
Journal of Lie Theory
Volume 15 (2005) 125–134
c© 2005 Heldermann Verlag

Extensions of Super Lie Algebras

Dmitri Alekseevsky, Peter W. Michor∗ , W. A. F. Ruppert

Communicated by K-H. Neeb

Abstract. We study (non-abelian) extensions of a super Lie algebra
and identify a cohomological obstruction to the existence, parallel to the

known one for Lie algebras. An analogy to the setting of covariant exterior

derivatives, curvature, and the Bianchi identity in differential geometry is
shown.
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1. Introduction. The theory of group extensions and their interpretation in
terms of cohomology is well known, see, e.g., [3], [6], [4], [2]. Analogous results
for Lie algebras are dispersed in the literature, see [5], [15], [19]. The case of Lie
algebroids is treated in [14], we owe this information to Kirill Mackenzie.

The present paper gives a unified and coherent account of this subject
for super Lie algebras stressing a certain analogy with concepts from differential
geometry: covariant exterior derivatives, curvature and the Bianchi identity.

In an unpublished preliminary version of this paper [1], the analogous
results for Lie algebras were developed.

2. Super Lie algebras. (See [8], or [16] for an introduction) A super Lie
algebra is a 2-graded vector space g = g0 ⊕ g1 , together with a graded Lie
bracket [ , ] : g × g → g of degree 0. That is, [ , ] is a bilinear map with
[gi, gj ] ⊆ gi+j(mod2) , and such that for homogeneous elements X ∈ gx , Y ∈ gy ,
and Z ∈ gz the identities

[X,Y ] = −(−1)xy[Y,X] (graded antisymmetry)

[X, [Y, Z]] = [[X,Y ], Z] + (−1)xy[Y, [X,Z]] (graded Jacobi identity)

hold. The graded Jacobi identity, shorter
∑

cyclic(−1)xz[X, [Y, Z]] = 0, says
that adX : g → g, Y 7→ [X,Y ] is a graded derivation of degree x , so that
adX [Y, Z] = [adX Y, Z] + (−1)xy[X, adX Z] . We denote by der(g) the super Lie
algebra of graded derivations of g . The notion of homomorphism is as usual,
homomorphisms are always of degree 0.
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3. Describing extensions, first part. Consider any exact sequence of homo-
morphisms of super Lie algebras:

0 → h
i−→ e

p−→ g → 0

Consider a graded linear mapping s : g → e of degree 0 with p ◦ s = Idg . Then
s induces mappings

α : g → der(h) (super connection) by αX(H) = [s(X),H],(3.1)

ρ :
2∧

graded

g → h (curvature) by ρ(X,Y ) = [s(X), s(Y )]− s([X,Y ])(3.2)

which are easily seen to be of degree 0 and to satisfy:

[αX , αY ]− α[X,Y ] = adρ(X,Y )(3.3) ∑
cyclic

(−1)xz
(
αXρ(Y, Z)− ρ([X,Y ], Z)

)
= 0(3.4)

Property (3.4) is equivalent to the graded Jacobi identity in e .

4. Motivation: Lie algebra extensions associated with a principal bun-
dle. In the case of Lie algebras, the extension

0 → h
i−→ e

p−→ g → 0

appears in the following geometric situation. Let π : P → M = P/K be a
principal bundle with structure group K . Then the Lie algebra of infinitesimal
automorphisms e = X(P )K , i.e. the Lie algebra of K -invariant vector fields on P ,
is an extension of the Lie algebra g = X(M) of all vector fields on M by the Lie
algebra h = Xvert(P )K of all vertical K -invariant vector fields, i.e., infinitesimal
gauge transformations. In this case we have simultaneously an extension of
C∞(M)-modules. A section s : g → e which is simultaneously a homomorphism
of C∞(M)-modules can be considered as a connection, and ρ , defined as in 3.2,
is the curvature of this connection. This geometric example is a guideline for
our approach. It works also for super Lie algebras. See [9], section 11 for more
background information. This analogy with differential geometry has also been
noticed in [10] and [11] and has been used used extensively in the theory of Lie
algebroids, see [14].

