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Abstract. Let P be a parabolic subgroup of a semisimple simply con-
nected linear algebraic group G over C and ρ an irreducible homomor-
phism from P to a complex reductive group H . We show that the as-
sociated principal H –bundle over G/P , associated for ρ to the principal
P –bundle defined by the quotient map G −→ G/P , is stable. We describe
the Harder–Narasimhan reduction of the G–bundle over G/P obtained us-
ing the composition P −→ L(P ) −→ G , where L(P ) is the Levi factor
of P .

1. Introduction

Let G be a semisimple simply connected linear algebraic group over the field
of complex numbers and P a proper parabolic subgroup of G . So G/P is an
irreducible smooth projection manifold, and the projection of G to G/P defines a
principal P –bundle over G/P . Let E denote this principal P –bundle over G/P .

Let H be a complex reductive linear algebraic group and

ρ : P −→ H

a homomorphism. The homomorphism ρ will be called irreducible if its image is
not contained in a proper parabolic subgroup of H .

Let E(H) be the principal H –bundle over G/P obtained by extending the
structure group of the P –bundle E using ρ .

We prove that the principal H –bundle E(H) over G/P is stable with
respect to any polarization of G/P provided the homomorphism ρ is irreducible
(Theorem 2.6).

We recall that the notion of a stable principal bundle was introduced by
A. Ramanathan in [Ra1] generalizing the original notion of a stable vector bundle
due to D. Mumford.

Fix T ⊂ B ⊂ P , where T is a maximal torus and B a Borel subgroup of
G . Using the pair (B , T ), the Levi quotient L(P ) := P/Ru(P ), where Ru(P ) is
the unipotent radical of P , gets identified with a subgroup of P . Let E(L(P )) be
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the principal L(P )–bundle obtained by extending the structure group of E using
the quotient homomorphism of P to L(P ). Let E(L(P ))(G) be the principal G–
bundle over G/P obtained by extending the structure group of E(L(P )) using the
inclusion of the copy of L(P ) in G . This G–bundle E(L(P ))(G) s not semistable.
In Proposition 3.1 we construct the Harder–Narasimhan reduction of E(L(P ))(G)
for the polarization on G/P defined by

∧top TG/P .

In Section 2 we also consider the special case of G = SL(n,C). The
stability of vector bundles, associated to some naturally occurring L(P )–modules,
over a flag variety for Cn has been investigated (for example, the tangent bundle
of a Grassmannian is stable).

2. Extension of structure group and stability

Let G be a semisimple simply connected linear algebraic group over C and P ⊂ G
a parabolic subgroup. A parabolic subgroup will always be assumed to be a proper
subgroup. Let H be a connected reductive linear algebraic group over C .

A homomorphism ρ : P −→ H is called irreducible if there is no parabolic
subgroup of H that contains ρ(P ).

Let Ru(P ) be the unipotent radical of P . So the quotient group L(P ) :=
P/Ru(P ), which is called the Levi factor of P , is reductive (see [Bo], [Sp]). If
T ⊂ B ⊂ P , where T is a maximal torus and B a Borel subgroup, then L(P ) is
identified with the T –invariant maximal reductive subgroup of P . Fix T and B
as above. Henceforth L(P ) will be considered both as a quotient group of P and
a subgroup of P .

Lemma 2.1. Let ρ : P −→ H is an irreducible homomorphism. Then
ρ(Ru(P )) = e.

Let ZL(P ) (respectively, Z(H)) be the connected component of the center
of L(P ) (respectively, H ) containing the identity element. The homomorphism
L(P ) −→ H induced by the irreducible homomorphism ρ takes ZL(P ) into
Z(H).

Proof. Assume that ρ(Ru(P )) 6= e . Consider the unipotent subgroup U1 :=
ρ(Ru(P )) of H . The normalizer of U1 in H will be denoted by N1 . Inductively
define Ui+1 , i ≥ 1, to be the unipotent radical of Ni , and define Ni , i ≥ 1, to be
the normalizer of Ui in H . So we have

N1 ⊂ N2 ⊂ N3 ⊂ · · · ⊂ H .

