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Weil Representations of SL*(2,A)
for a Locally Profinite Ring A with Involution

Roberto Johnson and José Pantoja ∗

Communicated by D. Poguntke

Abstract. We construct, via a complex G−bundle space, a Weil rep-
resentation for the group G = SL∗(2,A), where (A, ∗) is a locally profi-
nite ring with involution. The construction is obtained using maximal
isotropic lattices and Heisenberg groups.

1. Preliminaries.

Let (A, ∗) be a locally profinite ring with involution , i.e. a unitary locally
compact and totally disconnected ring with an involutive anti-automorphism a −→
a∗, a ∈ A. Let Zs(A) be the subring of central symmetric elements of A .

We define the group GL∗(2,A) of matrices g =

(
a b
c d

)
with a, b, c, d

∈ A, such that:

1. ab∗ = ba∗, cd∗ = dc∗

2. a∗c = c∗a, b∗d = d∗b

3. ad∗ − bc∗ = a∗d − c∗b is an invertible central symmetric element of A, i.e.
an element of Zs(A)×.

We set det∗(g) = ad∗ − bc∗ = a∗d− c∗b; then

g−1 = [det∗(g)]
−1

(
d∗ −b∗
−c∗ a∗

)
We observe that the function det∗ : GL∗(2,A) −→ Zs(A)× is an epimor-

phism so that G = SL∗(2,A) = Ker det∗ is a normal subgroup of GL∗(2,A).
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In what follows we will assume that Zs(A) = F is a p-adic field. We denote
by OF the ring of integers of F , PF is the maximal ideal of OF, $ is a generator
of PF and kF is the residual field of F which has q elements.

Some such rings are: A = Mn(F), F a p-adic field, with ∗ the trans-
position; A = K a separable quadratic extension of F, F as above with ∗ the
non trivial Galois element; A =

∧0V⊕
∧1V⊕

∧2V where V is a two dimensional
vector space over a p-adic field F with basis (e1, e2) and ∗ is given by the basis
transposition (e1, e2) to (e2, e1).

2. General Setting

Let H be a locally profinite group and Γ a subgroup of Aut(H). Let
(π, V ) be an irreducible smooth (complex) representation of H such that πγ ' π
(πγ = π ◦ γ) for every γ in Γ.

If γ ∈ Γ then there exists Tγ ∈ AutC(V ) such that Tγπ(x) = πγ(x)Tγ for
every x ∈ H.

Set G be the semidirect product of Γ and H. For (γ, h) in G we define
π̃(γ, h) in AutC(V ) by

π̃(γ, h) = Tγπ(h).

Proposition 2.1. The endomorphism π̃, defined above, is a projective extension
of π to G.
Proof. We want to prove that T−1

γδ TγTδ is a scalar.

Since TγTδπ(x) = Tγπ(δ(x))Tδ = π(γδ(x))TγTδ and Tγδπ(x) = π(γδ(x))Tγδ

then
T−1

γδ TγTδπ(x) = π(x)T−1
γδ TγTδ

It follows, by Schur’s Lemma, that T−1
γδ TγTδ = σ(γ, δ)idV , for a cocycle σ .

We compute now π̃(γ, h)π̃(δ, k). We have
π̃(γ, h)π̃(δ, k) = σ(γ, δ)Tγδπ(δ−1(h))π(k).

Since π̃((γ, h)(δ, k)) = π̃(γδ, δ−1(h)k) = Tγδπ(δ−1(h)k) we get

π̃(γ, h)π̃(δ, k) = σ(γ, δ)π̃((γ, h)(δ, k)).

Therefore π̃ is a projective representation of G with cocycle σ.

We recall now the definition of compact induction, c-Ind, as we will use it:
Let L be a an open subgroup of H , compact modulo the centre of H , and let
(ρ,W ) be a smooth representation of L . Let V denote the space of compactly
supported modulo the centre of H functions f : H → W with the property
f(lh) = ρ(l)f(h), l ∈ L, h ∈ H . The group acts on this space by right translation
of functions; the implied representation is smooth. We will assume now that

(π, V ) = c− IndH
L ρ , where L is an open, compact modulo the centre, subgroup of

H and ρ is a one dimensional representation of L .

We assume also that ργ = ρ on Lγ ∩ L , where Lγ = γ(L) and ργ(y) =
ρ(γ−1(y)) with y ∈ Lγ. We can define, similarly,

(πγ, Vγ) = c− IndH
Lγ ργ.

