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Abstract.  We construct, via a complex G—bundle space, a Weil rep-
resentation for the group G = SL.(2,A), where (A, x) is a locally profi-
nite ring with involution. The construction is obtained using maximal

isotropic lattices and Heisenberg groups.

1. Preliminaries.
Let (A, x*) be a locally profinite ring with involution , i.e. a unitary locally

compact and totally disconnected ring with an involutive anti-automorphism a —
a*, a € A. Let Z,(A) be the subring of central symmetric elements of A.

We define the group GL.(2,A) of matrices g = ( CCL 2 ) with a, b, ¢, d
€ A, such that:
1. ab* = ba*, cd* = dc*
2. a*c = c*a, b*d = d*b

3. ad* — bc* = a*d — c*b is an invertible central symmetric element of A, i.e.
an element of Z,(A)™.

We set det,(g) = ad* — bc* = a*d — ¢*b; then
as  —=b*
-1 _ -1
ot =t (5 )

We observe that the function det, : GL.(2,A) — Z,(A)™ is an epimor-
phism so that G = SL.(2, A) =Kerdet, is a normal subgroup of GL.(2,A).
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2 JOHNSON AND PANTOJA

In what follows we will assume that Z;(A) = F is a p-adic field. We denote
by Ogr the ring of integers of F, Pg is the maximal ideal of Op, w is a generator
of Pr and ky is the residual field of F which has ¢ elements.

Some such rings are: A = M,(F), F a p-adic field, with x the trans-
position; A = K a separable quadratic extension of F, F as above with x the
non trivial Galois element; A =A"VaA'Va /\2V where V' is a two dimensional
vector space over a p-adic field F with basis (e, e3) and * is given by the basis
transposition (eq,es2) to (eq,eq).

2. General Setting

Let H be a locally profinite group and I' a subgroup of Aut(H). Let
(m, V) be an irreducible smooth (complex) representation of H such that 77 ~ 7
(77 = wo~y) for every 7 in I

If v € I' then there exists T, € Autc(V) such that T\7(x) = 7y(z)T, for
every x € H.

Set G be the semidirect product of I' and H. For (y,h) in G we define
(v, h) in Autc(V) by

7(y,h) =Tym(h).

Proposition 2.1. The endomorphism 7, defined above, is a projective extension
of ™ to G.
Proof. We want to prove that TW_;T LT is a scalar.

Since T, Tym(x) = Tyn(6(x))Ts = m(yo(x))T,Ts and Tysm(x) = w(vd(x))Tys
then

T Ty Tsm(x) = ()T Ty Ts

It follows, by Schur’s Lemma, that T;SITWTL; = o(7,d)idy, for a cocycle o.
We compute now 7 (v, h)7(6, k). We have
(. )7 (0,k) = o(7,0)Tyem (67" (h))m (k).
Since T((vy,h)(8,k)) = T(vd,0 H(h)k) = Tosm (61 (h)k) we get
(7, W7 (6, k) = o (v, 0)m((7, h) (0, k).

Therefore 7 is a projective representation of G with cocycle o.

We recall now the definition of compact induction, c-Ind, as we will use it:
Let L be a an open subgroup of H, compact modulo the centre of H, and let
(p, W) be a smooth representation of L. Let V denote the space of compactly
supported modulo the centre of H functions f : H — W with the property
f(lh) = p(1)f(h),l € L,h € H. The group acts on this space by right translation
of functions; the implied representation is smooth. We will assume now that

(m,V)=c— Indf p, where L is an open, compact modulo the centre, subgroup of
H and p is a one dimensional representation of L.

We assume also that p” = p on LY N L, where L7 = v(L) and p'(y) =
p(v"Hy)) with y € L7. We can define, similarly,

(7, V3) = ¢ = Indf), p

Let S, be a non zero intertwining operator from (7, V) to (m,-1,V,-1). So
S, is an isomorphism between 7 and m,-1 when 7 (and then 7,-1) is irreducible.

Then S,7(z) = m\-1(x)S,.
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We define now I, : V,-1 — V by (I,(f)) (x) = f(y ' (2)). The operator I, is well
defined and intertwining, in fact, L,(f(lx)) = p(l) f(z) and I,m,-1(x) = 7(y(2))L,.
On the other hand, we have that I,S, : V — V is an intertwining operator since
LS m(z) = mw(y(x))L,S,. Let us define T, = 1,.S,. We want to compute the cocy-
cle 0. In order to do this we look first at I, on Vj, Since y~*(h) € 6(L) implies
that h € v4(L) , we have (L, f)(hz) = f(y (h)y H(z)).

