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Abstract. Consider a finite set of Euclidean motions and ask what kind of
conditions are necessary for this set to generate a crystallographic group. We in-
vestigate a set of Euclidean motions together with a special concept motivated by
real crystalline structures existing in nature, called an essential crystallographic
set of isometries. An essential crystallographic set of isometries can be endowed
with a crystallographic pseudogroup structure. Under certain well chosen con-
ditions on the essential crystallographic set of isometries Γ we show that the
elements in Γ define a crystallographic group G , and an embedding Φ: Γ → G
exists which is an almost isomorphism close to the identity map. The subset
of Euclidean motions in Γ with small rotational parts defines the lattice in the
group G . An essential crystallographic set of isometries therefore contains a
very slightly deformed part of a crystallographic group. This can be interpreted
as a sort of metric rigidity of crystallographic groups: if there is an essential
crystallographic set of isometries which is metrically close to an inner part of a
crystallographic group, then there exists a local homomorphism-preserving em-
bedding in this crystallographic group.

1. Crystallographic Groups and (Almost) Flat Manifolds

Many substances in their solid phase are crystallised. They are either mono-
crystals (rock crystal, sugar crystal), or have a micro-crystalline structure, i.e.,
they are made up of thousands of tiny mono-crystals (steel, lump of sugar).
Crystalline structures are very regular. Most of the conceptual tools for the
classification of crystalline structures, the theory of lattices and space groups,
had been developed by the nineteenth century. In 1830 J. F. C. Hessel determined
the 32 geometric classes of point groups in three-dimensional Euclidean space.
In 1850 A. Bravais derived 14 types of three-dimensional lattices. C. Jordan in
1867 listed 174 types of groups of motions, including both crystallographic and
non-discrete groups. The symmetry groups of crystalline structures in three-space
were found independently by E. S. Fedorov in 1885 and A. Schoenflies in 1891.
The determination of all crystalline structures in three-space enabled the modern
definition of a crystallographic group to be formulated. Every discrete group of
motions of n-dimensional Euclidean space for which the closure of the fundamental
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domain is compact is an n-dimensional crystallographic group.1

In 1900 at the International Congress of Mathematics in Paris, D. Hilbert made an
attempt to identify the important areas in contemporary mathematical research,
which are known today as the twenty-three Hilbert problems. Hilbert’s eighteenth
problem is on crystallographic groups and on fundamental domains: “Is there in
n-dimensional Euclidean space also only a finite number of essentially different
kinds of groups of motions with a fundamental region?” Already in the nineteenth
century it was known with ad hoc methods that there are only finitely many
different crystallographic groups in the plane and in three-space. Eleven years
later, in 1911, L. Bieberbach gave a complete answer to Hilbert’s question in
form of his structure theory for crystallographic groups, today known as the three
Bieberbach Theorems.

Theorem 1.1. (Bieberbach, [2])

(1) An n-dimensional crystallographic group contains n linearly independent
translations and the rotational group is finite.

(2) Any isomorphism between two n-dimensional crystallographic groups can be
realised by an affine change of coordinates.

(3) For a fixed dimension n there are only finitely many isomorphism classes of
n-dimensional crystallographic groups.

For modern proofs see L. S. Charlap, [6]. In the seventies M. Gromov studied the
original proofs of Bieberbach, to make an attempt to understand what is really
going on in the proof of Bieberbach’s First Theorem. This idea was very fruitful
and led to the following Almost Flat Manifold Theorem of M. Gromov and E. Ruh,
which is one of the most striking results in Riemannian geometry.

Theorem 1.2. (Almost Flat Manifolds, [8], [12]) Let M be a compact n-dim-
ensional Riemannian manifold, K the sectional curvature and diam(M) the di-
ameter. There exists a constant ε(n) = exp(− exp(exp(n2))) depending only on
the dimension such that

|K| · diam(M)2 ≤ ε(n)

implies that M is diffeomorphic to an infra-nilmanifold, i.e. to N/Γ, where N is
a simply connected nilpotent Lie group, and Γ a discrete subgroup of N o Aut(N)
with finite [Γ : N∩Γ]. (Such a manifold M is called an ε(n)-almost flat manifold).

The converse is also true. A complete proof of Gromov’s Almost Flat Manifold
Theorem can be found in [4]. It is the proof of this theorem and the lack of
perfectness of crystalline structures in nature which motivate this paper.

2. Motivation for an Essential Crystallographic Set of Isometries and
the Metric Rigidity of Crystallographic Groups

In this paper we give a new characterisation of crystallographic groups, cf. Def. 2.3
and Thm. 2.5. The main aim is to find conditions under which a finite set of isome-
tries of the Euclidean space generates a crystallographic group. In the classical

1Some authors call torsion-free crystallographic groups Bieberbach groups. We do not follow
this convention.
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mathematical model used in crystallography, only ideal unlimited crystalline struc-
tures are treated. Let us instead consider a real macro-crystal appearing in nature
which is finite and not perfectly regular. To do this, throw overboard the group
structure, but there is still tremendous regularity in a crystal structure appearing
in nature. So let us read off the crystal all possible isometries: the identity and all
isometries which leave parts of the crystalline lattice almost invariant. Represent
every isometry read off the crystal by an isometry of Euclidean space and gather
them together in a set Γ. This set (which is not unique) has certain immediate
properties and represents the almost lattice structure of the crystal. First observe
that given any crystal-point, it is possible to read off an isometry, such that the
translational part of the isometry is in some neighbourhood of the point. Secondly,
the inverse of an isometry in Γ is not necessarily in Γ, but since the crystal is very
regular, an element close to the inverse can be read off. Similarly, the composition
of two isometries in Γ needs not to be an element of Γ, but a nearby element
of Γ will be identified with the composition. Thirdly, the mono-crystals in the
chosen macro-crystal are of a certain minimal size. Since they may not fit together
perfectly be careful not to read off several times almost the same isometry. In fact
these three observations characterise the entire crystalline structure. The second
observation supplies us with generators and relations of a finitely generated group,
but we cannot a priori expect to obtain a group of Euclidean motions. Under
certain conditions the set Γ defines a crystallographic group.

In the following we transform the above ideas into a mathematical definition. But
first let us recall some preliminaries about Euclidean motions and its norms. An
Euclidean motion is an ordered pair α = (A, a) with A ∈ O(n) an orthogonal
matrix and a ∈ Rn acting on Rn by α(x) = A x + a . We multiply Euclidean
motions by composing them α β = (A B, A b + a). The inverse of α is given
by α−1 = (A−1,−A−1 a). The identity is denoted by id = (I, 0), where I is
the identity matrix in O(n). The group of all Euclidean motions together with
the above composition is the semi-direct product E(n) = O(n) n Rn . We call
A = rot(α) ∈ O(n) the rotational part and a = trans(α) ∈ Rn the translational
part of α . For α = (A, a) and β = (B, b) in E(n) define the commutator
[α, β] = α−1 β−1 α β , more explicitly:

rot([α, β]) = [A, B] = A−1 B−1 A B

trans([α, β]) = A−1 B−1 ((I −B) a− (I − A) b)

Moreover let us define inductively the k -times nested commutator: set β0 = β
and inductively βk+1 = [α, βk] for k ∈ N .

Definition 2.1. (Operator norm on O(n)) For A ∈ O(n) define the norm of
A as follows ‖A‖ = max {|(A− I) x| | x ∈ Rn with |x| = 1} .

Let A ∈ O(n) with eigenvalues λ1, . . . , λn and T ∈ U(n) a unitary matrix. Then
we obtain ‖A‖ = ‖T ∗A T‖ = max{|λi − 1| | all eigenvalues λi of A}.

Definition 2.2. (Distance function on E(n)) Let α = (A, a) ∈ E(n). Define
a norm of α by ‖α‖ = max{‖A‖, ν|a|} , where ν is a positive adjustable length-
parameter. A distance function on E(n) is then derived by

dE(n)(α, β) = ‖α−1β‖ = max{‖A−1B‖, ν|a− b|}.
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A straight-forward calculation shows that ‖id ‖ = 0 and ‖α‖ = ‖α−1‖ and in
addition | ‖α‖ − ‖β‖ | ≤ ‖α β‖ ≤ ‖α‖ + ‖β‖ . The distance function dE(n) is left-
invariant but not right-invariant. There is an estimate of the deviation from right-
invariance dE(n)(αγ, βγ) ≤ (1 + ν · |c|) · dE(n)(α, β) in function of |trans(γ)| = |c| .

Now we are ready to give a precise definition of an essential crystallographic set
of isometries:

Definition 2.3. (Essential crystallographic set of isometries) Let ζ, r, R and
ε, µ, δ be non-negative numbers with ζ ≤ r ≤ R

2
and ν the adjustable length-

parameter in the distance dE(n) . An essential crystallographic set of isometries ΓR

is a finite set of Euclidean motions α = (A, a) ∈ E(n) with |a| ≤ R together with
the following properties:

(I) For all x ∈ Rn with |x| ≤ R − r there exists α ∈ ΓR with |x − a| ≤ r .
In other words, the translational parts of elements in ΓR are r -dense in the
disc KR−r(0) with radius R− r around 0.

(II) (a) id ∈ ΓR

(b) If α ∈ ΓR satisfies |a| ≤ R− ζ then there exists a so called bar-element
α ∈ ΓR such that dE(n)(α, α−1) ≤ r

R
ε .

(c) If α, β ∈ ΓR satisfy |a| + |b| ≤ R − ζ then there exists an element
γ = γ(α, β) ∈ ΓR such that dE(n)(γ, α β) ≤ r

R
ε .

(III) If α, β ∈ ΓR with α 6= β satisfy ‖A−1B‖ ≤ µ then |a− b| > δ .

The size of the macro-crystal is said to be R , the minimal side length of the mono-
crystals is δ , and its lattice points are r -dense. The deviation of the real crystal
to its ideal is measured by ε . Isometries close to the border of the crystal are not
relevant – therefore the constant ζ is used. If ε = 0 then (II)(b) coincides with
the inverse and (II)(c) with the composition of two elements.

All this is done in the hope that an essential crystallographic set of isometries
somehow contains the information of a normal free Abelian subgroup of maximal
rank with finite index. Let us see. We observe that if the constants involved in the
above Def. 2.3 are well chosen then an essential crystallographic set of isometries
can be equipped with a local product structure, the ∗-product, cf. Cor. 6.4.
Then in a first part (Sec. 3. – 11.) we only consider elements with small rotational
parts, i.e. elements in

∆1/9

ρ = {α ∈ ΓR | ‖rot(α)‖ ≤ 1
9

and |trans(α)| ≤ ρ ≤ R}.

We gain more information about the set ∆1/9
ρ using similar techniques as in the

proof of the Almost Flat Manifold Theorem, [4]. We show that the set ∆1/9
ρ does

not only contain the identity. This is done with a pigeon hole argument. If ρ
is big enough, then all elements in ∆1/9

ρ have a rotational part, which is smaller
than 1/27. Therefore the set ∆1/9

ρ is closed under the ∗-product. Then a short

basis for ∆1/9
ρ is chosen, and this short basis has at most dn = 2n(n+1) elements.

The norm of nested commutators in ∆1/9
ρ tends to zero. Thus since ∆1/9

ρ is finite
a norm-controlled induction implies that all dn -times nested commutators in ∆1/9

ρ



Steiner 39

are trivial.
Now with condition (III) and the proper relations between the constants ε and δ
and respectively, ε and µ , it is possible to show that elements in ∆1/9

ρ ∗-commute.
The following generalised Frobenius’ Theorem about nested commutators is essen-
tial to show that the set ∆1/9

ρ consists of almost translations.

Theorem 2.4. ([14], Thm. 1.2) Let A, B ∈ O(n) with ‖A‖, ‖B‖ ≤ 1
9

and ε ∈
[0, 1/f2

n]. If ‖[A, [A, B]]‖ ≤ ε then ‖[A, B]‖ ≤ fn

√
ε. The constant fn = (3n)3

depends only on n.

Then we construct a λ-normal basis for the almost translational set trans(∆1/9
ρ ),

cf. Sec. 11. This procedure gives us n linearly independent vectors which generate
an Abelian lattice of maximal rank n .
The second part (Sec. 12. – 18.) contains the construction of a nearby crystal-
lographic group G ⊂ E(n) and an embedding of Γρ/2n+1 into G . To do this we
find a partition of Γρ/3 into finitely many equivalence classes: two elements α and

β in Γρ/3 are said to be equivalent if α ∗ β ∈ ∆1/9
ρ . The set H = Γρ/3 / ∼ has

the structure of a finite group, which can be considered as the rotational group of
the crystallographic group G . Then we slightly deform the Abelian lattice to the
lattice-group of the crystallographic group G .

If the relations between the constants given in the definition of an essential crys-
tallographic set of isometries are well chosen then we obtain the following met-
ric rigidity theorem, providing us with a new characterisation of crystallographic
groups, i.e.,

(A1 ) The radius is R = 2 cdn ρ with ρ ≥ ρn = r · exp(exp(exp(4n2))), where
ck = 5k and dn = 2n(n+1) depends only on the dimension n .

(A2 ) The adjustable length-parameter in Def. 2.2 is set to be ν = 1
9ρ

.

(A3 ) For ζ suppose r ≥ ζ ≥ 9 εR .

(A4 ) For δ suppose r
2n ≥ δ ≥ an ε

1
8 R , where an = 7fn and fn = (3n)3 depend

only on the dimension n .

(A5 ) For µ suppose 1
9
≥ µ ≥ bn ε

1
2 , where bn = 2fncdn and cdn is defined in (A1 )

and fn in (A4 ).

(A6 ) The constant ε controlling the error satisfies

0 ≤ ε ≤
(

1
2n+1ancdn

· r
ρ

)8

≤ εn = exp(− exp(exp(7n2))).