5. Algebraic theory of connections, curvature, and cohomology. We
want to interpret 3.4 as δαρ = 0 where δα is an analogon of the graded version
of the Chevalley coboundary operator, but with values in the non-representation
h ; we shall see that this is exactly the notion of a super exterior covariant
derivative. Namely, let Lp,y

gskew(g; h) be the space of all graded antisymmetric
p -linear mappings Φ : gp → h of degree y , i.e.

Φ(X1, . . . , Xp) ∈ hy+x1+···+xp
,

Φ(X1, . . . , Xp) = −(−1)xixi+1Φ(X1, . . . , Xi+1, Xi, . . . , Xp).
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In order to treat the graded Chevalley coboundary operator we need the following
notation, which is similar to the one used in [12], 3.1: Let x = (x1, . . . , xk) ∈
(Z2)k be a multi index of binary degrees xi ∈ Z2 and let σ ∈ Sk be a permutation
of k symbols. Then we define the multigraded sign sign(σ,x) as follows: For a
transposition σ = (i, i+ 1) we put sign(σ,x) = −(−1)xi xi+1 ; it can be checked
by combinatorics that this gives a well defined mapping sign( ,x) : Sk →
{−1,+1} . In fact one may define directly sign(σ,x) = sign(σ) sign(σ|x1|,...,|xk|),
where | | : Z2 → Z is the embedding and where σ|x1|,... ,|xk| is that permutation
of |x1| + · · · + |xk| symbols which moves the i-th block of length |xi| to the
position σi , and where sign(σ) denotes the ordinary sign of a permutation in
Sk . Let us write σx = (xσ1, . . . , xσk), then we have

sign(σ ◦ τ,x) = sign(σ,x). sign(τ, σx),

and Φ ∈ Lp,y
gskew(g; h) satisfies

Φ(Xσ1, . . . , Xσp) = sign(σ,x)Φ(X1, . . . , Xp)

Given a super connection α : g → der(h) as in 3.1, we define the graded version
of the covariant exterior derivative by

δα : Lp,y
gskew(g; h) → Lp+1,y

gskew(g; h)

(δαΦ)(X0, . . . , Xp) =
p∑

i=0

(−1)xiy+ai(x)αXi
(Φ(X0, . . . , X̂i, . . . , Xp))

+
∑
i<j

(−1)aij(x)Φ([Xi, Xj ], X0, . . . , X̂i, . . . , X̂j , . . . , Xp)

ai(x) = xi(x1 + · · ·+ xi−1) + i

aij(x) = ai(x) + aj(x) + xixj

for cochains Φ with coefficients in the non-representation h of g . In fact, δα has
the formal property of a super covariant exterior derivative, namely:

δα(ψ ∧ Φ) = δψ ∧ Φ + (−1)qψ ∧ δαΦ

for Φ ∈ Lp,y
gskew(g; h) and ψ ∈ Lq,z

gskew(g; R) a form of degree q and weight z (we
put R of degree 0), where

(δψ)(X0, . . . , Xq) =
∑
i<j

(−1)aij(x)Φ([Xi, Xj ], X0, . . . , X̂i, . . . , X̂j , . . . , Xq)

is the super analogon of the Chevalley coboundary operator for cochains with
values in the trivial g-representation R , and where the module structure is given
by

(ψ ∧ Φ)(X1 . . . , Xq+p) =

=
1
q!p!

∑
σ∈Sq+p

sign(σ,x)(−1)ybq(σ,x)ψ(Xσ1, . . . , Xσq)Φ(Xσ(q+1), . . . , Xσ(q+p)),
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where bi(σ,x) = |xσ1|+ · · ·+ |xσi| .
Moreover for Φ ∈ Lp,y

gskew(g; h) and Ψ ∈ Lq,z
gskew(g; h) we put

[Φ,Ψ]∧(X1, . . . , Xp+q) =

=
1
p! q!

