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Abstract. We investigate new formulas for the dimension and superdimen-
sion of covariant representations V) of the Lie superalgebra gl(m|n). The notion
of t-dimension is introduced, where the parameter t keeps track of the Z-grading
of V). Thus when ¢ = 1, the t-dimension reduces to the ordinary dimension,
and when ¢t = —1 it reduces to the superdimension. An interesting formula
for the ¢-dimension is derived from a recently obtained new formula for the su-
persymmetric Schur polynomial sy(z/y), which yields the character of V). It
expresses the t-dimension as a simple determinant. For a special choice of A,
the new t-dimension formula gives rise to a Hankel determinant identity.

1. Introduction

Let g be the Lie superalgebra gl(m|n). The general linear Lie superalgebra is
one of the standard families of classical Lie superalgebras. Lie superalgebras are
characterized by a Z,-grading g = g5 ¢gi. For the general theory on classical Lie
superalgebras and their representations, we refer to [5, 6, 16].

Let h C g be the Cartan subalgebra of g, and g =g_1®go D g1 be the Z-
grading that is consistent with the Z,-grading of g. Note that gy = gg = gl(m) ®
gl(n). The dual space h* of b has a natural basis {e1,...,€n,01,...,d,}, and the
roots of g can be expressed in terms of this basis. We shall work here with the so-
called distinguished choice [5] for a triangular decomposition of g. In that case, the
positive even roots are given by {e; —¢;|1 <i < j <m}U{d —4;|1 <i<j<n},
and the positive odd roots by {¢; —d;|1 <i<m, 1 <j <n}.

Representation theory of Lie superalgebras, and in particular of gl(m|n) or
its simple counterpart sl(m|n), is not a straightforward copy of the corresponding
theory for simple Lie algebras. It is mainly due to the existence of atypical
representations [6] that problems occur [22, 23, 24|, in particular to compute
the character. Only recently a solution has been proposed to some of these
problems [17, 3] for gl(m|n). In this paper, however, we shall be dealing only with
the so-called covariant representations of gl(m|n), for which an explicit character
formula is known.

Let V be a finite-dimensional irreducible representation of g. Such modules
are h-diagonalizable with weight decomposition V' = &,V (1), and the character is
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defined tobe ch V' =3 dim V/(u) e”, where e (u € h*) is the formal exponential.
Let A be the highest weight of V. We shall consider the specialization of ch V'
determined by
Fle“)=1 (i=1,...,m) 1
Fe)=t (j=1,... n). (1)

This specialization is consistent with the Z-grading of g, and the corresponding
Z-grading of V. The specialization of the character of V' under F' is referred to
as the t-dimension of V' and denoted by dim(V'):

dim (V) = F(ch V) Zdlmv et). (2)

Often, the t-dimension would be defined [7, §10] as F(e™*chV), with A the
highest weight of V'; but here (2) is more convenient. The t-dimension of V
stands for the polynomial

F(e") ) dimV_; ¢/, (3)

where V =Vo @ V_ 1 ®V_ 5P --- is the Z-grading of V. Note that for the Z,-
grading V = V5 & V; we have Vg = Vi@V o®--- and Vi =V 1V 36 ---
Therefore, the dimension of V' is found by putting ¢ = 1 in the expression for the
t-dimension, whereas the superdimension of V' is found by putting ¢t = —1. So
the t-dimension can also be seen as an extension of the notion of dimension and
superdimension.

This paper is dealing with the computation of the t-dimension of a partic-
ular class of finite-dimensional irreducible representations of gl(m|n), namely the
covariant representations. These were introduced by Berele and Regev [2], and
Sergeev [18]. They showed that the tensor product of N copies of the natural
(m + n)-dimensional representation of gl(m/n) is completely reducible, and that
the irreducible components V) can be labeled by a partition A of N such that A
is inside the (m,n)-hook, i.e. such that A,+1 < n. Berele and Regev not only
introduced these representations, they also gave a character formula for them. The
character of V) is known as a supersymmetric Schur function [2, 9, 20]. It is a
polynomial in variables x; (i =1,...,m)and y; (j =1,...,n) with z; = e and
y; = €%, and denoted by

ch V\ = s\(x/y). (4)

There exist a number of expressions for s)(xz/y). One is a combinatorial
expression, by means of supertableaux [2, 9]. Another expression is a formula
due to Sergeev and Pragacz [14, 21, 15]. These two formulas, however, are less
convenient to determine the t-dimension. In order to compute the ?-dimension,
there are two useful formulas. The first is the classical formula relating the super-
symmetric Schur function s,(x/y) to the determinant of elementary or complete
supersymmetric polynomials. These formulas go back to [4, 1], see also [9]. The
second is a new determinantal formula for supersymmetric Schur polynomials [12].

