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Abstract. A Lie group is called exponential, if its exponential function is
surjective. Here a complete classification of simple exponential Lie groups is
given. Moreover, semisimple exponential Lie groups are characterized by special
factor groups of products of simple Lie groups.
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1. Introduction

It is an old problem to determine those Lie groups whose exponential function
is surjective. Such Lie groups will be called exponential. In the last years much
progress was made towards a solution of concerning this problem. See for instance
[12] for a survey on this subject.

While D. Z. Djoković and T. Q. Nguyen have classified all linear exponential
simple Lie groups ([2]), the aim of the present paper is to classify all exponential
simple Lie groups. The first step was done in Theorem VII.3.2 of [12] (compare

also Theorem 2.2 of [13]) where it was shown that S̃U(m, 1) is exponential for
m ≥ 3. The next step was done by A. L. Konstantinov and P. K. Rozanov [3] who
classified all exponential Lie groups with Lie algebra su(p, q), p, q ∈ N .

Recall that a Lie group is called weakly exponential if the exponential image
is dense. If G is a Lie group, we denote by g its Lie algebra. For X ∈ g , the
centralizer zg(X) is the subalgebra {Y ∈ g|[Y,X] = 0} . The centralizer ZG(X)
is the subgroup {g ∈ G|Ad(g)X = X} . By z(g), we denote the center of g , and
by Z(G) the center of G . The one-component of G is denoted by G0 . We will
exploit Corollary 5.2 of [10]:

Theorem 1.1. Let G be a real semisimple Lie group and g ⊆ gl(V ). Then G
is exponential if and only if for each nilpotent X ∈ g the centralizer ZG(X) is
weakly exponential.
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In fact, one can even say “algebraic” instead of “semisimple” as an imme-
diate consequence of Theorem 5.1 of [10]. The following is based on the results
contained in these papers and on the famous tables of J. Tits ([9]). To the reader
of the present paper we suggest that he consult the sources we just mentioned
because we shall use their results by simply citing them.

2. On the reductive Levi decomposition

For our subsequent discussions we have to generalize the algebraic Levi decom-
position of real and complex algebraic groups to locally isomorphic groups. For
this purpose, let g be a real or complex algebraic Lie algebra. We denote by u

the nilpotent radical of g , i.e., the maximal ideal consisting of nilpotent elements.
Note that the nilpotent radical need not equal the nilradical, but is at least con-
tained in it. An algebraic subalgebra of g is called reductive if its intersection with
u is trivial. Recall that an algebraic Lie algebra decomposes into the semidirect
product c n u , where c is maximal reductive. This decomposition is called the
algebraic Levi decomposition and c is called a reductive Levi factor. Observe that
all reductive Levi factors are conjugate to each other. Since any semisimple ele-
ment generates a reductive subalgebra, every semisimple element is contained in
some reductive Levi factor. Moreover, a reductive subalgebra is the direct sum of
simple subalgebras and an algebraic abelian subalgebra consisting of semisimple
elements.

Assume that G is a connected Lie group with algebraic centerfree real or
complex Lie algebra g ∼= c n u . In particular, AdG is the covering map from
G onto AdG(G). Consider a closed connected subgroup M of G with algebraic
subalgebra m . Now we take the algebraic Levi decomposition m = cm n um ,
where cm is reductive in m . Since m ∩ u ⊆ um , we deduce cm ∩ u = {0} , which
implies that cm is also reductive in g . Now we define CM := 〈expG cm〉 and
UM := 〈expG um〉 = expG um .

Lemma 2.1. Let G be a real or complex connected Lie group with algebraic
centerfree Lie algebra. Then any connected subgroup M ⊆ G with algebraic
subalgebra m is closed.

Proof. Observe that M = (Ad−1
G (AdG(M)))0 because g is centerfree. More-

over, since m is algebraic, AdG(M) is the one-component of an algebraic subgroup
of Aut(g), therefore closed. Thus, Ad−1

G (AdG(M)) is closed, hence also its one-
component is closed.

In particular, M as well as CM and UM are closed. We will study inter-
sections of certain subgroups.