Let Q ⊂ H be the direct limit of the subgroups {Ni} . Note that Q is a proper
subgroup of H (as U1 is nontrivial and H is reductive). Since Q , by construction,
is the normalizer of its own unipotent radical, we conclude that Q is a parabolic
subgroup of H .

Since Ru(P ) is a normal subgroup of P , it follows immediately that ρ(P ) ⊂
N1 . So we have ρ(P ) ⊂ Q . This contradicts the assumption that ρ is irreducible,
and hence ρ(Ru(P )) = e .

To prove the second part, consider the image of the torus ZL(P ) in H ; we
will denote this image by Z ′ . If Z ′ ( Z(H), then the centralizer of the torus
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Z ′ ⊂ H is a Levi subgroup of some parabolic subgroup Q ⊂ H . In that case we
have ρ(P ) ⊂ Q (since ρ(P ) is contained in the centralizer). But this contradicts
the assumption that ρ is irreducible. Hence Z ′ ⊂ Z(H) and the proof of the
lemma is complete.

Proposition 2.2. Let ρ : P −→ H be an irreducible homomorphism, and let
h denote the Lie algebra of H with z ⊂ h its center. The center z coincides with
the space of all invariants of h for the adjoint action of P on it. If H is simple,
then h is an irreducible P –module.

Proof. Clearly z is contained in hP , the space of P –invariants.

Take any θ ∈ hP . Let
θ = θn + θs

be the Jordan decomposition, where θn is nilpotent and θs is semisimple [Bo,
page 83]. From the uniqueness of Jordan decomposition if follows immediately
that both θn and θs are individually preserved by P . If

θs /∈ z

then the centralizer (in h) of θs is the Levi subalgebra of a parabolic subalgebra.
In that case, ρ(P ) ⊂ Q , where Q is the parabolic subgroup corresponding to a
parabolic subalgebra of h containing the centralizer of θs . This contradicts the
given condition that ρ is irreducible. Therefore, θs ∈ z .

Assume that θn 6= 0. Let U1 ⊂ H be the unipotent subgroup generated
by θn . Setting U1 in the construction described in the proof of Lemma 2.1 we get
a parabolic subgroup Q ⊂ H . The normalizer N1 of U1 in H (see the proof of
Lemma 2.1) contains the subgroup of H that fixes θn by the adjoint action (as θn

generates U1 ). Therefore, we conclude that

ρ(P ) ⊂ N1 ⊂ Q .

This contradicts the given condition that ρ is irreducible. Therefore, θn = 0, and
hence hP = z .

Let the group H be simple. Assume that the P –module h is not irreducible.
Let 0 6= V ( h be a nonzero proper subspace preserved by the adjoint action of
P on h . Let Q ⊂ H be the subgroup that preserves V by the adjoint action.
This Q is a parabolic subgroup of H . Since ρ(P ) ⊂ Q , we conclude that no such
V exists. This proves that h is an irreducible P –module, and the proof of the
proposition is complete.

The quotient G/P is a smooth complex projective variety. Fix an ample
line bundle ζ on G/P . For any coherent sheaf F on G/P , the degree of F is
defined as

degree(F ) :=

∫
G/P

c1(F )c1(ζ)
d−1 ,

where d is the complex dimension of G/P . For any coherent sheaf F ′ defined on a
nonempty Zariski open subset U ′ ⊂ G/P with the codimension of the complement
of U ′ at least two, the direct image ι∗F

′ is a coherent sheaf on G/P , where ι is
the inclusion map of U ′ . The degree of F ′ is defined to be the degree of ι∗F

′ .
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Let H be a complex connected reductive algebraic group and EH a holo-
morphic principal H –bundle over G/P . The H –bundle EH is called stable (re-
spectively, semistable) if for any reduction of structure group σ : U ′ −→ EH/Q
of EH to any maximal parabolic subgroup Q ⊂ H over a Zariski open subset
U ′ ⊂ G/P , with codim(G/P \ U ′) ≥ 2, the following inequality

degree(ι∗σ
∗Trel) > 0

(respectively, degree(ι∗σ
∗Trel) ≥ 0) holds; here Trel is the relative tangent bundle

for the projection EH/Q −→ G/P (see [Ra1]).