For the first formula, consider the complete supersymmetric functions de-
fined by
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where h,_; and e, are the complete and elementary symmetric functions [11]
respectively. Then the supersymmetric Schur polynomial is given by

s@fy) = _det (his(a/y)). (6)

1<, j<e(A)

where ¢ = ((\) is the length of the partition A = (A1, Ag,..., Ar). The polynomials
sx(x/y) are identically zero when A, 11 > n.

Since z; = €% and y; = €%, the specialization (1) corresponds to putting
each z; =1 and y; =t in s)(z/y). For the elementary and complete symmetric
functions, such specializations are well-known:

o ("= () ©
et <m) (8)

Thus it follows from (5) and (6) that

hr(l‘l, c. ,$m)

er(Ty, ... o)

Proposition 1.1. The t-dimension of Vy is given by the determinant
Xi—i+j S
. m+XN—i+j—k—1\/[n)\,
dim, V), = det . 9
A= S ( ;0 ( N—itj—k )(k) (9)

Although this formula is simple to derive, it should be observed that in
general the matrix elements in the right hand side of (9) do not have a “closed
form” expression [13]: they remain polynomialsin ¢. Even for ¢ = 1, the expression

> et (m+:__,f_1) (7) cannot be simplified in general. Only for ¢ = —1 we have

N () G

This is related to the fact that

B0 ()

k=0

in terms of the F) hypergeometric function [13, 19], and the terminating oF)
series — with general parameters — is summable only with argument 1.

This implies that for t = —1, i.e. the superdimension formula sdim V), the
expression (9) can be simplified:

sdimVy =  det ((m_”_HAZ’_ZH)) (11)

1<i,j<O(N) Ai—1+]

Hi<j()‘i —i— X +7) '
T TL i+ l()\))] H(m —n+1—i). (12)

Herein, (a), = a(a+1)---(a+n — 1) is the Pochhammer symbol [19], and the
determinant in (11) can be written in closed form using [10, (3.11)]. So in general
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the superdimension has a closed form expression (12), whereas the dimension has
not.

Observe that (12) yields: if m < n then sdim V), = 0 when A\;+m > n and
sdim V, # 0 when A\; +m < n; if m > n then sdim V), = 0 when A} +n > m and
sdim V) # 0 when A} +n < m (where X is the conjugate of \).

In the following section we shall consider the new determinantal formula for
supersymmetric Schur polynomials [12], and use it to compute the ¢-dimension.
This time, the expression for dim(V}) is quite different from (9): it reduces again
to a determinant, but now the matrix elements are closed forms in t instead of
hypergeometric series in ¢. We shall then simplify this expression, and discuss
some applications.

2. A formula for the ¢-dimension

The starting point of our new t-dimension formula is the recently introduced de-
terminantal formula for the supersymmetric Schur function s, (z/y) [12], deduced
using a character formula of Kac and Wakimoto [8]. Let z = 2™ = (a1,...,2,,)
and y = y™ = (y1,...,yn); let X be a partition with A\, < n (i.e. X is inside
the (m,n)-hook), and let k be the (m,n)-index of A:

k =min{j|\; +m+1—j <n}; (13)

see [12] for its meaning: in particular, m — k+ 1 is the atypicality of the represen-
tation V). As usual, A" denotes the conjugate of A. The new formula reads:

1 Aj+m—n—j
Ti+Y; ) 1<i<m ? 1<i<m

sx(z/y) = £D~" det ( i<i<n iS5 | (14)

N+n—m—i

y.] ) 1<i<n—m+k—1
1<j<n

with
Hi<j (2 — ;) Hz‘<j(yi —Yj)
Hi,j (@i + y;)
Observe that the sign in (14) is (—1)™"~™"*~1: since its role is not essential here,
we shall usually just write =+.