We can define I, 5 : V.15 — V5 by (Lsf)(z) = f(y 'z), and S5, : V-1 —
V,-15-1 by S5, = [7—7;_155[%1 a computation shows that S5, is an intertwining
map.

Since the operators S5, 05, : V — V1521 and S5y : V — V151 are
both intertwining, the irreductibility of V' implies that they differ on a scalar i.e.
Sgﬁ o S,y = k’Sg,y.

Lemma 2.2. The intertwining operators defined above satisfy the equation I5 o
L 51 =1Is,.
Proof. Straightforward. [ |

We finally show that k& = o(d,7): Since Ss, 0 S, = kSs, we have
];;,1551757 = ]{3557. So 8(5]757 = kI%(HSM and then 15551757 = ]{3]5]75—1857.
Using Lemma 2.2 we get 15;551,5, = kls, S5y i.e. T5T, = KTj.,.

3. Heisenberg Construction
Given a F—vector space W we can define H = FOW which has a structure
of group with respect to

(a,w) - (d',w') = (a+d + Blw,w'),w+w)

where B : W x W — F is a non-degenerate alternating form.
If M is any subgroup of W we write M = F@®&M, which is a subgroup of H.
Definition 3.1. Let M be an any subset of W. We define M* = {w € W |

B(m,w) € OpVm € M} and M+ = {w € W | B(m,w) =0Ym € M}.

Observation 3.2.

a) If M is a F—subspace of W, then M* = M=. In fact, the inclusion M+ C M*
is obvious. On the other hand, since aB(m,w) = B(am,w) we have that w € M*
implies that aB(m,w) € Op Ym € M VYa € F, so B(m,w) = 0.

b) Another fact that we will use later, is the following

[(a,w), (d,w")] = (2B(w,w"),0).

Let £ be a maximal isotropic lattice i.e. £ is compact and open and £* = £. Set

£ = FaL and let 1 be a character of F of conductor Og. Define ¥ on g by
Ye(a,l) =1(a) for a € F.
Proposition 3.3. With the above notation and assuming that 2 € Op we have:

a) e is a character of L. N N
b) If we define Inty(ve) = {h € H | Homg g (e, V%) # 0}, where £ = h€h™!
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and Y&(x) = Ye(h~'zh) for any x € £ then Inty (¢e) is equal to L.

Proof. a) ¢e((a,w)(d,w")) = te(a + d + Bw,w'),w + w'), since £ is a
maximal isotropic lattice, B(w,w’) € Og. Then ¢¢((a,w)(d’,w")) = ¥(a)(d') =
wil(av w)wﬁ(alv w,)' -

b) If (a,w) € H Since (—a,—w)(a,y)(a,w) = (o + 2B(y,w),y) and £ < H,

we have E;a’w) = g on £N (—a, —w)&(a,w) = £ if and only if 2B(y,w) € Of
Vy € £ if and only if B(y,w) € Or Yy € £ (given that 2 € O ) and this is the
case if and only if w € £. [

Now let IIg = ¢ — Indg ¢ be the compact induction of the character g from [y
to H as defined in Section 2.

Proposition 3.4. The representation 1lg defined above is an irreducible admis-
sible supercuspidal representation of H .

Proof. The representation Ilg is the Heisenberg representation realized in the
lattice model (see [5], Chapter 2). Stone-von Neumann theorem implies that Ilg
is a smooth irreducible (thus admissible) representation. Then, using theorem 1
of [2], we get that it is supercuspidal.

Now let I'" be the subgroup of Aut(H) of all automorphism v : H — H
such that yg = idp and 7y is a symplectic linear automorphism. The subgroup

I' acts transitively over the set © of all maximal isotropic lattices in W, by
£ = 4(L) (v € T and £ € ©). Furthermore ¢} = g on £ N £ where

valy) = ve(v(y), Yy € L.

On the other hand, by Proposition 3.4 , (Ilg,Ve) = ¢ — IndEH e is an
irreducible admissible supercuspidal representation of H, where Ve = {f : H —
C|f(lx) =ve(l)f(x), Vi€ £, Yz € H, f compactly supported modulo the centre
of H}. So, we can define (Ilgy,Vey) = ¢ — Ind% Y, where Vgy = {f : H —
C|f(lz) =vi(l) f(x), VI € £} and now the general set-up of Section 2 applies.

