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Abstract. We show that when the methods of [2] are combined with the

explicit stratification and orbital parameters of [9] and [10], the result is a
construction of explicit analytic canonical coordinates for any coadjoint orbit

O of a completely solvable Lie group. For each layer in the stratification,

the canonical coordinates and the orbital cross-section together constitute
an analytic parametrization for the layer.

Finally, we quantize the minimal open layer with the Moyal star

product and prove that the coordinate functions are in a convenient comple-
tion of spaces of polynomial functions on g∗ , for a metric topology naturally

related to the star product.
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0. Introduction

Let G be an exponential Lie group with Lie algebra g , and let O ⊂ g∗ be a
coadjoint orbit of G . Then O carries a canonical symplectic structure, meaning
that O is equipped with a distinguished, closed two-form ωO with the property
that ωO is non-degenerate at each point of O . If (U, c) is chart in O with c =
(p1, p2, . . . , pd, q1, q2, . . . , qd), then c = (p1, p2, . . . , pd, q1, q2, . . . , qd) are called
canonical coordinates on U if

ωO|U =
d∑

r=1

dpr ∧ dqr.

A standard geometric result says that there is a chart for a neighborhood of every
point of O with canonical coordinates, and a natural question is to what extent
can such coordinates be defined “globally”.
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In the nilpotent case, the approaches to this question are based upon
the fundamental descriptions of the coadjoint orbit space and algebra of rational
G -invariant functions on g∗ [14]. M. Vergne shows that there is a G -invariant
Zariski open subset of coadjoint orbits having maximal dimension, and rational
functions p1, p2, . . . , pd , q1, q2, . . . , qd on g∗ that are non-singular on this open set
and whose restriction to each of these orbits defines canonical coordinates ([17],
Sect. 4, Théorème). Also building on the results of [14], N. V. Pedersen shows
in ([12], Theorem 5.1.1) that it is possible to classify orbits into algebraically
defined families or “layers”, so that within each layer of orbits, there are functions
globally defined on the entire layer whose restriction to each coadjoint orbit
within the layer are canonical coordinates. Moreover, in this case the procedure
by which orbits are classified into layers, and the construction for each layer,
are entirely explicit and algorithmic. As in the result of Vergne, the coordinate
functions are rational.

In general (i.e., for G exponential), N. V. Pedersen shows in ([11],
Theorem 2.2.1) that, for each coadjoint orbit O , canonical coordinates can be
defined whose domain is all of O . In [2], there is a method for (1) selecting
a partition of g∗ into G -invariant Borel subsets, and (2) on each Borel subset,
defining functions p1, p2, . . . , pd , q1, q2, . . . , qd which are canonical coordinates
on each coadjoint orbit inside. In both of these papers the results are obtained
without the benefit of a description of the orbit space which resembles that of
[14] for the nilpotent case. Because of this, the results are not as explicit as in
the nilpotent case.

Such a description of the coadjoint orbit space for exponential groups is
given in [9] and [10]. As in the nilpotent case, the orbit classification is based upon
“jump indices”, but the procedure is necessarily more refined and the resulting
picture of the orbit space more complex. Nevertheless, it is natural to ask whether
this description, which is a precise generalization of the Pukanszky description in
[14], can be used to construct explicit canonical coordinates. In particular, what
is the relationship between the partition of [2], and the (refined) stratification
of [9] and [10]? Can the methods of [2] be combined with those of [9] and [10]
to give canonical coordinates in a more explicit form? We answer both of these
questions in this paper for the case where g is completely solvable.

In Section 1 we examine a “fine” stratification of g∗ as defined in [10] and
describe its relationship to the corresponding stratification of a codimension one
subgroup. In Section 2 we specialize to the case where G is completely solvable
and recall the method of [2] by which one obtains globally defined canonical
coordinates on G-invariant sets Ω(d) . We show that, in the case where G is
completely solvable, each fine layer Ω is contained in some Ω(d) . In Section 3
we examine the case where g is nilpotent, and show that it is possible to carry
out the method of Vergne [17] so that the resulting Zariski-open set coincides
with the Zariski-open fine layer, and so that the coordinate functions coincide
with those of [2]. In Section 4, we recall the “ultra-fine” stratification of [9] and
[10], and the resulting orbital description by means of cross-sections. We show
that the cross-section mapping can be extended to an analytic function defined
on an explicit dense and open subset of the complexification of g∗ . When the
method of [2] is applied within this context, the canonical coordinates are explicit
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and can be also extended to analytic functions defined on an open subset of the
complexification of g∗ . In Section 5, for the each layer, we describe the cross-
section of [10] which is an algebraic set, but, in general, not a manifold. This
cross-section is the graph of a rational function defined on a natural algebraic
set. We state an explicit form of Théorème 1.6 in [2] and we give two examples.
Finally, in Section 6 we recall the definition of the deformed Weyl algebra, of the
? metric and the corresponding completion. We prove a global version of a result
of [3], that for each generic coadjoint orbit, the coordinates pr , qr are in fact
quantizable functions and belong to the completion of an algebra of polynomial
functions.

1. The fine stratification

Let G be a connected, simply connected exponential solvable Lie group with Lie
algebra g . Let {X1, X2, . . . , Xn} be a basis for g and set

gj = span {X1, X2, . . . , Xj}, 1 ≤ j ≤ n.

We choose the basis (X1, X2, . . . , Xn) so that it satisfies
(i) for some p , 1 ≤ p ≤ n , gp is the nilradical of g , and
(ii) if gj is not an ideal, then gj+1 and gj−1 are ideals, 1 ≤ j ≤ n .
Let

I = {j: gj is an ideal }, I ′ = {j: j ∈ I and j − 1 ∈ I} and I ′′ = I \ I ′.

