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Abstract. Let g be the Kac-Moody algebra associated with the twisted affine
Cartan matrix fo). Each nilpotent Lie algebra of maximal rank and of type
fo) is isomorphic to a quotient of the positive part of g. We determine the

isomorphism classes of nilpotent Lie algebras of maximal rank and of type Df) .
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1. Introduction

In [12] Santharoubane associated canonically a Kac-Moody algebra g(A) with each
nilpotent Lie algebra £ of maximal rank, where A is a generalized Cartan matrix.

There are 3 families of Kac-Moody algebras: finite, affine and indefinite,
and the second family is divided in two subfamilies: non-twisted affine and twisted
affine.

The study of nilpotent Lie algebras of maximal rank associated with the
finite Kac-Moody algebras (i.e. the finite-dimensional simple Lie algebras) was
already done (see [3], [5] and [4]).

At present, several authors are studying the nilpotent Lie algebras of maxi-
mal rank associated with non-twisted affine Kac-Moody algebras (see [1, 2|, [6, 7],
[10] and [11]).

In this paper we study the nilpotent Lie algebras associated with the twisted
affine Kac-Moody algebra g(D{"). The main result we get is the following: there
are exactly 88 infinite series (up to isomorphism) with discrete parameters and
1 infinite series with continuous g)arameter of nilpotent Lie algebras of maximal
rank and of Kac-Moody type Df’ .

I thank the referee for pointing out an error which caused me to miss in the
original version of this paper the 5 infinite series in the last 2 lines of Theorem 4.1a
below. This same mistake appears also in [6], [7], [1], 2] and [10]. The corrections
to [6] and [7] will be given elsewhere.
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2. The Classification Method for nilpotent Lie algebras of maximal
rank

Let £ be a finite-dimensional nilpotent Lie algebra, Der£ its derivation algebra,
Aut£ its automorphism group. A torus on £ is a commutative subalgebra of
Derg whose elements are semi-simple. All maximal (for the inclusion) tori on £
have the same dimension called the rank of £. The rank r of £ is less than the
dimension £ of £/[£, £] ; one says that £ is of mazimal rank if r = £.

A matrix A = (aij)fyjzl with entries in Z is called a generalized Cartan
matriz if it satisfies the following conditions:

1. ay;=2 fori=1,...,¢;
2. a;; <0 for i # j;
3. aij:O<:>aj,-:O.

If £ is of maximal rank ¢, then we can associate a generalized Cartan
matrix A = (a;;)1<ij<¢ With £ (see 3.2. of [11]), we say that £ is of Kac-Moody
type A.

Let A = (aij)1<ij<e be a generalized Cartan matrix, g(A) be the Kac-
Moody algebra associated with A, n, be the positive part of g(A4), A, the positive
root system, g, be the root subspace associated with « € A, G = Gy(A) be the
automorphism group of the Dynkin diagram of A and a4, ..., oy the simple roots.
Let ny; be the ideal of n, defined by

ny = ( @ Qai+kaj> Ongy.
1<i#j<t
0<k<—ay;

Let Z(n, ) be the set of ideals of ny included in n,; and stable under the action
of the Cartan subalgebra b of g(A). The group G acts on n, as an automorphism
group by oe; = e,; (1 = 0,...,¢) where ey, -, e, are the Chevalley generators of
n;. The group G acts on Z(n;y).

According to previous definitions and 6.3 of [11], the mapping

G.a—ng/a

is a bijection from the set of G-orbits of Z(n, ) onto a set of representatives of the
isomorphism classes of nilpotent Lie algebras of maximal rank and of Kac-Moody
type A.

By the above result, our main problem of finding all nilpotent Lie algebras
of maximal rank and of Kac-Moody type A is equivalent to the concrete problem
of finding some ideals of the positive part of the Kac-Moody algebra g(A), up to
the action of the automorphism group G.

3. The Kac-Moody algebra associated with Df')

We consider the generalized Cartan matrix D{® (see table Aff3, p.55 of [9]). Let
¢ = g(D,), where D, is a finite Cartan matrix and its Dynkin diagram is:
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Figure 1: Dynkin diagram of D,

Let  be an automorphism of the Dynkin diagram of D, of order 3. Since
there are two such automorphism which are equivalent, we choose one of them:

a(on) = o, fi(oh) = 0, m(oy) = oy, H(a)) = of.