Define the function 7, : H — C by
Pl(a)ely) if €L ye g
0 otherwise

Note that 7, is well defined since 14 = ¢ on £7n £. For any f in the space of
II¢ we can define Y., (f): H — C by

T,(f) (@) = / () f (v ) dy

H/F

for an appropriate Haar measure on W = H/F. We can observe that T, : Ve —
Va,-1 is a non zero intertwining operator and since Ilg is irreducible (and also
II,,-1), we have that T, is an isomorphism.

We define now I, : Vo,-1 — Vg by (I, f)(z) = f(y'(x)) and so we have,

as in section 2, that 7, = I, T, is an intertwining of Vg which verify

TsoT, = a(d,7)Ts.
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4. Lagrangians

Let S be a left A- module whose F-dimension is n. We note that S is a
right A- module with sa =a*s, a € A, s € S.

Let b: S xS — F be a non degenerate bilinear symmetric form such that

b(zia,xe) = b(x1, axs) (a € A; x1,29 € 9).

We set now W = S&S and define B : W x W — F by B(z,y) = b(x1y2) —
b(y1, z2) for © = (21, x2) and y = (y1,y2) in W. Observe that B is a non degenerate
alternating form and we can define M+ = {w € W | B(w,m) =0, Vm € M} for
any Op—submodule M of W. The following properties are straightforward.

If either M is an F—subspace or if M is a compact open Or—submodule
of W (an Op—lattice in W) then (M*)t = M.

If M, N are any Op—submodules which satisfy (M*)+ = M and (N+)t =
N then (M AN) = M* + N*t.

We call an Op—submodule M of W isotropic if M is an Orp—submodule
of M+. We say that M is maximal isotropic if M = M~

Fixing an additive (continuous) character ¢ of F of conductor Op, we can
define the function x : W x W — T, where T is the group of complex numbers
of module one, by

x(z,y) = (¢ o B)(z,y) ((z,y) € W x W).

which is a symplectic bicharacter.

Definition 4.1. Let M be a subset of W. The orthogonal component M* of M
is the set of y € W such that x(z,y) =1, for every x € M.

Observation 4.2. In the case where M is a F—subspace of W we have that M*
is also a F—subspace of W and M+ = M*.

Definition 4.3. Let L be a F—subspace of W such that L+ = L. L is called a
Lagrangian subspace of W.

Observation 4.4. If M is an F—subspace of W then M is maximal isotropic if
and only if M is Lagrangian.

Lemma 4.5. Let W and x be as above. Let L and L' be two Lagrangian sub-
spaces of W . Then there exists a symplectic basis {wy,ws, . .., wy,, wi,wh, ... w}
of W, 1.e.

L x(wjw) #1, j=1,...,n

2. x(wi,wy) = x(wj,w;) =1 for every i, j.

3. x(wi,w)) =1 for every i # j
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such that:
L = Fu®Fwy® - - - @ka@ka+1® - - dFw,
L' = Fui|®Fuwi@ - - @Fw;, F w19 - - - @Fw,
Proof. See Lemma 1.4.6. in [4]. [

Corollary 4.6. Given a Lagrangian L, there exists a Lagrangian L' such that
W =LaL.
Proof. 1If L = (wy,ws,...,w,), then L is a proper subspace of (ws,...,w,
We consider an element v; € (w,,...,w,)" — L. Then x(wi,v;) # 1. Now
we can pick an element vy € (wy,ws, wy, ... ,wn,vl)L — (wy, wo, ws, . .. ,wn,vl)l,
and so x(ws,v2) # 1. By induction we have {wy,vi}, {wq,vo}, ..., {wy,v,} such
that x(w;,v;)) # 1, i = 1,...,n; x(wi,w;) = x(v;,v;) = 1 for every ,j and
x(w;,vj) =1 for every i # j. Hence L' = (v1,vq,...,v,) is such that W = L@L'.
n

)

Corollary 4.7. There exists a maximal isotropic O — lattice £ in W. [ |

Let L be a Lagrangian in W and define ¥, on L=F @ L as above. Let
I, =c— Ind%wL and consider the group H = F & W. Let £ =F £, £ a
maximal isotropic Op—lattice in W.

Now we can define the function p: H — C by

Yr(x)e(y) if z=a-y, zelyc L
plz) = -
0 if z¢LE=Fa(L+8)

Note that p is well defined since 1, = thg on LN £ and LN £ = Fo(LNL).