Lemma 2.2. Let G be a real or complex connected Lie group whose Lie algebra
g is linear and centerfree.

(i) If X ∈ g is nilpotent and expX ∈ Z(G), then X = 0.

(ii) If, in addition, g is algebraic, M ⊆ G closed connected with algebraic
subalgebra m and CM , UM are defined as above, the intersection UM ∩Z(G)
is trivial, and Z(G) ⊆M implies Z(G) ⊆ CM .
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Proof. (i) We get eadXY = Y for all Y ∈ g , hence [X, Y ] = 0 for all Y ∈ g .
Thus, we have X ∈ z(g) = {0} .

(ii) UM ∩ Z(G) = {1} is an immediate consequence of (i). Now assume that
Z(G) ⊆ M . If g ∈ Z(G), then g ∈ Z(M). Since every central element of
a connected Lie group has a preimage, there is a Z ∈ m with g = expZ .
Now consider the Jordan decomposition Z = Zs + Zn , Zs semisimple, Zn
nilpotent, and [Zs, Zn] = 0. Then in particular expZn ∈ Z(G), thus Zn = 0.
On the other hand, Zs is contained in a reductive Levi factor of m , thus
g = expZs is contained in one, hence all reductive Levi factors of M .

Lemma 2.3. Let G be a real or complex connected Lie group whose Lie algebra
is algebraic and centerfree. For M , CM , and UM defined as above, we have
CM ∩ UM = {1}.

Proof. We observe that for c ∈ CM ∩UM there is an X ∈ um with c = expX .
This implies that for every Y ∈ cm we have eadXY ∈ ((Y + um) ∩ cm) = {Y } .
We deduce c ∈ Z(CM). Thus, there is an element Z ∈ cm such that c = expZ .
Considering the Jordan decomposition Z = Zs+Zn , Zs semisimple, Zn nilpotent,
[Zs, Zn] = 0, we get expZn ∈ Z(CM), and therefore Zn ∈ z(cm). But z(cm)
consists of semisimple elements, thus c = expZs . In particular, AdG(c) is both
semisimple and unipotent, hence reduces to 1. We deduce c ∈ Z(G). This implies
c ∈ Z(G) ∩ UM = {1} .

So, we have established the following generalized algebraic Levi decompo-
sition:

Theorem 2.4. Let G be a connected Lie group with real or complex algebraic
centerfree Lie algebra g. Assume that M is a connected subgroup with algebraic
subalgebra m. Then M is closed and there is a closed connected subgroup CM of
M , whose Lie algebra cm is maximal reductive in m, such that M ∼= CM n UM
where uM is the nilpotent radical of m and UM is closed. All subgroups of M with
maximal reductive algebra in m are conjugate to CM . Moreover, if Z(G) ⊆ M ,
then Z(G) ⊆ CM .

We will use the expressions reductive Levi factor and unipotent radical also
for CM and UM , respectively. We recall that by Corollary 2.1A of [4] and the
fact that a factor group of a weakly exponential Lie group is weakly exponential,
a Lie group G with algebraic centerfree Lie algebra is weakly exponential if and
only if G factorized by its unipotent radical is weakly exponential. In particular,
in order to show that such a group is weakly exponential, it is sufficient to show
that one, hence all reductive Levi factors are weakly exponential. Obviously, our
consideration holds in particular for semisimple Lie groups.

Moreover, we observe that factor groups of an exponential Lie group are
exponential. Furthermore, direct products of exponential Lie groups are exponen-
tial.
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3. Results on semisimple Lie groups

We start with semisimple Lie groups because we will need a result on (not necessar-
ily direct) products of exponential Lie groups later in the proof of the classification
theorem of simple exponential Lie groups. We will get some results which reduce
the problem of the classification of semisimple to those of simple Lie groups. We
will see soon that in order to characterize semisimple exponential Lie groups, it is
not enough to consider direct products of simple exponential Lie groups. At the
end of this section, we give a generalization of Lemma 2.3 of [2]. We start with a
useful theorem.