Let p be the corresponding automorphism of g'. Set ¢ = exp%. Then each
eigenvalue of y has the form ¢/, j € Z /37, and since y is diagonalizable, we have

the decomposition
d= P g, (1)
JEZ./3T.

where g} is the eigenspace of u for the eigenvalue €.

Fix a non-degenerate invariant symmetric bilinear C-valued form (-|-) on
g'. Let L = C[t,t7] be the algebra of Laurent polynomials in ¢. We consider the
following Lie algebra:

L(g, 1) = P L(g', w);,
jEz

where L(g', 1t); = ¥/ ® Gjuoa s

The Kac-Moody algebra associated with the affine matrix Df’) is a twisted
affine algebra and is defined by (see Chap. 8 of [9]):

L(g', ) = L(g,p) © C¢ ® C

with the bracket defined as follows:

tFRrd A @ ud,th @yd A\ d & ud] =

(tFthr @ [z, y] + pkith @ y — piktF @ z) @ kdg,—k, (z]y)d
where z,y € g'; A\, u, A, u1 € C.

Let b’ be the Cartan subalgebra of g’; A’ the root system, {o}, o, of, oy}
the root basis, {/),a/y,a'y, ')} the coroot basis, E!, Ey E E, F! Fi F} F!
the Chevalley generators. Let g’ = @ycargl, be the root subspace decomposition
of g'. We have dimb' = 4, the coroot basis is a basis of §’, and the root subspaces
are unidimensional, g/, = CE!, . The positive root system is:

! _ ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !
A+ = { 0y, Oy, O3, Oy, O + Oly, Qg + Olg, Oy + Oy, O + Qiy + O3, O + Oy + Quy,
oy + s + al, @y + a + 0 + a0 + 20 + 0 + 04 .

We introduce the following elements of g':

O = o) + o + o,
Hy = =2(c/] + /5y +a')) = 3dy, Hy=d, Hy=da)+ay+d),
EO = E,—BO + 62El_ﬁ(00) + GELﬁ2(9O)a El = Eéa EQ = Ei + Ei,% + EA,La

Fo=—Ep — By — B, Fi=F, F=F+F+F]
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The Z/3Z-gradation of g’ described in (1) is ¢’ = gz @ g- @ g5, b =bh'Ngs
and glg - blg @ (@aEAgglg,a) fOI‘ S = 0,1,2, Where Ag - A§’+ U Ag’,, Ag’, -
{—a/a e A;.} and

Ag = {ou, 00,00 + o, 1 + 200, a1 + 30, 201 + 320}
AT,-&— = {(1’2, o1 + g, 0 + 2&2} — A§,+

with an = o and ap = j(of + o4 + af).
Set h = %EB(CC’ @ Cd' and define § € h* by 5‘%@@6, =0, §(d') = 1. Set
e=tQFEy, fo=t"®F, e=10FE;, fi=1®F, (i=1,2). Then we have:
le;, il =1® H; (i =1,2); [eo, fo] =3¢ +1® H.

We describe the root system and the root space decomposition of E(g' , 1) with
respect to h:

A={jd+v;j€Z,veAs,j=smod 3, s=0,1,2} U{jd; j€Z—{0}};

Lig,m) =bhe (@ L(g',ma) ,

acA
where
L(g', 1) jory = t ® g’gﬁ, L(g', p)js = t @ b
We set
I={ay=0—06y, 01,00}
and

IV ={ay =3 +1® Hy,ay =1Q H; (1 = 1,2) }.
h is the Cartan subalgebra, e, e1,€2, fo, f1, f2 are the Chevalley generators and
IT and TIV are, respectively, the root basis and the coroot basis of L(g’, 1), which

we denote by g from now on.
The positive part ny of g is

n, = @ Z(gla,u)a = @ Yo

aEA+ OAEA+

and the positive root system of g is
Ap =7y, U{jd+7v;7>1,v€A;U{0}, j = s mod 3}.
If we set