For any f in the space of Ilg we can define S(f): H — C by

S(f)(x) = / o)y ) dy.

H/F

Given an Oy —lattice 99T submodule of £, we define the function

Vp(x)ely) if z=x-y, x€L,yeM
pan(z) = -
0 if - ¢ LM = Fa(L +M).

Proposition 4.8. The map S defined above is an H—isomorphism from
Hg to HL
Proof. Let fy be the function, in the space of Ilg, defined by

Ye(z) if ze g
fo(z) =

0 otherwise
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and —
Yop(z) if zeM
fom(2) =

0 otherwise

A computation shows S(fy) = p and S(fom) = pom.

Since S is different from 0 and Ilg¢ is irreducible, S is injective.

We will prove now that S is onto. To this end we prove that the space of
I, is equal to ({pom | M C £}). First, S(fom) = pom so ({pam | M C £}) C II}.
On the other hand any f in II; has support compact modulo £ and it is locally
constant. From this, it can be seen that any function f is a linear combination of
pon for different lattices 9t C £. Hence we can conclude that S is an isomorphism.

Define now T : II;, — Ilg by
T(7)(e) = [ ) oy
H/F
where 6 is given by

Ve(e),(y) if z=z-y, zeliyel
0(z) =
0 if z¢ LL

We have that T' # 0 and by Schur’s Lemma [1] [3], T'S = ¢I, so T'S(fo) = cfo
which implies ¢ = 1, and finally

TS = Iy,

5. Connections over SL.(2,A).
The group G = SL.(2,A) acts naturally by matrix multiplication on W
by fixing the bicharacter y,

x(92, 9y) = x(z,y) (z,y € W)
We define a complex G—bundle space § = (&,p,[',7) by:
1. I'={L| L a Lagrangian of W}

2. Fix a Haar measure dw on W and dwy on a Lagrangian L such that dwp
is the unique Haar measure on W/L which verify that dw = dwgdwy, .

For each Lagrangian L we consider the set €, of all functions f: W — C
which are locally constant, compactly supported modulo L, and such that
fw+1)=x(w,l)f(w) for every w € W and [ € L.

We set .
¢=|Je

and we define an inner product on each &, by

(f b = / f(w)h(w)duw; (Jhe ey

W/L
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3. Let p: € — T" be the canonical projection which sends each f of &, to L.
4. The group G acts on € and [' by

[y (H)(w) = flg™'w) (fe€ geG wel)

and by
7,(L) = gL (Leb, geq@)

respectively.

Lemma 5.1. Let L be a Lagrangian subspace of W . Let M be an Og— lattice of
W. We set

x(z,e) if w=x+ce L+ M

gu(w) =
0 otherwise.

Then, the set {gy | M be an Op— lattice of L} span €1 as a C-vector space.
Proof. For each f in € we can pick an Op—lattice M such that Supp(f) =
L+ M. We use that f is locally constant and M is compact, to write f as linear
combination of g, as above.

Let L and L' be Lagrangians included in a fixed maximal Op—lattice £
in W. As we have seen, there are two isomorphisms, namely Sy, : [I¢ — II; and
SL/ : Hg — HL/ with TL . HL — HQ and TL/ : HL/ — Hg as the respective
inverses.

We now define isomorphisms v/ f, : II;, — II;/, by

?L/,L =SpoTy

Let AL : TI;, — €& be defined by AX(f)(w) = f(0,w), for f € Il and w € W,
and let, QL : &, — TI;, be defined by QL(f)(a,w) = ¥ (a)f(w), for f € € and
(a,w) € L. A computation shows that AL and QF are inverse to each other and
both are intertwining operators.

We can define now isomorphisms (which we will call connections) Vo

¢, — € by Voo = AL/ © 7L,L' o Q.
Then the diagram

m, =5 1,
OL T lAL
’YL,L’

¢ L — ¢ L'
1s commutative.
We obtain

Theorem 5.2. The set I' = {yp | L',L € b} is a family of G -equivariant
connections over the fiber bundle § which verifies, for L, L', L" € bo; f,f € &p;
h e & g€ G the following properties:

1. yop oy =L =tde,
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1y (f), h) = (f, v, ()

2. (yn(f)s v n(f) = )

3. YL, oY oy r = Sw(L; L', L")ide,
4. where Sy (L; L', L") is a constant.

d. TgOYL,L = VgL' gL O Ty
]

Note that Sy (L; L', L") is the analogous of the Maslov index in [4] and this
theorem is comparable with theorem 1.4 in [6].
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