Let Z0 denote the connected component of the center of H containing the
identity element. Let EQ ⊂ EH be a reduction of structure group of EH over
G/P to a parabolic subgroup Q ⊂ H . This reduction is called admissible if for
every character χ of Q trivial on Z0 , the associated line bundle EQ(χ) over G/P ,
associated to EQ for χ , is of degree zero [Ra2, page 307, Definition 3.3].

A holomorphic principal H –bundle EH over G/P is called polystable if
either EH is stable or there is a parabolic subgroup Q of H and a reduction

EL(Q) ⊂ EH

over G/P of structure group of EH to the Levi factor L(Q) (the quotient L(Q)
can be realized as a subgroup of Q) such that

1. the principal L(Q)–bundle EL(Q) is stable;

2. the extension of structure group of EL(Q) to Q , constructed using the inclu-
sion of L(Q) in Q , is an admissible reduction of EH to Q .

(See [Ra2], [RS] for the details.)

A stable H –bundle is polystable, and a polystable H –bundle is semistable.
The following simple proposition gives a criterion for a polystable H –bundle to be
stable.

Proposition 2.3. Let z ⊂ h be the center of the Lie algebra of H . A polystable
H –bundle EH over G/P is stable if and only if H0(G/P, ad(EH)) ∼= z, where
ad(EH) is the adjoint vector bundle.

Proof. If EH is stable then H0(G/P, ad(EH)) ∼= z [Ra1, page 136, Proposition
3.2]. On the other hand, if EH is only polystable but not stable, then there is a
reduction of structure group EL(Q) ⊂ EH to a Levi factor L(Q) of some parabolic
subgroup Q ⊂ H . The center of L(Q) is contained in the automorphism group of
EL(Q) , and hence the center is contained in the automorphism group of EH . But
the dimension of the center of a Levi subgroup is more than dim z . This completes
the proof of the proposition.

Note that the projection G −→ G/P defines a holomorphic principal P –
bundle over G/P ; this P –bundle will be denoted by E . Let

β : P −→ L(P ) := P/Ru(P ) (1)

be the quotient map. Let E(L(P )) denote the principal L(P )–bundle obtained
by extending the structure group of the principal P –bundle E using β in (1).
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Lemma 2.4. The principal L(P )–bundle E(L(P )) over G/P is stable with
respect to any polarization on G/P .

Proof. A principal L(P )–bundle is polystable if and only if admits an Einstein–
Hermitian connection [RS], [AB]. We will prove that E(L(P )) is polystable by
exhibiting an Einstein–Hermitian connection on it.

Fix an ample line bundle ζ on G/P to define degree of a sheaf. Since
G is simply connected, the Picard group of G/P is identified with the group of
characters of P . Let χ be the character of P that corresponds to ζ .

Fix a maximal compact subgroup K ⊂ G . Set

K(P ) := K ∩ P .

Note that G/P = K/K(P ) and K(P ) projects isomorphically to a maximal
compact subgroup of L(P ). The maximal compact subgroup of L(P ) defined by
K(P ) will be denoted by K(L(P )).

Consider the action of P on C defined by the character χ (that gives the
polarization ζ ). Fix a Hermitian structure Hχ on C fixed by the action of K(P );
since K(P ) is compact, such a Hermitian structure exists.

Since G/P = K/K(P ) and ζ = (K×C)/K(P ), the condition that K(P )
preserves Hχ implies that Hχ induces a Hermitian structure on the line bundle
ζ . The curvature of the corresponding Chern connection on Hχ defines a Kähler
structure on G/P . This Kähler form will be denoted by Ωχ . Note that Ωχ is
K –invariant form on G/P representing c1(ζ).

