
Journal of Lie Theory
Volume 15 (2005) 235–248
c© 2005 Heldermann Verlag

Topologically Locally Finite Groups with a CC-Subgroup
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Abstract. A proper subgroup M of a finite group G is called a CC-
subgroup of G if the centralizer CG(m) of every m ∈ M# = M \ {1} is con-
tained in M . Such finite groups had been partially classified by S.Williams,
A. S.Kondrat’iev, N. Iiyori and H.Yamaki, M. Suzuki, W.Feit and J. -
G.Thompson, M.Herzog, Z.Arad, D.Chillag and others. In [6] the
present authors, having taken all this work into account, classified all finite groups
containing a CC-subgroup.
As an application, in the present paper, we classify totally disconnected topolog-
ically locally finite groups, containing a topological analogue of a CC-subgroup.
Mathematics Subject Classification: 22D05, 20E18, 20F50
Key Words and Phrases: CC-subgroups; prime graph, compactness conditions,
locally compact groups

1. Statement of the results

A proper subgroup M is a CC-subgroup of a finite group G , provided CG(m) ≤M
for all m ∈ M# . Examples of such groups G are Frobenius groups, which are
semidirect products F × H , where each nontrivial h ∈ H acts by conjugation
without nontrivial fixed points upon F . Then M can be taken either F or
H , since both are CC-subgroups of G . Groups with a CC-subgroup became an
important ingredient in classifying finite simple groups, like Suzuki groups and
certain projective groups. Having taken preceding work in [23], [8], [14], [1], [2], [3],
[24], [4], [18], [15] and [16] into account, the authors gave a complete classification
of all finite groups containing a CC-subgroup in Theorem A of [6]. Theorem 3.1
below recalls this result in a form to be used in the present paper. A theory
of Frobenius groups has been developed for the classes of profinite groups (see
Chapter 4 in [22]), for locally finite groups in [17], and for certain infinite groups in
[10]. In [13] the class [LF]−of all topologically locally finite groups has been defined
to contain all locally compact groups in which every compact subset is contained
in a compact subgroup - a compactness condition in the the spirit of [11]. Let [TD]
denote the class of all locally compact totally disconnected groups. Then the class
[LF]− ∩ [TD] of totally disconnected topologically locally finite groups contains both
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classes, the one of profinite groups and the one of locally finite groups.

It appears desirable to us to classify all groups G ∈ [LF]− ∩ [TD] possessing
a subgroup M , which contains the centralizers of all its nontrivial elements. But,
without further restrictions on such M , for profinite groups G the situation can be
as complicated as for arbitrary infinite groups (without topology). For instance,
in the free pro-p group G = 〈x, y〉 (the pro-p completion of a free group on the set
{x, y}) the closed subgroup A generated by the commutator [x, y] contains the
centralizers of its nontrivial elements. In fact, A is isolated in G (like Frobenius-
complements in the situation of a Frobenius group), i.e., A ∩ Ag 6= {1} always
implies g ∈ A , but contrasting the finite situation, neither does A possess a
normal complement in G , nor it is a Hall-subgroup of G . Therefore, in accordance
with [9, 13], for a profinite group G we define a CC-subgroup M to be a proper
subgroup of G which contains all centralizers of its nontrivial elements and is a
Hall-subgroup, i.e., for every open normal subgroup N of G the quotient MN/N
is a Hall-subgroup of G/N (see [22] or [25]). Then the following description of
profinite Frobenius groups similar to the finite ones can be given, and we quote
the result for later use as well. For finite Frobenius groups see D.Passman’s book
[21].

Proposition 1.1. The following statements on a profinite group G and Hall-
subgroups H and K are equivalent:

(i) K is a CC-subgroup of G; (then there exists a complement H of K );

(ii) H is an isolated Hall-subgroup of G; (then K :=
(
G \

⋃
g∈G Hg

)
∪ {1} is a

normal CC-subgroup of G);

(iii) G = K × H , a semidirect product with H, K Hall-subgroups of G, π(H) ∩
π(K) = Ø and each nontrivial element of H acts by conjugation without
fixed points upon K \ {1}; (then H , K are CC-subgroups of G);

(iv) G is the projective limit of an inverse system of finite Frobenius groups,
where the canonical maps are all epimorphisms and K , H are projective
limits of the respective Frobenius kernels and complements.

When either of these conditions holds, then G is a profinite Frobenius group, K
is the Frobenius kernel, and H is a Frobenius complement. Moreover, all of the
following properties hold:

(a) K is nilpotent; there is a bound on the nilpotency class depending on π(H)
only;

(b) H is finite. Its p-Sylow subgroups are cyclic or generalized quaternion (the
latter only can happen, when p = 2). Moreover, Z(H) 6= {1};

(c) any normal subgroup L / G satisfies L ≤ K or K ≤ L.