Denote the complexification of g by gC , and regard g ⊂ gC as a real subalgebra,
extending elements of g∗ to gC in the natural way. Define elements Zj (1 ≤ j ≤
n) of gC as follows: fix j in {1, . . . , n} , if j ∈ I ′ set Zj = Xj , and if j ∈ I ′′ ,
set Zj−1 = Xj−1 + iXj and Zj = Xj−1 − iXj . We say that (X1, X2, . . . , Xn)
is a “good basis” for g if it satisfies conditions (i) and (ii), together with the
condition
(iii) the set {Z1, Z2, . . . , Zn} as defined above is a Jordan-Hölder basis for gC .
Note that a good basis exists [6]. We refer to {Z1, Z2, . . . , Zn} as the Jordan-
Hölder basis corresponding to the good basis {X1, X2, . . . , Xn} of g . Let s = gC
and

sj = span{Z1, Z2, . . . , Zj}, 1 ≤ j ≤ n;

then sj is an ideal in gC and sj = s̄j if and only if j is in I ′ .
With a good basis for g in place, we set some more notation. Denote by

(X∗
1 , . . . , X

∗
n) the dual basis of g∗ . For ` in g∗ , X in g and x in G , let us put

[X, `] = ad∗X(`) and x.` = Ad∗x` . For each ` ∈ g∗ , and for any subset h of s ,
let

h` = {X ∈ s: 〈`, [X,Y ]〉 = 0 for all Y ∈ h}

and
e` = {j: s`

j 6= s`
j−1}.
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It is easily seen that e` is the set {j: Zj 6∈ sj−1 + s`} . Let

E = {e`: ` ∈ g∗}.

The set E has a natural total ordering: let e = {e1 < · · · < e2d} and
e′ = {e′1 < · · · < e′2d′} , we say that e < e′ if: d > d′

or
d = d′ and er < e′r, where r = min{s: es 6= e′s}.

For each e ∈ E , let Ωe be the set {` ∈ g∗: e` = e} . Each Ωe is a G -invariant
algebraic set, the collection {Ωe} constitutes a partition of g∗ , and for each e ,
the set

⋃
e′≤e

Ωe′ is a Zariski-open subset of g∗ . As it is shown in [12], there are

semi-invariant polynomials Qe , e ∈ E , such that:

Ωe = {` ∈ g∗: Qe′(`) = 0, if e′ < e and Qe(`) 6= 0}.

Following [12], the partition {Ωe} is referred to herein as the “coarse
stratification”. As the name suggests, this partition is too coarse for some
purposes, even in the case where g is nilpotent, and various procedures have
been given for its refinement. In [12], where g is nilpotent, a refinement (the
“fine stratification”) is the first step in an explicit but rather complex procedure
for construction of “quantizable” canonical coordinates for coadjoint orbits ([12],
Theorem 5.1.1). (The definition of quantizable function will be given in Section
6). On the other hand in [1], a simple procedure for constructing quantizable
canonical coordinates for coadjoint orbits over a Zariski-open subset is given,
again in the nilpotent case. The procedure of [1] is then found to generalize
to the exponential solvable case [2] but in a somewhat less explicit form. At
about the same time a two-step refinement of the coarse layering was shown in
the exponential case to yield an algorithm for the simultaneous parametrization
of coadjoint orbits and the orbit space within each layer [9], [10]. We refer
to this doubly-refined partition as the “ultra-fine layering”. It is our aim to
reconcile these procedures in the case where g is completely solvable, producing
an algorithm for explicit construction of quantizable canonical coordinates on
coadjoint orbits across entire ultra-fine layers.

In the remainder of this section we examine the first step of layer refine-
ment as defined in [9] and [10], and the relationship between fine layers in g∗

and g∗n−1 is made explicit. It is then shown that in the case where g is com-
pletely solvable, this first step of refinement yields the same partition as the “fine
stratification” of [12].

Fix a non-empty e in E . Let 2d be the number of elements in e .
We consider the set Je of all pairs (i, j) where i = {i1, i2, . . . , id} and j =
{j1, j2, . . . , jd} are index sequences whose values taken together constitute the
index set e , and which satisfy the conditions ir < jr and ir < ir+1 (1 ≤ r ≤ d).
To each ` ∈ Ωe , we associate subalgebras hr(`) of s , r = 0, 1, . . . , d , and a
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sequence pair (i(`), j(`)) by the following inductive scheme: set h0(`) = s , and
for r = 1, 2, . . . , d , let

ir(`) = min{j: sj ∩ hr−1(`) 6⊂ hr−1(`)
` ∩ hr−1(`)},

hr(`) = hr−1(`) ∩
(
sir

∩ hr−1(`)
)`
,

jr(`) = min{j: sj ∩ hr−1(`) 6⊂ hr(`)}.

The sequence (i(`), j(`)) belongs to Je , hr(`), (0 ≤ r ≤ d) is a subalgebra of s of
codimension r , and hd(`) is totally isotropic with respect to the skewsymmetric
bilinear form on s defined by ` .

Put Fe = {(i(`), j(`)): ` ∈ Ωe} and H = {(e, i, j): e ∈ E , (i, j) ∈ Fe} .
Then H has a total ordering:
let (e, i, j) and (e′, i′, j′) be two elements in H , we say (e, i, j) < (e′, i′, j′) if: e < e′

or
e = e′ and jr < j′r, where r = min{s: js 6= j′s}.

From now on, we shall represent (e, i, j) by (e, j). Set

Ωe,j = {` ∈ Ωe: j(`) = j}.

For any subset h of e (e ∈ E , e 6= Ø), let Mh(`) be the corresponding
skew-symmetric submatrix of Me(`):

Mh(`) = (〈`, [Zjr , Zjs ]〉)jr,js∈h.

We denote the Pfaffian of Mh(`) by Ph(`).
Now fix (i, j) in Fe ,

i = {i1 < i2 < · · · < id}, j = {j1, j2, . . . , jd}.

For each r , 1 ≤ r ≤ d , let hr = {i1, i2, . . . , ir, j1, j2, . . . , jr} , set

Pe,j,r(`) = Phr
(`) and Pe,j(`) =

d∏
r=1

Pe,j,r(`).

Set also

Ωe,j,r = {` ∈ Ωe: jt(`) = jt, 1 ≤ t ≤ r} , (1 ≤ r ≤ d) and Ωe,j,0 = Ωe.