Theorem 3.1. Let G be a connected Lie group, A,B ⊆ G closed connected
subgroups such that g ∼= a × b. Then G is isomorphic to (A × B)/D where
D := {(z, z−1)|z ∈ (A ∩B) ⊆ Z(G)}.

Proof. Since (X, Y ) 7→ X + Y : a× b→ g is an isomorphism of Lie algebras,
a and b centralize each other. Consequently, A and B centralize each other.
Therefore, µ : A × B → G , µ(a, b) = ab is a morphism of Lie groups. Its kernel
D = kerµ|A×B is discrete, its image is a neighborhood of the identity of G since
a + b = g . Hence it is surjective because G is connected. By the Open Mapping
Theorem it follows that µ is open and this implies that (A×B)/D ∼= G .

We can obtain Lemma 2.3 of [2] as a corollary of this theorem, but we
will give an additional, elementary, nevertheless useful lemma, which implies also
Lemma 2.3 of [2].

Lemma 3.2. Assume that A,B,G are connected Lie groups and ϕ : G→ A×B
is a covering map such that kerϕ ⊆ Ā := ϕ−1(A)0 = ϕ−1(A). Assume that B and
Ā are exponential. Then G is exponential.

Proof. We define B̄ := ϕ−1(B)0 and observe that G = ĀB̄ . Since B is
exponential, we get B̄ ⊆ (expG b ·kerϕ). Thus, G = Ā expG b ·kerϕ = Ā expG b =
expG a expG b = expG(a + b).

Now we deduce Lemma 2.3 of [2].

Corollary 3.3. Let G = G1×· · ·×Gn where Gi are connected Lie groups, and
let zi ∈ Gi be central elements of order 2. Assume that G1 and Gi/〈zi〉, i > 1,
are exponential. Then Ḡ := G/〈z1z2, z1z3, . . . , z1zn〉 is exponential.

Proof. Using the notation of the previous lemma, we set A := G1/〈z1〉 and
B :=

∏×
i6=1 Gi/〈zi〉 . Set D := 〈z1z2, z1z3, . . . , z1zn〉 . Now consider the covering

map ϕ of Ḡ defined by kerϕ = 〈z1〉D/D . Then ϕ(Ḡ) =
∏×

i (Gi/〈zi〉) and
Ā = G1D/D as a factor group of an exponential Lie group is exponential itself.
Moreover, the group B is a direct product of exponential Lie groups, hence also
exponential. Lemma 3.2 implies the exponentiality of Ḡ .

By means of Theorem 3.1, we can reduce semisimple exponential Lie groups
to simple exponential Lie groups:
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Corollary 3.4. Assume that G is a semisimple Lie group and g ∼=
⊕n

i=1 gi
is its Lie algebra, where the gi are simple. Denote by Gi the connected subgroup
of G corresponding to gi and define Hi :=

∏n
j=iGj , 1 ≤ i ≤ n. Then G is

exponential if and only if (Gk ×Hk+1)/Dk is exponential for all k = 1, . . . , n− 1,
where Dk := {(z, z−1)|z ∈ Gk ∩Hk+1}.

Proof. We note that because of z(g) = {0} and the algebraity of the subalge-
bras gi , Lemma 2.1 implies that the groups Gi and Hi are closed. Together with
Theorem 3.1 we deduce the assertion.

Obviously, the Lie algebras of semisimple exponential Lie groups must
be direct products of Lie algebras where at least the corresponding projective
Lie groups are exponential. As example, observe that Lemma 3.2 implies that
(S̃L(2,R) × S̃U(3, 1))/D with D = 〈(z1, z2)〉 , z1 a generator of Z(S̃L(2,R)), and

z2 a generator of Z(S̃U(3, 1)), is exponential, while S̃L(2,R) × S̃U(m, 1) is not,

because S̃L(2,R) is not.

4. The classification

We observe that complex Lie groups can be considered as real Lie groups and
therefore we start by recalling the classification of the complex exponential simple
Lie groups due to H. L. Lai ([5], [6], [7]).

Theorem 4.1. The only complex exponential simple Lie groups are isomorphic
to PSL(n,C), n ≥ 2.

For the next classes of Lie groups we need some preliminairies.