∑
σ

sign(σ,x)(−1)zbp(σ,x)[Φ(Xσ1, . . . , Xσp),Ψ(Xσ(p+1), . . . , Xσ(p+q))]h.

(5.1) The bracket [ , ]∧ is a Z× Z2 -graded Lie algebra structure on

L∗skew(V, h) =
⊕

p∈Z≥0,y∈Z2

Lp,y
gskew(g; h)

which means that the analoga of the properties of section 2 hold for the signs
(−1)p1p2+y1y2 . See [12] for more details.

A straightforward computation shows that for Φ ∈ Lp,y
gskew(g; h) we have

(5.2) δαδα(Φ) = [ρ,Φ]∧.

Note that 5.2 justifies the use of the super analogon of the Chevalley
cohomology if α : g → der(h) is a homomorphism of super Lie algebras or
α : g → End(V ) is a representation in a graded vector space. See [12] for more
details.

6. Describing extensions, continued. Continuing the discussion of section
3, we now can describe completely the super Lie algebra structure on e = h⊕s(g)
in terms of α and ρ :

(6.1) [H1 + s(X1),H2 + s(X2)] =

= ([H1,H2] + αX1H2 − (−1)h1x2αX2H1 + ρ(X1, X2)) + s[X1, X2].

If α : g → der(h) and ρ :
∧2

graded g → h satisfy (3.3) and (3.4) then one checks
easily that formula (6.1) gives a super Lie algebra structure on h⊕ s(g).

If we change the linear section s to s′ = s + b for linear b : g → h of
degree zero, then we get

α′X = αX + adh
b(X)(6.2)

ρ′(X,Y ) = ρ(X,Y ) + αXb(Y )− (−1)xyαY b(X)− b([X,Y ]) + [bX, bY ]
(6.3)

= ρ(X,Y ) + (δαb)(X,Y ) + [bX, bY ].

ρ′ = ρ+ δαb+ 1
2 [b, b]∧.

7. Proposition. Let h and g be super Lie algebras.
Then isomorphism classes of extensions of g over h , i.e. short exact

sequences of Lie algebras 0 → h → e → g → 0 modulo the equivalence described
by commutative diagrams of super Lie algebra homomorphisms
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correspond bijectively to equivalence classes of data of the following form:

(7.1) a linear mapping α : g → der(h) of degree 0,

(7.2) a graded skew-symmetric bilinear mapping ρ : g× g → h of degree 0,

such that

[αX , αY ]− α[X,Y ] = adρ(X,Y )(7.3) ∑
cyclic

(−1)xz
(
αXρ(Y,Z)− ρ([X,Y ], Z)

)
= 0.(7.4)

On the vector space e := h⊕ g a Lie algebra structure is given by

(7.5) [H1 +X1,H2 +X2]e =

= ([H1,H2]h + αX1H2 − (−1)x2h1αX2H1 + ρ(X1, X2)) + [X1, X2]g,

and the associated exact sequence is

Two data (α, ρ) and (α′, ρ′) are equivalent if there exists a linear mapping
b : g → h of degree 0 such that

α′X = αX + adh
b(X) and

(7.6)

ρ′(X,Y ) = ρ(X,Y ) + αXb(Y )− (−1)xyαY b(X)− b([X,Y ]) + [b(X), b(Y )],

ρ′ = ρ+ δαb+ 1
2 [b, b]∧,(7.7)

the corresponding isomorphism being

e = h⊕ g → h⊕ g = e′, H +X 7→ H − b(X) +X.

Moreover, a datum (α, ρ) corresponds to a split extension (a semidirect product)
if and only if (α, ρ) is equivalent to a datum of the form (α′, 0) (then α′ is a
homomorphism). This is the case if and only if there exists a mapping b : g → h
such that

(7.8) ρ = δαb− 1
2 [b, b]∧.