Proof. All this is taken from Section 4.6. in [22].
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What can be said about locally finite groups? First, when G is locally finite,
it possesses a local system of finite groups [17], i.e., a set Λ of finite subgroups of
G with the property that any finite subset is contained in a subgroup occurring in
Λ. It is plain that for a proper subgroup M of G , which contains the centralizers
of its nontrivial elements, the intersection H ∩M for any H ∈ Λ either is not a
proper subgroup or it is a CC-subgroup of H . Finally suppose G ∈ [LF]− ∩ [TD].
Then it has been observed in [13] that such G possesses a local system Λ of
profinite subgroups, i.e., a system of compact subgroups such that every compact
subset is contained in a group of the system. The following formal definition of a
CC-subgroup is appropriate.

Definition 1.2. A proper subgroup M of a group G ∈ [LF]− ∩ [TD] is a CC-
subgroup if there is a local system Λ such that M ∩H is a CC-subgroup of H for
every H ∈ Λ.

Our definition very well depends upon the local system Λ.

An announcement of the results and some of the historical background can
be found in [5], however in this paper corrections to some of the statements of
the results are made. For G ∈ [LF]− ∩ [TD] any set of normal closed pronilpo-
tent subgroups generates a normal subgroup whose compact subgroups are all
pronilpotent. Thus the notion of the Fitting subgroup, denoted by F (G), for the
smallest closed normal subgroup containing all pronilpotent normal subgroups of
G generalizes a well-known concept from finite group theory.

The authors would like to thank the referee for several helpful remarks. We
come to stating the main result of the paper.

Theorem 1.3. Let G be an infinite group in [LF]− ∩ [TD] possessing a CC-
subgroup M . Then precisely one of the following holds:

(i) M is locally finite; M∩M g 6= {1} implies g ∈M (we say M is isolated), G
is the semidirect product G = F ×M for a suitable normal subgroup F and

F :=
(
G \

⋃
g∈G M g

)
∪ {1} is a CC-normal subgroup of G; (in accordance

with [10, 13] call G a Frobenius group with kernel F and complement H ).

(ii) M is finite and cyclic. G possesses a normal subgroup F , and a finite cyclic
subgroup R such that FM / G is a Frobenius group (F is the kernel and
M a finite complement) and MR is a finite Frobenius group with kernel M
and complement R (let us say that G = FMR is a 2-Frobenius group).

(iii) G is a Frobenius group with M /G an open CC-normal subgroup (the kernel)
and it possesses a locally finite Frobenius-complement H , which is an isolated
subgroup of G; every complement to M in G is a conjugate of H ;

(iv) M is locally finite; for H := (M)G the quotient S := H/F (H) is a topo-
logically locally finite simple group, MF (H)/F (H) ∼= M is a CC-subgroup
of G/F (G), and G/H is a locally finite group such that every element com-
mutes with an involution; if F (G) is open in H then S := H/F (G) is either
finite and as in Theorem A(iv)(b) of [6] or S is an infinite locally finite
simple group.

Closer inspection of Theorem 3.1 yields the following consequence of The-
orem 1.3.
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Corollary 1.4. Let G ∈ [LF]− ∩ [TD] contain a CC-subgroup M either con-
taining an involution or not being locally nilpotent then G is locally finite and one
of the following holds:

(i) G is a Frobenius group with M either kernel or complement;

(ii) G ∼= PSL(2, F ), with F a locally finite field;

(iii) G = Sz (F ), a locally finite Suzuki group as desribed in 4.18 Theorem of [17]
and M is locally solvable;

We would like to fix notation on topological groups, in particular on profinite
groups. For any topological group G subgroups are closed unless stated differently.
For X ⊆ G denote by 〈X〉 the smallest closed subgroup containing X (the
subgroup topologically generated by X ) and by (X)G the smallest closed normal
subgroup of G containing X (the normal closure of X in G).

Let G ∈ [LF]− ∩ [TD]. Then for x ∈ G , recalling 〈x〉 to be a profinite
group, let π(x) denote the set of primes dividing 〈x〉/N for some open subgroup
N of 〈x〉 . For H ≤ G let π(H) :=

⋃
x∈H π(x). If π(G) ⊆ π for a set π of

primes, then G is a π -group and let π′ denote the set theoretic complement, i.e.,
π′ := π(G) \ π . For A, B ≤ G we shall find it convenient to write (|A|, |B|) = 1,
if π(A) ∩ π(B) = Ø.