Notice that the constants an, bn and dn (respectively ck ) depend only on the
dimension n , (respectively the natural number k ). These different constants are
used in the following proofs to make the various ideas work. They depend on the
particular constructions used and therefore are usually not optimal.
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Theorem 2.5. (Metric rigidity of crystallographic groups) Let ΓR ∈ E(n) be
an essential crystallographic set of isometries which satisfies (A1 ) – (A6 ). Then
there exists a crystallographic group G ⊂ E(n) and an embedding Φ : Γρ/2n+1 → G
which satisfies the following properties:

(1) Φ(id) = id and Φ(α ∗ β) = Φ(α) · Φ(β) for all α, β ∈ Γρ/2n+1 such that
|a|+ |b| ≤ ρ

2n+1 .

(2) dE(n)(γ, Φ(γ)) ≤ ε
1
4 for all γ ∈ Γρ/2n+1 .

(3) Φ(Γρ/2n+1) ⊇ G ∩ {(A, a) ∈ E(n) | |a| ≤ ρ
2n+1 − 9 ρ ε

1
4}.

In other words the embedding Φ|Γ is almost the identity, and the set Γρ/2n+1 is just
a slightly deformed part of a crystallographic group. This can be interpreted as a
metric rigidity of crystallographic groups: if there is an essential crystallographic
set of isometries which is metrically close to an inner part of a crystallographic
group, then there exists a local homomorphism-preserving embedding in this crys-
tallographic group. This metric rigidity theorem should not be confused with other
rigidity results about crystallographic groups such as the Second Bieberbach The-
orem (cf. Thm. 1.1(2)), which could be called an algebraic or topological rigidity
result. There is no obvious reason to believe that the two kinds of rigidity are
related to one another.

Note that the case where ε is set to be zero is much easier: the ∗-product turns
out to be the usual product in the group of Euclidean motions and property (II)
gets easier and (III) can be skipped. Then the essential crystallographic set of
isometries ΓR with ε = 0 generates a crystallographic group G ⊂ E(n) which
contains ΓR as a subset. The case n = 3 is handled in [15]. If in addition, R is
set to infinity and “finite” is replaced by “discrete”, then this very special case can
also be found in [3].
Given a finite set Γ of isometries of an affine Euclidean space. When is the group
G generated by Γ discrete? This question was also recently treated by H. Abels,
[1]. The result is phrased as a series of tests: G is discrete if and only if Γ passes
all the tests. His testing procedure is algorithmic.

3. Commutator Estimates

We state some useful facts concerning the commutator, which can be found by
direct calculation:

Lemma 3.1. (Commutator estimates I, [10], p. 216) Let α = (A, a) and β =
(B, b) be elements of E(n). Then

(1) ‖rot([α, β])‖ ≤ 2 ‖A‖ · ‖B‖

(2) |trans([α, β])| ≤ ‖B‖ · |a|+ ‖A‖ · |b|

(1’) ‖rot([α, . . . , [α, β] · · · ]k)‖ ≤ 2k‖A‖k · ‖B‖

(2’) |trans([α, . . . , [α, β] · · · ]k)| ≤ (2k − 1)‖A‖k−1 · ‖B‖ · |a|+ ‖A‖k · |b|

Now the following commutator estimates can be derived from Lem. 3.1.
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Lemma 3.2. (Commutator estimates II, [10], p. 216) Let α = (A, a) and β =
(B, b) be elements of E(n). Then ‖A‖ ≤ ‖α‖ and ν|a| ≤ ‖α‖ by the definition of
the norm on E(n). Therefore

(1) ‖[α, β]‖ ≤ 2 ‖α‖ · ‖β‖ and

(2) ‖[α, . . . , [α, β] · · · ]k‖ ≤ 2k ‖α‖k · ‖β‖.

4. Pairwise Distance in O(n) and E(n)

The following two lemmas are important tools in the proof of the Metric Rigidity
Theorem.

Lemma 4.1. (Pairwise distance in O(n), [4], Prop. 7.6.1) For given θ ∈ ]0, π[
there are at most

N(θ) = 2
(

2π
θ

) 1
2
n(n−1)

elements Ai in O(n) with pairwise distance ‖A−1
i Aj‖ ≥ 2 sin( θ

2
).

Lemma 4.2. (Pairwise distance in E(n), [4], Prop. 7.6.2) For given µ ∈ [0, 1[
there are at most

N(µ) =
(

3−µ
1−µ

) 1
2
n(n+1)

non-trivial Euclidean motions αi in E(n) with rotational part in SO(n), which
pairwise satisfy dE(n)(αi, αj) ≥ max {‖αi‖ − µ ‖αj‖ , ‖αj‖ − µ ‖αi‖}.
The following result from differential geometry tells us that it is possible to
construct an iteration procedure which leads from an almost homomorphism
ω0 : H → M of compact Lie groups to a homomorphism ω : H → M near
ω0 .

Theorem 4.3. ([9], Thm. 4.3.) Let H and M be compact Lie groups with bi-
invariant metrics satisfying the following conditions: The volume of H is nor-
malised to one. The bi-invariant metric on M is normalised such that for all
X, Y ∈ TeM the commutator satisfies ‖[X, Y ]‖ ≤ ‖X‖ · ‖Y ‖, and the injectivity
radius of the exponential map is at least π .
Let ω0 : H → M be a q -almost homomorphism, i.e., assume for all h1, h2 ∈ H

d(ω0(h1 · h2) , ω0(h1) · ω0(h2)) ≤ q ≤ π
6
.

Then there exists a homomorphism ω : H → M near ω0 , i.e. for all h ∈ H

d(ω0(h), ω(h)) ≤ q + 1
2
q2 + q4 ≤ 2q.

5. Generalised Frobenius’ Theorem

The following fact is known as Frobenius’ Theorem: Let A, B ∈ O(n) with
‖B‖ <

√
2. If [A, [A, B]] = I then [A, B] = I . Since A and [A, B] commute

we can assume, using a unitary change of basis if necessary, that A and [A, B]
are simultaneously diagonal. Set C = [A, B] then A B = B A C with A and C
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diagonal. Compare the diagonal entries, then aiibii = biiaiicii for all i ∈ {1, . . . , n} .
We have |aii| = 1 since A ∈ U(n) is diagonal, and bii 6= 0 since ‖B‖ <

√
2.

Therefore cii = 1 for all i ∈ {1, . . . , n} . Hence [A, B] = I .
This fact can be extended to almost commuting matrices, cf. Thm. 2.4 in the
introduction. The proof of this theorem follows the lines of the exact case. But it
is not anymore possible to assume that A and [A, B] are simultaneously diagonal.
Therefore we construct a change of basis such that A and [A, B] are simultaneously
almost diagonal, cf. [14]:

Lemma 5.1. ([14], Lem. 3.3) Let A, C ∈ O(n). If ‖[A, C]‖ ≤ ε with ε ∈
[0, 1

2n2 ] then there exists V ∈ U(n) such that the matrices V ∗ A V and V ∗ C V
are simultaneously almost diagonal, i.e. |d|2 ≥ 1 − 9n3ε for all diagonal entries
d ∈ {(V ∗ A V )ii | i ∈ {1, . . . , n}} ∪ {(V ∗ C V )ii | i ∈ {1, . . . , n}}.
From Lem. 5.1 we can conclude a weaker real analogue. For the proof remember
that the non-trivial (i.e. imaginary) eigenvalues of an orthogonal matrix appear
as conjugate pairs. The set Mat(n×m, R) denotes the (n×m)-matrices with real
entries.

Corollary 5.2. Let A, B ∈ O(n) with ‖A‖, ‖B‖ ≤ 1
9
. If ‖[A, B]‖ ≤ ε ≤ 1

n2

then there exists V ∈ O(n) depending only on A such that

V t A V =

(
A′ 0
0 A′′

)
,

where A′ ∈ O(2k) with ‖A′‖ > η−n
√

ε and A′′ ∈ O(n−2k) with ‖A′′‖ ≤ η+n
√

ε.
The positive number η is an adjustable parameter with η > n

√
ε and 0 ≤ 2k ≤ n.

Also,

V t B V =

(
B′ F ′

F ′′ B′′

)
,

where B′ ∈ Mat(2k×2k, R) and B′′ ∈ Mat((n−2k)×(n−2k), R) and |f ′
ij|, |f ′′

ij| ≤
n
√

ε for all possible i, j -combinations.

6. The Crystallographic Pseudogroup

The abstract definition of an essential crystallographic set of isometries will now
become clearer. If we suppose a relatively weak condition on the constants in
Def. 2.3, then every essential crystallographic set of isometries has a local group
structure, i.e., is a crystallographic pseudogroup. But first let us say something
about equality of two elements in ΓR :

Lemma 6.1. Let α = (A, a), β = (B, b) ∈ ΓR .

(a) If ‖A−1B‖ ≤ µ and |a− b| ≤ δ then α = β .

(b) If dE(n)(α, β) ≤ min{µ, νδ} then α = β .

Proof. Suppose α 6= β , then property (III) can be interpreted as follows: if
‖A−1B‖ ≤ µ then |a − b| > δ , otherwise ‖A−1B‖ > µ , therefore dE(n)(α, β) =
max{‖A−1B‖, ν|a− b|} > min{µ, νδ} .
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Lemma 6.2. (Unique bar-element and unique element γ = γ(α, β)) If the con-
stants in Def. 2.3 are supposed to satisfy min{µ, νδ} > 2 r

R
ε, then the bar op-

eration − : {α ∈ ΓR | |a| ≤ R − ζ} → ΓR and the multiplicative element
γ : {(α, β) ∈ ΓR × ΓR | |a|+ |b| ≤ R− ζ} → ΓR are unique.

Proof. For α ∈ ΓR satisfying |a| ≤ R − ζ there is only one element α ∈ ΓR

which satisfies (II)(b): Indeed, if there were two α and α′ , then

dE(n)(α, α′) ≤ dE(n)(α, α−1) + dE(n)(α
−1, α′) ≤ 2 r

R
ε,

so Lem. 6.1 implies α = α′ . The proof for the uniqueness of γ is similar.

With the same assumptions on the constants as in Lem. 6.2 we can summarise:

(IV) (Neutral element, inverse and product in ΓR ) By property (II)(a) id ∈ ΓR .
For all α ∈ ΓR with |a| ≤ R−ζ the − -inversion α 7→ α and for all α, β ∈ ΓR

with |a|+ |b| ≤ R− ζ the ∗-product α ∗ β = γ(α, β) are well defined in ΓR .

If the assumptions on the constants in Def. 2.3 are sharpened a bit, then we
can derive several properties of this product. Using the left-invariance and the
deviation from the right-invariance of dE(n) we estimate the distance between
from α ∗ α to α ∗ α , for instance. Then Lem. 6.1 implies that both expressions
must be equal:

Theorem 6.3. (Properties of the ∗-product) Assume that min{µ, νδ} > 7
2
ε,

νε r
R
≤ ζ and the adjustable length-parameter ν ∈

]
0, 1

2r

]
. Then the ∗-product

satisfies.

(V) Well-defined inverse: α ∗ α = id = α ∗ α if 2 |a| ≤ R− 2 ζ ≤ R− 2 νε r
R

.

(VI) Idempotent inverse: α = α if |a| ≤ R− 2 ζ .

(VII) Antisymmetric inverse: α ∗ β = β ∗ α if |a|+ |b| ≤ R− 3 ζ .

(X) Associative multiplication: α∗ (β ∗γ) = (α∗β)∗γ if |a|+ |b|+ |c| ≤ R−2 ζ .

Summarising the above we get the following ∗-structure for our essential crystal-
lographic set of isometries.

Corollary 6.4. (Crystallographic Pseudogroup) The finite set ΓR together with
the ∗-structure has the following properties:

(a) If α ∈ ΓR satisfies |a| ≤ R− ζ then ᾱ ∈ ΓR .

(b) If α, β ∈ ΓR satisfy |a|+ |b| ≤ R− ζ then α ∗ β ∈ ΓR .

Notice that the − -inversion and ∗-product are not defined on the entire set ΓR

but only on a subset. Therefore we will speak of a local ∗-structure on ΓR or of
a crystallographic pseudogroup.2

2There are other definitions of a pseudogroup which are in general not equivalent. It is possible
to assume that the inverse is defined everywhere, cf. [7], Def. 7.1. For an example see the pseudo
fundamental group of an almost flat manifold in [3]. In the older literature we find the name
local group for such a concept, cf. [11], Sec. 23. We will not follow this convention.
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If a product of several factors is given without any brackets, then associativity
is understood, so any bracket setting is the same. If a term with − -inversions
and ∗-products is given, then every such operation gives rise to an error of at
most (1 + νR) r

R
ε ≤ ε compared to usual inversion and product in E(n), since

ν ∈
]
0, 1

2r

]
and 2 r ≤ R are supposed. Since we have a local group structure ready,

let us abbreviate

α∗l = α ∗ · · · ∗ α if l · |a| ≤ R− l · ζ

for the ∗-potency, and use the symbol

[α ; β] = α ∗ β ∗ α ∗ β if 2 |a|+ 2 |b| ≤ R− 5 ζ

for the ∗-commutator in ΓR . The maximal number ck of − -inversions and ∗-
products in a k -times nested ∗-commutator [α ; . . . ; [α ; β] · · · ]k does not exceed
ck = 5k . From Lem. 3.1 and Lem. 3.2 we derive some inequalities which put the
− -inversion and ∗-product into relation with the usual inversion and product in
the group of Euclidean motions:

Corollary 6.5. Let α, β ∈ ΓR . Then the following inequalities are valid:

(a) inversion: ‖α−1‖ − ε ≤ ‖α‖ ≤ ‖α−1‖+ ε

(b) product: ‖α β‖ − ε ≤ ‖α ∗ β‖ ≤ ‖α β‖+ ε

(c) commutator: ‖[α ; β]‖ Q ‖[α , β]‖ ± 5 ε

(d) nested commutator: ‖[α ; . . . ; [α ; β] · · · ]k‖ Q ‖[α , . . . , [α , β] · · · ]k‖ ± ck ε

7. Examples of Essential Crystallographic Sets of Isometries

The most obvious example of an essential crystallographic set of isometries would
be a crystallographic group itself. The only problem with this example is that for
technical reasons, Def. 2.3 requires essential crystallographic sets of isometries to
be finite.
Below, we discuss some other examples of essential crystallographic sets of isome-
tries. We begin with examples where ε = 0.