Proposition 4.2. Assume that G is an exponential Lie group with real or
complex algebraic centerfree Lie algebra. Then, for each nilpotent X ∈ g, the
center Z(G) must be contained in the center of one, hence all reductive Levi factors
of ZG(X)0 .

Proof. Since G is exponential, the centralizer of each nilpotent X must be
in particular connected. Moreover, the center Z(G) is obviously contained in the
center of ZG(X) = ZG(X)0 , which is a connected subgroup of G with algebraic
subalgebra. Theorem 2.4 implies the assertion.

In the following, we will deal with factor groups of the center of S̃O(2n −
2, 2), n ≥ 4, and S̃O

∗
(2n), n ≥ 4 even. We observe that in both cases this center

is isomorphic to Z× Z2 . Now we determine all subgroups D of Z̃ := Z(G̃) such

that Z̃/D is isomorphic to Z2 . We will say that such a D has Property Z.

We denote Spin(2n − 2, 2) resp. Spin∗(2n) by G , its universal covering

group by G̃ , and denote by ϕ the covering map ϕ : G̃→ G . Using the definitions
introduced on page 277 of [2], we choose generators u and d of Z̃ such that d2 = 1,
ϕ(u) = z , ϕ(ud) = z′ . Then we have to consider the following cases:

(i) D = Z̃ ,

(ii) D = 〈d〉 ,
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(iii) D = 〈uk〉 , k ∈ N ,

(iv) D = 〈duk〉 , k ∈ N ,

(v) D = 〈uk, dul〉 = 〈ugcd(k,2l), dul〉 , 0 ≤ l < k .

Case (v) can be reduced to D = 〈u2, d〉 : For odd k , it is obvious that

D = Z̃ . If k is even and l is odd, we get D = 〈u2, du〉 = 〈du〉 , hence we are in
case (iv). If both, k and l , are even, we get D = 〈u2, d〉 .

Now we determine all D with Property Z: The cases (i) and (ii) can be
excluded. In case (iii) and (iv), k must equal 1. Hence, only the following D have
Property Z:

(a) D = 〈u〉 ,

(b) D = 〈du〉 ,

(c) D = 〈u2, d〉 .

Theorem 4.3. The only exponential Lie groups with Lie algebra g ∼= so(2n −
2, 2), n ≥ 4 even, are isomorphic to Spin(2n− 2, 2)/〈z〉 or PSO(2n− 2, 2)0 . For
n ≥ 5 odd, only PSO(2n− 2, 2)0 is exponential.

Proof. We consider the reductive Levi factors of the centralizers of the nilpotent
elements of g (compare, e.g., Table 2 of [2] and note that this table fits for both,
even and odd n). There exists a nilpotent element X where the reductive Levi
factor c of zg(X) is isomorphic to so(2n− 5).

Assume that a Lie group G with Lie algebra g is exponential. By Proposi-
tion 4.2, this implies that the center Z(G) of G must be contained in the center
Z(C) of the reductive Levi factor C of ZG(X) = ZG(X)0 corresponding to c .
Since C is connected, C is isomorphic to Spin(2n− 5) or SO(2n− 5). For n ≥ 4,
the center Z(C) is isomorphic to Z2 , or trivial. So, the center Z(G) is either
isomorphic to Z2 , or trivial.

A trivial center leads to PSO(2n − 2, 2)0 . If the center is isomorphic to

Z2 , we have to consider the subgroups D of Z̃ with Property Z. In case (a),

we get G̃/D ∼= Spin(2n − 2, 2)/〈z〉 . Next consider case (b). Here we have

G̃/D ∼= Spin(2n − 2, 2)/〈z′〉 ∼= Spin(2n − 2, 2)/〈z〉 . In case (c), we get SO(2n −
2, 2)0 . Together with Proposition 4.2 of [2] we get the assertion for even n ≥ 4.
Proposition 4.3 of [2] implies the assertion for odd n ≥ 5.

Theorem 4.4. The only exponential Lie groups with Lie algebra g ∼= so∗(2n),
n ≥ 4 even, are isomorphic to SO∗(2n), Spin∗(2n)/〈z′〉, or PSO∗(2n).