D=

In order to deduce a t-dimension formula from (14) we will need some simple
properties of symmetric polynomials and a careful analysis of the determinant
in (14) using row and column operations.

We have already mentioned the complete and elementary symmetric func-
tions. Another class that we need here are the monomial symmetric functions
my(z) [11]. The number of terms in my(z) is easy to count, so that we have the
following counterpart of (8):

k
m!
Moro1r1 . kk) (T1, - - -5 Trm) == where Zn =m. (15)

ol
=1 To'T1:...Tg! P

The following lemma gives some simple decomposition properties of sym-
metric functions:
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Lemma 2.1.  Let x = 2’ + 2" be a decomposition of x = (x1,...,%y) in two
disjoint subsets. Then

he(2) = hi(a e (2”) and ma(z) = > my(a')m, ("),

pUv=A>A

Proof.  The proof for the h,(x) polynomials follows immediately from the gen-
erating function for these polynomials [11, (1.2.5)]. For the m,, we use induction
on |z”|. First, let 2" = (z,,). By the definition of my(z), with A = (A1, Aa,...),
if follows that

male) = male) + 37 ey, (o) = 3 @) lem).

AUp=A pUr=X

Now assume that the property holds for |2”| < ¢. Let ¥’ = 2/ \ {x;} and
" = 2" U{x;} for a certain z; € 2’. Then, using the induction hypothesis:

m(@) = X mlame) = (X ml o) Jm )

TUK=A TUR=\ “pUn=t1
= X @) X mfedm)) = 5 mm ).
pUy=A nUk=v pUr=X

Next, we shall use a number of times the same sequence of elementary row
or column operations in matrices. So it is convenient to fix these in an algorithm:
Algorithm 1 Given a matrix with at least m rows, with R; denoting row ¢. The
algorithm consists of the following row operations:

R, — R .

Step 1: R, — —1, for 1 <i <m;
T, — 1
R, — R .

Step 2: R; —>—2, for 2 <1 <m;
T; — X9
R, — R,_

Stepm —1: R, — — ol

Tm — Tm—1

So the total number of row operations is m(m — 1)/2.
Algorithm 2 Given a matrix with at least n columns, with C; denoting column
j. This algorithm consists of the following n(n — 1)/2 column operations:

c,—-C
Step 1: C; — J—l, for 1 < j <mn;
Step 2: C; —>j;2, for 2 < j < n;
Yij — Y2
C,—C,_
Stepn—1: c, — o nl

Yn — Yn—1 '
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Lemma 2.2.  Let (r1,79,...) be a sequence of (non-negative) integers, and con-

sider matrices
O ) R (%)

1<j<q 1<j<q

Then Algorithm 1 transforms A into A*, and Algorithm 2 transforms B into B*,
with

A = (hrj_i+1($1, N ,l’l)> s 5 B* = (hn‘—j-l-l(yl’ Ce >yj)> s .

1<j<q 1<j<q

Proof. It is sufficient to give the proof for A only (so we assume p > m).
Denote by A®) the matrix obtained after step s of the algorithm. We shall prove
that the (i, j)-element of A®) is given by A = hy,_s(21,...,74,7;), by induction
on s. Clearly, in the first step the elements h r;(7;) are replaced by

T'j ’I"j
r,w —XT 1 9 _9 1
1 r r T T
——=x 4z o+ Adww) A = hey (T, m).
T, — I
Now we can assume that after step s we have A( = hp,—s(w1,.. ., 25, 2;) for all

i > s. Step s+ 1 consist of the operatlons R, — (Ri — Rsy1)/(x; — x541) for all
¢ > s+ 1. Thus the element A@ ; becomes, using Lemma 2.1 a number of times:

hrj—s(xh - Ty xz) - h/T]'—S(mla s wrswrs-&—l) o
Ti— Ts41
rj—s—1 $Tj_8 o 7‘] s—I
_ 2 : i s+1
= hl(l’l,...,x3>
—o Ty — Ts41
rj—s—1
. rj—s— -1 rj—5—1—2
= g hi(zq, ... x)(x; +z; Tsp1 + ...
rj—s—1—2 rj—s—l—1
+xx) + x5 )
rj—s—1