Example 7.1. To get a finite essential crystallographic set of isometries ΓR ,
take the subset

ΓR = {α = (A, a) ∈ Π | trans(α) ≤ R}

of any crystallographic group Π ⊂ E(n) and adjust the constants ζ, r, R and µ, δ, ν
such that ΓR turns into an essential crystallographic set of isometries as follows.
Let D be a fundamental domain of the crystallographic group Π and let δ be the
minimal distance between two vertices of D . Set ζ = ε = 0 and r = 1

2
diam(D),

R = 10 diam(D), where diam(D) denotes the diameter of D . From [5] we know
that if α = (A, a) ∈ Π with ‖A‖ ≤ 1

2
, then α is a pure translation. We can

therefore set µ = 1
2

and leave ν arbitrary.
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Example 7.2. Let (Zn, +, 0) be the standard lattice. Consider the set

Γ10 = {(I, a) ∈ E(n) | a ∈ Zn with |a| ≤ 10}

and set r = δ = 1 and ζ = ε = 0. For any non-negative values of µ and ν ,
if the dimension n is 1, 2, 3 or 4 then Γ10 is an essential crystallographic set of
isometries. For n ≥ 5, property (I) in Def. 2.3 fails, since half of the diameter of
the fundamental domain of Zn is bigger than r = 1.

Example 7.3. To make Ex. 7.2 work in all dimensions, we can consider the set

Γ′
10 =

{
(I, a) ∈ E(n) | a ∈

(
1√
n
Z

)n

with |a| ≤ 10
}

.

Setting the constants r = 1, δ = 1√
n

and ζ = ε = 0 and leaving µ and ν arbitrary,

Γ′
10 becomes an essential crystallographic set of isometries for all n ∈ N .

Now we give two examples with ε ≥ 0.

Example 7.4. Let Γ′
10 , r , δ and ν be as in Ex. 7.3. Let α ∈ Γ′

10 and α̃ be any
element of E(n) such that dE(n)(α, α̃) < δ

100
. Denote by Γ̃′

10 the set obtained by
replacing each element α ∈ Γ′

10 − {id } by α̃ . By slightly adjusting the constants
ζ and µ chosen in Ex. 7.3, we obtain an essential crystallographic set of isometries
Γ̃′

10 with ε ≥ 0. It is a slightly deformed part of the crystallographic group(
1√
n
Z

)n

.

Example 7.5. Let {e1, e2} be the standard basis for the Abelian lattice Z2 .
Further define two Euclidean motions α = (A, e1) and β = (B, e2) of the plane
with A and B non-trivial rotations. Suppose without loss of generality that
‖α‖ ≥ ‖β‖ . In general the Euclidean motions α and β do not commute, but if
the rotations A and B are small they almost commute. Therefore define the set

ΓR = {αkβl | k, l ∈ Z with |k|+ |l| ≤ R}.

If the density constant is r = 1, and if µ, νδ and ζ are chosen to be much smaller
than r = 1 and if they satisfy min{µ, νδ} ≥ 2 R2 ‖α‖2 and ζ ≥ 2 R2 ‖α‖2 then ΓR

is an essential crystallographic set of isometries with positive ε . Indeed, consider
the case

dE(n)(β
lαk, αkβl) ≤ 2 ‖αk‖ · ‖βl‖ ≤ 2 |k| ‖α‖ · |l| ‖β‖ ≤ 2 R2‖α‖2 ≤ min{µ, νδ},

so αkβl and βlαk are close since we assumed that min{µ, νδ} is much smaller
than r = 1. Therefore they can be considered as one element. In other words, we
have the following ∗-structure on ΓR : if |k|+ |l| ≤ R− ζ then αkβl = α−kβ−l and
if |k + k′| + |l + l′| ≤ R − ζ then αkβl ∗ αk′βl′ = αk+k′βl+l′ . Therefore ΓR turns
out to be an Abelian essential crystallographic set of isometries. The maximal
deviation of the translational parts in ΓR from the ideal lattice Z2 generated by
trans(α) = e1 and trans(β) = e2 is therefore at most

dist(ke1 + le2, trans(αkβl)) ≤ |k| · ‖A‖+ |l| · ‖B‖ ≤ R ‖α‖,
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where the notation dist(ke1 + le2, trans(αkβl)) denotes the distance from the
point trans(αkβl) to the lattice point ke1 + le2 . If every element αkβl in ΓR

is replaced by the element (I, ke1 + le2) in the Abelian crystallographic group
G = ({I}nZ2, · , id) then this embedding is almost the identity, i.e., the maximal
deviation in E(2) is smaller than the square-root of min{µ, νδ} which was chosen
much smaller than r = 1.

8. Nilpotency of the Set ∆1/9
ρ in ΓR

First we introduce some general definitions and concepts.

Definition 8.1. (The set of motions with small rotational parts) For λ ∈ [0, 2]
and 0 ≤ ξ ≤ R define the set

∆λ
ξ = {α ∈ ΓR | ‖rot(α)‖ ≤ λ and |trans(α)| ≤ ξ}.

In what follows it is elegant if the largest rotational part and translational part
allowed in the set ∆λ

ξ have the same weight. Therefore, the adjustable parameter

ν in the definition of the distance function on E(n) is set to be ν = λ
ξ
. In other

words ∆λ
ξ = {α ∈ ΓR | ‖α‖ ≤ λ} .

In the Bieberbach case the set ∆1/9
ρ would be the set of Euclidean motions with

trivial rotational parts, i.e. the Abelian lattice group. In the almost flat case the
set ∆1/9

ρ is shown to be an almost translational set whose elements ∗-commute.

Definition 8.2. (Norm-controlled generation) For any subset A ⊆ ΓR and
λ ∈ [0, 2] and 0 ≤ ξ ≤ R define the set 〈A〉λξ inductively by

(I) {id } ∪ A ⊆ 〈A〉λξ

(II) If α ∈ A and ‖rot(α)‖ ≤ λ and |trans(α)| ≤ ξ then α ∈ 〈A〉λξ .

(III) If α, β ∈ 〈A〉λξ and ‖rot(α∗β)‖ ≤ λ and |trans(α∗β)| ≤ ξ then α∗β ∈ 〈A〉λξ .

Note that we have to be careful with associativity, e.g. α ∗ (β ∗ γ) ∈ 〈A〉λξ does in

general not imply α ∗β ∈ 〈A〉λξ . In what follows a short basis {γ0, . . . , γm} for ∆λ
ξ

is defined in such a way that it reflects nilpotent properties of ∆λ
ξ , as we will see

later, cf. Cor. 8.6.

Definition 8.3. (Short basis) Let λ ∈ [0, 2]. The elements of a short basis
{γ0, . . . , γm} of ∆λ

ξ are inductively selected:

(I) γ0 = id

(II) γ1 ∈ ∆λ
ξ − {id } is such that ‖γ1‖ is minimal in ∆λ

ξ − {id } .

(III) If {γ0, . . . , γi} ⊂ ∆λ
ξ have been selected, then γi+1 ∈ ∆λ

ξ − 〈{γ0, . . . , γi}〉λξ is

chosen such that ‖γi+1‖ is minimal in ∆λ
ξ − 〈{γ0, . . . , γi}〉λξ .
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We start with a couple of lemmas, which teach us first something about the set
∆1/9

ρ in ΓR . The setting λ = 1
9

and ξ = ρ is such that Lem. 8.5 can be proved.
Furthermore we need associativity in ΓR for at most cdn factors of elements in Γρ .
Thus set R = 2cdnρ and assume

6ε ≤ 2cdnε ≤ min{µ, δ
9ρ
} < min{‖α‖ | α ∈ ΓR − {id }}, (1)

which is certainly satisfied by assumptions (A1 ) – (A6 ). This implies that all ∗-

products of at most 2cdn factors αj ∈ Γρ with
∑2cdn

j=1 |aj| ≤ R− ζ are well defined
and any setting of parenthesis is the same. Therefore a very rough estimation
for the constant ζ , which is tight enough for our further considerations can be
found: in calculations we need ζ ≤ 9 ρ · 2cdnε = 9 εR , thus by assumption (A3 )
the constant ζ is considered to be smaller than r .
A priori it is not clear how many elements apart from the identity are contained
in the finite set ∆1/9

ρ . Is it possible that the identity is the only element in Γρ with
rotational part smaller than 1

9
? – No, the next lemma tells us more:

Lemma 8.4. ([3], p. 85) Let η be an adjustable parameter in ]2ε, 2]. If

ρ = ρN(η/2) = 2r
(

2
η

)N(η/2)+1

with N(θ) = 2
(

2π
θ

) 1
2
n(n−1)

,

then for all x ∈ Rn with |x| ≤ ρ
2

there is α ∈ Γρ ⊂ ΓR with |a − x| ≤ ηρ and
‖A‖ ≤ η .

Now it is already clear that the set ∆1/9
ρ is not trivial. Let us see what else can be

discovered about its elements. There is a crucial fact in P. Buser’s new proof of
the First Bieberbach Theorem, [5]: elements with small rotational parts are indeed
pure translations. This cannot be true for all elements in ∆1/9

ρ , but it is still true
that there is a certain gap: as shown in the following lemma, there are in fact no
elements with rotational part between 1

27
and 1

9
.

Lemma 8.5. If α ∈ ∆1/9
ρ then ‖rot(α)‖ ≤ 1

27
.

Proof. The proof proceeds in three steps. Since ΓR is finite, the set ∆1/9
ρ is

finite too. Set ν = 1
9ρ

then write ∆1/9
ρ = {α ∈ ΓR | ‖α‖ ≤ 1

9
} . Now chose a short

basis {γ0, . . . , γd} for ∆1/9
ρ and define Gi = 〈{γ0, . . . , γi}〉1/9

ρ for all i ∈ {0, . . . , d} .
Thus we obtain a finite ascending chain {id } = G0 ⊆ G1 ⊆ . . . ⊆ Gd = ∆1/9

ρ .

(a) If α ∈ ∆1/9
ρ and β ∈ Gi then [α ; β] ∈ Gi−1 for all i ∈ {1, . . . , d}.

Indeed, fix i ∈ {1, . . . , d} and use induction:

For γi in the short basis we obtain, using Lem. 3.2 and Cor. 6.5 (c),

‖[α ; γi]‖ ≤ 2 ‖α‖ · ‖γi‖+ 5ε ≤ 2
9
‖γi‖+ 5ε < ‖γi‖.

Since γi is minimal in ∆1/9
ρ − Gi−1 , we have [α ; γi] ∈ Gi−1 . For γi in the

short basis and if γi ∈ Gi then the same argument as above is valid for γi .

If (a) holds for β, β′ ∈ Gi and arbitrary α ∈ ∆1/9
ρ then the identity

[α ; β ∗ β′] = [α ; β′] ∗ [α ; β] ∗ [[α ; β] ; β′] (2)
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is still valid since associativity holds for much more than 18 factors in Γρ .
By assumption each factor of (2) belongs to Gi−1 and has norm smaller than
2

9·9+5ε , thus ‖[α ; β∗β′]‖ ≤ 1
9

by (2). By Def. 8.2 we obtain [α ; β∗β′] ∈ Gi−1 .

Since i ∈ {1, . . . , d} was arbitrary the claim follows for all i ∈ {1, . . . , d} .

(b) If k ≤ 2n(n+1) then all α ∈ Gk satisfy ‖rot(α)‖ ≤ 1
27

.

Suppose not, i.e. ‖rot(α)‖ = ‖A‖ > 1
27

for some α ∈ Gk with k ≤ 2n(n+1) .
Let EA ⊂ Rn be the plane of maximal rotation of A , i.e. |(A−I) x| = ‖A‖·|x|
for all x ∈ EA . Take x0 ∈ EA with |x0| = ρ

2
and β0 = (B0, b0) ∈ ∆η

ρ ⊆ ∆1/9
ρ

with |x0−b0| ≤ ηρ and ‖B0‖ ≤ η , this is indeed possible by Lem. 8.4. Define
inductively for i ∈ {1, . . . , k} the points xi = (I − A−1) xi−1 ∈ EA , then

|xk| = |(I − A−1)kx0| = ‖A‖k · |x0| since xi ∈ EA for all i ∈ {0, . . . , k}

> 1
2

(
1
27

)k
ρ > 0

by our assumption. Moreover

‖rot([α, . . . , [α, β0] · · · ]k)‖ = ‖Bk‖ ≤ 2k‖A‖k ‖B0‖ ≤ η

and Lem. 3.1 (2’) implies |bk| ≤ ρ , thus

|xk − bk| ≤ ‖A‖ · |xk−1 − bk−1|+ (1 + ‖A‖) ρ η

≤ ‖A‖k · |x0 − b0|+ (1 + ‖A‖) ρ η

k−1∑
r=0

‖A‖r ≤ 2ρ η.

So on one hand |bk| ≥ |xk| − 2ρ η ≥ 1
2

(
1
27

)k
ρ − 2ρ η and on the other

hand, (a) implies [α ; . . . ; [α ; β0] · · · ]i ∈ Gk−i for all i ∈ {0, . . . , k} , thus
[α ; . . . ; [α ; β0] · · · ]k = id . So Cor. 6.5 implies that |bk| ≤ 9 ρ ckε . Together

9ckε ≥ 1
2

(
1
27

)k − 2η . Since η in Lem. 8.4 can be chosen to be arbitrarily
small without contradicting assumption (A1 ), we obtain a contradiction if

η < 1
4

(
1
27

)k − 9
2
ckε , so ‖rot(α)‖ ≤ 1

27
for all α ∈ Gk .

