ # j aj; <0 and for all 4 € I such that a;; > 0, a;; € —Z4

for all j € I.

Let g(A)" be the Lie algebra with generators e;, f;, h;,i € I and defining
relations: For all 4,5 € I

[hi, 5] = asje;, [hi, f5] = —asj f.

For all 2 € I such that a;; > 0
(ad ei)iaijJrlej = 0, (ad fi)iaij+1fj =0.
Finally, for all ¢,j € I such that a;; =a;; =0
[€i7€j] - 07 [f’u fj] =0.

Define degree derivations 0;, i € I, on g(A)" by taking 0;(e;) = d;;,
0i(f;) = —d;; and 0;(h;) = 0. Let 0 be the abelian Lie algebra generated by
the 0;, 1 € 1.

Definition 1.  The generalized Kac-Moody algebra g = g(A) is defined to be
the semidirect product g(A)" x .

We also call any Lie algebra of the form g(A)/c where ¢ is a central ideal
a generalized Kac-Moody algebra. Borcherds’ Monster Lie algebra is an example
of this kind.

The Lie algebra g has a triangular decomposition g = n~ @ h d nt,
where n* is the subalgebra generated by the e; (resp. the f;), and the Cartan
subalgebra b is the abelian subalgebra spanned by the h; and the 0;. There is
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a symmetric invariant bilinear form on g, and on h*, which will be denoted by
(+,+) in both cases.

The roots of g are the nonzero elements ¢ of h* such that g¥ = {z €
gl[h, 2] = p(h)x for all h € h} is nonzero. Denote the set of roots of g by A.
There is a system of positive roots A, and A = AL U—A, . Roots with positive
square norm are called real, and roots with non-positive square norm are called
imaginary. Denote the set of real roots by Agr. The set of simple roots, denoted
{ai}ier C b*, are defined by the conditions

[h,e;] = a;(h)e; for all h € b.

Note that «;(h;) = a;;, and o;(0;) = 0;; for all 4,j € I and that the «; for
i € I are linearly independent. The bilinear form is chosen so that (a;, ;) = a;;
for all 4,7 € I. Note that for i € I (a;, ;) = a;; may be non-positive, so that
simple roots may be imaginary.

Given an element ;1 € h* of the form A—3", ., nja;, n; € Z, , we define
the depth dx(u) = > ;cpni-

Given a g-module and A\ € h* let

M* = {v € M|h-v = \h)v,for all h € h}.

The elements A € h* for which M* # 0 are called the weights of M. Given
a g-module M let P(M) denote the set of weights of M. A weight A € (h)*
is dominant if (A, a;) € R and (A, ;) > 0 for all ¢ € I. A weight A is called
integral if A(h;) € Z4 for all i € I such that a;; > 0. Denote by P, the set of
dominant integral weights.

Definition 2. A g-module M is a standard module if M is a highest weight
module with highest weight @ € P, and highest weight vector v such that:

1. for i € I, if (u, ;) =0 then f;-v=0;

2. if oy (i € I) is real then f"*'. v = 0, where n; = 2(u, )/ (v, a;)

(necessarily a nonnegative integer).

Given any p € P, there is a unique (up to isomorphism) standard
irreducible highest weight g-module of highest weight p, denote this module by
Lg(p) [9]-

Fix S a distinguished subset of I containing {i € I|a; € Ar}. Denote
by gs the generalized Kac-Moody subalgebra of g associated to the matrix
(aij)ijes. Assume that S is chosen so that the resulting matrix (a;;)i jes is
indecomposible. Note that if S = {i € I|la; € Ar} then gg is a Kac-Moody
algebra. In the case of the monster Lie algebra we can choose gg = sly; (see §4
below).

We make the following definitions: A = AN]], g Za;, AY = AL NAS
and A% = A_ N A®. Denote by hg the span of the h;, i € S. There is a root
space decomposition

gs= [ ¢¢ebse [] o

peEAT peEAS
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Define the following subalgebras of g:

ut = H g%, u = H g% rv=gs+h

pEA\AS PEA_\AS
Let p =t ®ut, the “parabolic” subalgebra of g determined by S. Then
g=u ®rtout =u" Pp.

If M is a t-module we define a p-module which we also call M by letting
u' act as zero on M. Note that if M is irreducible, or completely reducible as
a gg or p-module, then the p-module M is irreducible, or completely reducible
as well.