Recall that E(L(P )) = (G × L(P ))/P , where the action of any p ∈ P
sends any (g , l) ∈ G × L(P ) to (gp , β(p)−1lβ(p)), with β defined in (1). Since
the submanifold K ×K(L(P )) ⊂ G× L(P ) is K(P )–invariant, we have

EK(L(P )) := (K ×K(L(P )))/K(P ) ⊂ (G× L(P ))/K(P ) = E(L(P )) . (2)

Note that EK(L(P )) in (2) defines a reduction of structure group of the
principal L(P )–bundle E(L(P )) to the the maximal compact subgroup K(L(P )).
The action of G/P lifts naturally to E(L(P )) preserving the holomorphic struc-
ture; the action of G on G×L(P ) defined by g ◦ (z , l) = (gz , l), where g, z ∈ G
and l ∈ L(P ), descends to an action of G on E(L(P )) = (G × L(P ))/P . Fur-
thermore, the action of K ⊂ G on E(L(P )) preserves EK(L(P )) in (2).

A reduction of structure group to a maximal compact subgroup of a holo-
morphic principal bundle with a reductive group as a structure group has a unique
connection known as the Chern connection which is compatible with the holomor-
phic structure as well as with the reduction (see [AB], [RS]). Let

ΩL(P ) ∈ C∞(G/P, Ω1,1
G/P (ad(E(L(P ))))) (3)

be the curvature of the Chern connection on E(L(P )) for the reduction of structure
group to K(L(P )) in (2), where ad(E(L(P ))) is the adjoint bundle. Since the
action of K on E(L(P )) preserves the holomorphic structure as well as the
reduction of structure group to K(L(P )) in (2), it follows that the action of K on
Ω1,1(ad(E(L(P )))) preserves the section ΩL(P ) in (3).
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Let l(P ) be the Lie algebra of L(P ) and

z(L) ⊂ l(P )

be the center of l(P ). Since the adjoint action of L(P ) on z(L) is trivial, we have

z(L) ⊂ H0(G/P, ad(E(L(P )))) .

Let

Λχ : Ωi,j
G/P −→ Ωi−1,j−1

G/P

be the adjoint operator of the multiplication operation by the Kähler form Ωχ on
G/P ; recall that Ωχ is the K –invariant form representing c1(ζ). We will show
that the Chern connection satisfies the Einstein–Hermitian condition which says
that

ΛχΩL(P ) ∈ z(L) (4)

(we showed earlier that z(L) defines a subspace of the space of holomorphic sections
of ad(E(L(P )))); it should be clarified that the condition in (4) says that there
is a fixed element in z(L) independent of the point of G/P such that the section
ΛχΩL(P ) takes that value at any point of G/P (see [AB, page 220, Definition 3.2],
[RS]).

Since both the Chern connection on E(L(P )) and the Kähler form Ωχ on
G/P are preserved by the action of K , it follows immediately that the section
ΛχΩL(P ) in (4) is preserved by the action of K on ad(E(L(P ))).

The isotropy subgroup at eP ∈ G/P , for the action of K on G/P , is
K(P ). Since K(P ) is a maximal compact subgroup of L(P ), we have

(l(P ))K(P ) = z(L)

for the adjoint action of K(P ) the Lie algebra of L(P ); here (l(P ))K(P ) is the space
of all K –invariants. Since K preserves ΛχΩL(P ) we conclude that the evaluation

ΛχΩL(P )(eP ) ∈ z(L) .

Now, since the action of K on G/P is transitive and ΛχΩL(P ) is K –invariant, it
follows that ΩL(P ) satisfies the Einstein–Hermitian condition stated in (4).

Therefore, the principal L(P )–bundle E(L(P )) over G/P is polystable
[RS, page 24, Theorem 1], [AB, page 221, Theorem 3.7]. We will use the criterion
in Proposition 2.3 to prove the E(L(P )) is stable. For that we need the following
proposition.