(c) There exists a number d ≤ 2n(n+1) such that Gd = ∆1/9
ρ .

The crucial point in the proof is that d , the number of short basis elements,
has an upper bound, which depends only on the dimension n . Observe that
by construction of a short basis, ‖γi‖ ≤ ‖γj‖ for i ≤ j . Also if i < j , then

‖γj ∗ γi‖ ≥ ‖γj‖, (3)

since otherwise ‖γj ∗ γi‖ < ‖γj‖ implies γj ∗ γi ∈ 〈{γ0, . . . , γj−1}〉1/9
ρ , hence

(γj ∗ γi) ∗ γi = γj ∗ (γi ∗ γi) = γj ∈ 〈{γ0, . . . , γj−1}〉1/9

ρ ,

which contradicts the short basis construction.

Cor. 6.5 and assumption (1), i.e. ‖γi‖ ≥ 6 ε for all i ∈ {1, . . . , d} , and (3)
with i 6= j imply

‖γj · γ−1
i ‖ ≥ max

{
‖γi‖ − 1

3
‖γj‖, ‖γj‖ − 1

3
‖γi‖

}
.

Lem. 4.2 with µ = 1
3

gives an upper bound d ≤ 2n(n+1) . Therefore (c) is
true.

Taking (c) and (b) together Lem. 8.5 is proven.
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From Lem. 8.5 we derive two facts which are important in what follows. The
set ∆1/9

ρ is closed under multiplication if the length of the translational part is
controlled, and it has nilpotent properties:

Corollary 8.6. (Closedness and nilpotency of ∆1/9
ρ )

(a) The set ∆1/9
ρ is closed under the ∗-product, i.e. for all α, β ∈ ∆1/9

ρ with
|trans(α ∗ β)| ≤ ρ also α ∗ β ∈ ∆1/9

ρ .

(b) The set ∆1/9
ρ is dn -step nilpotent with dn = 2n(n+1) , i.e., all dn -times nested

commutators of elements in ∆1/9
ρ are trivial.

The above proof of Lem. 8.5 needs the lower bound R = 2cdnρ for the radius of

ΓR . By Lem. 8.4 we obtain ρN(η/2) = 2r (2/η)N(η/2)+1 . The proof of Lem. 8.5
needs in (b) that the constant η satisfies

η ≤ 1
8

(
1
27

)dn ≤ 1
4

(
1
27

)dn − 9
2
cdnε.

In assumption (A6 ) we supposed 0 ≤ ε ≤ εn small enough such that 9 cdnε ≤
1
4

(
1
27

)dn
is valid. By Lem. 4.1 the maximal number N(θ) of elements Aj ∈ O(n)

with pairwise distance bigger than θ = η/2 is N(η/2) ≤ · · · ≤ exp(exp(3n2)).
Therefore a lower bound ρn for the radius R = 2cdnρ is immediately derived:

ρN(η/2) ≤ 2r
(
8 · (27)dn

)N(η/2)+1 ≤ · · · ≤ r · exp(exp(exp(4n2))) = ρn.

These estimations with exponential functions are very clumsy and do not represent
exact values for N and ρn but give a vague idea of the enormous size of the
constants.

Now we have enough preliminaries together to prove a first important fact, which
has its analogue in the Bieberbach case. For a better understanding of the following
proof the reader is recommended to set ε = 0 in a first reading and then to go
through the proof once more with ε ≥ 0 in mind. We will also see where Def. 2.3
(III) and assumptions (A4 ) and (A5 ) enter the proof.

Lemma 8.7. Let α, β ∈ ∆1/9
ρ . Then α ∗ β = β ∗ α.

Proof. The set ∆1/9
ρ is dn -step nilpotent with dn = 2n(n+2) , cf. Cor. 8.6

(b): [α ; . . . ; [α ; β] · · · ]dn = id for all α, β ∈ ∆1/9
ρ . Thus Cor. 6.5 tells us that

‖βdn‖ = ‖[α, . . . , [α, β] · · · ]dn‖ ≤ cdn ε, and this signifies for the rotational and
translational part of βdn = (Bdn , bdn):

‖Bdn‖ = ‖[A, . . . , [A, B] · · · ]dn‖ ≤ cdn ε (4)

|bdn| = |trans([α, . . . , [α, β] · · · ]dn)| ≤ 9 ρ · cdn ε (5)

The proof uses two inductive arguments: one for the rotational part and the
other for the translational part of a k -times nested commutator. This induction
results in [α ; [α ; β]] = id , then another argument is used to obtain [α ; β] = id .
(The constants νi with i ∈ {1, . . . , 6} serve to abbreviate complicated expressions
containing ε . As ε tends to zero so do the νi .)
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(a) Fix k ∈ {3, . . . , dn} and suppose that [α ; . . . ; [α ; β] · · · ]k = id . Consider the
rotational part of [α, . . . , [α, β] · · · ]k , then apply Thm. 2.4 twice to get

‖Bk−1‖ ≤ fnc
1
2
dn

ε
1
2 = ν1 and ‖Bk−2‖ ≤ f

3
2
n c

1
4
dn

ε
1
4 = ν2,

where fn = (3n)3 . At this step we do not proceed further inductively; like
this it is possible to get a better dependence in assumptions (A4 ) and (A5 ).

For the translational part, see Lem. 3.1 (2’), we have |bk| ≤ ρ , which is valid
for all k ∈ N . We need the above estimate in the next inequality, which is
valid for k = 2 too,

|bk| ≤ |(I − A) bk−1|+ ‖Bk−1‖ · |a| ≤ |(I − A) bk−1|+ ν1 ρ. (6)

On the other hand

|bk| ≥ |(I − A) B−1
k−2(I − A) bk−2| − ‖Bk−1‖ · |a| − ‖A‖ · ‖Bk−2‖ · |a|

≥ |(I − A) B−1
k−2(I − A) bk−2| − (ν1 + 1

9
ν2)ρ. (7)

Now we need

|((I − A)2 − (I − A) B−1
k−2(I − A))bk−2| ≤ ‖A‖2 · ‖Bk−2‖ · |bk−2|

≤ 1
92 ν2ρ, (8)

so inequalities (7) and (8) imply

|bk| ≥ |(I − A)2bk−2| − (ν1 + 1
9
ν2 + 1

81
ν2)ρ = |(I − A)2bk−2| − ν3ρ. (9)

Now all the preliminaries are ready: by Cor. 6.5 and assumption (A6 ) it

follows that ‖rot([α ; . . . ; [α ; β] · · · ]k−1)‖ ≤ ‖Bk−1‖+ ck−1ε ≤ 2 fncdnε
1
2 ≤ µ .

Let us suppose by contradiction that

|bk−1| > δ − 9 ρ · cdnε. (10)

This and (6) used with k − 1 instead of k implies

|(I − A) bk−2| > (δ − 9 ρ · cdnε)− ν1ρ. (11)

First suppose that bk−2 = 0. Then |bk−1| = |(I−Bk−2)a| ≤ ‖Bk−2‖·|a| ≤ ν2 ρ
and therefore δ ≤ (9 cdn + ν2) ρ . This contradicts assumption (A4 ), and
therefore (10) fails.
Secondly consider the case bk−2 6= 0: Using |(I −A)2x| ≥ 1

|x| |(I −A) x|2 for

all x ∈ Rn − {0} and inequality (11), then (9) becomes

|bk| ≥
1

|bk−2|
|(I − A)bk−2|2 − ν3ρ > 1

ρ
(δ − 9 ρ · cdnε− ν1ρ)2 − ν3ρ.

Together with estimation (5) this contradicts δ ≥ 14 fncdnε
1
8 ρ in assumption

(A4 ), and therefore (10) fails.

So the rotational part of [α ; . . . ; [α ; β] · · · ]k−1 is smaller than µ and the
translational part smaller than δ . Therefore Lem. 6.1 implies that

[α ; . . . ; [α ; β] · · · ]k−1 = id.

Iterating the above procedure we finally arrive at k = 3. Therefore the last
inductive step gives [α ; [α ; β]] = id . So it is time to find another argument
to show that [α ; β] = id .
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The reader might ask why we do not proceed as above, using induction until k = 2.
The answer is simple: we cannot hope any more that ‖Bk−2‖ = ‖B0‖ = ‖B‖ ≤ µ ,
which would be used in (a) to get inequality (7).

(b) Now [α ; [α ; β]] = id implies ‖B2‖ ≤ c2 ε and |b2| ≤ 9 ρ c2 ε . Therefore

Thm. 2.4 implies ‖B1‖ = ‖[A, B]‖ ≤ 5fnε
1
2 = ν4. So Lem. 5.1 guarantees

the existence of a unitary change of basis V ∈ U(n), if necessary, such
that we can assume that A = (aij) and B = (bij) are almost diagonal
with |aii|2, |bii|2 ≥ 1− 3n3√ν4 for all i ∈ {1, . . . , n} and translational parts
a = (a1, . . . , an) and b = (b1, . . . , bn).

Now investigate the translational part b2 = A−1B−1
1 ((I −B1) a− (I −A) b1)

and its length |b2| . We have |(I−A) b1| ≤ |(I−B1) a|+|b2| ≤ 230 fnε
1
2 ρ = ν5 .

Now changing the roles of α = (A, a) and β = (B, b) in ∆1/9
ρ we obtain again

|(I −B) a1| ≤ ν5 , where a1 = −B−1
1 b1 . Set

u = (I −B) a− (I − A) b,

then |(I−A) b1| = |(I−A)B−1 u| ≤ ν5 and |(I−B) a1| = |(I−B)A−1 u| ≤ ν5 .
Moreover conclude |(I − A)B−1 u − B−1(I − A) u| = ‖B1‖ · |u| ≤ ν4ρ and
|(I −B)A−1 u−A−1(I −B) u| = ‖B1‖ · |u| ≤ ν4ρ . We summarise the above
as:

|(I − A) u| ≤ ν5 + ν4ρ ≤ 235 fnε
1
2 ρ and |(I −B) u| ≤ 235 fnε

1
2 ρ (12)

From the above and Cor. 6.5 (c) we obtain ‖rot([α ; β])‖ ≤ 10 fnε
1
2 ≤ µ ,

hence let us suppose by contradiction that

|b1| = |u| = (|u1|2 + · · ·+ |un|2)
1
2 > δ − 45ρε. (13)

So there exists at least one j ∈ {1, . . . , n} with |uj| > δ−45ρε√
n

.

Our aim is to contradict (13) by looking at the j -component of (12):

ν5 + ν4ρ ≥

∣∣∣∣∣
n∑

l=1

(δjl − ajl)ul

∣∣∣∣∣ ≥ |1− ajj| · |uj| − (1− |ajj|2)
1
2 |u|

≥ |1− ajj| δ−45ρε√
n

− f 2
n ε

1
4 ρ,

using AA∗ = I , A is f 2
nε

1
4 -almost diagonal and (

∑n
l=1,l 6=j |ul|2)

1
2 ≤ |u| ≤ ρ .

Therefore

|1− ajj| ≤ 236
√

nf 2
nε

1
4

ρ
δ−45ρε

= ν6. (14)

If we exchange the roles of α and β then u = (I −B) a− (I −A) b changes
its sign and the above estimation remains valid. From (13) follows now

δ−45ρε√
n

< |uj|

≤ |1− bjj| ρ + |1− ajj| ρ + (1− |ajj|2)
1
2 |b|+ (1− |bjj|2)

1
2 |a|

≤ |1− bjj| ρ + ν6ρ + 2f 2
n ε

1
4 ρ.

Estimation (12) gives again |1 − bjj| < ν6 , (cf. inequality (14) which is
also valid for the exchanged roles of α and β ). This contradicts assumption
(A4 ), hence (13) fails. Thus ‖rot([α ; β])‖ ≤ µ and |trans([α ; β])| ≤ δ .
Hence [α ; β] = id by Lem. 6.1.
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Therefore any two elements α, β ∈ ∆1/9
ρ ∗-commute. In other words, the set ∆1/9

ρ

is not only dn -step nilpotent, and 2-step nilpotent after (a) but even Abelian.
This proof explains the origin of assumptions (A4 ) and (A6 ): for it to work, we
are obliged to take ε such that 0 ≤ ε ≤ ε(ρ) ≤ εn , where ρ ≥ ρn .

9. Equivalence Classes of Γρ/3

In the next step we want to define an equivalence relation on Γρ/3 . Later we con-
sider the quotient of Γρ/3 modulo this equivalence relation, which has the structure
of a finite group. The product is given by the product of short representatives.
The main application is the development of still more precise information about
the ∗-structure.

Definition 9.1. (Equivalence relation) Call α, β ∈ Γρ/3 equivalent modulo
∆1/9

ρ if and only if α ∗ β ∈ ∆1/9
ρ . Notation: α ∼ β mod ∆1/9

ρ .

It is shown in [4], Chap. 3.6 that ∼ mod ∆1/9
ρ is an equivalence relation. We

denote
{
β ∈ Γρ/3 | α ∼ β mod ∆1/9

ρ

}
the equivalence class of α ∈ Γρ/3 by [α] , and

the set of all equivalence classes of Γρ/3 by H . Since representatives α and β of
distinct equivalence classes [α] and [β] in H have their rotational parts at pairwise

distance ‖A−1B‖ ≥ 1/10, there are by Lem. 4.1 at most wn = 2(20π)
1
2
n(n−1) such

equivalence classes.

Lemma 9.2. (Short representatives) In each equivalence class [α] of H there
is a representative α with |trans(α)| ≤ 4 r · wn .