We know that (see [7])

Ωe,j = {` ∈ Ωe: Pe,j′(`) = 0 for all (e, j′) < (e, j) and Pe,j(`) 6= 0} .

To begin with, our aim is to determine the relationship between the
layers in g∗ and those of g∗n−1 . Denote gn−1 by g0 , and g0

C by s0 and consider
the restriction map π : g∗ → g0∗ , ` 7→ `0 = π(`) = `|g0 . Since n is in I ′ ,
the preceding construction for g0 , using (X1, . . . , Xn−1) gives the same basis
(Z1, . . . , Zn−1) thus the same ideals sj for j < n . We define e0 to be the set of
jump indices for `0 :

e0 = {j: 1 ≤ j ≤ n− 1 and Zj 6∈ sj−1 + (s0)`0}

and we put (i0, j0) = (i0(`0), j0(`0)).
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Lemma 1.1. e0 is a subset of e .

Proof. Put:

ej = {r: 1 ≤ r ≤ j and Zr 6∈ sr−1 + s`j

j },

ej is the set of jump indices for `j . We clearly have

e = {j: 1 ≤ j ≤ n and Zj 6∈ sj−1 + s` ∩ sj}.

Now s` ∩ sj ⊂ s`j

j , thus

Zr ∈ sr−1 + s` ∩ sj =⇒ Zr ∈ sr−1 + s`j

j ,

and therefore
Zr 6∈ sr−1 + s`j

j =⇒ Zr 6∈ sr−1 + s` ∩ sj .

This implies that ej is a subset of e . More precisely we have

Ø = e1 ⊂ e2 ⊂ · · · ⊂ en−1 = e0 ⊂ en = e,

and
|ej | = |ej−1| or |ej | = |ej−1|+ 2,

where |e| is the cardinal of the set e .

Lemma 1.2. Put

h̃r(`) = hr(`) ∩ s0, r = 0, . . . , d

If n is a jump index, then there is an unique k in {1, . . . , d} such that

h̃k(`) = h̃k−1(`).

Proof. Thus

h̃d(`) =

 n∑
j=1

s`j

j

 ∩ s0 =

n−1∑
j=1

s`j

j + s`
n

 ∩ s0.

But n is a jump index, thus Xn is not in s` + s0 and s` ⊂ s0 . Then

h̃d(`) =
n−1∑
j=1

s
`j

j = h0
d−1(`

0).

Indeed, since:
h̃r(`) = Ker

(
Z∗n|hr(`)

)
,

h̃r(`) (r = 0, . . . , d) is a subalgebra of hr(`) of codimension 0 or 1. On the other
hand,

s0 = h̃0(`) ⊃ h̃1(`) ⊃ · · · ⊃ h̃d(`) = h0
d−1(`

0),

dim s0 = n− 1 and dim h̃d(`) = n− d . We conclude that there is an unique k
in {1, . . . , d} such that h̃k(`) = h̃k−1(`), this proves our lemma.
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Remark 1.1. As a consequence of Lemma 1.2., we have

h̃0(`) 6= h0(`), . . . , h̃k−1(`) 6= hk−1(`),

and
h̃k−1(`) = h̃k(`) = hk(`), h̃k+1(`) = hk+1(`), . . . , h̃d(`) = hd(`).

Let us choose Y1, Y2, . . . , Yd in s such that Yj is in hj−1(`)\hj(`). Then
(Y1, Y2, . . . , Yr) is a basis of s mod hr(`) (r = 1, 2, . . . , d), and

hr(`) = span{Yr+1, . . . , Yd} ⊕ hd(`), r = 0, 1, . . . , d− 1.

For r ≥ k , by a dimension argument, we have h̃r(`) = hr(`) ⊂ s0 ,
thus Yk+1, . . . , Yd are in s0 . Since h̃k(`) = h̃k−1(`) then Yk does not belong to
s0 . By adding, if necessary, a multiple of Yk , to Yk−1, . . . , Y1 , we suppose that
Yk−1, . . . , Y1 are also in s0 . Now we have:

Yj ∈ s0, for j 6= k and Yk 6∈ s0

and

hr(`) = h̃r(`)⊕ CYk, for r < k and hr(`) = h̃r(`), for r ≥ k.

Now the relationship between the jump indices of ` in g∗ and those of
`0 in g0∗ is given by the following:

Proposition 1.3. 1. If n does not belong to e , then for any r , 1 ≤ r ≤ d ,

ir(`) = i0r(`
0), h̃r(`) = h0

r(`
0) and jr(`) = j0r (`0).

2. If n belongs to e , then n = jk ∈ j where k is defined in Lemma 1.2. and for
1 ≤ r < k ,

i0r(`
0) = ir(`), h0

r(`
0) = h̃r(`) and j0r (`0) = jr(`),

while for k < r ≤ d ,

i0r−1(`
0) = ir(`), h0

r−1(`
0) = h̃r(`) and j0r−1(`

0) = jr(`).

Proof. 1. In this case, e = e0 , s` = (s0)`0 ⊕ CZ , with Z ∈ s \ s0 . We
consider:

s = h0(`) ⊃ h1(`) ⊃ · · · ⊃ hd(`)

and
s0 = h0

0(`
0) ⊃ h0

1(`
0) ⊃ · · · ⊃ h0

d(`
0).

But hd(`) being the Vergne polarization of ` relative to the basis {Zj} , hd(`) =
h0

d(`
0)⊕ CZ and thus

h̃r(`) = h0
r(`

0), for all r = 1, . . . , d.
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Consider now

ir(`) = min{j: sj ∩ hr−1(`) 6⊂ hr−1(`)
` ∩ hr−1(`)}.

But for j < n , sj ∩ hr−1(`) = sj ∩ h̃r−1(`) and thus

ir(`) = min{j: sj ∩ h0
r−1(`

0) 6⊂ h0
r−1(`

0)`0 ∩ h0
r−1(`

0)} = i0r(`
0).