A= Ag , U{0+7; 7€ AT}U{20+7; v € AgbU{36+7; v € Ag, Y U{6, 26,36}
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we have A, = |_|j20Aj, where AJ = {356 +v;ve A} if j > 1.
Since § = ap + a; + 2a9 we have A® = {ag, oy, ..., g}, with

o3 = o + Qa, Qg = 1 + g,

as = ap+ o + as, g = @ + 209,

ar =0 = ap + a1 + 209, ag = a1 + 3ao,

Qg = 20 4+ a1 + 200, ayg = ag + a1 + 3o, o = 204 + 3,

a1 = 200 + a1 + 3ae, a1z = ap + 201 + 3,

a4 = 30 + a1 + 3an, ais = 20y + 201 + 3, ae = o + 20 + 4,

a7 = 3ag + 20y + 3, ag = 260 = 20 + 20 + 4da,

a9 = 3o + 20 + 4o, any = 20 + 20 + Dag,

Qo1 = 30y + 201 + bay, ay = 20 + 3a + dag,

Qog = 30 + 3aq + b, oy = 3y + 201 + 6ag, o5 = 20y + 3 + 6y,

Qg — 30 = 30!0 + 30!1 + 6&2.

Figure 2: Positive roots of Df’)

where a{ =3j0 + a;, with 7 > 1 and o; € AL,
We order these roots by of <ol iff j <l or j=1and i <k.

4. The nilpotent Lie algebras of maximal rank and of Kac-Moody
(3)
type Dy

We have to obtain all G-orbits of ideals of the positive part of the Kac-Moody

algebra g(Df’)) included in n, | .

The Dynkin diagram of Df') is:

S(DP)

Il
)
o

&%) (6%)] (6751

Figure 3: Dynkin diagram of Df’)
Then the automorphism group G of the Dynkin diagram is {id} and each
G-orbit has an unique ideal. Therefore we can identify the sets Z(n;;) and

I(niy)/G.
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Let A, be defined by :

Ap={ai+kaj;0<i#j<l0<k< —a;} UAL,

Since
2 0 -1
D=0 2 -1
-1 -3 2
we have:

A, =A"UATLUAZY. -

with AY = {015, a7, Qg, X104 - - - C¥26}.
If I C Ay, then one can write:

I:|_|Ij

JEN
with I=TNA° and I/ = I N A if 7 > 1. We say that I’ is an ideal of A7 iff
(el at+oeN)=a+aqel’ Vi=0,1,2

We set Z(A, ) ={I C A,,; I’ is an ideal of A7,Vj € N}.
If a € Z(n, ) then one can write :

a=P ang.

a€EAq

where A, = {o € A ;;aN g, # (0)}. Then, as any root in A7\ {ad} has
multiplicity one, A, € T(Ay,).

We can define the map Z(ny,) 5 Z(A,,) by setting ¢(a) = A,. But this
is not onto. There exists j, € N such that 3j,0 ¢ ¢(a) and 3(j, + 1)0 € p(a).
Then

jEN

with ¢(a)’* any ideal of A, p(a)’=™ an ideal of AT that depends on ¢(a)’
and p(a)? = A7 if j > j,+1 (this results from the calculation in 4.2 of the different
possibilities for ¢(a)’*™ associated to a ¢(a)’).

The map ¢ is not injective either. Since dimg, = 1 if a # 350, we have
0o = go if @ € ¢(a) and « # 3j6. But if a € p(a) and a = 35§, it may be
0o 7 go since dimgs;; = 2.

The first step for obtaining the nilpotent Lie algebras of maximal rank
and of Kac-Moody type Df) is to determine Im ¢. The next step consists of
determining ¢ !(I) for each I € Im ¢ C Z(A ).

4.1. The image of ¢.
If I € Im ¢ there exists j; € N such that 3576 ¢ I and 3(j;r+ 1) € I.
We have
J = IjI L Ij1+1 L Aj1+2 L Aj1+3 L Aj1+4 L]ves

where 177 and I77t! are ideals of A7 and A/ *!, respectively. Then we have to
determine all ideals of A7, Vj € N.
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The map J — J+3(j—1)d, j > 1, is a bijection between the sets of ideals
of A and AJ. Therefore it is sufficient to determine all ideals of A and all ideals
of A’ for j #0.