Let Sγ be a non zero intertwining operator from (π, V ) to (πγ−1 , Vγ−1). So
Sγ is an isomorphism between π and πγ−1 when π (and then πγ−1 ) is irreducible.
Then Sγπ(x) = πγ−1(x)Sγ.
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We define now Iγ : Vγ−1 −→ V by (Iγ(f)) (x) = f(γ−1(x)). The operator Iγ is well
defined and intertwining, in fact, Iγ(f(lx)) = ρ(l)f(x) and Iγπγ−1(x) = π(γ(x))Iγ.
On the other hand, we have that IγSγ : V −→ V is an intertwining operator since
IγSγπ(x) = π(γ(x))IγSγ. Let us define Tγ = IγSγ. We want to compute the cocy-
cle σ. In order to do this we look first at Iγ on Vδ , Since γ−1(h) ∈ δ(L) implies
that h ∈ γδ(L) , we have (Iγf)(hx) = f(γ−1(h)γ−1(x)).
We can define Iγ,δ : Vγ−1δ −→ Vδ by (Iγ,δf)(x) = f(γ−1x), and Sδ,γ : Vγ−1 −→
Vγ−1δ−1 by Sδ,γ = I−1

γ,δ−1SδIγ,1 a computation shows that Sδ,γ is an intertwining
map.

Since the operators Sδ,γ ◦ Sγ : V −→ Vγ−1δ−1 and Sδγ : V −→ Vγ−1δ−1 are
both intertwining, the irreductibility of V implies that they differ on a scalar i.e.
Sδ,γ ◦ Sγ = kSδγ.

Lemma 2.2. The intertwining operators defined above satisfy the equation Iδ ◦
Iγ,δ−1 = Iδγ.
Proof. Straightforward.

We finally show that k = σ(δ, γ): Since Sδ,γ ◦ Sγ = kSδγ we have
I−1
γ,δ−1SδIγSγ = kSδγ. So SδIγSγ = kIγ,δ−1Sδγ and then IδSδIγSγ = kIδIγδ−1Sδγ .

Using Lemma 2.2 we get IδSδIγSγ = kIδγSδγ i.e. TδTγ = kTδγ.

3. Heisenberg Construction

Given a F−vector space W we can define H = F⊕W which has a structure
of group with respect to

(a, w) · (a′, w′) = (a+ a′ +B(w,w′), w + w′)

where B : W ×W −→ F is a non-degenerate alternating form.
If M is any subgroup of W we write M̃ = F⊕M , which is a subgroup of H .
Definition 3.1. Let M be an any subset of W . We define M∗ = {w ∈ W |
B(m,w) ∈ OF ∀m ∈M} and M⊥ = {w ∈ W | B(m,w) = 0∀m ∈M}.

Observation 3.2.
a) If M is a F−subspace of W , then M∗ = M⊥. In fact, the inclusion M⊥ ⊂M∗

is obvious. On the other hand, since αB(m,w) = B(αm,w) we have that w ∈M∗

implies that αB(m,w) ∈ OF ∀m ∈M ∀α ∈ F, so B(m,w) = 0.
b) Another fact that we will use later, is the following

[(a, w), (a′, w′)] = (2B(w,w′), 0).

Let L be a maximal isotropic lattice i.e. L is compact and open and L∗ = L. Set

L̃ = F⊕L and let ψ be a character of F of conductor OF. Define ψL on L̃ by
ψL(a, l) = ψ(a) for a ∈ F.

Proposition 3.3. With the above notation and assuming that 2 ∈ O×
F we have:

a) ψL is a character of L̃.

b) If we define IntH(ψL) = {h ∈ H | HomL̃∩L̃h

(
ψL, ψ

h
L

)
6= 0}, where L̃h = hL̃h−1
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and ψh
L(x) = ψL(h−1xh) for any x ∈ L̃h , then IntH(ψL) is equal to L̃.