Finally, for the jr(`), since jr(`) < n ,

jr(`) = min{j: sj ∩ hr−1(`) 6⊂ hr(`)}
= min{j: sj ∩ h̃r−1(`) 6⊂ h̃r(`)}
= min{j: sj ∩ h0

r−1(`
0) 6⊂ h0

r(`
0)} = j0r (`0).

2. For the second assertion, we claim first that if r 6= k then jr(`) < n . Suppose
jr(`) = n , then we have

h̃r−1(`) = s0 ∩ hr−1(`) ⊂ hr(`), dim h̃r−1(`) ≤ dim h̃r(`).

But
dim h̃r−1(`) = dim hr−1(`) or dim h̃r−1(`) = dim hr−1(`)− 1

and thus
h̃r−1(`) = hr(`),

which is not the case. That means that the jump index n is in fact jk(`). Now
to complete the proof of 2, we have to consider two cases, case 1: 1 ≤ r < k and
case 2: k < r ≤ d .
Case 1: Let us prove by induction that

ir(`) = i0r(`
0), jr(`) = j0r (`0) and h̃r(`) = h0

r(`
0).

For r = 1, we have

i1(`) = min{j, sj 6⊂ s`}, h1(`) = s`
i1 ,

j1(`) = min{j, sj 6⊂ h1(`)}.

Since Zj1 does not belong to h1(`), then j1(`) 6= n , indeed, if j1(`) would be n ,
then k = 1, which is impossible in case 1. On the other hand, s` is a subspace
of (s0)`0 with codimension 1, thus i1(`) ≤ i01(`

0). But if i1(`) < i01(`
0), then Zi1

is in (s0)`0 and (s0)`0 = s` ⊕ CZi1 and so for all X ∈ s0 ,

〈`, [X, si1 ]〉 = 〈`0, [X, si1 ]〉 = 0,

since si1 ⊂ si01
⊂ (s0)`0 . This implies that s0 ⊂ h1(`), but they have same

dimension, thus s0 = h1(`) and so j1(`) = n which is not the case. We thus have

i1(`) = i01(`
0).
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Now we get:

h̃1(`) = {X ∈ s0 : 〈`, [X, si1 ]〉 = 0} = {X ∈ s0 : 〈`0, [X, si01
]〉 = 0} = h0

1(`
0),

j1(`) = min{j : sj 6⊂ h1(`)}.

Since j1(`) < n , thus for j < n , sj ⊂ h1(`) if and only if sj ⊂ h0
1(`

0), therefore,

j1(`) = min{j: sj 6⊂ h0
1(`

0)} = j01(`0).

The conclusion holds for r = 1.
Suppose now that, for some r = 2, . . . , k − 1, ir−1(`) = i0r−1(`

0),
h̃r−1(`) = h0

r−1(`
0) and jr−1(`) = j0r−1(`

0) and prove the result for r . We
have

ir(`) = min{j: sj ∩ hr−1(`) 6⊂ hr−1(`)
` ∩ hr−1(`)},

hr(`) = hr−1(`) ∩ (sir
∩ hr−1(`))

`,

jr(`) = min{j: sj ∩ hr−1(`) 6⊂ hr(`)}.

Consider first ir(`), for all j < ir(`), we have

sj ∩ hr−1(`) ⊂ hr−1(`)
` ∩ hr−1(`)

so that
sj ∩ h̃r−1(`) ⊂ hr−1(`)

` ∩ h̃r−1(`)

that is to say:
sj ∩ h0

r−1(`
0) ⊂ h0

r−1(`
0)`0 ∩ h0

r−1(`
0).

Thus ir(`) ≤ i0r(`
0). Now since Yr belongs to hr−1(`) \ hr(`), there exists Z in

sir
∩ hr−1(`) such that 〈`, [Yr, Z]〉 6= 0. But we have

sir ∩ hr−1(`) = sir ∩ h̃r−1(`),

thus Z is in sir ∩ h0
r−1(`

0), so Z does not belong to h0
r−1(`

0)`0 and we have
i0r(`

0) ≤ ir(`), we conclude then i0r(`
0) = ir(`). As for h̃r(`),

h̃r(`) =
(
sir ∩ hr−1(`)

)` ∩ h̃r−1(`)

= s0 ∩
(
sir

∩ hr−1(`)
)` ∩ h0

r−1(`
0)

=
(
si0r

∩ h0
r−1(`

0)
)`0 ∩ h̃

0

r−1(`
0) = h0

r(`
0).

Finally, because jr(`) < n , then

jr(`) = min{j : sj∩h̃r−1(`) 6⊂ h̃r(`)} = min{j : sj∩h0
r−1(`

0) 6⊂ h0
r(`

0)} = j0r (`0).

Case 2: We prove by induction that for r > k ,

ir(`) = i0r−1(`
0), h̃r(`) = hr(`) = h0

r−1(`
0) and jr(`) = j0r−1(`

0).
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Let us suppose r = k + 1. Since hk(`) = h̃k−1(`) = h0
k−1(`

0),

hk(`)` ∩ h̃k(`) = hk(`)` ∩ h̃k−1(`) = h0
k−1(`

0)`0 ∩ h0
k−1(`

0),

but for j < n ,

sj ∩ hk(`) = sj ∩ h̃k(`) = sj ∩ h̃k−1(`) = sj ∩ h0
k−1(`

0),

thus ik+1(`) = i0k(`0). Let us consider now hk+1(`):

hk+1(`) = h̃k+1(`) =
(
si0

k
∩ hk(`)

)`

∩ hk(`)

=
(
si0

k
∩ h0

k−1(`
0)
)`0

∩ h0
k−1(`

0) = h0
k(`0).

Finally,
jk+1(`) = min{j: sj ∩ hk(`) 6⊂ hk+1(`)}.

But jk+1(`) 6= n and so

jk+1(`) = min{j: sj ∩ h̃k(`) 6⊂ h̃k+1(`)}
= min{j: sj ∩ h0

k−1(`
0) 6⊂ h0

k(`0)} = j0k(`0).

Now we suppose that for some r > k , we have:

ir(`) = i0r−1(`
0), hr(`) = h̃r(`) = h0

r−1(`
0) and jr(`) = j0r−1(`

0).