The prime graph of G (Gruenberg-Kegel graph in [19]) is defined as follows
(see [12]): the vertices are the primes in π(G), two vertices p , q are joined by
an edge if and only if G contains an element x with {p, q} ⊆ π(x). Denote the
connected components of the graph by {πi | i := 1, . . . , t} (for finite groups work
cited above implies t ≤ 6 and as a by-result of Theorem 1.3 the same bound on
t applies to groups G in [LF]− ∩ [TD]) and if 2 ∈ π(G), denote the component
containing 2 by π1 .

2. Lifting CC-subgroups

During this section, unless stated differently, G belongs to [LF]− ∩ [TD]. Our
main objective is deriving Lemma 2.7, which shows that given a CC-subgroup M
of G and a normal subgroup N of G , then G/N has a CC-subgroup MN/N
provided N < MN < G . The proof of this fact is first done for profinite groups
(Lemma 2.6). The following observation is immediate:

Lemma 2.1. Suppose a subgroup M of G and for normal subgroups K ≤ N of
G, both, MK/K and (MN/K)/(N/K), contain the centralizers of its nontrivial
elements. Then so does MN/N .

As a consequence of the Lemma, suppose G possesses a normal series

N = N0 ≥ . . . ≥ Nk > Nk+1 = {1}

and M as well as for j = 1, . . . , k + 1 each (MNj−1/Nj)/(Nj−1/Nj) contains the
centralizers of its nontrivial elements. Then so does MN/N .

We augment Proposition 1.1 with the following observation on profinite
2-Frobenius groups.
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Lemma 2.2. (i) When G = FM and G′ = F ′M ′ are profinite Frobenius
groups with G ≤ G′ then F ≤ F ′ and M is contained in a G′ conjugate of
M ′ .

(ii) Let G = FMR and G′ = F ′M ′R′ be profinite 2-Frobenius groups (in
particular, NG(M) = MR , NG′(M ′) = M ′R′ and R 6= {1}) such that
G ≤ G′ then F ≤ F ′ , a G′ -conjugate of M is contained in M ′ , and, an
M ′ -conjugate of R is contained in R′ .

Proof. (i) The prime graphs of both, G and G′ , contain exactly 2 connected
components. Therefore either π(F ) ⊆ π(F ′) or π(M) ⊆ π(F ′). The latter case
cannot happen: else one can arrange F ≤ M ′ as well, so that F ≤ G = (M)G ≤
(M)G′ ≤ F ′ , a contradiction. Hence F ≤ F ′ must hold and therefore a conjugate
of M is contained in M ′ .

(ii) Now R 6= {1} . When R′ = {1} , an application of (i) first to
FM ≤ F ′M ′ and then to MR ≤ F ′M ′ yield π(M) ⊆ π(M ′) and M ≤ F ′ , i.e.,
π(M) ⊆ π(F ′), a contradiction. Hence R′ 6= {1} , and, since R and R′ are cyclic
complements of FM and F ′M ′ respectively, find FM = [G, G] ≤ [G′, G′] = F ′M ′ .
Then, using (i), we can arrange F ≤ F ′ and M ≤M ′ . Let r be a generator of the
cyclic group R , then M r = M , so that M ′r ∩M ′ 6= {1} . Since M ′ is the Frobe-
nius complement of F ′ in the normal Frobenius subgroup F ′M ′ of G′ , there exists
f ′ ∈ F ′ with M ′r = M ′f ′ . Then f ′ = 1 must hold, since M ′ is isolated in F ′M ′ .
Hence r ∈ NG′(M ′), i.e., R ≤M ′R′ . Now application of (i) to MR ≤M ′R′ yields
the desired result.

Our next result in part corrects Theorem 4 in [4]. The rest of it is corrected
in Theorem 1.3 and after Lemma 3.2 find an example of a profinite 2-Frobenius
group which is not a profinite Frobenius group.

Lemma 2.3. Let M be a CC-subgroup of a profinite group G then either M
is finite or M is an open subgroup of G.

Proof. We give a more direct proof than the one of the corresponding statement
of Theorem 4 in [4]. Suppose the Lemma to be false. Then there exists a counter-
example (G, M) with M an infinite non-open CC-subgroup of G . Note for later
that for every open normal subgroup N / G , the pair (N, N ∩M) is a counter-
example as well, since for every Hall subgroup L of G the intersection L∩N is a
Hall subgroup of N .

Claim : For all p ∈ π(G) the p-Sylow subgroup is finite. It is either cyclic or
generalized quaternion (the latter only can happen when p = 2).

Suppose the Claim to be false. Then there exists a prime p and an infinite
p-Sylow subgroup, say P of G . Observe p ∈ π(N) for every open normal subgroup
N of G . One must have π(N) ∩ π(M) 6= Ø else M would be finite.