Proof. We consider the reductive Levi factors of the centralizers of the nilpotent
elements of g (compare, e.g., Proposition 5.2 of [2]). There exists a nilpotent
element X where the reductive Levi factor c of zg(X) is isomorphic to sp(n

2
, n

2
).

Thus, C is isomorphic to Sp(n
2
, n

2
) or to PSp(n

2
, n

2
). Thus, the center Z(G) of G

is either trivial, or isomorphic to Z2 . Hence, by Proposition 4.2, the center Z(G)
is either trivial, or isomorphic to Z2 .



Wüstner 275

A trivial center leads to PSO∗(2n). Now we examine the subgroups D with

Property Z of Z̃ . In case (a), we have G̃/D ∼= Spin∗(2n)/〈z〉 . In case (b), we have

G̃/D ∼= Spin∗(2n)/〈z′〉 . Case (c) leads to SO∗(2n). Together with Proposition 7.2
of [2] we get the assertion.

Next, we will prove that the universal covering group S̃O
∗
(2n) with odd

n ≥ 3 is exponential. Recall that so∗(2n) ∼= uα(n,H), where α denotes the anti-
hermitian form J given by iIn with respect to the corresponding basis B of Hn .
We refer to Paragraph 5 of [2]. There, the nilpotent elements X of uα(n,H) are
explicitly described. Moreover, observe that on Mat(n,H) there are given two
traces, the sum of all diagonal entries of M ∈ Mat(n,H), denoted by tr(M), and
the sum of the diagonal entries of the matrix in Mat(2n,C) which one gets by
replacing every entry a + bi + cj + dk of M by the corresponding 2 × 2-matrix(

a+ bi c+ di
−c+ di a− bi

)
. This trace is denoted by trC . We observe that for every

element M ∈ uα(n,H) we have trC(M) = 0, while tr(M) is in general unequal
to 0. Let k be a maximal compact subalgebra of uα(n,H). Then M ∈ k lies
in k′ , a maximal simple compact subalgebra, if and only if tr(M) = 0. Recall
that k′ ∼= su(n). Like in [2], we will use only the denotation so∗(2n), SO∗(2n)
etc. though we actually deal with the isomorphic representation uα(n,H).

Proposition 4.5. A generator z of Z(S̃O
∗
(2n)) is given by z := exp

S̃O
∗
(2n)

(u+

w), where u = −1
n
πiIn and w = n+1

n
πiIn − πi(n + 1)ξ , ξ11 = 1, and all other

entries equal to 0. If ϕ : S̃O
∗
(2n)→ SO∗(2n) denotes the covering map, then any

generator of kerϕ equals exp
S̃O
∗
(2n)

∆, where ∆ is diagonal with any entries in

2πiZ satisfying tr(∆) = ±2πi.

Proof. Observe that Z(S̃O
∗
(2n)) is cyclic. Note that w is contained in a

maximal compact simple Lie algebra k′ , which is necessarily isomorphic to su(n),
and u centralizes k′ . We observe that the projection of z on exp

S̃O
∗
(2n)

k′ is the
n+1

2
-th multiple of a natural generator of Z(exp

S̃O
∗
(2n)

k′) and itself a generator.

Denote by ψ the covering map from S̃O
∗
(2n) onto Spin∗(2n). We observe that

diagonal elements ΓSpin∗ in the preimage of 1 under expSpin∗(2n) have entries inside
2πiZ with tr(ΓSpin∗)/2πi even (in opposite to SO∗(2n) where also those diagonal
elements ΓSO∗ with tr(ΓSO∗)/2πi odd are contained in the preimage of 1 under
expSO∗(2n) ). So, we obtain ψ(z)4 = expSpin∗(2n) 4(u + w) = expSpin∗(2n) 4(πiIn −
πi(n+ 1)ξ) = 1, while expSpin∗(2n) l(u+w) 6= 1 for l = 1, 2, 3. Due to [9], we have

shown, that z is a generator of Z(S̃O
∗
(2n)).