= Z hl(xla s yxs>hrj—s—l—1(xs+lu Iz) = hrj—s—l(xla cees Lt xz)

Since the algorithm applies in total + — 1 row transformations on row ¢, it follows
that A:,j = h,nj_i+1<l'1, R ,[Ei) . |

1
Lemma 2.3.  Algorithm 1 transforms R = ( ) into
T + Yy ‘

R* = (H,:(i—)l;y])) 153
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Proof.  Denote by R the matrix obtained after step s of the algorithm. We
shall prove that the (i, j)-element of R®) is given by

RO — (=1 |
S T (4 ) (2 + ;)

In the first step, the operations are R; — 1}%5‘11 for ¢ > 1, so

R(l)—(1—1>1— 1
m Tit+yY; T1+Y;)Ti—T1 <x1+yj)(37i+yj>'

Next we use induction on s. One finds:

(s+1) _ (=1 B (—1)* 1
i = (HL(JCI +y) i +y) T (@ +y)(Tsm + yj)) x
(-1 (—1)

I +y) (e +yi) (@ +y;)

Since the algorithm applies in total ¢ — 1 row transformations on row ¢, the result
follows. u

i~ Ts41

The following is a technical lemma on partitions, using the reverse lexico-
graphic ordering [11, §1.1] for partitions of the same integer. So when we write
A <, this means that A and p are partitions of the same integer (i.e. || = |ul)
with either A = p or else the first non-vanishing difference \; — u; negative.

Lemma 2.4.  Assume that o, 3,v, u are partitions with {(a) = s+ 1, ((f) =
s+2 and ¢(v) =2. Then, fori,s,t € N:

a<(i,1%), put)=«a v< (1) & B=puUv < (i,15Mh).

Proof.  Assume that a < (4,1°), pU (t) = o« and v < (t,1), then |8 =
lw| + v = (i +s—1t)+ (t+1) = |z, 15)]. Furthermore B; = max(uy,v;) <
max(py,t) = oy <1, s0 8 < (i,15%1).

Conversely, assume that 3 = pUv < (i,1°%1), then v is of the form v = (B, 3;)
(B, >0),s0v < (B + 06, —1,1). Put t = By + 5, — 1 and o = p U (¢). Then
ol = |p|+|@)=(C+s+1 =0 —0B)+ B+ 06 —1) =i+ s. Since {(u) = s
we have that |u| > s, and [(t)] < i. So a; = max(u,t) < max(u,i) < i, thus
a < (i, 1%). .

This technical lemma is needed in the following:

Lemma 2.5. Let Y; = ﬁ and consider the matrix
J
-1 i+1 ) )
Ro (2D vy
(1 + yj)’ 1<i<m I ) i<i<m
1<j<n 1<j<n

Algorithm 2 transforms R into

R*:((_1)z'+j Z ma()q,...,yj)>l<i<p.

a<(i,1971) 1<5<n
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Proof.  Observe that 1/(y; — y;) = Y;Y;/(Y; — Yi). Denote, as usual, by R()
the matrix obtained after step s of the algorithm. We shall prove that

RY) = ()™ 3" ma(Vi,. ., YY), for all j > s.
a<(i,1%)

C; —Cy
%-Y,

Step 1 consist of the column operations C; — Y1Y;, so R( ) is given by

‘ . V1Y
— 1)ty 1)i+ty 1
(=) = i)
— (_1>Z+2()/11Y1+Y72 1Y12++§/J2}/12_1+Y7Y11)
= (-1 ) m.(,Y)).
a<(i,1)

Next we use induction on s. This yields, using Lemma 2.1:

R(sfl)
(N
| VY,
= (—1)2+S+1 Z (ma(}/h...,}/s,}/})_ma(}/lw'w}/s?Y;Jrl)) I
a<(i,1%) Yot =5
Y)Y,
- RS i Y
Loy it s+1 — 1
a<(z I
e TS ) S )
a<(i,1%) pU(t)=c v<(t,1)

Next, we use Lemma 2.4 and finally Lemma 2.1 again:
s+1 i+s
Rl(f ) = (—1)"* +2 Z ( Z mu(}/lw-wyts)mu(}/s-i-lay;'))
B<(i,15+1) SpUv=p

= (_1)i+s+2 Z m,@<Yv1>"'7Yjs+17Y})'

BL(4,15F)

Since the algorithm applies in total 7 — 1 column transformations on column j,
the result follows. [ |

The next lemma is about the specialization of such matrix elements. By
y =1 we mean the substitution (y; =1,...,y; = 1).