We claim that π(N) \ π(M) 6= Ø must hold. Suppose not, then π(N) ⊆
π(M). According to the definitions, for any open normal subgroup K of G
contained in N the factor group MK/K is a π(M)-Hall subgroup of G/K . Thus
the order of G/KM is not divisible by any prime in π(M). In particular this
holds for |NM/KM | so that every π(M)′ -element of NM/K belongs to KM .
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Thus N ≤ KM , and since K ≤ N was arbitrary, conclude N ≤M , so that M is
open, a contradiction.

Therefore, for any open normal subgroup N of G , when p 6∈ π(M) we
can fix a prime qN ∈ π(M) ∩ π(N) and when p ∈ π(M) we select qN ∈ π(N) \
π(M). Next fix a qN -Sylow subgroup QN of N and observe QN 6= {1} . Taking
into account that QN × PN with PN a p-Sylow subgroup of NG(QN), is a
profinite Frobenius group, infer from Proposition 1.1 that its complement PN

is either cyclic or generalized quaternion. Using the Frattini argument, namely
that G = NG(QN)N , and, that PwN

N ≤ P for suitable wN ∈ G , one deduces
PN/N ∼= PNN/N , so that P , being the projective limit of either cyclic groups
or of generalized quaternionic groups, and, containing up to conjugation the finite
subgroup PN , must itself be finite. Moreover, when N ∩ P = {1} , then from
P ∼= PN the second statement of the Claim can be seen to hold true.

We continue proving the Lemma. By the Claim the 2-Sylow subgroup of
G is finite, so one can pass to an open normal subgroup N of G containing no
2-elements. Then, as said earlier, (N, M ∩ N) would still be a counter-example.
Call it again (G, M), abusing language. Then, as a consequence of the Claim, G
has cyclic Sylow subgroups, and therefore it is a profinite analogue of a Zassenhaus
group, i.e., G possesses a normal procyclic subgroup L and a procyclic complement
H , so that G = L× H and (|L|, |H|) = 1.

We show that L ≤ M must hold. If not, then L ∩M = {1} , since M is
a CC-subgroup of M . Then L ×M turns out to be a profinite Frobenius group
with complement M . An application of Proposition 1.1 shows M must be finite,
a contradiction. So L ≤ M . Since G/L is procyclic, M is a normal subgroup
of G , hence M is a CC-normal subgroup, and by Proposition 1.1, it possesses a
finite Frobenius complement, so that M is open in G , contradicting (G, M) to be
a counter-example.

The next Lemma, although it looks as if it were a mere consequence of
the preceeding proposition, is a form of stating a profinite version of the Schur-
Zassenhaus Theorem. The latter was a key in proving the results on profinite
Frobenius groups in [9].

Lemma 2.4. Let G×A be a semidirect product of profinite groups and H ≤ G
be an A-invariant subgroup with (|H|, |A|) = 1. Suppose, for some g ∈ G, the
coset Hg is A-invariant (as a set), then Hg contains an element x with xα = x
for all α ∈ A.

Proof. Restatement of Lemma 1.3 in [9], correcting a misprint ibidem.

Let ZZp denote the pro-p group of p-adic integers. The following elementary
result will be needed:

Lemma 2.5. Let A be a finitely generated free ZZp -module and let H ∼= Cp×Cp

act on it. Then there exists h ∈ H \ {1} having a fixed point in A \ {1}.

Proof. Let Qp denote the field of p-adic numbers, and consider the induced
action of H on V := A ⊗ZZp Qp . Every fixed point v ∈ V of an element h ∈ H
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has the form v = ap−l for some l ∈ IN and thus gives rise to the fixed point
a ∈ A for h . Thus it suffices to prove the Lemma for an arbitrary Qp[H]- module
V . If the Lemma were false it must be false for the induced action of H on
V̂ := V ⊗Qp

Qp[ζp] , where ζp := p
√

1. Then, since H is abelian, Qp[ζp] is a

splitting field for H and every irreducible H -submodule U ≤ V̂ is 1-dimensional.
Therefore, by Schur’s Lemma, the kernel of the action of H on U is nontrivial.

Lemma 2.6. Let M be a CC-subgroup of G. The following statements hold:

(i) For any normal subgroup N of G with N < MN < G the quotient MN/N
is a CC-subgroup of G/N ;

(ii) G is the projective limit of finite groups containing a CC-subgroup.

Proof. (ii) is an immediate consequence of (i). Indeed, the set Σ of all open
normal subgroups with N < MN < G forms a fundamental system of open
neighbourhoods of the identity of G , which we turn into a directed set by using
the inclusion relation. Then G = lim←−N∈Σ

G/N .