We note that z2 generates kerϕ and observe that any diagonal preimage
Γ

S̃O
∗ of 1 under exp

S̃O
∗
(2n)

has entries in 2πiZ and tr(Γ
S̃O
∗) = 0 because Γ

S̃O
∗

must be contained in k′ . So, we calculate z2 = exp
S̃O
∗
(2n)

2(πiIn − πi(n + 1)ξ) =

exp
S̃O
∗
(2n)

(−2πiξ). Adding any Γ
S̃O
∗ and regarding the fact that z−2 is the only

other generator of kerϕ implies the assertion.

Proposition 4.6. Let X ∈ so∗(2n) be a nilpotent element and ϕ the covering

map from S̃O
∗
(2n) onto SO∗(2n). Assume that g is a generator of kerϕ. Denote
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by c =
⊕

ci a reductive Levi complement of zg(X) and assume w.l.o.g. that
c1
∼= so∗(2p), p odd. Then exp−1(g) ∩ c1 6= Ø.

Proof. For every nilpotent element X , there is given a basis B′ of the natural
so∗(2n)-module V (dimH V = n) such that X is given in canonical form (upper
secondary diagonal with entries 0 or 1). With respect to this basis, the skew-
hermitian form J is given by diagonal blocks Jmj , Kmk , Lml , mj odd, mk,ml even,
defined as follows: Let Eij be the standard basis of MatB′(t,H). A block Jmj is

defined as mj ×mj -matrix
∑mj

r=1((−1)
mj+1

2
+riEr,mj+1−r). A block Kmk is defined

as mk ×mk -matrix
∑mk

r=1((−1)rEr,mk+1−r), while Lml = −Kml . As was pointed
out in [2], there is at least one odd p such that there is an odd number k of blocks
Jms , s = 1, . . . , k , with m1 = · · · = mk = p . Let X =

∑
j Xmj+

∑
kXmk+

∑
lXml ,

such that Xmj fits to Jmj while Xmk fits to Kmk and Xml to Lml , respectively.

Let Wp be the subspace of V belonging to the form

 Jm1 . . . 0
...

. . .
...

0 . . . Jmk

 . Recall

that c1 leaves Wp invariant and acts trivially on the invariant complement of Wp .
Furthermore, we have dimWp = p ·mp . Moreover, c1 centralizes X . We observe
that the diagonal element ∆B′ with (∆B′)jj = 2πi for j = 1, . . . ,m1 and all
other entries 0 is contained in c1 . Applying basis transformation from B′ to the
basis B such that J is given in canonical form, we get (∆B)jj = (−1)j+12πi for
j = 1, . . . ,m1 and all the other entries 0. By Proposition 4.5, ∆B is contained in
the preimage of z−2 and −∆B is in the preimage of z2 . Since z2 and z−2 are the
only generators of kerϕ , we deduce the assertion.

Now we are able to prove the following:

Theorem 4.7. The universal covering groups S̃O
∗
(2n), n ≥ 3 odd, are expo-

nential.

Proof. This proof is a variation of the proof of Proposition 7.1 of [2]. Note

that S̃O
∗
(2) ∼= R is exponential. Assume that n ≥ 3 and that the claim is

true for all odd p < n . For X = 0, the centralizer equals the group itself,
which is weakly exponential by Theorem IV.6 of [8]. Let X 6= 0 be a nilpotent

element in the Lie algebra of S̃O
∗
(2n). Again, denote by ϕ the covering map of

S̃O
∗
(2n) onto SO∗(2n). By Proposition 5.2 of [2], the reductive Levi factor c of

zg(X) is isomorphic to the direct sum of Lie algebras so∗(2p) (where so∗(2) is
isomorphic to R) and sp(p, q). There is at least one simple factor c1 isomorphic
to so∗(2p), p < n odd. By Proposition 4.6, it contains a preimage of a generator
of kerϕ . Moreover, C ∼= (

∏×
i Ci)/D , Ci connected, ci isomorphic to so∗(2k)

or to sp(p, q), D ⊆ Z(
∏×

i Ci). Note that C1 is covered by S̃O
∗
(2p) which is

exponential by induction assumption. Thus, C1 is exponential, hence C1D/D is
exponential. Moreover, the group C1D/D = exp