Proof. Direct computations.

8. Corollary. Let g and h be super Lie algebras such that h has no (graded)
center. Then isomorphism classes of extensions of g over h correspond bijectively
to homomorphisms of super Lie algebras

ᾱ : g → out(h) = der(h)/ ad(h).
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Proof. Choose a linear lift α : g → der(h) of ᾱ . Since ᾱ : g → der(h)/ ad(h)
is a homomorphism, there is a uniquely defined skew symmetric linear mapping
ρ : g × g → h such that [αX , αY ] − α[X,Y ] = adρ(X,Y ) . Condition (7.4) is then
automatically satified. For later use we record the simple proof:∑

cyclicX,Y,Z

(−1)xz
[
αXρ(Y,Z)− ρ([X,Y ], Z),H

]
=

∑
cyclicX,Y,Z

(−1)xz
(
αX [ρ(Y,Z),H]− (−1)(x(y+z))[ρ(Y,Z), αXH]−

− [ρ([X,Y ], Z),H]
)

=
∑

cyclicX,Y,Z

(−1)xz
(
αX [αY , αZ ]− αXα[Y,Z] − (−1)(x(y+z))[αY , αZ ]αX+

+ (−1)(x(y+z))α[Y,Z]αX − [α[X,Y ], αZ ] + α[[X,Y ]Z]

)
H

=
∑

cyclicX,Y,Z

(−1)xz
(
[αX , [αY , αZ ]]− [αX , α[Y,Z]]− [α[X,Y ], αZ ] + α[[X,Y ]Z]

)
H

= 0.

Thus (α, ρ) describes an extension, by Proposition 7. The rest is clear.

9. Remark. If the super Lie algebra h has no center and a homomorphism
ᾱ : g → out(h) = der(h)/ ad(h) is given, the extension corresponding to ᾱ is
given by the pullback diagram

where der(h)×out(h) g is the Lie subalgebra

der(h)×out(h) g := {(D,X) ∈ der(h)× g : π(D) = ᾱ(X)} ⊂ der(h)× g.

We owe this remark to E. Vinberg.
If the super Lie algebra h has no center and satisfies der(h) = h , and if

h is an ideal in a super Lie algebra e , then e ∼= h⊕ e/h , since Out(h) = 0.

10. Theorem. Let g and h be super Lie algebras and let

ᾱ : g → out(h) = der(h)/ ad(h)

be a homomorphism of super Lie algebras. Then the following are equivalent:
(10.1) For one (equivalently: any) linear lift α : g → der(h) of degree 0 of ᾱ

choose ρ :
∧2

graded g → h of degree 0 satisfying ([αX , αY ] − α[X,Y ]) =
adρ(X,Y ) . Then the δᾱ -cohomology class of λ = λ(α, ρ) := δαρ :

∧3
g →

Z(h) in H3(g;Z(h)) vanishes.
(10.2) There exists an extension 0 → h → e → g → 0 inducing the homomor-

phism ᾱ .
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If this is the case then all extensions 0 → h → e → g → 0 inducing the homo-
morphism ᾱ are parameterized by H2(g, (Z(h), ᾱ)) , the second graded Chevalley
cohomology space of the super Lie algebra g with values in the graded g-module
(Z(h), ᾱ) .