Thus we need to prove (i). Suppose it to be false and let (G, M, N, g,m) be
data of a counter-example, i.e., M is a CC-subgroup of G , N a normal subgroup
of G , g ∈ G \MN and m ∈M \N are elements with [g,m] ∈ N .

Claim 1: π(M)∩π(N) 6= Ø. In particular M∩N 6= {1}. Moreover G is infinite.

The second statement is a consequence of the first one, since M contains
an r -Sylow subgroup for any r ∈ π(M) ∩ π(N). Suppose (|N |, |M |) = 1.
Then setting in Lemma 2.4 (H, A, g) := (N, 〈m〉, g) ensures the existence of
g0 ∈ CG(m) ∩ gN ⊆ G \M , a contradiction to M being a CC-subgroup of G .

Since M ∩ N 6= {1} , Theorem 1 in [7] shows that G is a Frobenius group
with kernel M . Then N ≤ M holds and G/N is a Frobenius group with kernel
M/N , i.e., M/N is a CC-subgroup of G/N , a contradiction. Hence G is infinite.

Claim 2: M is open. When H is any open subgroup of G, one can find an open
normal subgroup K of G with K ≤ H , and, (G, M, K, g, m) is a counter-example.

Given H open, select any K open normal in G with K ≤ H and g 6∈MK ,
m 6∈ KN , MK < G and N \ K 6= Ø. Then, if [g,m] 6∈ K , the equality
[gK/K, mK/K] ∈ NK/K shows (G/K, MK/K, NK/K) to be a finite counter-
example, a contradiction. Hence the second statement of the Claim holds.

When M is not open, then by Lemma 2.3 it is finite. Then, by what just
has been proved, one can arrange K ∩M = {1} contradicting Claim 1.

Claim 3: One can assume N ≤ M . There is a prime p with gp = mp = 1.
The core C :=

⋂
z∈G M z is nilpotent and can be assumed to be a torsion free pro-p

subgroup.

By Claim 2 one can assume N ≤ M . Since 〈g〉 ∩M = {1} the group 〈g〉
is finite and we may replace g by a suitable power in order to find a prime p with
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gp = 1. Since N ≤M is open, replacing m by a suitable power, yields a prime q
with mq ∈ N .

Since M by assumption is an open Hall subgroup, there exists h ∈ G with
π〈h〉 ∩ π(M) = Ø. Then C × 〈h〉 is a profinite Frobenius group, so that by
Proposition 1.1, C is nilpotent.

Suppose C contains a nontrivial Hall-p′ subgroup K . When [g,m] ∈
K then setting (A, H, g) := (〈g〉, K, m) yields an element m0 ∈ mK ∩ CG(g),
contradicting M being a CC-subgroup. Hence, using Lemma 2.1, we may factor
K and assume that C is a pro-p group.

Since M is a Hall subgroup, there exists x ∈ G with g ∈ Mx . Then our
example (G, M, N, g,m) gives rise to the counter-example (G, Mx, N,m, g), so
that mq = 1. Therefore one can assume C to be a pro-q subgroup, so that p 6= q
would imply C = {1} , and hence G to be finite, contradicting Claim 1. Hence
p = q .

If C contains torsion, being nilpotent, there must be torsion in the center
Z(C) and hence the subgroup T of elements of order p in Z(C) is not trivial. It is
not hard to see that L := 〈g,m, Z(C)〉 is nilpotent and that M ≥ Z(C)∩Z(L) 6=
{1} . Then the contradiction g ∈M follows. Hence C is torsion free.

Claim 4: The element m must belong to C .

Since, by Claim 3, gp = 1 = mp , and since [g,m] ∈ N , conjugation
induces a Cp × Cp -action on the torsion free abelian group Z(N). We claim
the existence of a nontrivial n ∈ Z(N) with [m, n] = 1. In order to see this,
pick any n0 ∈ Z(N) \ {1} and consider the finitely generated Cp × Cp -module

L := 〈ngimj

0 | i, j ∈ {0, . . . , p − 1}〉 then an application of Lemma 2.5 yields
h = gimj with (i, j) 6= (0, 0) and element n ∈ L \ {1} with [h, n] = 1. Since
n ∈ M , one has h ∈ M and hence, as g 6∈ M , conclude i = 0. Therefore
[m,n] = 1 holds.

Since M is a CC-subgroup of G , for any x ∈ G , [mx, nx] = 1, and nx ∈M ,
conclude m ∈ C .