We call such a representative α a short representative, since it has a translational
part which is much shorter than ρ/3.

Proof. We first want to show that any element α ∈ Γρ/3 can be presented as
α = α1 ∗ · · · ∗ αk with αi ∈ ΓR and |ai| ≤ 3 r for all i ∈ {1, . . . , k}. Moreover,
each partial product α1 ∗ · · · ∗ αk′ with k′ ≤ k is an element of Γρ/3+r . We call
α = α1 ∗ · · · ∗ αk a normal word. Indeed, connect 0 ∈ Rn and trans(α) = a ∈ Rn

with a straight line, which must have length equal to |a| ≤ ρ/3. Now subdivide
this line into pieces of length smaller than η , where 0 < 1

2
η ≤ r . By Def. 2.3 (I)

we find near each division point pi on the line an element βi ∈ Γρ/3+r such that
|bi − pi| ≤ r . Define αi = βi−1 ∗ βi for all division points. With |pi − pi−1| ≤ η
and Cor. 6.5 (a) and (b) we obtain |ai| ≤ 3 r . Furthermore α1 ∗ · · · ∗ αk′ =
βk′ ∈ Γρ/3+r for all k′ ∈ {1, . . . , k} . Any partial product of consecutive factors
αj ∗ · · · ∗ αj+l = βj−1 ∗ βj+l in the decomposition of α has a translational part
shorter than |a|+ 2 r + 18ρ ε .

Therefore take Γ3 r = {α = (A, a) ∈ ΓR | |a| ≤ 3 r} as a set of generators for
Γρ/3 and call word length of α the number l(α) of generators needed to present
the normal word α = α1 ∗ · · · ∗ αl . The set of equivalence classes which can be
presented by normal words of length smaller than m is denoted by Hm . We have
Hm ⊆ Hm+1 for all m ∈ N . By Lem. 4.1 the set H and all sets Hm contain
at most wn equivalence classes. Consider the equivalence classes in Hm , then we
have exactly two possibilities for those in Hm+1 :
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(i) All normal words of length m+1 are equivalent to normal words of maximal
length m . Therefore we show that there exists a number m0 such that
Hm = Hm+1 for all m ≥ m0 : Indeed assume by induction that each element
α ∈ Γρ/3 , which can be written as a normal word of length l(α) ≥ m0+1 has a
representative α′ , that is α′ ∼ α mod ∆1/9

ρ , of length l(α′) ≤ m0 . Then each
α∗αi ∈ Γρ/3 with αi ∈ Γ3 r of length l(α∗αi) = l(α)+1 is equivalent modulo
∆1/9

ρ to α′∗αi , which is a normal word of length l(α′∗αi) = l(α′)+1 ≤ m0+1
and is therefore by assumption equivalent to a normal word with l ≤ m0 .

(ii) At least one normal word of length m+1 is not equivalent to a normal word
of length m , i.e. Hm 6= Hm+1 . Each time we add a letter α ∈ Γ3 r , we
obtain at least one more equivalence class. This procedure terminates after
at most wn steps, since there are not more than wn equivalence classes in
the set H , i.e. Hwn = H .

Now all normal words generated by elements of Γ3 r with length l ≤ wn have a
translational part which is smaller than l (3 r + 9ρ ε) ≤ 4 r · wn . So any normal
word in Γρ/3 is equivalent to a normal word in Γ4 r·wn , hence there is a short
representative in each equivalence class.

Corollary 9.3. (Relative denseness of ∆1/9
ρ ) Let x ∈ Rn with |x| ≤ ρ/3 − r .

Then there is an element γ = (C, c) ∈ ∆1/9
ρ such that |x− c| ≤ 5 r · wn .

Lemma 9.4. (Multiplication of equivalence classes in H , [4], Cor. 3.6.4)

(a) The finite set ∆1/9
ρ has the following property of a normal subgroup: if

α ∈ Γρ/3 and γ = (C, c) ∈ ∆1/9
ρ with |c| ≤ ρ/3 then α ∗ γ ∗ α ∈ ∆1/9

ρ .

(b) If αi ∈ [αi] for i ∈ {1, 2} are short representatives of equivalence classes
modulo ∆1/9

ρ then the product [α1] ∗ [α2] = [α1 ∗ α2] is well defined.

(c) The equivalence classes modulo ∆1/9
ρ together with the product defined in (b)

form a group H of order |H| ≤ wn = 2(20π)
1
2
n(n−1) .

10. The Almost Translational Set ∆1/9
ρ

Lemma 10.1. (Small rotational parts) Let α ∈ ∆1/9
ρ . Then

‖rot(α)‖ ≤ 10
√

5n3
√

ε.

Lem. 8.5 tells us that all elements in ∆1/9
ρ have norm of its rotational parts of at

most 1
27

. Looking at the proof of Lem. 8.5 and Lem. 8.4 we find out that the proof
works for any positive number ξ ≤ 1

27
, but with the problem that if ξ gets smaller

then ε gets smaller and ρ grows fast. In the following proof we do not touch the
size of the constants εn and ρn as they are defined in assumption (A1 ) and (A6 ).
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Proof. The set ∆1/9
ρ equipped with the ∗-product is Abelian by Lem. 8.7, thus

‖[A, B]‖ ≤ 5ε and |A−1B−1((I − B)a− (I − A)b)| ≤ 45ρε by Cor. 6.5 (c). Using
Cor. 5.2 we may assume, by applying an orthogonal change of basis of Rn if
necessary, that the element α = (A, a) ∈ ∆1/9

ρ has the form

A =

(
A′ 0
0 A′′

)
∈ O(2k)×O(n− 2k) and a = (a′, a′′) ∈ R2k × Rn−2k,

where all eigenvalues a1, . . . , a2k of A′ satisfy |1−ai| > η−n
√

5ε and all eigenvalues
a2k+1, . . . , an of A′′ satisfy |1 − ai| ≤ η + n

√
5ε ; in addition all other elements

β = (B, b) ∈ ∆1/9
ρ have the form (after the orthogonal change of basis)

B =

(
B′ F ′

F ′′ B′′

)
and b = (b′, b′′) ∈ R2k × Rn−2k,

where B′ ∈ Mat(2k × 2k, R), B′′ ∈ Mat((n− 2k)× (n− 2k), R) and |f ′
ij|, |f ′′

ij| ≤
n
√

5ε for all possible i, j -combinations. Set η = 9n3
√

5ε .
Suppose by contradiction that k ≥ 1. Then define a vector t = (t′, 0) ∈ R2k×Rn−2k

by (A′ − I)t′ = a′ . The matrix A′ − I is not singular, since η ≥ n
√

5ε is big
enough. For a better understanding of the idea of the following proof compare
with the Bieberbach case: for all β we have

(B′ − I)t′ = (B′ − I)(A′ − I)−1a′ = (A′ − I)−1(B′ − I)a′ = b′,

which is impossible by a denseness argument. Our aim is to show that the vector
(B′ − I)t′ is close to b′ for all β ∈ ∆1/9

ρ . Using [α ; β] = id and η = 9n3
√

5ε
estimate:

|(A′ − I)−1(B′ − I)a′ − b′| ≤ 2n
9n2−1

ρ

|(A′ − I)−1(B′ − I)a′ − (B′ − I)(A′ − I)−1a′| ≤ 1
(9n3−n)2

ρ

Therefore |(B′ − I)t′ − b′| ≤ ρ
3n

for any β = (B, b) ∈ ∆1/9
ρ . Hence a′ = A′t′ − t′

and all B′t′ − t′ lie in the disc K ′
|t′|(−t′) in R2k . Thus a′ and all b′ lie in a

ρ
3n

-neighbourhood of the disc K ′
|t′|(−t′) in Rn . But Cor. 9.3 tells us that the

translational parts of elements in ∆1/9
ρ are 5 r · wn -dense in Kρ/3−r(0). This

contradicts the assumption k ≥ 1, therefore k = 0, i.e., all eigenvalues of A
satisfy |1− ai| ≤ 10

√
5n3

√
ε .

Corollary 10.2. If α ∼ β mod ∆1/9
ρ then ‖A B−1‖ ≤ 10

√
5n3

√
ε + 2ε.

Therefore the set ∆1/9
ρ with the ∗-structure is an Abelian crystallographic pseu-

dogroup which contains only almost translations.

11. Basis for the Almost Translational Set ∆1/9
ρ

In what follows we define a λ-normal basis for lattices in Rn . Then we introduce
almost translational subsets of Rn and give bounds for the deviation of products
from purely translational behaviour. Guided by the translational case we study
orbits, suitable representatives and their projection onto a hyperplane. Projections
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of almost translational sets are again almost translational. All this is used to find
a λ-normal basis {d1, . . . , dn} for the almost translational set T(δ,ρ) = trans(∆1/9

ρ ),
such that every element d ∈ T(δ,ρ) with |d| ≤ 1

2n ρ can uniquely be written as

d = d⊕l1
1 ⊕ · · · ⊕ d⊕ln

n with lj ∈ Z for all j ∈ {1, . . . , n} .
The following is an adapted version to our problem of [4], Chap. 4.1 – 4.4.

Definition 11.1. (λ-normal basis for Rn ) A λ-normal basis for Rn is defined
by induction over n as follows, with λ ∈ [1,∞[ .

(I) Any basis for R1 is a λ-normal basis for each λ .

(II) A basis {b1, . . . , bn} for Rn is λ-normal, if it satisfies |b′j| ≤ |bj| ≤ λ|b′j| for all

indices j ∈ {2, . . . , n} , where b′j = bj − 〈bj ,b1〉
〈b1,b1〉b1 is the orthogonal projection

of bj onto {b1}⊥ . The set {b′2, . . . , b′n} is a λ-normal basis for {b1}⊥ ∼= Rn−1 .

It is useful to study this notion first in the purely translational case: Any uniform
discrete subgroup Λ of Rn has a

√
2-normal basis, cf. [4], Prop. 4.1.3. Later we

modify the procedures to handle error terms. Additional problems arise if one tries
to generalise this fact to the case where Λ is not any longer a lattice, but only
an almost translational set. Orbits are not straight and therefore more difficult to
project. Products are only defined for sufficiently short elements. The following
notion helps to generalise the arguments.

Definition 11.2. (Almost translational set) The finite set T(δ,ρ) ⊂ Rn is called
κ-almost translational, σ -dense of radii (δ, ρ), if it satisfies:

(I) There is 0 ∈ T(δ,ρ) and if a ∈ T(δ,ρ) − {0} then δ ≤ |a| ≤ ρ .

(II) For all x ∈ Rn with |x| ≤ ρ
4
, there is some c ∈ T(δ,ρ) such that |x− c| ≤ σ .

(III) For all a, b ∈ T(δ,ρ) with |a + b| ≤ ρ − κ , the sum a ⊕ b ∈ T(δ,ρ) is defined
such that |a⊕ b − (a + b)| ≤ κ . For each a ∈ T(δ,ρ) with |a| ≤ ρ− κ , there
is a unique negative 	a ∈ T(δ,ρ) such that a	 a = a⊕ (	a) = 0.

(IV) Commutativity a⊕ b = b⊕a and associativity (a⊕ b)⊕ c = a⊕ (b⊕ c) hold,
if all sums involved are defined as in (III).

Lemma 11.3. The set T(δ,ρ) = {a = trans(α) | α ∈ ∆1/9
ρ } together with the

addition
a⊕ b = trans(α ∗ β) if |a + b| ≤ ρ− 25n3

√
ερ

is 25n3
√

ερ-almost translational and 5r · wn -dense of radii (δ, ρ) which satisfy
r
2n ≥ δ ≥ 2 ancdnε

1
8 ρ.

Proof. Of course id ∈ ∆1/9
ρ . If α ∈ ∆1/9

ρ , then ‖rot(α)‖ ≤ 10
√

5n3
√

ε ≤ µ
and if α 6= id , then δ ≤ |trans(α)| ≤ ρ , so (I) holds. For (II) see Cor. 9.3 with
σ = 5r · wn . To get (III) use Lem. 10.1 and observe |a⊕ b− (a + b)| ≤ 25n3

√
ερ ,

if |a + b| ≤ ρ− 25n3
√

ερ . We know that α ∗ α = α ∗ α = id , thus 	a = trans(α),
which is unique. Since ∆1/9

ρ is Abelian by Lem. 8.7 and associative, also the ⊕-
operation in T(δ,ρ) is, thus (IV) follows.

The induction step starts with this example of an almost translational set. In
order to control the deviation of the ⊕-addition from ordinary vector sums, we
have the following lemma.
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Lemma 11.4. Every ⊕-operation causes an error of at most κ, compared
to ordinary vector addition in Rn . In other words T(δ,ρ) with the ⊕-operation
satisfies:

(a) Shortest elements a ∈ T(δ,ρ) − {0} satisfy δ ≤ |a| ≤ 2σ .

(b) Let a ∈ T(δ,ρ) with |a| ≤ ρ− κ. Then | 	 a + a| ≤ κ.

(c) Let a, b ∈ T(δ,ρ) with |a + b| ≤ ρ− 2κ. Then |a⊕ (	b)− (a− b)| ≤ 2κ.

(d) Let a1, . . . , ak ∈ T(δ,ρ) with |
∑k

j=1 aj| ≤ ρ − 2cdnρ

δ
κ. Then |a1 ⊕ · · · ⊕ ak −

(a1 + · · ·+ ak)| ≤ kκ and k ≤ 2cdnρ

δ
.

Proof. The Claim (a) is clear from Def. 11.2 (I) and (II). For (b) use 	a⊕a = 0
in Def. 11.2 (III), thus |	a⊕a−(	a+a)| = |	a+a| ≤ κ . To see (c), use a⊕(	b)
in Def. 11.2 (III), then |a⊕ (	b)− (a− b)| ≤ |a⊕ (	b)− (a+	b)|+ |	 b+ b| ≤ 2κ .
For (d) use a1⊕· · ·⊕ak in Def. 11.2 (III). By Def. 11.2 (I) the smallest non-trivial
element in T(δ,ρ) has |a| ≥ δ , thus the assumption that a1 ⊕ · · · ⊕ ak is defined in

ΓR , i.e.,
∑k

j=1 |aj| ≤ R− ζ ≤ 2cdnρ , needs k ≤ 2cdnρ

δ
.