Proposition 2.5. Let V be a nontrivial irreducible L(P )–module such that
V ∼= V ∗ . Let EV = (E(L(P )) × V )/L(P ) be the vector bundle over G/P
associated to E(L(P )) for V . Then,

H0(G/P, EV ) = 0 .
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Proof. To prove the proposition, first note that the action of G on E(L(P ))
induces an action of G on EV lifting the action of G on G/P . Assume that
H0(G/P, EV ) 6= 0. Take a nonzero holomorphic section s of EV . Let W ⊂ EV

be the coherent subsheaf generated by all the translations of s by the elements of
G . Since the action of G on G/P is transitive, W is a subbundle of EV .

The fiber of EV over eP ∈ G/P is naturally identified with V (send any
v ∈ V to the element in (EV )eP defined by (e , v)). The isotropy subgroup P
of eP (for the action of G on G/P ) acts on the fiber (EV )eP ; the action of P
induces an action of L(P ) on (EV )eP , and the induced action coincides with the
L(P )–module structure of V .

Since W is generated by all translates of a section, the subspace

WeP ⊂ (EV )eP = V

is left invariant by the action of L(P ). This, in view of the given condition that
V is an irreducible L(P )–module, implies that W = EV . In particular, EV is
globally generated (generated by its global sections).

Since V ∼= V ∗ , we have EV
∼= E∗

V . Hence the dual vector bundle E∗
V is

also globally generated.

We will now prove that EV is a trivial vector bundle.

Fix a point x0 ∈ G/P . Take holomorphic sections

vj ∈ H0(G/P, EV ) ,

j ∈ [1 , dimV ] , such that {vj(x0)}dim V
j=1 is a basis of the fiber (EV )x0 . Now consider

the homomorphism from the trivial vector bundle

ψ : (G/P )× Cdim V −→ EV

defined by (z ; c1 , · · · , cdim V ) 7−→
∑dim V

j=1 cjvj(z), where z ∈ G/P and vj ∈ C .
This homomorphism ψ of vector bundles is an isomorphism over a Zariski open
subset of G/P containing x0 (as it is an isomorphism over x0 ). Now, if ψ is not
an isomorphism everywhere, then the dual homomorphism

ψ∗ : E∗
V −→ (G/P )× Cdim V

makes E∗
V a proper subsheaf of the vector bundle (G/P ) × Cdim hi . Since all the

global sections of a trivial vector bundle (G/P ) × Cdim V are constant sections,
the dimension of the space of all global sections of any proper subsheaf of the
vector bundle (G/P )×Cdim V is less than dimV . This means that if ψ is not an
isomorphism over G/P , then E∗

V is not globally generated. This contradicts the
earlier obtained conclusion that E∗

V is globally generated. Therefore, ψ must be
an isomorphism. Hence EV is a trivial vector bundle.

Since V is a nontrivial L(P )–module, the associated vector bundle EV

is not trivial, contradicting the earlier observation. Therefore, we conclude that
H0(G/P, EV ) = 0. This completes the proof of the proposition.

Continuing with the proof Lemma 2.4, let

l(P ) ∼= z(L)⊕ (
m⊕

i=1

Vi)
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be a decomposition of the L(P )–module l(P ) (module structure is defined by
the adjoint action), where each L(P )–module Vi is nontrivial and irreducible and
z(L) is the center. Note that as L(P ) is reductive, we have l(P ) ∼= l(P )∗ as
L(P )–modules. Therefore, each L(P )–module Vi is self–dual.

The above decomposition of l(P ) induces a decomposition

ad(E(L(P ))) ∼= (G/P × z(L))⊕ (
m⊕

i=1

EVi
) ,

where EVi
= (E(L(P )) × Vi)/L(P ) is the vector bundle associated to E(L(P ))

for the L(P )–module Vi , and G/P × z(L) is the trivial vector bundle over G/P
with fiber z(L).