For deriving a final contradiction, observe the existence of x ∈ G with
g ∈ Mx , consider (G, M, N, g,m) replaced by (G, Mx, N,mx, g), then Claim 4
shows g ∈ Cx and hence g ∈ C . This contradicts g 6∈M .

Lemma 2.7. Let M ≤ G be a CC-subgroup of G ∈ [LF]− ∩ [TD] and N / G
with N < MN < G. Then MN/N is a CC-subgroup of G/N .

Proof. Observe first that {LN/N | L ∈ Λ} is a local system of G/N and that
each (M ∩ L)N/N is a Hall π subgroup of LN/N . Now suppose the Lemma is
false. Then there exists x ∈ G\MN and m ∈M with [x, m] ∈ N . Find a compact
subgroup L ∈ Λ (which then is profinite) with N ∩ L < (M ∩ L)(N ∩ L) < L
and 〈x, m〉 ≤ L . Then M ∩ L is a CC-subgroup of L so that [x, m] ∈ N ∩ L .
Therefore Lemma 2.6 implies x ∈ (Γ ∩M)(Γ ∩N) ≤ NM , a contradiction.
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3. Proof of Theorem 1.3

We shall prove the Theorem in Lemma 3.2 in the profinite situation and we include
Theorem 3.1, a simplified version of Theorem A in [6], sufficient for our purpose.
Recall that for a finite group G , by Oπ(G) one denotes the maximal normal
subgroup of G containing only π -elements.

Theorem 3.1. Let G be a finite group containing a CC-subgroup M . Let
π := π(M). Then all π subgroups are conjugates of a subgroup of M in G.
Furthermore we have one of the following four cases:

(i) M is non-nilpotent and of even order and one of the following holds:

(a) G is a Frobenius group with complement M ;

(b) G ∼= PSL(2, 2n), n ≥ 2 and M is solvable;

(c) G ∼= Sz(q), q = 22n+1 , n ≥ 1 and M is solvable.

(ii) M is nilpotent of even order and one of the following holds:

(a) G is a solvable Frobenius group with complement M ;

(b) G is a solvable Frobenius group with kernel M ;

(c) G ∼= PSL(2, 2n), n ≥ 2 and M is a 2-Sylow subgroup;

(d) G ∼= Sz(q), q = 22n+1 , n ≥ 1 and M is a 2-Sylow subgroup.

(iii) M is non-nilpotent of odd order and one of the following holds

(a) G is a solvable Frobenius group with complement M ;

(b) G ∼= PSL(2, q), q ≡ 3 (mod 4) and M is solvable of odd order |M | =
q q−1

2
;

(iv) M is nilpotent of odd order and one of the following holds:

(a) G is a Frobenius group with M either kernel or complement;

(b) G is simple non-abelian and G and M are classified in Theorem II.11
of [6];

(c) G is not simple; putting H := (M)G , G/H and F (G) = F (H) =
Oπ1(H) are π1 groups, S := H/F (H) is a simple group having the
CC-subgroup MF (H)/F (H) ∼= M and the pair (S ,M ) is of type
(iv)(b);

(d) G is a 2-Frobenius group;

Lemma 3.2. When G is profinite and M a CC-subgroup, then Theorem 1.3
holds.
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Proof. Suppose G is infinite. We shall find it convenient, during this proof,
to say a property P holds eventually, if to every open subgroup U0 of G there
exists an open normal subgroup U of G inside U0 such that G/U satisfies P .
Then G is the projective limit of finite groups for which P holds. This notion at
hand, Lemma 2.6 shows that G cannot eventually belong to the lists (i)(b) and
(c), (ii)(c) and (d), (iii)(b), (iv)(b) of Theorem 3.1. If G is eventually a Frobenius
group, then Proposition 1.1 implies G to be a profinite Frobenius group, whence
it is described in Theorem 1.3 (i) or (iii). If M is finite, it is the complement, else
it is the kernel.

From now on assume that each MU/U is odd order nilpotent then from
the discussion up to now it follows that we may assume G to eventually belong to
either (iv)(c) or (iv)(d) of Theorem 3.1.

In the second case for ’small’ U the group G/U is as in Theorem 3.1(iv)(d).
Then there exists F /G with FU/U Frobenius kernel in FMU/U . Therefore FM
is a profinite Frobenius group with kernel F and finite complement M . Then
FM / G must be open, as by Lemma 2.6, FM/F is a finite normal CC-subgroup
of G/F possessing a cyclic complement L . Lift a generator of L to some element
c ∈ G . Then, M being a Hall subgroup, one finds M c = M f for a suitable element
f ∈ F , so that c0 := cf−1 belongs to NG(M), so that with R := 〈c0〉 , one has a
finite Frobenius group M × R . Thus G satisfies Theorem 1.3 (ii).