From Def. 11.2 (II), Lem. 11.4 (c) and with κ
δ
≤ 1

4
we conclude:

Corollary 11.5. Let a, b ∈ T(δ,ρ) with a 6= b. Then |a− b| ≥ δ − 2κ ≥ 1
2
δ .

Almost straight orbits: Let T(δ,ρ) be as in Def. 11.2 and d1 ∈ T(δ,ρ) − {0} a
shortest non-trivial element, i.e. δ ≤ |d1| ≤ 2σ . For each d ∈ T(δ,ρ) define the
d1 -orbit

Od =
{

d⊕ d⊕l1
1 | l1 ∈ Z with |d + l1 · d1| ≤ ρ− 2cdnρ

δ
κ
}

through d . By the above and Lem. 11.4 (d) we get |d⊕d⊕l1
1 − (d+ l1d1)| ≤ 2cdnρ

δ
κ .

In other words every d1 -orbit Od is contained in a tube of radius
2cdnρ

δ
κ and

centre-line d + R · d1 .

Representatives of orbits: In every d1 -orbit through d ∈ T(δ,ρ) we find a unique

representative d̃ , which is characterised by the inequalities

〈d1, d̃〉 > 0 and 〈d1, d̃	 d1〉 ≤ 0. (15)

Define the set T̃(δ,ρ) of all representatives of orbits.

Projection of representatives of orbits: Let {d1}⊥ be the hyperplane through
the origin of Rn which is perpendicular to d1 . Now map the set T̃(δ,ρ) of represen-
tatives by orthogonal projection onto T ′ ⊂ {d1}⊥ :

d̃ 7−→ d′ = d̃′ = d̃− 〈d̃, d1〉
〈d1, d1〉

d1

With (15) estimate the maximal distance of a representative d̃ to {d1}⊥ . To do
that we estimate 0 ≥ 〈d1, d̃ 	 d1〉 ≥ 〈d1, d̃〉 − 〈d1, d1〉 − 2κ|d1| , and with δ ≤ |d1|
we finally obtain 〈d1, d̃〉 ≤ |d1|2 + 2κ|d1| ≤ |d1|2

(
1 + 2 κ

δ

)
, and therefore

|d̃− d′| = 〈d1, d̃〉
〈d1, d1〉

|d1| ≤ |d1|+ 2κ ≤ |d1|
(
1 + 2 κ

δ

)
. (16)

Now we can generalise Prop. 4.1.3 in [4] as follows.
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Lemma 11.6. Let d̃ ∈ T̃(δ,ρ) . Then |d′| ≤ |d̃| ≤ λ |d′|, with λ ≤ (1
2
− 20κ

δ
)−

1
2 ≤

2. If c̃, d̃ ∈ T̃(δ,ρ) with c̃ 6= d̃ then

cos ](c̃− d̃, d1) ≤
√

1
2

+ 20κ
δ
.

This shows that the projection ′ : T̃(δ,ρ) → T ′ is injective, since κ
δ
≤ 1

80
.

Proof. Our aim is to estimate 〈c̃ − d̃, d1〉 . From the definition of the repre-
sentatives (15) we conclude that c̃	 d̃ = d1 is not possible. Thus the minimality
of d1 and c̃ 6= d̃ imply that c̃ 	 d̃ and (c̃ 	 d̃) 	 d1 are bigger than d1 . There-
fore by Lem. 11.4 (a) and (c) we obtain δ ≤ |d1| ≤ |c̃ 	 d̃| ≤ |c̃ − d̃| + 2κ and
δ ≤ |d1| ≤ |(c̃	 d̃)	d1| ≤ |(c̃− d̃)−d1|+4κ , which implies |d1|2−8κ|d1|+16κ2 ≤
|(c̃− d̃)−d1|2 = |c̃− d̃|2 + |d1|2−2〈c̃− d̃, d1〉 . We can, after renaming, assume that

0 < 〈d̃, d1〉 ≤ 〈c̃, d1〉, (17)

then the above and Cor. 11.5 imply

0 ≤ 2 〈c̃− d̃, d1〉 ≤ |c̃− d̃|2 + 8 κ|d1| ≤ |c̃− d̃|2 + 8 κ(|c̃− d̃|+ 2 κ)

= (|c̃− d̃|+ 4 κ)2 ≤ |c̃− d̃|2
(
1 + 8 κ

δ

)2
. (18)

Only the case where |c̃− d̃| is not too large might cause problems. The inequalities
(15), which define the representatives c̃ and d̃ , and assumption (17) imply that
0 < 〈d̃, d1〉 ≤ 〈c̃, d1〉 ≤ |d1|2

(
1 + 2 κ

δ

)
, in other words

0 ≤ 〈c̃− d̃, d1〉 = 〈c̃, d1〉 − 〈d̃, d1〉 ≤ 〈c̃, d1〉 ≤ |d1|2
(
1 + 2 κ

δ

)
. (19)

Therefore we obtain from (18) and (19)

cos2 ](c̃− d̃, d1) =
〈c̃− d̃, d1〉2

|c̃− d̃|2|d1|2
≤ 1

2

(
1 + 8 κ

δ

)2 (
1 + 2 κ

δ

)
≤ 1

2
+ 20 κ

δ
,

thus
1

sin ](d̃, d1)
=

1√
1− cos2 ](d̃, d1)

≤ 1√
1
2
− 20 κ

δ

≤ 2,

since κ
δ
≤ 1

80
is easily satisfied. Therefore λ ≤ 2, since the above holds for all

d̃ ∈ T̃(δ,ρ) .

Next we want to look more precisely at the set T ′ and settle some of its important
properties. It is indeed an almost translational set in the sense of Def. 11.2:

Lemma 11.7. (Denseness of the set T ′ in {d1}⊥ ) Let x ∈ {d1}⊥ ∼= Rn−1 in
Rn with |x| ≤ ρ

4
. Then some c′ ∈ T ′ ⊂ {d1}⊥ exists such that |x− c′| ≤ σ + r .

Proof. By Def. 11.2 (II) there is for every x ∈ {d1}⊥ ⊂ Rn with |x| ≤ ρ
4

some
c ∈ T(δ,ρ) such that |x − c| ≤ σ . The representative c̃ of the d1 -orbit Oc and its

projection c′ exists. The elements c, c̃ and c′ lie in a tube of radius
2cdnρ

δ
κ and

centre-line c + R · d1 . In other words |x − c′| ≤ σ +
2cdnρ

δ
κ ≤ σ + r, thus T ′ is

(σ + r)-dense in {d1}⊥ .

Now we introduce a well defined addition for some elements in T ′ :
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Definition 11.8. (Addition in the set T ′ ) Let a′, b′ ∈ T ′ with |a′|, |b′| ≤ 1
2
ρ

and |a′+b′| ≤ 1
2
ρ−7κ . For the unique pre-images ã, b̃ ∈ T̃(δ,ρ) of a′ and b′ we have

by Lem. 11.6 the bounds |ã| ≤ λ |a′| and |b̃| ≤ λ |b′| with λ ≤ 2. This signifies
that the sum ã⊕ b̃ is well defined, and the representative (ã⊕ b̃)̃ can be obtained
as above. Therefore, the following definition of an addition in T ′ is justified:

a′ ⊕′ b′ =
(
(ã⊕ b̃)̃

)′
, with a′ and b′ as above.

In addition, the set T ′ with the above ⊕′ -operation is again an almost translational
set:

Lemma 11.9. (Almost translational set T ′ ) The set T ′ together with the ⊕′ -
operation is a κ′ -almost translational and σ′ -dense set in {d1}⊥ of radii (δ′, ρ′),
In other words, for all a′, b′ ∈ T ′ with |a′|, |b′| ≤ ρ′ and |a′ + b′| ≤ ρ′ − κ′ the
Abelian and associative addition satisfies |a′ ⊕′ b′ − (a′ + b′)| ≤ κ′ . There is also
a unique inverse operation. The constants are now given by κ′ = 7κ, σ′ = σ + r
and (δ′, ρ′) = (1

2
δ, 1

2
ρ).

Proof. For the trivial element we have 0′ = 0 ∈ T ′ . Moreover, let c′ ∈ T ′−{0}
with |c′| ≤ ρ′ . Then δ ≤ |c̃| ≤ λ |c′| with λ ≤ 2, therefore set δ′ = 1

2
δ and thus

(I) is verified. For (II) we use Lem. 11.7. Using inequality (16) we estimate:∣∣∣ã⊕ b̃− (ã + b̃)′
∣∣∣ ≤ ∣∣∣ã⊕ b̃− (ã + b̃)

∣∣∣ + |ã− a′|+ |b̃− b′| ≤ 2|d1|+ 5κ

Thus since ã, b̃ and ã⊕ b̃ lie on the same side of {d1}⊥ as d1 we obtain (ã⊕ b̃)̃ =
ã⊕ b̃⊕ d⊕k

1 with k ∈ {−3,−2,−1, 0} . In order to show (III) we estimate:

|a′ ⊕′ b′ − (a′ + b′)| ≤
∣∣∣∣(ã⊕ b̃⊕ d⊕k

1 − (ã⊕ b̃)
)′

∣∣∣∣ +
∣∣∣(ã⊕ b̃)′ − (ã + b̃)′

∣∣∣ ≤ 7κ

Every 	-operation causes an error of at most 2κ compared to ordinary vector
sums. There are at most |k| ≤ 3 operations, this gives the last inequality above.
Let a′ ∈ T ′ with |a′| ≤ ρ′ − κ′ then there exists the unique negative 	ã of the

representative ã ∈ T(δ,ρ) . Hence the unique negative of a′ is (	̃ã)′ . Commutativity
and associativity of the ⊕′ -operation in T ′ follow from the commutativity and
associativity of the ⊕-operation in T(δ,ρ) , thus (IV) is also true. In short, T ′ is an
almost translational set in the sense of Def. 11.2.

Next we need n inductive steps. Let k ∈ {1, . . . , n} and set

κ(k−1) = 7k−1κ, σ(k−1) = σ+(k−1)r, ρ(k−1) = 2−k+1ρ and δ(k−1) = 2−k+1δ.

We need in the prove of Lem. 11.6 the fact that κ(k−1)

δ(k−1) ≤ 1
80

for all k ∈ {1, . . . , n} ,
which is always satisfied since ε in assumption (A6 ) is supposed to be small enough.
Now we are in the position to prove inductively the following important lemma.

Lemma 11.10. There exist generators δ1, . . . , δn ∈ ∆1/9
ρ such that each element

δ = (D, d) ∈ ∆1/9
ρ with |d| ≤ ρ/2n can uniquely be written as δ = δ∗l11 ∗ · · · ∗ δ∗lnn

with |d− (l1d1 + · · ·+ lndn)| ≤ ε
3
8 ρ.
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Proof. By Lem. 11.3, the set T(δ,ρ) = {a = trans(α) | α ∈ ∆1/9
ρ } is an almost

translational set, in the sense of Def. 11.2.
First show existence, i.e., the set T(δ,ρ) has a λ-normal basis {d1, . . . , dn} with λ ≤
2, and |dk| ≤ 11 r ·wn for all k ∈ {1, . . . , n} . Indeed, the assumption on κ(k−1)

δ(k−1) ≤ 1
80

for all k ∈ {1, . . . , n} allows us to go through n inductive steps, using the

arguments above, to find d1, . . . , dn . Lem. 11.6 shows that λ ≤ (1
2
− 20κ(k−1)

δ(k−1) )
− 1

2 ≤
2, and Lem. 11.4 (a) gives a bound for |dk| ≤ 2σ(k) ≤ 2σ + 2(n − 1)r ≤ 11 r · wn

for all k ∈ {1, . . . , n} .
Second show uniqueness : If |

∑n
j=1 ljdj| ≤ ρ− 2cdnρ

δ
κ and if d = d⊕l1

1 ⊕ · · · ⊕ d⊕ln
n

is defined, then Lem. 11.4 implies

|d− (l1d1 + · · ·+ lndn)| ≤ 2cdnρ

δ
κ ≤ 25n3

an
ε

3
8 ρ ≤ ε

3
8 ρ,

since r
2n ≥ δ ≥ 2 ancdnε

1
8 ρ . There is κ = 25n3ε

1
2 ρ . Now suppose there are different

presentations of the same element

d = d⊕l1
1 ⊕ · · · ⊕ d⊕ln

n = d
⊕l′1
1 ⊕ · · · ⊕ d⊕l′n

n

with |
∑n

j=1 l′j · dj| ≤ ρ− 2cdnρ

δ
κ , such that d

⊕l′1
1 ⊕ · · · ⊕ d

⊕l′n
n is defined with lj 6= l′j

for at least one j ∈ {1, . . . , n} . Then by commutativity we obtain

0 = d
⊕(l1−l′1)
1 ⊕ · · · ⊕ d⊕(ln−l′n)

n

with |(l1 − l′1)d1 + · · · + (ln − l′n)dn| ≤ ε
3
8 ρ ≤ δ . Since {d1, . . . , dn} is a λ-normal

basis with λ ≤ 2 and |dj| ≥ δ(j−1) for all j ∈ {1, . . . , n} , it follows that lj = l′j for
all j ∈ {1, . . . , n} .
The mapping trans : ∆1/9

ρ → T(δ,ρ) is bijective, thus the elements

trans−1(d1) = δ1, . . . , trans−1(dn) = δn

are generators for ∆1/9
ρ . For any δ = δ∗l11 ∗ · · · ∗ δ∗lnn in ∆1/9

ρ with
∑n

j=1 |lj| · |dj| ≤
R − ζ , we have the estimate |d − (l1d1 + · · · + lndn)| ≤ 2cdnρ

δ
κ ≤ ε

3
8 ρ, which

completes the proof.