Proof. a) ψL((a, w)(a′, w′)) = ψL(a + a′ + B(w,w′), w + w′), since L is a
maximal isotropic lattice, B(w,w′) ∈ OF . Then ψL((a, w)(a′, w′)) = ψ(a)ψ(a′) =
ψL(a, w)ψL(a′, w′).

b) If (a, w) ∈ H Since (−a,−w)(α, y)(a, w) = (α + 2B(y, w), y) and L̃ C H ,

we have ψ
(a,w)
L = ψL on L̃ ∩ (−a,−w)L̃(a, w) = L̃ if and only if 2B(y, w) ∈ OF

∀y ∈ L if and only if B(y, w) ∈ OF ∀y ∈ L (given that 2 ∈ O×
F ) and this is the

case if and only if w ∈ L.

Now let ΠL = c− IndH
L̃
ψL be the compact induction of the character ψL from L̃

to H as defined in Section 2.

Proposition 3.4. The representation ΠL defined above is an irreducible admis-
sible supercuspidal representation of H .
Proof. The representation ΠL is the Heisenberg representation realized in the
lattice model (see [5], Chapter 2). Stone-von Neumann theorem implies that ΠL

is a smooth irreducible (thus admissible) representation. Then, using theorem 1
of [2], we get that it is supercuspidal.

Now let Γ be the subgroup of Aut(H) of all automorphism γ : H −→ H
such that γ|F = idF and γ|W is a symplectic linear automorphism. The subgroup
Γ acts transitively over the set Θ of all maximal isotropic lattices in W , by
Lγ = γ(L) (γ ∈ Γ and L ∈ Θ). Furthermore ψγ

L = ψL on Lγ ∩ L where
ψγ

L(y) = ψL(γ−1(y)), ∀y ∈ Lγ.

On the other hand, by Proposition 3.4 , (ΠL, VL) = c − IndH
L̃
ψL is an

irreducible admissible supercuspidal representation of H , where VL = {f : H →
C |f(lx) = ψL(l)f(x), ∀l ∈ L,∀x ∈ H, f compactly supported modulo the centre
of H} . So, we can define (ΠLγ , VLγ ) = c − IndH

L̃γ ψ
γ
L , where VLγ = {f : H →

C |f(lx) = ψγ
L(l)f(x), ∀l ∈ Lγ} and now the general set-up of Section 2 applies.

Define the function τγ : H → C by

τγ(xy) =

 ψγ
L(x)ψL(y) if x ∈ L̃γ, y ∈ L̃

0 otherwise

Note that τγ is well defined since ψγ
L = ψL on L̃γ ∩ L̃. For any f in the space of

ΠL we can define Υγ(f) : H −→ C by

Υγ(f)(x) =

∫
H/F

τγ(y)f(y−1x)dy

for an appropriate Haar measure on W = H/F . We can observe that Υγ : VL −→
VLγ−1 is a non zero intertwining operator and since ΠL is irreducible (and also
ΠLγ−1 ), we have that Υγ is an isomorphism.

We define now Iγ : VLγ−1 −→ VL by (Iγf)(x) = f(γ−1(x)) and so we have,
as in section 2, that Tγ = IγΥγ is an intertwining of VL which verify

Tδ ◦ Tγ = σ(δ, γ)Tδγ.
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4. Lagrangians

Let S be a left A- module whose F-dimension is n. We note that S is a
right A- module with sa = a∗s, a ∈ A, s ∈ S.

Let b : S×S −→ F be a non degenerate bilinear symmetric form such that

b(x1a, x2) = b(x1, ax2) (a ∈ A; x1, x2 ∈ S).

We set now W = S⊕S and define B : W ×W −→ F by B(x, y) = b(x1,y2) −
b(y1, x2) for x = (x1, x2) and y = (y1, y2) in W. Observe that B is a non degenerate
alternating form and we can define M⊥ = {w ∈ W | B(w,m) = 0, ∀m ∈ M} for
any OF−submodule M of W . The following properties are straightforward.

If either M is an F−subspace or if M is a compact open OF−submodule
of W (an OF− lattice in W ) then (M⊥)⊥ = M.

If M, N are any OF−submodules which satisfy (M⊥)⊥ = M and (N⊥)⊥ =
N then (M ∩N)⊥ = M⊥ +N⊥ .

We call an OF−submodule M of W isotropic if M is an OF−submodule
of M⊥. We say that M is maximal isotropic if M = M⊥

Fixing an additive (continuous) character ψ of F of conductor OF, we can
define the function χ : W ×W −→ T , where T is the group of complex numbers
of module one, by

χ(x, y) = (ψ ◦B)(x, y) ((x, y) ∈ W ×W ).

which is a symplectic bicharacter.