Finally suppose that G is eventually as in Theorem 3.1(iv)(c). Setting
H := (M)G , a standard projective limit argument shows that G/H must be
a profinite π1 -group. Similarly it turns out that S := H/Oπ1(H) is a finite
simple group as described in Theorem 3.1(iv)(b). As S contains a CC-subgroup
isomorphic to M , one finds that G/H must be finite. Such G is described in
Theorem 1.3 (iv).

Theorem 1.3 (iii) corrects Theorem 4 in [4], where profinite 2-Frobenius
groups are missing. Consider F := ZZ2 × ZZ2 and define 2× 2-matrices

x :=

(
0 −1
1 −1

)
, y :=

(
0 1
1 0

)
.

Then yx = y−1 , 1 + x + x2 = 0. One easily verifies that M := 〈x〉 ∼= C3 is a
CC-subgroup of the semidirect product G := F × 〈x, y〉 . With R := 〈y〉 find
G = FMR to be profinite 2-Frobenius group, which is not Frobenius.

Proof of Theorem 1.3 in the general situation:

Proof. Fix G ∈ [LF]− ∩ [TD] and a local system Λ of G with each M ∩ L
being a CC-subgroup of the profinite group L ∈ Λ. Morover we claim that all L
can be assumed to be open subgroups. Indeed, when U is any open neighbourhood
of the identity with compact closure, then 〈U〉 is compact. Whence there exists
L0 ∈ Λ containing 〈U〉 . Passing from Λ to a system with each L containing 〈U〉
serves the purpose.

In light of Theorem 3.1 and Lemma 3.2 we may assume G to be infinite
and not compact. Then Theorem 3.1 and Lemma 3.2 together yield that all L ∈ Λ
can be assumed to satisfy exactly one of the following:

(i) with ML := M ∩L , L = FLMLRL is a (pro)-finite 2-Frobenius group, FLML

and MLRL are profinite Frobenius groups with kernels FL, ML respectively;
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(we do not exclude that all RL are trivial, i.e., all L are profinite Frobenius
groups).

(ii) L is a (pro)-finite Frobenius group with M ∩ L kernel;

(iii) L/(M ∩ L)L is a π1 group, Oπ1(L) = F (L) and SL := (M ∩ L)L/Oπ1(L) is
a finite simple group as described in Theorem 3.1(iv)(b);

We discuss the three cases.

Assume that every L ∈ Λ satisfies (i). Then M ∩ L is finite, so that M
is a discrete subgroup of G . Note that M has locally cyclic Sylows so that M
is at most countable. Observe that every FL is open in G . Therefore, taking
Lemma 2.2 into account, i.e., that FL ≤ FL′ , whenever L ≤ L′ , the subgroup

F := 〈FL | L ∈ Λ〉

coincides with the group generated by all the FL as an abstract group. Hence

F =
⋃

Λ0⊆Λ,|Λ0|<∞

〈FL | L ∈ Λ0〉,

showing that π(F ) =
⋃

L∈Λ π(FL). Therefore π(F ) ∩ π(M) = Ø and hence
M ∩ F = {1} . When all RL are trivial then G is listed in Theorem 1.3 (i).
Moreover, evidently M is isolated. Since all elements in F are p-divisible for all
primes in π(M), by using Theorem 1 in [10] one finds (i) to be fully established.

When some RL 6= {1} , we may assume RL 6= {1} for all L ∈ Λ. Since
M is locally cyclic, it has a finite automorphism group and so there must be R
finite cyclic with RL isomorphic to a subgroup of R . It is not hard to see that
G = FMR is listed in (ii) of Theorem 1.3.

Next suppose that all L ∈ Λ satisfy (ii). It is plain that M is an open
normal subgroup of G . Therefore G/M is a locally finite group and Λ :=
{HLM/M | L ∈ Λ} is a local system for G/M . Then for all p ∈ π(G/M) the
p-subgroups of G/M are locally cyclic, in particular they are countable. Therefore
G/M is countable and so one can find a countable subset {Li | i ∈ IN} of Λ with
LiM ≤ Li+1M for all i ∈ IN . Inductively we shall construct a countable subset
{L′

i | i ∈ IN} satisfying for all i ∈ IN the conditions L′
i ≤ L′

i+1 and Li ≤ L′
i .

Set L′
1 := L1 . When {L′

j | j = 1, . . . , n} have been constructed, let L′
n+1 be any

member of Λ containing both, L′
n and Ln+1 . Abusing language, we would like to

denote all L′
i by Li again. Then, noting that each Li = Mi × Hi is a profinite

Frobenius group and taking Lemma 2.2 into account, one finds Mi ≤ Mi+1 ,
and inductively replacing Hi+1 by a suitable Mi+1 -conjugate, one can arrange
Hi ≤ Hi+1 . Then H :=

⋃
i∈IN Hi turns out to be a complement to M in G .