The remaining sections consist of the construction of a nearby crystallographic
group G ⊂ E(n) and the embedding of Γ ρ

2n
into G using Thm. 4.3 twice.

12. Construction of a Lattice L in Rn

Lem. 11.10 provides us with a basis of a lattice, whose inner part differs very
slightly from the translational parts in the almost translational set ∆1/9

ρ .

Corollary 12.1. There exists a lattice L ⊂ Rn and an embedding

t : {α = (A, a) ∈ ∆1/9

ρ | |a| ≤ ρ/2n} −→ L

such that |a− t(α)| ≤ ε
3
8 ρ for all α = (A, a) ∈ ∆1/9

ρ with |trans(α)| ≤ ρ
2n .
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Proof. By Lem. 11.10 every element δ = (D, d) ∈ ∆1/9
ρ with translational part

|trans(δ)| ≤ ρ
2n can be written uniquely as δ = δ∗l11 ∗ · · · ∗ δ∗lnn with |d − (l1d1 +

· · ·+ lndn)| ≤ ε
3
8 ρ . Hence define a lattice L ⊂ Rn by

L = {l1d1 + · · ·+ lndn | l1, . . . , ln ∈ Z},

i.e., L is a finitely generated free Abelian subgroup of Rn .
The homomorphism t is indeed injective: let δ, δ′ ∈ ∆1/9

ρ with δ 6= δ′ and
|d|, |d′| ≤ ρ/2n , then by Lem. 11.10 they have two different unique representations

δ = δ∗l11 ∗· · ·∗δ∗lnn and δ′ = δ
∗l′1
1 ∗· · ·∗δ∗l

′
n

n . Therefore t(δ) 6= t(δ′), since {d1, . . . , dn}
is a basis of L .

13. Construction of a Finite Group H in O(n)

In order to construct the crystallographic group G , which has to contain the
slightly deformed lattice L in the translational lattice G ∩ Rn , use twice the fact
that almost homomorphisms are near homomorphisms, cf. Thm. 4.3. First apply
this technique to the orthogonal group O(n) and then to the isometry group
of the flat torus with injectivity radius at least π . To satisfy the assumptions
of Thm. 4.3, for a moment choose the following bi-invariant distance function
d]

O(n)(A, B) = 2 max{|](A v, B v)| | v ∈ Rn} on O(n) instead3 of ‖ . ‖ . So define

the map r0 : H → O(n) from the group of equivalence classes H to the orthogonal
group by

r0([α]) = rot(α), (20)

where α ∈ [α] is a short representative in the equivalence class [α] , i.e. an element
with |trans(α)| ≤ 4r · wn . The short representative is chosen arbitrarily but kept

fixed in what follows. We get d]
O(n) (r0([α] ∗ [β]), r0([α]) · r0([β])) ≤ 100n3ε

1
2 ≤ π

6
:

Corollary 13.1. The map r0 : H → O(n) defined in (20) is a q1 -almost

homomorphism with the constant q1 = 100n3ε
1
2 .

Now apply Thm. 4.3 and conclude that there is a homomorphism r : H → O(n)
near the map r0 which satisfies

d]
O(n) (r0([α], r([α])) ≤ 2q1 = 200n3ε

1
2 (21)

for all [α] ∈ H . The homomorphism r is injective: let [α1] 6= [α2] ∈ H , thus the
definition of the equivalence classes implies d]

O(n) (r([α1], r([α2])) ≥ 4
19

. Therefore
the homomorphism r is indeed a monomorphism.

Corollary 13.2. The group (H, ∗) of order |H| ≤ wn is isomorphic to a
subgroup r(H) = H of O(n). Two different elements A, B ∈ H have a pairwise
distance ‖A−1B‖ ≥ 1

10
. Especially if A ∈ H and ‖A‖ < 1

10
then A = I .

Now let us show that the definition of r is independent of the choice of the
representatives: let α and α′ be short representatives of [α] . Then α ∼ α′ mod

3Note that ‖A‖ = 2 sin
(

1
4d]

O(n)(I,A)
)
∈ [0, 2] and d]

O(n)(I,A) = 4 arcsin
(

1
2‖A‖

)
∈ [0, 2π].



Steiner 61

∆1/9
ρ , i.e. α = µ ∗ α′ with µ ∈ ∆1/9

ρ . Since r is a homomorphism and r([µ]) = I
for µ ∈ [id ] we obtain:

r([α]) = r([µ ∗ α′]) = r([µ] ∗ [α′]) = r([µ]) · r([α′]) = r([α′]) (22)

Thus the definition of the homomorphism r is independent of the choice of the
representatives.

14. Adjusting the Lattice L

In the case where r(H) = H is the group consisting of all rotational parts of a
crystallographic group, we know that each element A ∈ H ⊂ O(n) acts on the
translational lattice L such that A ·L = L . This is not necessarily true for H and
L . Therefore, we will slightly deform a big enough neighbourhood of 0 ∈ L into
a part of a lattice L̂ , which is invariant by all elements of H . Then extend this
part of the lattice linearly to L̂ .

Lemma 14.1. Let c ∈ L with |c| ≤ ρ/2n+1 and α ∈ Γρ/3 , i.e. r([α]) ∈ H .
Then there exists a unique c′ ∈ L with |c′| ≤ ρ/2n and |r([α])c− c′| ≤ 225n3ε3/8ρ.

We denote this unique element c′ in the lattice L by Ãc .

Proof. Since {d1, . . . , dn} is a basis of the lattice L we have c = l1d1+· · ·+lndn

with unique coefficients l1, . . . , ln ∈ Z . Set δ = δ∗l11 ∗ · · · ∗ δ∗lnn , where δ1, . . . , δn

are the generators of ∆1/9
ρ . Lem. 11.10 tells us that

|trans(δ∗l11 ∗ · · · ∗ δ∗lnn )− (l1d1 + · · ·+ lndn)| = |d− c| ≤ ε
3
8 ρ,

hence |d| ≤ |c| + ε
3
8 ρ ≤ ρ

2n+1 + ε
3
8 ρ . Look now at α ∗ δ ∗ α . The rotational part

satisfies ‖rot(α ∗ δ ∗ α)‖ ≤ 1
9

and the translational part |trans(α ∗ δ ∗ α)| ≤ 1
2n ρ .

Therefore Lem. 11.10 is applicable to α∗δ∗α . Hence write α∗δ∗α = δ
∗l′1
1 ∗· · ·∗δ∗l

′
n

n

with unique l′1, . . . , d
′
n ∈ Z . In other words c′ = l′1d1 + · · ·+ l′ndn ∈ L . Abbreviate

r0([α]) = rot(α) = A and, using Lem. 11.10, estimate |Ac− c′| ≤ 25n3ε
3
8 ρ . Hence

using inequality (21) estimate |r([α]) · c − c′| ≤ 225n3ε
3
8 ρ , which completes the

proof.

Now apply the following construction to the inner part of the lattice L to
obtain a slightly deformed lattice L̂ . Let b ∈ L with |b| ≤ ρ

2n+1 and Ãb ∈ L as
described in Lem. 14.1. Then define

b̂ =
1

m

∑
A∈H

A−1Ãb, (23)

where m = |H| = |H| ≤ wn . Now we are able to show that the set of all b̂
generates a lattice which is invariant under the group H ⊂ O(n):

Lemma 14.2. Let b ∈ L with |b| ≤ ρ
2n+1 . Then |̂b− b| = 225n3ε

3
8 ρ.
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Proof. Estimate the difference between b̂ and b

|̂b− b| ≤ 1

m

∑
A∈H

|A−1Ãb− b| ≤ 1

m

∑
A∈H

|Ãb− Ab| ≤ 225n3ε
3
8 ρ,

using Lem. 14.1.

We show that the map ̂ : L → Rn is not only almost the identity but also Z-linear.
Lem. 14.2 implies that

min{|d̂| | d̂ ∈ L̂− {0}} ≥ δ − 225n3ε
3
8 ρ ≥ δ

2
,

since ε in assumption (A6 ) is supposed to be small enough.

Lemma 14.3. Let b, c ∈ L with |b|, |c| and |b + c| ≤ ρ
2n+1 . Then the map̂ : L → Rn is Z-linear, i.e. b̂ + c = b̂ + ĉ.

Proof. There are unique elements Ãb, Ãc ∈ L which satisfy |Ab − Ãb| and

|Ac− Ãc| ≤ 225n3ε
3
8 ρ , thus |Ãb + Ãc−A(b + c)| ≤ 2 · 225n3ε

3
8 ρ . By Lem. 14.1 a

unique (b+c)′ ∈ L exists such that |A(b+c)−(b+c)′| ≤ 225n3ε
3
8 ρ . By uniqueness

and 3 ·225n3ε
3
8 ρ ≤ δ

2
, conclude Ãb+Ãc = (A(b+c))˜ . Therefore the claim follows

using the linearity in (23).

In other words L̂ is a lattice which is spanned by the image under the map̂ : L → Rn of the inner part of L . Next we show that L̂ is in fact invariant under
all A ∈ H .

Lemma 14.4. Let A ∈ H and b̂ ∈ L̂ with |̂b| ≤ ρ
2n+1 . Then Ab̂ =

̂̃
Ab ∈ L̂.

Proof. We have

A b̂ =
1

m

∑
B∈H

AB−1B̃b =
1

m

∑
B∈H

(BA−1)−1(BA−1Ab)˜
=

1

m

∑
B∈H

(BA−1)−1(BA−1Ãb)˜=
1

m

∑
C∈H

C−1(CÃb)˜ =
̂̃
Ab ∈ L̂.

The inner part of the lattice L̂ , in other words all b̂ ∈ L̂ with |̂b| ≤ ρ
2n+1 , is

invariant under all A ∈ H . Since H acts linearly on the left it follows that the
lattice L̂ is invariant under H .

15. Replacing each Element in H by one in E(n)

In this section we replace each element [α] ∈ H by a certain element (r([α]), a?) ∈
E(n). To do so we distinguish two cases depending on weather r([α]) is the
identity I in the orthogonal group O(n).

(i) If r([α]) = I then we take a? = â = (trans(α))̂ as explained in Sec. 14.

(ii) If r([α]) 6= I then we have to properly adjust the translational parts. This
again will be done with Thm. 4.3. This time, instead of the orthogonal group,
we use the isometry group M = Iso(Rn/L̂) of the flat torus Rn/L̂ :
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The flat torus: We investigate the flat torus Rn/L̂ . The shortest closed geodesic

on Rn/L̂ is only known to be longer than min{|d̂1|, . . . , |d̂n|}−225n3ε
3
8 ρ . Therefore

the injectivity radius is inj(Rn/L̂) ≥ 1
2
min{|d̂1|, . . . , |d̂n|} − 225

2
n3ε

3
8 ρ ≥ δ

4
, where

d̂1, . . . , d̂n are the generators of the lattice L̂ . Notice that {d1, . . . , dn} is a λ-
normal basis of L with λ ≤ 2. The diameter of the flat torus satisfies

inj(Rn/L̂) ≤ diam(Rn/L̂) ≤ 1
2
(|d̂1|2 + · · ·+ |d̂n|2)

1
2 ≤

√
nσ ≤ ρ.

The isometry group of the flat torus: The group of Euclidean motions E(n)
acts on Rn from the left E(n) × Rn → Rn by (α, x) 7→ α(x) = A x + a . The

normaliser of the lattice L̂ ∈ Rn in the group E(n) is defined by the expression

NormE(n)(L̂) = {α ∈ E(n) | (α, L̂) = (L̂, α)} , thus L̂CNormE(n)(L̂). The isometry

group of the flat torus Rn/L̂ is known to be Iso(Rn/L̂) = NormE(n)(L̂)/L̂ . Let

U ∈ O(n) be the maximal group which leaves invariant the lattice L̂ . We have
H ⊆ U . Since U is a discrete subgroup in the compact group O(n) the number
θ = min{d]

O(n)(A, B) | A, B ∈ U with A 6= B} exists and is bounded away from
zero. The isometry group of the flat torus can be represented by the compact Lie
group

Iso(Rn/L̂) = {αL̂ = (A, a + L̂) | A ∈ U and a ∈ Rn}.

The group structure in the compact Lie group Iso(Rn/L̂) is given by:

neutral element: id L̂ = (I, L̂)

inverse: (αL̂)−1 = (A, a + L̂)−1 = (A−1,−A−1a + L̂)

multiplication: αL̂ · βL̂ = (A, a + L̂) · (B, b + L̂) = (AB, Ab + a + L̂)

Topologically Iso(Rn/L̂) is a compact disjoint sum of k = |U | flat tori Rn/L̂ .

Bi-invariant norm on the isometry group of the flat torus: Now we
equip Iso(Rn/L̂) with the flat metric of Rn/L̂ on the identity component and
by left translation on all other components. Our norm has to be such that the
injectivity radius is at least π , therefore multiply the distance function on Rn/L̂

by 2π/inj(Rn/L̂). Let αL̂ be an isometry in Iso(Rn/L̂). Then define its norm by

‖αL̂‖Iso(Rn/L̂) = 2π

inj(Rn/L̂)
max

{
diam(Rn/L̂)

θ
d]

O(n)(I, A) , min{|d̂− a| | d̂ ∈ L̂}
}

.

This norm induces a bi-invariant distance function on the isometry group of the
flat torus:

Lemma 15.1. Let αL̂, βL̂ ∈ Iso(Rn/L̂). Then

dIso(Rn/L̂)(αL̂, βL̂) = ‖(αL̂)−1 · βL̂‖Iso(Rn/L̂)

is bi-invariant.