We recall the definition of generalized Verma module of [6]. Let A € P,
and consider the standard (irreducible) highest weight t-module L(\) associated
to A (this is a standard module for gg). The highest weight space of L()\) (as a
gs-module) is a weight space for b, with weight A. Let ut act trivially on L(\);
this gives L(\) the structure of an irreducible p-module. Define the generalized
Verma module VE) to be the induced module U(g) ®gr(p) L(A).

Definition 3. Let Og4 denote the category of g-modules that are weight
modules whose weight spaces are finite dimensional, and whose set of weights
lies in a finite union of sets of the form

D) = {A=> nioi|r € p}.

i€l
The morphisms are g-module homomorphisms.

Definition 4.  Let 05 be the full subcategory of O4 whose objects are g-
modules V' € Oy such that every weight p € P(V) satisfies (p, ;) > 0 for all
ieI\S.
Let M € Oy4. Recall that a highest weight series for M is an increasing
filtration
(O)CMl CMyC---

of submodules of M satisfying U;’io M; = M. For M;y; # M, the module
M;+1/M; is a highest weight module. We extend a well known result of [6] to
modules in Oy, where the index set I may be countably infinite.

Proposition 2.1. Let M € Oy. Then M has a highest weight series
{Mi}iez-
Proof. Let A, \a,... )\ be a set of weights of such that

P(M) C D(\)UD(As)...UD(,).

With out loss of generality we may assume that the sets D()\;) are distinct.
Then any p € P(M) is of the form p = \; — 8 for some j 1 < j < r, with
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B = > n;a; where n; € Z;. Define d(u) = > in;. Since d(u) = N implies
n; = 0 for sufficiently large i the set {u € P(M)|d(u) = N} is finite for all
N € Z, . Now a filtration of M can be constructed using the same argument
as in the case where [ is finite [6]: Let p; be a weight in P(M) with minimal
d(p1). Choose a nonzero weight vector x; € M*. By the minimality of d(uq) the
vector x1 is a highest weight vector. Denote by M; the highest weight module
generated by x7. To construct a module My with (0) C My C My and My /M,
a highest weight module repeat the above argument for the module M /M;. The
series d(uy) is increasing, and can only remain at one value for finitely many k.
Thus eventually M#* = M} = M}"., ... for every p € P(M). This construction
gives the desired highest weight series. [ ]

In order to prove the main theorem we will use the following result from
category theory [7].

Lemma 2.2. Let A and B be categories. Let F be a functor from A to B.
The categories are equivalent if and only if
1. F s full, that is, for all objects V1,Vs of A the mapping

Hom4(Vi,Va) — Hompg(F(V1), F(V2))

described by f+— F(f) is surjective.

2. F s faithful, that is, the above mapping is injective.

3. For every object M of B there is an object V. of A such that M 1is
isomorphic to F(V). u

3. The equivalence of categories

We will show that the category O§ is equivalent to the category OF.
ftve Ogs let V* denote the the set of elements of V annihilated

by the action of u™. The space V*' is an g,-module since U(g,)V* C V¥ .

Likewise V" is an t-module and a p-module. Note that the subspace yut
considered as an t-module is in O .

The functors between our categories (95 and OF are simply restriction
and induction.

Definition 5.  The functor R : O — O is defined as follows: R(V) =
Vel for Vo€ Og and given a pair V,U of modules in (95 and a module
homomorphism f : V. — U define R(f) = f to be the restriction of the
homomorphism f to v

Definition 6. The functor Ind§ : OF — OF is defined by Indg(N) =
U(g) ®up) N for N an object of OF , considered as a p-module with u™ acting
as multiplication by 0, and Indy(f) = 1® f for f a morphism in O? | considered
as a morphism in Of .
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Lemma 3.1. Let M € O5. Then (IndSM)* =1 M.

Proof. By definition M is annihilated by u™ as a p-module, so 1 ® M C
(IndM)¥".

Using the Poincare-Birkhoff-Witt theorem, we have an isomorphism
IndpM ~ U(u™) ®c M. Consider U(u™) @c M = (U )u” @c M) & (1@ M).