Apply Theorem 1 of [10], in order to see that G is described in Theorem 1.3 (iii).

We are left with the case when all L ∈ Λ satisfy (iii) in the list. When
x 6∈ (M)G , then for all L ∈ Λ one must have x 6∈ (M ∩ L)L so that x is a π1 -
element. Therefore π(G/(M)G) ⊆ π1 . Next let N/(M)G be arbitrary. Then for all
L ∈ Λ either N∩L = L or N∩L/L is nilpotent of bounded class. If N is a proper
normal subgroup of (M)G , it is contained in a characteristic nilpotent subgroup
F (G) ≤ (M)G (in the finite situation corresponding to the Fitting subgroup).
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Then S := (M)G/F (G) must be a simple group in [LF]− ∩ [TD], and therefore
Theorem 1.3 (iv) holds. It is not hard to construct an example for each of the
possibilities listed in the Theorem.

Proof of Corollary 1.4:

Proof. When either (i) or (iii) of Theorem 1.3 hold, G is listed in (i) of
the Corollary. When (ii) holds, then M cannot contain an involution and it is
nilpotent. Hence (iv) of Theorem 1.3 holds. When Λ is a local system of profinite
groups for G with each H ∩M a CC-subgroup of H , one can assume that all
H ∩M contain an involution, or all H ∩M are not nilpotent. When N is an open
normal subgroup of H with 1 < (M ∩ H)N < H then by Lemma 2.6, conclude
(M ∩ H)N/N to be a CC-subgroup of H/N . When N is small enough, either
(M ∩H)N/N contains an involution or it is not nilpotent. Therefore Theorem 3.1
shows H/N to be simple. Hence H is finite and hence G must be locally finite.
Therefore, when M contains an involution by [4] (ii) of the Corollary must hold.
Likewise, when M is not locally nilpotent, (iii) holds.

The class [LF]− ∩ [TD] does not contain the most simple example of an
algebraic Frobenius group, the affine group of the real line, Also to mention that its
p-adic analogues are missing in our classifications, as their respective Frobenius-
complements are not Hall subgroups. Thus indicating possible extensions of our
results, we include a rough description of certain locally compact groups G with
G/G0 ∈ [LF]− (G0 denoting the connected component of G) having a subgroup
M containing the centralizers of its nontrivial elements. Recall from [11] that
G ∈ [SIN], if in every open neighbourhood of 1 ∈ G there exists a compact
normal subgroup K of G with G/K a Lie-group.

Proposition 3.3. Let G ∈ [SIN], G/G0 ∈ [LF]− and M ≤ G contain the
centralizers of its nontrivial elements. Suppose G 6∈ [LF]− . Then there is a short-
exact sequence 1→ V ×K → G→ D → {1} with V a vector-group (topologically
isomorphic to some IRn ), K compact, D discrete such that the decomposition
G1 := V ×K is G-invariant, and there exists an abelian subgroup of finite index
in D . Moreover, one of the following happens:

(i) M ∩G1 = {1} and M is finite;

(ii) G1 ≤ M . The set G \M consists of torsion elements only. If K0 6= {1},
then M / G and G/M is finite.

Proof. The first statement (about the exact sequence) is precisely Theorem
(2.13) in [11]. The second one follows from the fact that the canonical epimorphic
image of D in Aut(V ) is a torsion subgroup and hence is finite.

If (i) holds, for every g1 ∈ G#
1 one finds CG1M(g1) ≤ G1 so that by Theorem

3 (ii) in [13] M must be finite.

Suppose (i) does not hold. If g1 ∈ M ∩ G1 6= {1} , then V ≤ CG(g1) and
therefore V ≤ M . Since G 6∈ [LF]− , V 6= {1} . Then for some v ∈ V \ {1} ,
K ≤ CG(v), whence K ≤ M and thus G1 ≤ M as stated. Pick any x ∈ G \M ,
then 〈x〉 ∩M = {1} implies 〈x〉M/M ∼= 〈x〉 finite, i.e., x is torsion. Suppose
next, K0 6= {1} . Fix a maximal torus T ≤ K0 and x ∈ G \M . Then there exists
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kx ∈ K0 with T x = T kx ≤ Mx ∩Mkx = (M ∩Mxkx
−1

)kx . As M contains the
centralizers of its nontrivial elements, one has x ∈ NG(M). The other assertion
follows from Theorem 3 (ii) in [13].
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