Proof. It follows from the computation in the proof of corollary 8 that

ad(λ(X,Y, Z)) = ad(δαρ(X,Y, Z)) = 0

so that λ(X,Y, Z) ∈ Z(h). The super Lie algebra out(h) = der(h)/ ad(h) acts on
the center Z(h), thus Z(h) is a graded g-module via ᾱ , and δᾱ is the differential
of the Chevalley cohomology. Using 5.2, then 5.1 we see

δᾱλ = δαδαρ = [ρ, ρ]∧ = −(−1)2·2+0·0[ρ, ρ]∧ = 0,

so that [λ] ∈ H3(g;Z(h)).
Let us check next that the cohomology class [λ] does not depend on the

choices we made. If we are given a pair (α, ρ) as above and we take another
linear lift α′ : g → der(h) then α′X = αX +adb(X) for some linear b : g → h . We
consider

ρ′ :
2∧

graded

g → h, ρ′(X,Y ) = ρ(X,Y ) + (δαb)(X,Y ) + [b(X), b(Y )].

Easy computations show that

[α′X , α
′
Y ]− α′[X,Y ] = adρ′(X,Y )

λ(α, ρ) = δαρ = δα′ρ
′ = λ(α′, ρ′)

so that even the cochain did not change. So let us consider for fixed α two linear
mappings

ρ, ρ′ :
2∧

graded

g → h, [αX , αY ]− α[X,Y ] = adρ(X,Y ) = adρ′(X,Y ) .

Then ρ−ρ′ =: µ :
∧2

graded g → Z(h) and clearly λ(α, ρ)−λ(α, ρ′) = δαρ−δαρ′ =
δᾱµ .

If there exists an extension inducing ᾱ then for any lift α we may find ρ
as in proposition 7 such that λ(α, ρ) = 0. On the other hand, given a pair (α, ρ)
as in (1) such that [λ(α, ρ)] = 0 ∈ H3(g, (Z(h), ᾱ)), there exists µ :

∧2
g → Z(h)

such that δᾱµ = λ . But then

ad(ρ−µ)(X,Y ) = adρ(X,Y ), δα(ρ− µ) = 0,

so that (α, ρ− µ) satisfy the conditions of 7 and thus define an extension which
induces ᾱ .
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Finally, suppose that (10.1) is satisfied, and let us determine how many
extensions there exist which induce ᾱ . By proposition 7 we have to determine
all equivalence classes of data (α, ρ) as described there. We may fix the linear
lift α and one mapping ρ :

∧2
graded g → h which satisfies (7.3) and (7.4), and we

have to find all ρ′ with this property. But then ρ − ρ′ = µ :
∧2

graded g → Z(h)
and

δᾱµ = δαρ− δαρ
′ = 0− 0 = 0

so that µ is a 2-cocycle. Moreover we may still pass to equivalent data in the sense
of proposition 7 using some b : g → h which does not change α , i.e. b : g → Z(h).
The corresponding ρ′ is, by (7.7), ρ′ = ρ+ δαb+ 1

2 [b, b]∧ = ρ+ δᾱb . Thus only
the cohomology class of µ matters.

11. Corollary. Let g and h be super Lie algebras such that h is abelian. Then
isomorphism classes of extensions of g over h correspond bijectively to the set
of all pairs (α, [ρ]) , where α : g → gl(h) = der(h) is a homomorphism of super
Lie algebras and [ρ] ∈ H2(g, h) is a graded Chevalley cohomology class with
coefficients in the g-module h .

Proof. This is obvious from theorem 10.

12. An interpretation of the class λ . Let h and g be super Lie algebras
and let a homomorphism of super Lie algebras ᾱ : g → der(h)/ ad(h) be given.
We consider the extension

0 → ad(h) → der(h) → der(h)/ ad(h) → 0

and the following diagram, where the bottom right hand square is a pullback
(compare with remark 9):

The left hand vertical column describes h as a central extension of ad(h) with
abelian kernel Z(h) which is moreover killed under the action of g via ᾱ ; it is
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given by a cohomology class [ν] ∈ H2(ad(h);Z(h))g . In order to get an extension
e of g with kernel h as in the third row we have to check that the cohomology
class [ν] is in the image of i∗ : H2(ẽ;Z(h)) → H2(ad(h);Z(h))g . It would be
interesting to interpret this in terms of the super analogon of the Hochschild-Serre
spectral sequence from [7].
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