Then, for r + 1, we get

ir+1(`) = min{j: sj ∩ hr(`) 6⊂ hr(`)
` ∩ hr(`)}.

But
sj ∩ hr(`) = sj ∩ h̃r(`) = sj ∩ h0

r−1(`
0)

and
hr(`)

` ∩ hr(`) = h0
r−1(`

0)`0 ∩ h0
r−1(`

0).

Therefore ir+1(`) = i0r(`
0). Consider now hr+1(`):

hr+1(`) = h̃r+1(`) = hr(`) ∩
(
sir+1 ∩ hr(`)

)`
= h0

r−1(`
0) ∩

(
si0r

∩ h0
r−1(`

0)
)`0

= h0
r(`

0).

Finally, because jr+1(`) < n , thus

jr+1(`) = min{j: sj ∩ hr(`) 6⊂ hr+1(`)}
= min{j: sj ∩ h0

r−1(`
0) 6⊂ h0

r(`
0)} = j0r (`0).

Now let Ωe,j be any layer belonging to the fine stratification, and define
e0 and j0 exactly as in Proposition 1.3, according as n /∈ e or n ∈ e . We are
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near to the completion of our goal for this section, which is to understand clearly
the relationship between Ωe,j and the layer Ω0

e0,j0 in (g0)∗ . Recall that they are
defined by means of Pfaffian polynomials:

Ωe,j = {` ∈ Ωe: Pe,j′(`) = 0 for all (e, j′) < (e, j) and Pe,j(`) 6= 0},

where each polynomial Pe,j(`) is the product of the Pfaffians Pe,j,r , 1 ≤ r ≤ d .
Similarly

Ω0
e0,j0 = {`0 ∈ Ω0

e0 : P 0
e0,j′0(`

0) = 0 for all (e0, j′0) < (e0, j0) and P 0
e0,j0(`

0) 6= 0}.

If n is not a jump index for ` , then the corresponding Pfaffians Pe,j,r and P 0
e0,j0,r

coincide and so we get
Ωe,j = π−1(Ω0

e0,j0) ∩ Ωe.

Suppose then that n is a jump index for ` . Here the Pfaffians do not coin-
cide but, with the help of Proposition 1.3, we can find a precise relationship
between them. In order to compute Pe,j,r , one considers the space Wr =
span{Zi1 , Zj1 , . . . , Zir

, Zjr
} , equipped with the skew-symmetric bilinear form β :

β(X,Y ) = 〈`, [X,Y ]〉.

The matrix of β is put in the canonical form:

M ′ =


(

0 −Q1(`)
Q1(`) 0

)
0

. . .

0
(

0 −Qr(`)
Qr(`) 0

)
 ,

by using a modified basis {ρt−1 (Zit , `) , ρt−1 (Zjt , `) : 1 ≤ t ≤ r} for Wr . The
functions ρt(·, `) = ρt(·) and Qt are recursively defined for t = 1, . . . , d by:

ρ0(Z) = Z,

ρt(Z) = ρt−1(Z)− 〈`, [ρt−1(Z), ρt−1(Zjt
)]〉

〈`, [ρt−1(Zit), ρt−1(Zjt)]〉
ρt−1(Zit

)

− 〈`, [ρt−1(Z), ρt−1(Zit
)]〉

〈`, [ρt−1(Zjt
), ρt−1(Zit

)]〉
ρt−1(Zjt

)

Qt(`) = 〈`, [ρt−1(Zit), ρt−1(Zjt)]〉, 1 ≤ t ≤ d.

Then for each 1 ≤ r ≤ d , one has ([10], Lemma 1.5):

Pe,j,r(`) = Pe,j,r−1(`)Qr(`) = Q1(`)Q2(`) · · ·Qr(`).

Note that for each t , Qt depends only upon the restriction of ` to s0 , so we
could just as well write Qt(`0). At the same time, for s0 we build the same
mappings ρ0

r(·, `0) and Q0
t (`

0) getting:

P 0
e0,j0,r(`

0) = P 0
e0,j0,r−1(`

0)Q0
r(`

0) = Q0
1(`

0)Q0
2(`

0) · · ·Q0
r(`

0).



532 Arnal, Ben Ammar, Currey and Dali

So we must describe the relationship between the functions Qt and Q0
t , or what

is essentially the same, the relationship between the functions ρt and ρ0
t on s0 .

First of all, it is easy to check that for each t , the function ρt has the
property that

〈`, [ρt(X), Y ]〉 = 〈`, [ρt(X), ρt(Y )]〉 = 〈`, [X, ρt(Y )]〉

holds for any X , Y ∈ s . Next, suppose that n = jk for some 1 ≤ k ≤ d , and
set Y = ρk−1(Zik

). Then Y ∈ sik
∩ hk−1(`) and for any Z ∈ s0 , ρk−1(Z) ∈

s0 ∩ hk−1(`), therefore by definition of jk and the property above we have

〈`, [Y, Z]〉 = 〈`, [Y, ρk−1(Z)]〉 = 0.

Thus Y ∈ (s0)` . We use this observation in the following lemma.

Lemma 1.4. Suppose that n is a jump index for ` so that n = jk for some
1 ≤ k ≤ d . Then for each index t , 0 ≤ t ≤ d , one has the following:
(a) if t < k , then ρt(Z) = ρ0

t (Z) holds for every Z ∈ s0 ,
(b) if t ≥ k , then ρt(Z) = ρ0

t−1(Z) mod CY holds for every Z ∈ s0 .