Proof. The left-invariance of the distance function dIso follows from the defini-
tion. To prove the right-invariance of dIso we distinguish two cases: First consider
isometries αL̂ and βL̂ which are in the same component of Iso(Rn/L̂), in other
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words the rotational parts A and B are equal. Now let γL̂ be any element in
Iso(Rn/L̂). Then

dIso(Rn/L̂)(αL̂ · γL̂, βL̂ · γL̂)

= 2π
inj

max
{

diam
θ

d]
O(n)(A C,B C) , min{|d̂− ((Ac + a)− (Bc + b)| | d̂ ∈ L̂}

}
= 2π

inj
max

{
diam

θ
d]

O(n)(A, B) , min{|d̂− (a− b)| | d̂ ∈ L̂}
}

= dIso(Rn/L̂)(αL̂, βL̂).

Secondly the isometries αL̂ and βL̂ are supposed to be in different components,
in other words the rotational parts A and B are not equal. Discreteness of the
rotational subgroup U gives θ ≤ d]

O(n)(A, B) = d]
O(n)(A C,B C). Let γL̂ be any

element in Iso(Rn/L̂). Then compactness of the torus Rn/L̂ implies

min{|d̂− ((Ac + a)− (Bc + b)| | d̂ ∈ L̂} ≤ diam
θ

d]
O(n)(A C,B C).

Hence the rotational part dominates the translational part in the maximum. So
the bi-invariance of the distance function d]

O(n)(I, · ) on O(n) implies the right-
invariance of dIso also in this second case. Notice that the compactness of the torus
and discreteness of the rotational subgroup are crucial in the above reflections.

With this new distance function a shortest closed geodesic in Rn/L̂ is longer than
2π , hence the injectivity radius of the exponential map is at least π . Since
2π
θ

diam
inj

≥ 1, it follows that the distance function dIso on the isometry group of
the flat torus satisfies the assumptions of Thm. 4.3. Therefore it is time to apply
Thm. 4.3 with M = Iso(Rn/L̂) and the above distance function: for each [α] ∈ H
we take the short representative α = (A, a) in the equivalence class of [α] which

we selected in Sec. 13. Then we define the map ω0 : H → Iso(Rn/L̂) by

ω0([α]) = (r([α]), a + L̂). (24)

A sufficiently good estimation gives dIso(Rn/L̂)(ω0([α] ∗ [β]), ω0([α]) · ω0([β])) ≤ ε
1
4 :

Corollary 15.2. The map ω0 : H → Iso(Rn/L̂) defined in (24) is a q2 -almost
homomorphism with the constant q2 = ε1/4 .

We apply Thm. 4.3 and get: there is a homomorphism ω : H → Iso(Rn/̂L) near
ω0 , i.e., for all [α] ∈ H we have

dIso(Rn/L̂) (ω0([α]), ω([α])) ≤ 2q2 = 2 ε
1
4 . (25)

Furthermore rot(ω([α])) = rot(ω0([α])), which is even equal to r([α]): indeed,
if the rotational parts were in different components of the isometry group of the
flat torus, i.e. θ < d]

O(n)(rot(ω0([α])), rot(ω([α]))), then this would contradict the

estimation (25).

We can even show more: the homomorphism ω : H → Iso(Rn/L̂) is an embedding,
i.e., it is injective: let [α1] 6= [α2] ∈ H and so the definition of the equivalence
relation implies that d]

O(n)(r([α1]), r([α2])) > 0, so ω([α1]) and ω([α2]) are in

different components of Iso(Rn/L̂), hence are different.
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Now we show that the definition of ω is independent of the choice of the repre-
sentatives: let α and α′ be short representatives of [α] . Then α ∼ α′ mod ∆1/9

ρ ,

i.e. α = µ ∗ α′ with µ ∈ ∆1/9
ρ . Since ω is a homomorphism and ω([µ]) = id L̂ for

µ ∈ [id ] we obtain:

ω([α]) = ω([µ ∗ α′]) = ω([µ] ∗ [α′]) = ω([µ]) · ω([α′]) = id L̂ · ω([α′]) = ω([α′]) (26)

Thus the definition of the homomorphism ω is independent of the choice of the
representatives.

Set ω([α]) = (r([α]), trans(ω([α])) + L̂). Define the map f : ω(H) ⊂ Iso(Rn/L̂) →
E(n) given by ω([α]) 7→ (r([α]), a?), where a? ∈ trans(ω([α])) + L̂ is the element
which is closest to the translational part a of the short representative α of the
equivalence class [α] . The map f lifts ω(H) to the isometry group E(n), i.e.,
every element in ω(H) is considered as an Euclidean motion with a special choice
of its translational part. Equation (25) implies:

|a− trans ◦ f ◦ ω([α])| = |a− a?| = 2 q2
inj
π
≤ 1

π
ε

1
4 ρ (27)

Thus for all [α] ∈ H the translational part of the short representative α of [α] is
only very slightly changed under the map f ◦ ω .

16. Generating the Crystallographic Group G in E(n)

We define the subgroup G ⊂ E(n) generated by the lattice L̂ and the finite group
f ◦ ω(H) = {f ◦ ω([α]) | [α] ∈ H} . We obtain

G = {(r([α]), a? + d) ∈ E(n) | [α] ∈ H and d ∈ L̂}.

By Cor. 15.2 and Thm. 4.3 the map ω : H → Iso(Rn/L̂) is a homomorphism. In
other words, for all [α], [β] ∈ H we have

ω([α]−1) = (ω([α]))−1 = ((r([α]))−1,−(r([α]))−1a? + L̂) (28)

ω([α] ∗ [β]) = ω([α]) · ω([β]) = (r([α]) · r([β]), r([α]) · b? + a? + L̂), (29)

thus (r([α]),−r([α])·a?) and (r([α∗β]), r([α])·b?+a?) are elements of G . The set G

together with the usual product in E(n) is a group which contains L̂ and f ◦ω(H):
the neutral element (I, 0) is in G . Furthermore let (r([α]), a?+d), (r([β]), b?+d′) ∈
G . Then investigate the inverse of (r([α]), a? + d) ∈ E(n):

((r([α]))−1,−(r([α]))−1 · a? − (r([α]))−1 · d) = (r([α]),−r([α]) · a? − r([α]) · d)

And then investigate the product of (r([α]), a? + d) and (r([β]), b? + d′) ∈ E(n):

(r([α])·r([β]), r([α])·b?+a?+r([α])·d′+d) = (r([α∗β]), r([α])·b?+a?+r([α])·d′+d)

Since ω(H) = H leaves invariant the lattice L̂ we obtain that −r([α]) · d and

r([α]) · d′ + d are elements in the lattice L̂ . Therefore (28) and (29) imply that

the inverse and the product are in G . Thus G is generated by L̂ and f ◦ ω(H).
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Lemma 16.1. The group G generated by L̂ and f ◦ω(H) is a crystallographic

group with normal lattice L̂ and rotational group ω(H) = H .

Proof. The lattice L̂ generated by n linearly independent vectors l̂1, . . . , l̂n is a
free Abelian subgroup of G , cf. Lem. 14.3. In addition, the subgroup L̂ is normal
in G : Indeed, let (r([α]), a? + d) be any element in G . The product

(r([α]), a? + d) · (I, d′) · (r([α]), a? + d)−1 = (I, r([α]) · d′)

is in L̂ for all elements (I, d′) ∈ L̂ , since the finite group ω(H) leaves invariant

the lattice L̂ , cf. Lem. 14.4. The index of L̂ in G is bounded by [L̂ : G] = |H| =
|ω(H)| ≤ wn = (1 + 20

√
n)n2

, cf. Lem. 9.4 (c). Thus G is a discrete group with
compact fundamental domain and therefore a crystallographic group with lattice
L̂ and rotational group H .

17. Embedding Γρ/2n+1 into the Crystallographic Group G

The set Γρ/3 is partitioned into equivalence classes by the equivalence relation ∼
mod ∆1/9

ρ . Therefore every γ ∈ Γρ/2n+1 is a product γ = δ ∗ α , where α is the
chosen short representative of [γ] and δ an element in the almost translational
set ∆1/9

ρ with |d| ≤ ρ/2n , i.e. δ = γ ∗ α ∈ ∆1/9
ρ . Therefore define the map

Φ : Γρ/2n+1 → G by

γ = δ ∗ α 7−→ (I, l1d̂1 + · · ·+ lnd̂n) · f ◦ ω([α]) = (r([α]), a? + l1d̂1 + · · ·+ lnd̂n).

In what follows we want to derive several properties of this map Φ:

Lemma 17.1. (Statement (2) of Thm. 2.5) The map Φ : Γρ/2n+1 → G is an

embedding with dE(n)(γ, Φ(γ)) ≤ ε
1
4 for all γ ∈ Γρ/2n+1 .

Proof. Notice that every δ ∈ ∆1/9
ρ with |d| ≤ ρ/2n has a unique representation

δ = δ∗l11 ∗ · · · ∗ δ∗lnn , cf. Lem. 11.10. Furthermore, it is well defined in the essential
crystallographic set of isometries ΓR if

∑n
j=1 |lj| · |dj| ≤ R − ζ ≤ 2cdnρ . Since

all non-trivial elements in ∆1/9
ρ have a translational part which is bigger than δ ,

we can conclude that δ ·
∑n

j=1 |lj| ≤ 2cdnρ . We want to estimate dE(n)(γ, Φ(γ)),
first the rotational part and then the translational part: For the rotational part
we have

‖(rot(γ))−1 · rot(Φ(γ))‖ ≤ 131n3ε
1
2 , (30)

using Lem. 10.1 and estimation (21). Secondly using Lem. 10.1 and estimation
(27) we consider the translational part

|trans(γ)− trans(Φ(γ))| ≤ 9 ρ ε
1
4 . (31)

Since ε in assumption (A6 ) is supposed to be small enough the estimations for

the rotational part and translational part now imply dE(n)(γ, Φ(γ)) ≤ ε
1
4 . This

implies the statement (2) of Thm. 2.5.
In addition we show that Φ : Γρ/2n+1 → G is an embedding: indeed, we assume
that Φ(γ1) = Φ(γ2) for any two elements γ1, γ2 ∈ Γρ/2n+1 . Let us abbreviate

γi = (Ci, ci) and Φ(γi) = (Ĉi, ĉi) for i ∈ {1, 2} . Using (30) and (31) we estimate
‖C−1

1 C2‖ ≤ µ and |c1 − c2| ≤ δ . Therefore Lem. 6.1 implies that γ1 = γ2 , hence
Φ is injective.
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Lemma 17.2. (Statement (1) of Thm. 2.5) The map Φ : Γρ/2n+1 → G is a
homomorphism in the following sense: let γ1 and γ2 be elements in Γρ/2n+1 with
|c1|+ |c2| ≤ ρ/2n+1 . Then Φ(γ1 ∗ γ2) = Φ(γ1) · Φ(γ2) and Φ(id) = id.

Proof. We abbreviate γi = (Ci, ci) and Φ(γi) = (Ĉi, ĉi) for i ∈ {1, 2} . Using
Cor. 13.2 and estimation (31) we can give the analogue of property (III) in Def. 2.3
for elements in G : If Φ(γ1), Φ(γ2) ∈ G with Φ(γ1) 6= Φ(γ2) satisfy ‖Ĉ−1

1 Ĉ2‖ ≤ 1
10

then |ĉ1 − ĉ2| > δ − 18 ρ ε
1
4 . We estimate:

‖(rot(Φ(γ1) · Φ(γ2)))
−1 · rot(Φ(γ1 ∗ γ2))‖ ≤ 1

10

|trans(Φ(γ1) · Φ(γ2))− trans(Φ(γ1 ∗ γ2))| ≤ δ − 18 ρ ε
1
4

Hence Φ(γ1 ∗ γ2) = Φ(γ1) · Φ(γ2). This completes the proof of Thm. 2.5 (1).

Lemma 17.3. (Statement (3) of Thm. 2.5) There exists for every element in

the group G with translational part smaller than ρ/2n+1 − 9 ρ ε
1
4 a corresponding

Euclidean motion in Γρ/2n+1 . In other words

G ∩ {(A, a) ∈ E(n) | |a| ≤ ρ
2n+1 − 9 ρ ε

1
4} ⊆ Φ(Γρ/2n+1).

Proof. Let (r([α]), a? + d) be an element in G with |a? + d| ≤ ρ/2n+1− 9 ρ ε
1
4 .

We take the chosen short representative α ∈ [α] . Now we represent d ∈ L̂ uniquely

in the basis {d̂1, . . . , d̂n} of the lattice L̂ , i.e. d = l1d̂1+· · ·+l1d̂n . Set δ∗l11 ∗· · ·∗δ∗lnn

where δ1, . . . , δn are the generators for ∆1/9
ρ . Using (27) and (31) we estimate

|trans(δ∗l11 ∗ · · · ∗ δ∗lnn )| ≤ ρ
2n . Therefore, applying Lem. 11.10 tells us that the

representation δ∗l11 ∗ · · · ∗ δ∗lnn is unique. We have |trans(δ∗l11 ∗ · · · ∗ δ∗lnn ∗ α)| ≤
|a?+d|+9 ρ ε

1
4 ≤ ρ/2n+1 . So we find the unique element δ∗l11 ∗· · ·∗δ∗lnn ∗α in Γρ/2n+1

that corresponds to (r([α]), a? + d) under the map Φ. This finally completes the
proof of Thm. 2.5 (3).

18. Conclusion

Lem. 16.1 shows that G is a crystallographic group. Furthermore, Lem. 17.2,
Lem. 17.1 and Lem. 17.3 settle the statements (1) to (3) of Thm. 2.5, and equations
(22) and (26) show that the whole construction of G and Φ : Γρ/2n+1 → G does
not depend on the choice of the short representatives. This finishes the proof.
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