From Proposition 2.5 it follows that

H0(G/P, EVi
) = 0 ,

and hence we have
H0(G/P, ad(E(L(P )))) = z(L) .

Now using Proposition 2.3 we conclude that E(L(P )) is stable. This completes
the proof of the lemma.

Fix an irreducible homomorphism

ρ : P −→ H ,

where H is reductive. Let E(H) := (G×H)/P be the principal H –bundle over
G/P obtained by extending the structure group of the P –bundle E using ρ . (The
action of any p ∈ P sends any (g , h) ∈ G×H to (gp , ρ(p−1)h).)

The following theorem, which follows from Lemma 2.4 and Proposition
2.2, was proved in [Rm] under the two assumptions that Pic(G/P ) = Z and
H = GL(n,C) (see [Rm, page 168, Theorem 2]).

Theorem 2.6. Let ρ : P −→ H be an irreducible homomorphism. The asso-
ciated principal H –bundle E(H) over G/P is stable with respect to any polariza-
tion on G/P .

Proof. From Lemma 2.1 it follows that ρ = ρ′ ◦ β , where

ρ′ : L(P ) −→ H

is a homomorphism and β is defined in (1). Consequently, E(H) is identified with
the principal H –bundle over G/P obtained by extending the structure group of
E(L(P )) using ρ′ .

Consider the connection on E(H) induced by the Einstein–Hermitian con-
nection on E constructed in the proof of Lemma 2.4. If

ΩH ∈ C∞(G/P, Ω1,1
G/P (ad(E(H))))

is the curvature of the induced connection, then

ΛχΩH = dρ′(ΛχΩL(P )) ∈ C∞(G/P, ad(E(H))) , (5)
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where ΛχΩL(P ) is as in (4) and

dρ′ : l(P ) −→ h (6)

is the homomorphism of Lie algebras defined by ρ′ (here h is the Lie algebra of
H ).

From the second part of Lemma 2.1 it follows that

dρ′(z(L)) ⊂ z ,

where z (respectively, z(L)) is the center of h (respectively, l(P )), and dρ′ is
defined in (6). This and (5) together immediately imply that the connection on
E(H) induced by the Einstein–Hermitian connection is also Einstein–Hermitian.
Consequently, the H –bundle E(H) is polystable.

Consider the decomposition of the L(P )–module

h ∼= z⊕ (
n⊕

i=1

V ′
i )

for the adjoint action, where each V ′
i is an irreducible L(P )–module. From the

first part of Proposition 2.2 it follows that each V ′
i is nontrivial.

Since h∗ ∼= h , we have (V ′
i )
∗ ∼= V ′

i for each i ∈ [1 , n] . Now using
Proposition 2.5 it follows that H0(G/P, EV ′

i
) = 0, i ∈ [1 , n] , where EV ′

i
is the

vector bundle over G/P associated to the L(P )–bundle E(L(P )) for the L(P )–
module V ′

i . Consequently, we have

H0(G/P, ad(E(H))) ∼= z ,

where ad(E(H)) = (E(H)× h)/H is the adjoint bundle (note that ad(E(H)) ∼=
((G/P )× z)⊕ (

⊕n
i=1EV ′

i
). Finally, using Proposition 2.3 it follows that E(H) is

polystable. This completes the proof of the theorem.

Note that if ρ : P −→ H is a homomorphism with the property that the
homomorphism dρ′ (defined in (6)) takes the center z(L) to z , then the principal
H –bundle E(H) is polystable; the assumption in Theorem 2.6 that ρ is irreducible
was used only to prove that the polystable bundle E(H) is stable.