There are 80 series of ideals, we have 56 ideals of A® and 80 ideals of A7,
Vj > 1. For j > 1 the ideals are: (we denote by (7y1,7s,...) the ideal generated
by 71 + 356,72 + 359, ...)

I =(aw), B=(u), L=(a), I=(a), =/ (),
Ifji < 5>7 Ig <a6>7 IEJE = <Oé7>, Ig = <a8>7 I{O = <Oé9>,
Iy = (o), Iy ={an), Iz={(aw), 4=/ {os), 5= (o),
Lo = (aus), Iy ={aw), Ig={ar), Iy= (us), I = (o),
Iy = (o), Do={(an), I3={(amn), 3= o), ;= (),
I3e = (aos), 137 = (cvas),

15_8 = (a, a1), I%Q = (ap, az), I35 = {a, au), I3, = (o, ),
I3, = (oo, a8), I3z = (ag,an), I3 = (o, 9), I35 = (o, ),
I?J>_6 = (0, au), I§7 = (a3, as), I3y = (a3, as), I?J,_g = (a3, ou1),
Ii_o = (as, ag), IZ} = (as, as), I, = (s, i), Ii_g = (a7, ag)
Iy = (or,om), Iis = (as,o9),  Iig = {9, 10), ILiz = (a9, 1)
Iis = (g, cu3), Iig = (a9, u6), I3 = (oo, 0m1), I3 = (ou1, n2)
Iég = (011, 014), Iég = (O12, 013/, Ig4 = \Q12, 1), I§5 = 0413,0414>,
Igs = (014, O15), I§7 = (O14, C16), Ié_s = (Q14, O18), Iég = C¥14,C¥20>,

{
{
{
_ { ) 65— Q17, G20/ Ié_6= ) Iejw— a7, Qgs),
Iég = (aug, o), Iég = (O19, (22), I%o = (O19, Q25), I71 = (a1, ag2),
{
{
=
=

) ( ) ( ) {
) { ) { ) (
Ié-_o = (4, Q22), Iél = (a4, Q25), Iég = (aus, a16), Ié;), = (s, 017),
) ( ) ( ) {
) ( ) ( ) (
) { ) { ) {

J
) 73— Qi92, 024, 174— Q23, (94 ), 75— a23,a25),

0407041;042> I?S = <06970410;0611>, I?g = (0614,0615;0416>a

Moreover, for 7 = 0 we have the ideals I with:

1=06,8,10,...,27,42,44,46,...,76,78,79, 80.

We haven’t determined the image of ¢ yet. If I € Im ¢, although I’7 is
any ideal of A%, I7*! js an ideal of A*! that depends on I and a(j,+1)5- So,
in order to obtain the ideals of n, included in n, ., we will realize a case-by-case
study.

4.2. The ideals in n. _
Let I € Im . Then there exists ¢ such that I? = I and 3 ¢ I, but
3(j+1)d € I. We define:
I = {ael™;|al<|3(j+p+1)5| -2}
I = fael™;|al=3(+p+1)5| -1}

with p =0,1. Then we have the partition:

I= I'I_II”|_|{3(]+1) }|_|I'|_|I”|_|{3(]+2 )6} U ( | ] Ak>

I3 i+ k>j+1
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If a € p~!(I), then we have a = @,csa, with a, =ang, # (0).
The partition of I gives us a direct sum decomposition for a:

a= @aa > @aa ® az(j+1)s D @aa > @aa © a3(j+2)sD

acly acly o€l a€erly

7] @aa

a>3(j+2)6

Since dimg, = 1 if a # 3kd, we have a, = g, if @« € I and o # 3kd; as we
shall see below, I{ has cardinal 3, hence asgs_qa,, = 93k6—a,, for m = 0,1,2 and
k > j+ 2, we have agis = gars for £ > j + 2; it follows that:

a= @ga D @Ba @a3(j+1)6@(@ 9a>€9b

acl acl a€litl

where

b= @ da-

a>3(j+2)6

Therefore we have to determine as(;+1)s C gs(j+1)s, that depends on I{/, and I/*t!,
that depends on as(j;1)5. We have

gag+s = U @ b = CHU) @ Hy @ C*UH) @ H,.