Definition 4.1. Let M be a subset of W . The orthogonal component M∗ of M
is the set of y ∈ W such that χ(x, y) = 1, for every x ∈ M .

Observation 4.2. In the case where M is a F−subspace of W we have that M∗

is also a F−subspace of W and M⊥ = M∗.

Definition 4.3. Let L be a F−subspace of W such that L⊥ = L. L is called a
Lagrangian subspace of W .

Observation 4.4. If M is an F−subspace of W then M is maximal isotropic if
and only if M is Lagrangian.

Lemma 4.5. Let W and χ be as above. Let L and L′ be two Lagrangian sub-
spaces of W . Then there exists a symplectic basis {w1, w2, . . . , wn, w

′
1, w

′
2, . . . , w

′
n}

of W, i.e.

1. χ(wj, w
′
j) 6= 1, j = 1, . . . , n

2. χ(wi, wj) = χ(w′
i, w

′
j) = 1 for every i, j.

3. χ(wi, w
′
j) = 1 for every i 6= j
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such that:
L = Fw1⊕Fw2⊕ · · ·⊕Fwk⊕Fwk+1⊕ · · ·⊕Fwn

L′ = Fw′
1⊕Fw′

2⊕ · · ·⊕Fw′
k⊕Fwk+1⊕ · · ·⊕Fwn

Proof. See Lemma 1.4.6. in [4].

Corollary 4.6. Given a Lagrangian L, there exists a Lagrangian L′ such that
W = L⊕L′.
Proof. If L = 〈w1, w2, . . . , wn〉 , then L is a proper subspace of 〈w2, . . . , wn〉⊥ .
We consider an element v1 ∈ 〈w2, . . . , wn〉⊥ − L . Then χ(w1, v1) 6= 1. Now
we can pick an element v2 ∈ 〈w1, w3, w4, . . . , wn, v1〉⊥ − 〈w1, w2, w3, . . . , wn, v1〉⊥ ,
and so χ(w2, v2) 6= 1. By induction we have {w1, v1}, {w2, v2}, . . . , {wn, vn} such
that χ(wi, vi) 6= 1, i = 1, . . . , n ; χ(wi, wj) = χ(vi, vj) = 1 for every i, j and
χ(wi, vj) = 1 for every i 6= j . Hence L′ = 〈v1, v2, . . . , vn〉 is such that W = L⊕L′ .

Corollary 4.7. There exists a maximal isotropic OF− lattice L in W.

Let L be a Lagrangian in W and define ψL on L̃ = F ⊕ L as above. Let
ΠL = c − IndH

L̃
ψL and consider the group H = F ⊕W . Let L̃ = F ⊕ L , L a

maximal isotropic OF− lattice in W .

Now we can define the function ρ : H −→ C by

ρ(z) =


ψL(x)ψL(y) if z = x · y, x ∈ L̃, y ∈ L̃

0 if z /∈ L̃L̃ = F⊕(L+ L)

Note that ρ is well defined since ψL = ψL on L̃ ∩ L̃ and L̃ ∩ L̃ = F⊕(L ∩ L).

For any f in the space of ΠL we can define S(f) : H −→ C by

S(f)(x) =

∫
H/F

ρ(y)f(y−1x)dy.

Given an OF− lattice M submodule of L, we define the function

ρM(z) =


ψL(x)ψL(y) if z = x · y, x ∈ L̃, y ∈ M̃

0 if z /∈ L̃M̃ = F⊕(L+ M).

Proposition 4.8. The map S defined above is an H−isomorphism from
ΠL to ΠL

Proof. Let f0 be the function, in the space of ΠL , defined by

f0(z) =

 ψL(z) if z ∈ L̃

0 otherwise
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and

fM(z) =

 ψM(z) if z ∈ M̃

0 otherwise

A computation shows S(f0) = ρ and S(fM) = ρM .

Since S is different from 0 and ΠL is irreducible, S is injective.

We will prove now that S is onto. To this end we prove that the space of
ΠL is equal to 〈{ρM | M ⊂ L}〉 . First, S(fM) = ρM so 〈{ρM | M ⊂ L}〉 ⊂ ΠL.

On the other hand any f in ΠL has support compact modulo L̃ and it is locally
constant. From this, it can be seen that any function f is a linear combination of
ρM for different lattices M ⊂ L. Hence we can conclude that S is an isomorphism.