_<i+j—2)
y=1 j=1/)

Proof. It is easy to verify (e.g. using (15)) that Ry ; =1 and R;; = 1. Now,

Ri; = Z Mo (Y1, - - -5 Yj)

Lemma 2.6.

R;; = Z Mo (Y1, - - -5 Yj)

ag(i,1971)

a<(i,15+1) y=1
= (( Z mu(yhay]*l))yj_'_( Z mV<y177yJ>>yJ>
1< (i,19-2) v<(i—1,19-1) y=1
Ri;1+ Ry

Hence the result follows. m
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Now we have all ingredients to determine the specialization of (14).

Theorem 2.7.  The t-dimension of Vy is given by dim(Vy) = £(1+¢)™" R(\)
with

(=1 (itj—2 Nibrmn—i
((1+t)i+j*1(zjj—1 ) >1§i§m ( ( ! ?i1n j) ) 1<i<m
R(X) = det 15<n 1<G<ho1
(t in—m—i J+1< ;L_lm z) >1Sign_m+k_1 0
1<j<n
(16)

Proof.  Consider the determinant in (14) and apply Algorithm 1 on the corre-
sponding matrix. From Lemmas 2.2 and 2.3 it follows that the first m rows of this
matrix become

<Z(*1¢)) . (h)\-+m—n—i—j+1 (1’1, ces ,xz)) 1<i<m
[Tz (@ty;5) 11§?§<m J 1<j<k—1

I<n

while the determinant has been multiplied by a factor [[. ;(; — ;). Now we can
make the substitution z; = 1; then (14) becomes

m <_(*1>i‘1.> () ) e
Hj(l +y5) d (I4y;)* 1gigm i—1 Lsism,
IT...(vi — ;) et NAn—m—i\ 0
= ' / y-] 1<i<n—m+k—1
1<j<n

Next apply Algorithm 2 on the first n columns of this matrix. Using Lemmas 2.2
and 2.5, this becomes

(D > ma(¥i ) (7)) s

" j 1<j<k—1
H(l +y]> det Otg(i,lj_l) 1<i<m <<
j 1<j<n
(h)\;-+n7mfi—j+1 (yl, R 7yj)) 1<i<n—m4k1 0
1<j<n

Finally, substituting y; = ¢, using Lemma 2.6, and the fact that we are dealing
with homogeneous symmetric polynomials, leads to the result. [ |

Compared to (9), (16) has the advantage that each matrix element is a
simple binomial coefficient multiplied by a power of ¢ or (1 +¢), and no longer a
finite series of type oF}(—t). So in general (16) is easier to compute. Furthermore,
its simple form is more appropriate to deduce certain properties of the ¢-dimension
for particular V), as we shall demonstrate in the following section.

3. Further simplifications, examples and applications

Let A be a partition in the (m,n)-hook, and X" its conjugate. Recall the definition
of the (m,n)-index k of A in (13), and let us also define the related integer r:

k = min{i|\;, + m+ 1 —i < n}, (1<k<m+1);
r=n—-m+k—>\—1
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For the combinatorial meaning of r, see [12]. Since A is in the (m,n)-hook, X is
in the (n,m)-hook, and we can define its (n,m)-index k' and the corresponding
number 7’
E =min{i|\; +n+1—1i<m}, (1<K <n+1)
rr=m-n+k—X\,—1

Applying the determinant formula (14) for sy(z/y) and for sy (y/z) yields
the same, with determinants of transposed matrices. Comparing the orders of the
matrices implies that n+k —1=m + k' — 1, so we have

n+k=m+k, r=Fk—X\ —1, r=k—-\,—1 (17)

Furthermore, from [12, Lemma 3.2] we know that My =Fk—T1forall 1<I<r.
So the binomials on the last r rows of the matrix in (16) take the values