We denote [A1, Ao] = C (M#3UF) @ Hy + Mt?Ut) @ Hy) for (A, \y) € C2.
Let n = #I1. Since

I'C{3(j+ 1) — am; m=0,1,2} = {3j6 + ay ; m = 23,24,25},
we have 0 < n < 3. Then we have to consider 3 cases:

Case 1: n=0. Then If = @ and a = da3(j11)s D (Paeri+18o) @ b. There is only
one ideal of AJ in this case: I’ = I3, = (3(j+1)6) = {3(j+1)d} with j > 0.
There are 2 possibilities:

(l.a) dim as(j+1)6 = 1. Then as(j+1)6 = [)\1, )\2] for ()\1, )\2) € P!. In order to
obtain I7*! we will considerate some subcases:
(La.1) If (A, Ag) = (1,0), ie. @y = C*0T) © Hy, then ot =
(4% o ™) C I+ since g, a3(j41)6] = 0, [Bay, ds(j1)s] 7# 0 and
(80, as(j41)s] # 0. Therefore 7! = II" or ! = A and

o=y = (1,01 (©,00180)

or
a= aé}(l’o) = [1,0] ® (®a>s(+1)60a) »

respectively.
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(L.a.2) If (A, A2) = (3,2),ie. agnys = C (330D @ Hy + 2630+ © H,),
then Igg—l = <O{%+} CE%+1> g Ij+1 since [gaoaa3(j+1)5] # .Oa

(801> 03G+1)s] = 0 and [ga,, a3;+1)s] # 0. Therefore [+l =

or I't1 = AJ*! and
,(3,2
a= Cl%7(1 )= - [ ’2] & gaé“ S (@a>a{+lga>

or
a=a)>? =[3,2]@ (Ba>3(j+1)58a) »

respectively.

j+1
Iog

(1.a.3) If (A, d) = (2,1), Pe. ag41)s = C (26200 @ Hy + 0% @ Hy),
then [5;1 = (a%ﬂ a{+1> C [’ since [gao,a;),(jﬂ)(g] #* 0,
(801> asi41)s] # O and [ga,, as(j1)s] = 0. Therefore I/t = I

or 't = At and

7,(2,1)

a= Cl27 1 [2 1] S g J+1 5] g J+1 (@a>aj2'+1ga)

or
a=ai® =2,1]® (Bas3(i+1)68a) ;

respectively.
(1.a.4) For the remaining values of (A, ;) € P!, we have I7*!
since [ga;, a3(j+1)s) # 0 for ¢ =0,1,2. Then
a= a%7()‘1”\2) (A1, Ao] @ (@a>3(j+1)59a)
(l.b) dim As(j+1)6 = 2. Then A3(j+1)6 = 93(j+1)d 5 I+ = AT+ and
a= a%} = g3(j+1) D (@a>3(j+1)59a) = Da>3(j+1)09a-
So we have obtained the following set of ideals in n, for n = 0:

(AL ,(1,0 ,(3,2) ,21
(a7 (A, Ao) € PYY U {aih” a3, adi5 DY U {ad, )

Case 2: n = 1. There are 3 ideals in this case: I3, I3, I} with j > 0.

If we call v the unique element of I{, then

a=gy®Das;+1)s D (Bacri+19a) ® b.

= A

a contains the ideal generated by g, and (g,) =g, P a, (@ae Jeaa ga> @b

with a, a subspace of dimension 1 in gs;11); and I7*! an ideal in A/*!

contained in I7*!.

There are three ideals in this case and some possibilities for each one:
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(2.a) dim ag(41)s = 1. We have

[0,1] fori=24
a, = { [1,0] fori=25
(3,2] fori=26

since

0‘%3 =3j0+apy=3({+1)0—ay for I:Ig:4

v = oy =3j0+ g =3(j+1)0 —ay  for I =I5
s =370+ ags =3(1+1)0 — g for I =TI

Now we will determine Ig“:

v = ads | Since [gai,aajz's] #0 for i = 0,1,2, we have /7' = A+,

. ” Qo3
Therefore It = A+ and

a= a%4,1 = 84, @0, 1] (@a>3(j+1)59a) .