Define now T : ΠL −→ ΠL by

T (f)(x) =

∫
H/F

θ(y)f(y−1x)dy

where θ is given by

θ(z) =


ψL(x)ψ

L
(y) if z = x · y, x ∈ L, y ∈ L

0 if z /∈ LL

We have that T 6= 0 and by Schur´s Lemma [1] [3], TS = cI, so TS(f0) = cf0

which implies c = 1, and finally

TS = IΠL

5. Connections over SL∗(2, A).

The group G = SL∗(2,A) acts naturally by matrix multiplication on W
by fixing the bicharacter χ ,

χ(gx, gy) = χ(x, y) (x, y ∈ W )

We define a complex G−bundle space F = (E, p,Γ, τ) by:

1. Γ = {L | L a Lagrangian of W}

2. Fix a Haar measure dw on W and dwL on a Lagrangian L such that dwL

is the unique Haar measure on W/L which verify that dw = dwLdwL .

For each Lagrangian L we consider the set EL of all functions f : W −→ C
which are locally constant, compactly supported modulo L, and such that
f(w + l) = χ(w, l)f(w) for every w ∈ W and l ∈ L.

We set

E =
·⋃

L∈�

EL

and we define an inner product on each EL by

〈f, h〉 =

∫
W/L

f(w)h(w)dwL (f, h ∈ EL)
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3. Let p : E −→ Γ be the canonical projection which sends each f of EL to L .

4. The group G acts on E and Γ by

[τg(f)](w) = f(g−1w) (f ∈ E, g ∈ G, w ∈ W )

and by
τg(L) = gL (L ∈ �, g ∈ G)

respectively.

Lemma 5.1. Let L be a Lagrangian subspace of W . Let M be an OF− lattice of
W . We set

gM(w) =

 χ(x, c) if w = x+ c ∈ L+M

0 otherwise.

Then, the set {gM |M be an OF− lattice of L} span EL as a C-vector space.
Proof. For each f in EL we can pick an OF− lattice M such that Supp(f) =
L+M. We use that f is locally constant and M is compact, to write f as linear
combination of gM ′ as above.

Let L and L′ be Lagrangians included in a fixed maximal OF− lattice L

in W. As we have seen, there are two isomorphisms, namely SL : ΠL −→ ΠL and
SL′ : ΠL −→ ΠL′ with TL : ΠL −→ ΠL and TL′ : ΠL′ −→ ΠL as the respective
inverses.

We now define isomorphisms γ̃L′,L : ΠL −→ ΠL′ , by

γ̃L′,L = SL′ ◦ TL

Let ΛL : ΠL −→ EL be defined by ΛL(f)(w) = f(0, w), for f ∈ ΠL and w ∈ W ,
and let, ΩL : EL −→ ΠL be defined by ΩL(f)(a, w) = ψ(a)f(w), for f ∈ EL and

(a, w) ∈ L̃. A computation shows that ΛL and ΩL are inverse to each other and
both are intertwining operators.

We can define now isomorphisms (which we will call connections) γ
L,L′

:

EL → EL′ by γ
L,L′

= ΛL
′
◦ γ̃L,L′ ◦ ΩL.

Then the diagram

ΠL

γ̃L,L′−→ ΠL′

ΩL ↑ ↓ ΛL
′

EL

γ
L,L′−→ EL′

is commutative.

We obtain

Theorem 5.2. The set Γ = {γL′,L | L′, L ∈ �} is a family of G-equivariant
connections over the fiber bundle F which verifies, for L,L′, L′′ ∈ �; f, f ′ ∈ EL;
h ∈ EL′ g ∈ G the following properties:

1. γL,L′ ◦ γL′,L = γL,L = idEL
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1. 〈γL′,L(f), h〉 = 〈f, γL,L′(h)〉

2. 〈γL′,L(f), γL′,L(f ′)〉 = 〈f, f ′〉

3. γL,L′′ ◦ γL′′,L′ ◦ γL′,L = SW (L;L′, L′′)idEL

4. where SW (L;L′, L′′) is a constant.

5. τg ◦ γL′,L = γgL′,gL ◦ τg

Note that SW (L;L′, L′′) is the analogous of the Maslov index in [4] and this
theorem is comparable with theorem 1.4 in [6].
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