Let V be a complex vector space of dimension n . Let P ⊂ SL(V ) be a
parabolic subgroup. So there is a filtration

0 = V0 ⊂ V1 ⊂ · · · ⊂ Vl−1 ⊂ Vl = V

of subspaces such that P is the space of all automorphisms T of V with T ∈
SL(V ) and T (Vi) = Vi for all i ∈ [0 , l] . The Levi quotient of P is described as
follows:

L(P ) ⊂
l∏

i=1

GL(Vi/Vi−1) (7)

is the subgroup defined by all
∏l

i=1Ai ∈
∏l

i=1 GL(Vi/Vi−1),

where Ai ∈ GL(Vi/Vi−1), such that
∏l

i=1 det(Ai) = 1.
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We use the convention that W⊗0 := C and W⊗−j = (W ∗)⊗j if j ≥ 1.
Consider the L(P )–module

Wa1,··· ,al
:=

l⊗
i=1

(Vi/Vi−1)
⊗ai ,

where ai ∈ Z . The center ZL(P ) of L(P ) acts as scalar multiplications on
Wa1,··· ,al

; in other words, ZL(P ) is mapped to the center of GL(Wa1,··· ,al
). There-

fore, the vector bundle over G/P associated to the L(P )–module Wa1,··· ,al
is

polystable (with respect to any polarization on G/P ).

If we have −1 ≤ ai ≤ 1 for each i ∈ [1 , l] , then the homomorphism

L(P ) −→ GL(Wa1,··· ,al
)

defined using the L(P )–module structure is clearly irreducible. Therefore, from
Theorem 2.6 we conclude that the vector bundle over G/P associated to the L(P )–
module Wa1,··· ,al

, where ai ∈ {−1 , 0 , 1} for each i , is stable with respect to any
polarization of G/P .

More generally, let W ′
i , i ∈ [1 , l] , be an irreducible GL(Vi/Vi−1)–module.

(For example, we can take W ′
i = Symki(Vi/Vi−1).) So

W ′ :=
l⊗

i=1

W ′
i

is a
∏l

i=1 GL(Vi/Vi−1)–module, and using the inclusion in (7) W ′ is a L(P )–
module. Since each W ′

i is an irreducible GL(Vi/Vi−1)–module, it follows immedi-
ately that W ′ is an irreducible L(P )–module. Therefore, Theorem 2.6 says that
the vector bundle over G/P associated to the L(P )–module W ′ is stable.

Consider the special case where l = 2. So P is a maximal parabolic sub-
group and G/P is a Grassmannian. The vector bundle over G/P corresponding
to the L(P )–module W−1,1 is the tangent bundle of the Grassmannian. Therefore,
the tangent bundle of a Grassmannian is stable.

Remark 2.7. The connection on E(H) induced by the Einstein–Hermitian
connection (constructed in the proof of Lemma 2.4) on the L(P )–bundle E(L(P ))
can be described as follows. Let K(H) ⊂ H be a maximal compact subgroup
such that ρ(K(P )) ⊂ K(H), where ρ is as in Theorem 2.6 and K(P ) = K ∩ P
as before. Since E(H) is the extension of structure group of E using ρ , and ρ is
defined using a homomorphism from L(P ) to H , it follows that the reduction of
structure group EK(L(P )) ⊂ E(L(P )) in (2) gives a reduction of structure group
of E(H)

E(H)K(H) ⊂ E(H)

to K(H) ⊂ H . This reduction is constructed using the natural inclusion

E(H)K(H) := (EK(L(P ))×K(H))/K(L(P )) ⊂ (E(L(P ))×H)/L(P ) =: E(H) .

The connection on E(H) induced by the Einstein–Hermitian connection on
E(L(P )) is identified with the Chern connection on E(H) corresponding to the
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above reduction of structure group E(H)K(H) to the maximal compact subgroup.
Indeed, this identification follows immediately by comparing this Chern connec-
tion with the construction of the Einstein–Hermitian connection on E(L(P )). As
it was noted in the proof of Theorem 2.6, the induced connection on E(H) is the
Einstein–Hermitian connection on it.

3. Harder–Narasimhan reduction

The top exterior power of the tangent bundle TG/P is an ample line bundle over
G/P . In this section we fix the polarization on G/P defined by

∧top TG/P .