Proof. We proceed by induction on t . If t = 0, then t < k and ρ0(Z) = Z =
ρ0
0(Z) holds for each Z ∈ s0 . Suppose then that 0 < t ≤ d and assume that the

lemma is true for t− 1. If t < k , then t− 1 < k also, and so by our assumption
and Proposition 1.3, we have

ρt(Z) = ρt−1(Z)− 〈`, [ρt−1(Z), ρt−1(Zjt)]〉
〈`, [ρt−1(Zit

), ρt−1(Zjt
)]〉
ρt−1(Zit

)

− 〈`, [ρt−1(Z), ρt−1(Zit)]〉
〈`, [ρt−1(Zjt

), ρt−1(Zit
)]〉
ρt−1(Zjt

)

= ρ0
t−1(Z)−

〈`0, [ρ0
t−1(Z), ρ0

t−1(Zj0
t
)]〉

〈`0, [ρ0
t−1(Zi0t

), ρ0
t−1(Zj0

t
)]〉
ρ0

t−1(Zi0t
)

−
〈`0, [ρ0

t−1(Z), ρ0
t−1(Zi0t

)]〉
〈`0, [ρ0

t−1(Zj0
t
), ρ0

t−1(Zi0t
)]〉
ρ0

t−1(Zj0
t
)

= ρ0
t (Z).

Next suppose that t = k . Then by the observation preceding the lemma we have

〈`, [ρt−1(Z), ρt−1(Zit
)]〉 = 0,

and by our assumption the statement (a) holds for t− 1. Hence

ρt(Z) = ρ0
t−1(Z)− 〈`0, [ρt−1(Z), ρt−1(Zjt)]〉

〈`0, [ρt−1(Zit
), ρt−1(Zjt

)]〉
ρt−1(Zit

) = ρ0
t−1(Z) modCY.

Finally, suppose that t > k . Then our assumption entails that the statement (b)
holds for t− 1. Combining this with our observation, we have that

〈`, [ρt−1(Z), ρt−1(W )]〉 = 〈`0, [ρ0
t−2(Z), ρ0

t−2(W )]〉
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holds for any Z , W ∈ s0 . Now apply Proposition 1.3 to see that for any Z ∈ s0 ,

ρt(Z) = ρt−1(Z)− 〈`, [ρt−1(Z), ρt−1(Zjt
)]〉

〈`, [ρt−1(Zit
), ρt−1(Zjt

)]〉
ρt−1(Zit

)

− 〈`, [ρt−1(Z), ρt−1(Zit
)]〉

〈`, [ρt−1(Zjt
), ρt−1(Zit

)]〉
ρt−1(Zjt

)

= ρ0
t−2(Z)−

〈`0, [ρ0
t−2(Z), ρ0

t−2(Zj0
t−1

)]〉
〈`0, [ρ0

t−2(Zi0
t−1

), ρ0
t−2(Zj0

t−1
)]〉
ρ0

t−2(Zi0
t−1

)

−
〈`0, [ρ0

t−2(Z), ρ0
t−2(Zi0

t−1
)]〉

〈`0, [ρ0
t−2(Zj0

t−1
), ρ0

t−2(Zi0
t−1

)]〉
ρ0

t−2(Zj0
t−1

) mod CY

= ρ0
t−1(Z) mod CY.

This completes the proof.

Now, it follows from Lemma 1.4 that for 1 ≤ t < k , Q0
t (`

0) = Qt(`0),
while for k ≤ t < d , Q0

t (`
0) = Qt+1(`0). Hence for each 1 ≤ r < k , we have

P 0
e0,j0,r(`

0) = Pe,j,r(`),

while for k ≤ r < d ,
P 0

e0,j0,r(`
0)Qk(`) = Pe,j,r+1(`).

Thus the formula
Pe,j(`) = Pe0,j0(`0)Qk(`0)d−k+1

holds. We sum up the preceding discussion as follows.

Theorem 1.5. Let e = {i1 < · · · < id, j1, . . . , jd} ∈ E :
1- if n is not in e , then:

Ωe,j = π−1(Ω0
e0,j0) ∩ Ωe.

2- If n is in e , so that n = jk for some 1 ≤ k ≤ d , then:

π(Ωe,j) = Ω0
e0,j0 ∩ {`0 ∈ g0∗: Qk(`0) 6= 0}

where Qk(`0) = 〈`0, [ρk−1(Zik
), ρk−1(Zjk

)]〉 and

Ωe,j = π−1(π(Ωe,j)).

2. Construction of canonical coordinates and the fine stratification

We begin with an excerpt from the proof of Théorème 1.6 in [2]. Let g be an
exponential solvable Lie algebra (over R). Let g0 be a codimension one ideal in
g , and let π : g∗ → g0∗ be the restriction map. For ` ∈ g∗ , denote by O` the
G -orbit of ` , by O0

`0 the G0 -orbit of `0 = π(`) and by g(`) the Lie algebra of
the stabilizer G(`) of ` .
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Lemma 2.1. Let Ω be a G-invariant Borel subset of g∗ such that g(`) ⊂ g0

holds for all ` ∈ Ω . Choose X ∈ g \ g0 and choose a Borel cross-section Σ ⊂ Ω
for the G-orbits in Ω , with σ : Ω → Σ the G-invariant Borel cross-section map.
Then there is a unique (Borel) function q : Ω → R such that

π(exp q(`)X`) ∈ O0
σ(`)0

holds for each ` ∈ Ω .

Proof. For each ` ∈ Ω, there exists g in G such that:

` = gσ(`).

But g can be written in an unique way as g = exp(−qX)g0 with g0 in G0 and
q in R . Thus:

π(exp(qX)`) = π(g0σ(`)) = g0σ(`)0 ∈ O0
σ(`)0 .

Now, if q and q′ satisfy this relation, then there are g0 and g′0 in G0 such that:

exp(qX)`0 = g0σ(`)0, exp(q′X)`0 = g′0σ(`)0.

Then:
exp(−q′X)g′0g0−1

exp(qX) ∈ G(`0).

But, in our case, g(`) is of codimension 1 in g0(`0) = g(`0), thus G(`0) ⊂ G0

and the above relation can be written as:

exp(q − q′)Xg′′0 ∈ G(`0) ⊂ G0,

which implies q′ = q .
Now q is a well defined function on Ω, it is proved in [2] that q is a

Borel function. We shall not use this fact here.

Note that the definition of q depends upon the choice of the cross-section
Σ with cross-section map σ , as well as the choice of X ∈ g \ g0 .