Let w € U(u™ )u” ®cM be nonzero. Since M is a weight module, we may
assume w is a linear combination of vectors of the form f; fi, ... fi, ® v, where
v € M is a weight vector of weight A, and the f;, fi, - fi;, 11 <i2 < -+ <y
is an element of the Poincare-Birkhoff-Witt basis of U(u™) € U(n™). We
will consider the elements f; fi, - fi, @ v, i1 < ia < --- < 45 to be basis
vectors of the vector space U(u™)u”™ ® v. Let w = fi fi,...fi;, ® v. Not
all of the indices 41,42,...%; are in S, by the definition of u~. Assume that
i € I\S, we will show that e;, w # 0. The vector w can be rewritten as
w = fi, fi,  fi S fingr - fi; @ v where n > 1, 4; < ip < -o0 <dpg <
ip < ik4+1 < --- <1, renaming the indices if necessary. Using the commutation
relations of the Lie algebra,

i, = fi, -+ fir_y (i fIV) -+ fi, ®v
= fiy - [l eip finpr - Ji; @UAnfy "'fﬁc_lhikfikﬂ - fi; ®w
th “'fi_lfikﬂ ~~~f¢j Q.

2
Since v is in M it is annihilated by e;, € u™, and one has

f’il Z}ceikfik+1 fZJ ®U:fi1 Z;cfik+1 fZJelk ®'U:O_
It is also true that

+ Qi

j—k
hiy fipar =+ fiy @0 = Fiyor - fishiy @0+ Y —aigiy firy -+ Ji, @ .
s=1
Thus
€5, W
j—k
= nfi o L i b @ AR Y —aia fi o fi T fan o fiy @0
s=1
n—1)n _
—aikik%fn f;; 1f¢k+1"'f¢j Qv
j—k

- n)‘(hm)fu ) .'ff;z_lfik+1 e fzj v — nzaikik+sfi1 "'fiz_lfik+1 fzj v
s=1

(n—1)n

- a’ikikail U f;;_lfik+1 e fij @ v
iy (n—1)n
- n)\(hzk) + nz _a’ikikJrS -I_ _aikikT fil e f;;_lfik+1 Tt fij ® V.
s=1

£0.
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The above expression is nonzero because A(h;,) >0, a4, <0 forall 1 <s <
j—k and a;,;, <0 for i, € I\S. Let v’ :fi/1~~~f¢; ®u, 1] <iy <---1) bea
basis vector not equal to w. If f;, does not occur in w’ we have e;, w’ = 0, and if
fi, does occur in w’ then the lists iy < ip <--- <i; and ¢} <i5 < --- <4, donot
agree, so by the above computation e;, w is not in the linear span of e;, w’. Now
consider an element w € U(u™ )u~ ® v that is a linear combination of the basis
vectors fi, fi, ... fi, ®v, iy <ig--- < ij, choose an index i; € I\ S that appears
in the first term of w. Then e; w is a linear combination of the basis vectors,
with nonzero first term, so is nonzero. We conclude that w is not annihilated by
ut, that (IndSM)*" C 1® M, and finally that (IndM)*" =1& M. n

Proposition 3.2. Let 'V € (95? be a highest weight module. Then V =
U(g) @up) VY.

Proof. Let A be the highest weight of V', with highest weight vector vy. The
induced module U(g) ® (p) V' s also a highest weight module for g. There
is a natural map p : U(g) Qu(p) vt U(g)Vu+ = V', which we will show is
an isomorphism. The map p is surjective because yut generates the module
V., as V*" contains the highest weight vector vg. Let W = Kerp. If W is
nontrivial then W contains a weight vector w # 0 whose weight is of minimal
depth. Applying an element of ut to w € W reduces the depth of w, so that w

is annihilated by ut. By Lemma 3.1 w € 1 ® V“+, which contradicts the fact
that p is injective when restricted to 1 ® 740 [ ]

Proposition 3.3. Let V € Ogs, then V = U(g) ®upy N for some N € O3,
Proof. Consider the highest weight series

O)=VocWViCcVoC---

+

where [J22, Vi = V. Note U2, V& = (U2, Vi)r =V,

We will prove the existence of an isomorphism by induction on ¢ € Z .
The module V; is by assumption a highest weight module so Proposition 3.2
shows the proposition holds in this case. Similarly, the result holds for the
highest weight module V;11/V; any i € Z,. Assume that V; = U(g) ® Viu+.
Applying the five lemma to the diagram

0 — UleVd — UlaeVy, — U@ Via/Vi)*¥ — 0

- 1 -]

0 — - Vit1 — Vi+1/Vi — 0

implies Viy1 = U(g) ® V', so by induction V; = U(g) ® V' for all i € Z, .
Thus
v=Ju@ev =v@e " =U@ev .