As before, let E be the principal P –bundle defined by the projection of
G to G/P . The principal G–bundle E(G) over G/P obtained by extending the
structure group of E using the inclusion P ↪→ G is trivial. Indeed, E(G) has a
natural section that sends any point gP ∈ G/P to the point in E(G) defined by
(g , g−1). Therefore, the G–bundle E(G) is trivial.

Now, let EL(G) be the principal G–bundle obtained by extending the
structure group of the L(P )–bundle E(L(P )) using the inclusion of L(P ) in G .
The G–bundle EL(G) is not trivial, in fact, it is not even semistable (as it will be
shown later). We will describe its Harder–Narasimhan reduction.

Let Q ⊂ G be the opposite parabolic of P . So the roots (with respect to
the fixed pair (B , T )) corresponding to the Lie algebra of Q are dual to the roots
corresponding to the Lie algebra of P . We have P ∩Q = L(P ), so both P and
Q share a common Levi subgroup.

Let EL(Q) be the principal Q–bundle over G/P obtained by extending
the structure group of E(L(P )) using the inclusion of L(P ) in Q . Since L(P ) ⊂
Q ⊂ G , we have

EL(Q) ⊂ EL(G)

which defines a reduction of structure group of EL(G) to Q .

Proposition 3.1. The reduction EL(Q) ⊂ EL(G) to Q is the Harder–Nara-
simhan reduction of the G–bundle EL(G) with respect to the polarization on G/P
defined by

∧top TG/P .

Proof. Let L(Q) := Q/Ru(Q) be the Levi quotient, where Ru(Q) is the
unipotent radical of Q . Let EL(Q)(L(Q)) be the principal L(Q)–bundle obtained
by extending the structure group of EL(Q) using the quotient map Q −→ L(Q).
The first of the two conditions for a Harder–Narasimhan reduction says that
EL(Q)(L(Q)) should be semistable (see [AAB, page 694, Theorem 1]).

Since P and Q share a common Levi subgroup L(P ), we have L(Q) ∼=
L(P ), and furthermore, EL(Q)(L(Q)) is identified with E(L(P )) using the the
isomorphism of L(Q) with L(P ). From Theorem 2.6 we know that the princi-
pal L(P )–bundle E(L(P )) is semistable. Therefore, the principal L(Q)–bundle
EL(Q)(L(Q)) is semistable.

Let Rn(q) be the Lie algebra of the unipotent radical Ru(Q) of Q . Con-
sider the L(Q)–module Rn(q)/[Rn(q) , Rn(q)]. The second and final condition in
[AAB, page 694, Theorem 1] for a Harder–Narasimhan reduction says that for any
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irreducible L(Q)–submodule

V ⊂ Rn(q)

[Rn(q) , Rn(q)]
, (8)

the associated vector bundle over G/P

EL(Q)(V ) = (EL(Q)(L(Q))× V )/L(Q) (9)

(associated to the principal L(Q)–bundle EL(Q)(L(Q)) for the L(Q)–module V )
should be of positive degree.

To prove that the vector bundle EL(Q)(V ) in (9) is of positive degree, first
note that Rn(q) is identified with the quotient of the Lie algebra of G by the Lie
algebra of P . This identification makes Rn(q) a P –module. Furthermore, the
vector bundle (E × Rn(q))/P (associated to the principal P –bundle E for the
P –module Rn(q)) is identified with the (holomorphic) tangent bundle TG/P .

Since V in (8) is a quotient of the L(P )–module Rn(q), we conclude that
the vector bundle EL(Q)(V ) in (9) is a quotient of the tangent bundle TG/P .

The tangent bundle TG/P is polystable of positive degree. Indeed, G/P
admits a Kähler–Einstein metric (see [AzBi] for an explicit construction of a
Kähler–Einstein metric on G/P ); the existence of a Kähler–Einstein metric on
G/P implies that TG/P is polystable with respect to the polarization defined
by

∧top TG/P . Therefore, any quotient bundle of TG/P , in particular V , is of
positive degree. This completes the proof of the proposition.
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