From now on, we assume that g is completely solvable. We choose the
basis {Zj} real, so that gj is an ideal for all j . Let πj : g∗ → g∗j be the
restriction map and for ` ∈ g∗ , denote πj(`) by `j . We recall the definition of
the partition {g∗(d)} of g∗ defined in [2]. For each ` ∈ g∗ , and 1 ≤ j ≤ n , set

dj(`) =
1
2

dimGj`
j ,

and set (d(`)) = (d1(`), d2(`), . . . , dn(`)). For each non-decreasing n -tuple (d)
of non-negative integers set

Ω(d) = {` ∈ g∗: (d(`)) = (d)}.

The non-empty Ω(d) constitute the “dimension-based” partition of g∗ ; we shall
call this partition the d -partition. Note that πj(Ω(d)) = Ω(d1,d2,...,dj) ⊂ g∗j holds
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for each j . There is a natural ordering on the layers Ω(d) , given by reversing the
lexicographic ordering on the n -tuples (d1, . . . , dn) ( (d1, . . . , dn) < (d′1, . . . , d

′
n)

if dj > d′j where j is the smallest index i for which di 6= d′i ). On the other
hand, if Mt(`) = (〈`, [Zi, Zj ]〉)1≤i,j≤t , then 2dt is the rank of Mt(`) thus for any
(d), ⋃

(d′)≤(d)

Ω(d′)

is Zariski-open in g∗ .
Now fix Ω(d) . Because each gj is an ideal, it follows that Ω(d) is G -

invariant and hence coincides with the set g∗(d) defined in ([2], Définition 1.4).
The methods of ([2], Théorème 1.6) show that, for g completely solvable,

there is a global, but non explicit, construction of canonical coordinates for all
orbits in Ω(d) . We shall give in section 4 an explicit version of this construction
i.e. an explicit choice of canonical coordinates. Before that, we first recall briefly
the methods used in [2]. In order to execute the method of [2], we must assume
that for each 1 ≤ j ≤ n , we have some cross-section Σj ⊂ πj(Ω(d)) for Gj -
orbits in πj(Ω(d)). Because the cross-sections are not precisely specified in this
assumption, we shall call this method the ”non parametric” construction.

Then ([2], Théorème 1.6) provides a method for construction of a (Borel)
bijection:

ψ : (Ω(d)/G)× R2d → Ω(d)

with the following properties: for each O ∈ Ω(d)/G , ψ(O, ·) maps R2d diffeo-
morphically onto O , and if we write ψ−1(`) =

(
O`, p(`), q(`)

)
, then the canonical

2-form ω on O is given by

ω =
d∑

r=1

dpr ∧ dqr. (∗)

Observe that the existence of such a map ψ is equivalent to the existence of a
map c : Ω(d) → R2d with the property that for each O ∈ Ω(d)/G , c|O provides
canonical coordinates in the sense of (∗). With this in mind we describe the
method of [2] inductively. Suppose that

cn−1 = (pn−1
1 , . . . , pn−1

dn−1
, qn−1

1 , . . . , qn−1
dn−1

)

is given.
Case 1: dn = dn−1 .

The restriction map π defines a diffeomorphism from each G -orbit O
onto a Gn−1 -orbit which preserves their canonical symplectic forms. Thus we
put:

pr = pn−1
r ◦ π, qr = qn−1

r ◦ π, 1 ≤ r ≤ dn.

Case 2: dn = dn−1 + 1.
We keep our usual notations g0 = gn−1 , `0 = π(`). We have the

cross-section Σ0 for π(Ω(d)). We denote by σ0 the corresponding cross-section
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mapping. In this case, for each ` ∈ Ω(d) , g(`) ⊂ g0 , the coadjoint orbit O` of `
is:

O` = {exp(−qXn)`′ + pX∗
n: q ∈ R, p ∈ R, `′ ∈ O0

σ0(`0)},

and the hypothesis of Lemma 2.1 is satisfied in the obvious way. Set d = dn and
set qd(`) = q(`), where q(`) is the function obtained by Lemma 2.1. Then we
put pn

d (`) = 〈`,Xn〉 = `n , and for 1 ≤ r ≤ dn−1 ,

pr(`) = pn−1
r

(
exp(−q(`)Xn)`

)
, qr(`) = qn−1

r

(
exp(−q(`)Xn)`

)
.

Given all the cross sections Σj for πj(Ω(d)), the above becomes a con-
struction of c : beginning with c1 defined on π1(Ω(d)) (necessarily as a trivial
map since d1 = 0), we then use the above to construct c2 and then construct c3

from c2 , and so on.
We will show that the methods of [9] and [10] can be combined with

the above construction to get explicit analytic coordinate functions. First we
establish the relationship between the d -partition and the fine layers Ωe,j of
Section 1.

Lemma 2.2. Fix any fine layer Ωe,j and choose any 1 ≤ t ≤ n . Set

Rt = {1 ≤ r ≤ d: jr ≤ t} = {rt
1 < rt

2 < · · · < rt
a},

it = {irt
1
, irt

2
, . . . , irt

a
},

jt = {jrt
1
, jrt

2
, . . . , jrt

a
},

et = {ir, jr : r ∈ Rt}

and let Ωt
et,jt be the fine layer in g∗t corresponding to the data et , it and jt .

Then πt(Ωe,j) ⊂ Ωt
et,jt .

Proof. Use induction on the dimension of g and Proposition 1.3.

In ([12], Section 4.2), N. V. Pedersen considers the sets

Ω(e1,e2,...,en) = {` ∈ g∗: et(`) = et, 1 ≤ t ≤ n}

where (e1, e2, . . . , en) is a fixed n -tuple of jump indices. The non-empty such sets
constitute what he calls the “fine stratification” of g∗ . With this stratification,
he gives, where g is nilpotent a method to construct canonical coordinates
for the orbits of Ω(e1,e2,...,en) . This method is different of the non-parametric
construction of [2]. We shall see below that this stratification coincides with the
fine stratification defined by the {Ωe,j}.

Lemma 2.3. Let `, `′ ∈ g∗ such that for each 1 ≤ t ≤ n , et(`) = et(`′) . Then
j(`) = j(`′) .