Theorem 3.4.  The category (’)g is equivalent to the category OF.

Proof.  First we show that the functor Indp : OF — Og is full. All objects
Vi, Vo of (’)g are, by Proposition 3.2, of the form V; = U(g) ®u ) V;-”+ and
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Vo = U(g) ®up) V" . Then any g-homomorphism g : Vi — V5 is determined

by its action on V1u+

+ _ +
g(U(g) Qu(p) Vlu ) = U(g) QU (p) g(vlu )
Hence g=1®g.
Since 1® f =1® g if and only if f = ¢g the functor Indg is faithful.
Finally, Proposition 3.3 says that for every object V' of (’)*gg there is an

N € OF with Ind}(N) = V. The conditions of Lemma 2.2 are satisfied and the
categories are equivalent. [ ]

4. Applications

Our first corollary includes Proposition 4.2 of [10].

Corollary 4.1. Fiz S C I. For u € Py satisfying (u, ;) > 0 for i € I\S
the irreducible highest weight module Ly(p) is a generalized Verma module:

Lg(p) = IndjL(p),

here L(u) is the irreducible highest weight p-module of highest weight p, which
s a standard irreducible module for the generalized Kac-Moody algebra gg. Con-
versely, any generalized Verma module VL) = Indy L(p) is an irreducible high-
est weight g-module. [ ]

The following complete reducibility result appears in [14](where he uses
the additional assumption that I is finite). For a Kac-Moody algebra [, u € bh*,
and an [-module M in O; define the multiplicity [M : L(u)] of the irreducible
[-module L(p) in M to be the number of proper factors of type L(u) in any
local composition series of M at p see [13].

Corollary 4.2. Let g be a generalized Kac-Moody algebra. Take S = {i €
Ila;; > 0}, so that gs is a Kac-Moody algebra. Let V' be a module in the category
(95. Then V' 1is completely reducible and

V=@V, L) Le(w)-

peby

Proof. Since gg is a Kac-Moody algebra and V' s an integrable gg-module
the complete reducibility of integrable modules of a Kac-Moody algebra implies

+ +
vt = ®MEP+ [Vu 7Lt(:u)]Lf(:u)
Applying the main theorem gives

mdSV*" = @ep, [V, Ls(p)IndS L (1)
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So by Corollary 4.1 and Proposition 3.2

V = @uep, V', Le(1)] Lo (p). .

For a module V' € Oy recall the formal character is defined as

ch(V)= )" dimVye*.
Aeh*

Using Theorem 3.4, we can compute the character of a module V € (’)5 by
computing the product of the h weight modules U(u~) and 740

Corollary 4.3. LetV € (95. Then
ch(V) = ch(U(g) @up) V") = ch(U 7)) - ch(V*") n

Depending upon the structure of the Lie algebra, ch(U(u~)) and V'"
may be computed more readily than ch(V). For example, choose S so that
a;; # 0 for all 4,5 € I\S. The subalgebra gg of g and hence its universal
enveloping algebra U(gs) act via the adjoint action on g. Identify the root
—a; € —A; of g with the weight of the highest weight vector f; of the
standard gg-module Lg,(—a;) = U(gs) - f; C g. By Theorem 5.1 in [9]
g=u"®(gs +bh)®u", where u~ is the free Lie algebra over the vector space

Zje[\s L(_ai>'

Then
ch(U(u™)) =1- Z ch(Ls(—a;)) = H (1- efcp)dimF(V)—‘P
JEI\S pEA\AS
and | ) )
ch(V) = H (1— e—sﬁ)dlmF(V) LPCh(Vu ). (1)
peA\AT

In the case of the monster Lie algebra, one can choose S so that gg = sls.
Then each L(—q;) is a finite dimensional sl;-module of highest weight —a; . For
this case equation (1) specializes to Borcherds’ product formula for the modular
function j(7) [2]. Formula (1) appears in [8],[9] and is used in [10] to further
elucidate a portion of the monstrous moonshine phenomenon already studied in
[2].

Computing the homology H,(g,V) for V € (’)‘gg can also be reduced to
computing the homology groups for modules for the smaller Lie algebra gg .

Corollary 4.4.  For a g-module V in (95
wt
Hy(g, V") = Hp(p, (V"))

Proof. This corollary follows from Theorem 3.4 and Proposition 4.2 of [3]. m
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