, :
(Aijw?_m_z):(?i_l) for 1 <I<vr, andi= A\, + L.
7 —1 7—1

By the triangularity of the matrix with such binomial coefficients as entries, the

determinant in (16) can thus be reduced according to the last r rows.
Completely analogous, the remaining determinant can be reduced according

to the last 7' columns. What remains is the determinant of a matrix of order

n+k—1—r—1r", and we have

Corollary 3.1.  The t-dimension of V) is given by dim(V)) = £(1+)™" R'()\)

with
(LI i 2 Ajm—n—j
(= () ) o () s
R(A) = det
MAn—m—i—j—r+1 (Aj+n—m—i
(t e o ( j—:—lr—”{ 7J) 1<i<Ag 0
1<j<n—r
(18)
An interesting application follows from this formula for the special case of
A= <(n — a)(m_a)> , where a = 0,1,...,min(m,n). For such a rectangular \, we
have

k=m—-a+1, K=n—a+1,r=n—a, v"=m-—a, \; =0, \, =0,

and so the determinant in (18) reduces:

dlmt(V)\)
(—1) i+ =2
— mn
' —1)"* i+ j4+m+n—2a—2
_ a1 gymerr ) gy (AZDT
1+9) 1$i7%a (1+1¢)ti j—1 ’

The resulting determinant can be further simplified: in the corresponding matrix,
multiply row i by (—1)"(1 +¢)"*! for all 1 < i < a, and then multiply column
7 by (=)™ (1 +¢)77! for all 1 < j < a. This yields:

i+j+m+n—2a—2))

dim (Vy) = (1 +¢)m=20=0) det ( < i1

1<ij<a
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Now the matrix elements have no longer a power of (1 + ¢), but only a binomial
coefficient. The remaining determinant can easily be computed. Taking out
common factors in rows and columns, it becomes

a

(t+m+n—2a—1)! ,
H(z—i—n—a—l) (z—l—m—a—l)'1<(%St<a<(m+n_2a+z)j_l)'

The last determinant is of the form

det <($i)j—1>= det (77") = J] (25—,

1<i,j<a 1<i,j<a

see [10, (2.2)].
So we finally obtain, for A = ((n - a)(m_“)) , that

(m+n—2a+1i)! i

dim,(Vy) = (1+t)(m a)(n— a)H -
— — |

o (n—a+)l(m—a+i)

_ (m—a)(n—a) - (m:i;?:;—ﬂ)
= (1+1) 11

1=0 (m_ia+i)

Comparing this with (9), we obtain a closed form expression for determi-
nants of the type (9) where A = ((n - a)(m_“)) . Replacing m by m+1, m —a
by s, and reversing the order of the rows of the corresponding matrix, this yields,
using the 5 F) notation:

det (<n+z+j) JF, (m—n—@. j,—n —t) )
0<i4,5<s m -n—1—17

m—s (2s+n—m-+i
— (_1>s(s+1)/2(1+t)(s+1)(s+n—m) H ( Zi: )
=1 (s—l—l)

The change of order of the rows implies we are dealing with a Hankel determinant,
and for such determinants the row and column indices are usually starting from
0. This determinant identity can be written in a number of alternative ways. E.g.
applying a transformation on the 5 F7, and denoting ¢/(t 4+ 1) by z, one can write

(s <m).

28+n m—H)
) = (— s(s+1)/2 8+1 m 5) 5+1
oL, (Aii) = (=1) (1- || NGO (19)

where
n+k —m,—n
Ay = F S 20
(e o
Since this is a polynomial identity in n, the condition that n must be an integer

can be dropped. Replacing n by v and z by —v, one can write this in the following
form:



234

MOENS AND VAN DER JEUGT

Corollary 3.2.  Let m and s be positive integers with s < m, u and v arbitrary
variables, and

a3 (M ()

=0

Then the Hankel determinant is given by

( " ( y : m—s (28+u—;1m+i)
N — (1)s(sH+1 s+1)(m—s A s+l

It seems to be difficult to find an independent proof of this corollary, even

with the methods of [10, §2.6]. Here, it is a simple consequence of the two different
t-dimension formulas for a particular V.
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