S̃O
∗
(2n)

c1 contains kerϕ . Note

that ϕ((
∏

i6=1 Ci)D/D) is exponential as a product of some copies of SO∗(2l) and
Sp(p, q) by [2]. Thus, Lemma 3.2 implies that C is exponential, hence ZG(X) is
weakly exponential. This implies the assertion.
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Now we gather the results on Lie groups with Lie algebra su(p, q). Recall

that S̃U(m, 1) is exponential for m ≥ 3. In their paper [3] in this issue, pp. 51–61,
A. L. Konstantinov and P. K. Rozanov have determined all simple exponential Lie
groups with Lie algebra su(p, q) with p, q ∈ N , a generalization of the correspond-
ing criterion of [2] (Proposition 3.1). The subject at hand causes their result to be
rather technical; it read as follows (Theorem 3.5 and Theorem 1.7 of [3]):

Theorem 4.8. Denote by ϕ : S̃U(p, q)→ SU(p, q) the canonical covering map.

Observe that by [9], the center Z̃ = Z(S̃U(p, q)) is isomorphic to Z × Zd , d =
gcd(p, q). Moreover, we may assume kerϕ = 〈(1, n′)〉 and denote by ν the

projection from Z̃ to Z.

(i) A Lie group G locally isomorphic to SU(p, p) is exponential if and only if
G = PSU(p, p).

(ii) Let p 6= q and D = 〈x1, x2〉 be a nontrivial central subgroup of S̃U(p, q),
ϕ(x1) = yan

′
, a|d, ν(x2) = b, ϕ(x2) = yc , 0 ≤ c < an′, b+ cq′ = ln′ .

The group G = S̃U(p, q)/D is exponential if and only if for all
j = 0, . . . , [ q

p−q ] the following conditions are fulfilled:

(a) gcd(b, q′ − j(p′ − q′)) = 1;

(b) gcd(a, l(2j + 1)− cj) = 1.

(iii) S̃U(p, q) is not exponential for p, q > 1.

We get the classification of the simple exponential real Lie groups:

Theorem 4.9. Every simple exponential real Lie group is isomorphic to one of
the following Lie groups:

(i) A compact simple connected Lie group.

(ii) PSLn(C), n ≥ 2.

(iii) A Lie group described by Theorem 4.8 (including PSL2(R) ∼= PSU(1, 1) and

PSO(4, 2)0
∼= PSU(2, 2)) or a Lie group covered by S̃U(m, 1), m ≥ 3.

(iv) A Lie group covered by SL(n,H), n ≥ 2.

(v) A Lie group covered by Spin(2n, 1), n ≥ 2.

(vi) A Lie group covered by Sp(p, q), p ≥ q ≥ 1.

(vii) A Lie group covered by Spin(2n− 1, 1), n ≥ 3.

(viii) Spin(2n− 2, 2)/〈z〉 or PSO(2n− 2, 2)0 , n ≥ 4 even.

(ix) PSO(2n− 2, 2)0 , n ≥ 5 odd.

(x) SO∗(2n), Spin∗(2n)/〈z′〉, or PSO∗(2n), n ≥ 4 even.

(xi) A Lie group covered by S̃O
∗
(2n), n ≥ 3 odd.

(xii) E IV= E6,−26 .
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Proof. (i) is well-known, and (ii) is Theorem 4.1. For the noncompact non-
complex exponential Lie groups, we only have to check Lie groups with Lie algebra
isomorphic to the Lie algebra of those groups described in the list of [2]. (iii) is
due to Theorem 4.8 and [12], Theorem 1.7. Since SL(n,H) is simply connected,
we get (iv). By the same argument, we get (v), (vi), and (vii). (viii) is Theorem
4.3, (ix) and (x) is Theorem 4.4, and (xi) is Theorem 4.7. (xii) is clear because its
universal covering group is centerfree, hence equals E IV.

Corollary 4.10. If G is a simple exponential nonlinear simply connected Lie

group, then G is isomorphic to S̃O
∗
(2n), n ≥ 3 odd, or to S̃U(m, 1), m ≥ 3.
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