7:ag4 Since [gaoﬂaagJ =0, [galaaa&] 7é 0 and [gawaa&] 7é 0,

j+1 j+1 i+1 1 ! ;
we have I’7' = " = (a]") ™). Therefore I'*! = A*! or
Q94
. g
D+t =1 and

a= ag5,1 = 94, ®[1,0] @ (®a>3(j+1)59a)

or
0= sy = 0, ©[1,0] @ (@5 054180) -

respectively.

7204%5 Since [gamaaQS] 7é 0, [galaaags] = 0 and [ga2aaa12'5] 7é 0,

j+1 j+1 1 j+1 : -
we have IZ; = I}y = (") af™). Therefore I’t! = AJ*! or
25
; j+1
I+ =1 and

a= a‘;ﬁ,l == gaJZ'S EB [3, 2] @ (®a>3(j+1)69a)

or
a= a§6,2 = gaés ®[3,2] @ go%ﬂ &) (@a>a]1‘+1ga) ,

respectively.

(2.b) dim az;j11)s = 2. Then az;j1)s = gagi+1)s, /' = AI*! and
a=af = 8,i+1 D (Ba>3(j+1)68a) for i = 24,25, 26.

So we have obtained the following set of ideals in n, for n = 1:

{al,;i=24,25,26} U {al,; i = 25,26} U {al ; i = 24,25, 26}.
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Case 3: n = 2,3. The other ideals are in this case.

n = 2,3 implies as;jt+1)5 = Pa(j+1)s and 7T = A1 Therefore

a= ag = @Pacrfa-
So we have obtained an unique ideal in n, for n = 2,3 and each possible
Il: o

We have obtained the ideals of n; included in n, . Since G = {id} we can
identify the sets Z(ny,) and Z(n,,)/G. Now we obtain a representative of each
1som0rphlsm class of nilpotent Lie algebras of maximal rank and of Kac-Moody
type D4 , building the quotient n, /a for each above obtained ideal a.

As a consequence of this study we have the following result:

Theorem 4.1. Up to isomorphism there are exactly:
(a) 88 infinite series with discrete parameters:
D fori=26,8,10,...,27,42,44,46,...,76,78,79,80; 5 > 0
for the remaining values of i; j > 1
DM { i=24,25,26,5 > 0
DI {i=2526;5>0
43,2 = 29,40;7 =2

DEFR) L (A, N) = (1,0),(3,2), (2,1);5 > 0

(b) 1 infinite series with continuous parameter:

DELQ)’J’ A1,A2) fO’f‘ (/\1’)\2) c ]P ,_] > 0

of nilpotent Lie algebras of mazximal rank and of Kac-Moody type Df’).

5. An example

In this section we give explicitly the Lie algebra Dfi;o, which is the nilpotent Lie

algebra of maximal rank and of Kac-Moody type Df)

aly of n.. Then we have:

associated with the ideal

DA(L 22 = n+/a42

Since a9y = Bac(as,a11)fa We can identify DA(1 )0 with the following Lie algebra:

@ Yo = @ o = (Bi=08a) ® Gas © Gas
a€A\(as,0a1) a€A\ALy

where the root subspaces are:

Gop = 1I® gIT,—m—Qag = Cey, go, = 1® glﬁ,oa = Cey,
o= 1®gf, =G o= 1081, ., =Cos
—_ ! = = ! =
ga4 - 1 ® gﬁ,aﬁ—az - C64, ‘ga6 - 1 ® 96,041+2a2 - C@G,

Gas = l® ‘g,ﬁ,a1+3az = Ces.
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We have
Df’iéﬂ = (®;_;Ce;) ® Ces @ Ces
with brackets

leg, e2] = (1 + €%)es = —ces, [er, €] = —ea, [e2, e4] = 2eq, [ea,€6] = 3es.

This Lie algebra is the nilpotent Lie algebra of maximal rank and of Kac-
(3) ) ; ) :
Moody type D;” of least dimension (up to isomorphism).
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