Proof. Suppose that j(`) 6= j(`′). We claim that i(`) 6= i(`′). Let r0 =
min{1 ≤ r ≤ d: jr(`) 6= jr(`′)} , say that jr0(`) < jr0(`

′). Set m = jr0(`), and
set

Rm(`) = {1 ≤ r ≤ d: jr(`) ≤ m}, Rm(`′) = {1 ≤ r ≤ d: jr(`′) ≤ m}.
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Observe that, by virtue of our assumptions above, r0 /∈ Rm(`′). Also, by
repeated application of Proposition 1.3, we find that em(`) = {ir(`), jr(`): r ∈
Rm(`)} , and similarly for `′ . Now since em(`) = em(`′), then m ∈ em(`′) so
that m = js0(`

′), for some s0 . By definition of r0 we have s0 > r0 . Now set
i = ir0(`); since em(`) = em(`′), i belongs to em(`′), so i ∈ {iu(`′), ju(`′)} for
some u ∈ Rm(`′). If i = iu(`′), then our claim is evident. On the other hand
if i = ju(`′), then definition of r0 implies u > r0 , hence ir0(`

′) < iu(`′) < i , so
again our claim follows.

Having established that i(`) 6= i(`′), set

k0 = min{1 ≤ k ≤ d: ik(`) 6= ik(`′)},

and let us assume that ik0(`) < ik0(`
′). Set m = ik0(`), and note that k0 /∈

Rm(`) since jk0(`) > ik0(`) = m . Again, em(`) = em(`′) and now m /∈ em(`),
hence m /∈ em(`′). But m ∈ e(`′), so m = iu(`′). Definition of k0 implies that
u > k0 hence ik0(`) = iu(`′) > ik0(`

′), contradicting our assumption above. This
completes the proof.

Proposition 2.4. Let g be a completely solvable Lie algebra with a fixed
Jordan-Hölder sequence {gj} , let Ωe,j be a fine layer, and for each 1 ≤ t ≤ n ,
let et be defined as in Lemma 2.2 and dt = 1

2 |e
t| . Then

Ωe,j = Ω(e1,e2,...,en) ⊂ Ω(d) ∩ Ωe.

Proof. Let ` ∈ Ωe,j ; by Lemma 2.2, `t ∈ Ωt
et,jt , so et(`t) = et, 1 ≤ t ≤ n− 1,

hence ` ∈ Ω(e1,e2,...,en) . On the other hand, if ` ∈ Ω(e1,e2,...,en) , then Lemma 2.3
shows that ` ∈ Ωe,j , and for each 1 ≤ t ≤ n , dt(`t) = 1

2 |e
t| .

Remark 2.1. The dimension sequence (d1, d2, . . . , dn) can be obtained directly
from the data of Ωe,j as follows. Let r = r(j) be the increasing sequence whose
values are those of j (that is, r is the rearrangement of j into increasing order).
Define (d) = (d1 ≤ d2 ≤ · · · ≤ dn) by:

dt = 0, 1 ≤ t < r1, dt = 1, r1 ≤ t < r2,

· · · dt = d, rd ≤ t ≤ n.

3. The Vergne construction

In [17], M. Vergne constructs canonical coordinates for generic coadjoint orbits
in the dual of a nilpotent Lie algebra. In this section, we shall compare this
construction with the fine stratification and the non-parametric construction.

We assume that g is a nilpotent Lie algebra over R . As usual we assume
that we have chosen a Jordan-Hölder sequence {gj} of ideals in g . Let Ωe be
the minimal coarse Zariski-open. Let Te = {` ∈ g∗: `(Zj) = 0, ∀j ∈ e} . As it
is well-known, the set

Ωe ∩ Te
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is a cross-section for coadjoint orbits in Ωe , and the projection onto the cross-
section is given by rational functions λi , i /∈ e , which are regular on Ωe . Finally,
each λi is of the form

λi(`) = `i + fi(`1, `2, . . . , `i−1),
(
`j = `(Zj)

)
and all G -invariant rational functions are rational combinations of the λi , i /∈
e . The same comments hold for the coarse partition of g∗t , 1 ≤ t ≤ n − 1
corresponding to the sequence {gj : j = 1, . . . , t} , and we let

λt
i, i /∈ et

denote the corresponding rational functions. In [1] and [17], a construction of an
invariant Zariski-open set Ω′ and rational functions p1, p2, . . . , pd , q1, q2, . . . , qd
on Ω′ is given so that for each coadjoint orbit O in Ω′ , p1|O, p2|O, . . . , pd|O ,
q1|O, q2|O, . . . , qd|O are canonical coordinates for O .

We now show that this procedure can be carried out so that Ω′ coincides
with the Zariski-open fine layer

Ωe,j ⊂ Ωe ∩ Ω(d)0 ,

((d0) being defined from e , j as in the above remark) and so that the functions
p1, p2, . . . , pd , q1, q2, . . . , qd are precisely those obtained by the non parametric
construction, restricted to Ωe,j , and with the cross-sections indicated above.

Assume that, for g0 = gn−1 , we have

Ω′0 = Ω0
e0,j0 = Ω(e1,...,en−1)

and that
p0
1, p

0
2, . . . , p

0
d0 , q01 , q

0
2 , . . . , q

0
d0

are defined on Ω′0 as indicated. Put π = πn−1 .
Case 1: there is a G -invariant polynomial function of the form z(`) = α(`)`n +
β(`) where α(`) is also G -invariant.

Let Ω′ = π−1(Ω′0) ∩ {` ∈ g∗: α(`) 6= 0} . Then it is easily seen that
g(`) 6⊂ g0 holds for all ` ∈ Ω′ , and hence en(`) = en−1(`) holds for all ` ∈ Ω′ ,
hence Ω′ ⊂ Ω(e1,e2,...,en−1,en) . This case coincides with the first case of the non-
parametric construction. For each orbit O in Ω′ , the projection π restricted
to O is injective, and the functions pr , qr are obtained by composing p0

r , q0r
with π .

Now we choose the function z(`) to be

z(`) = PN
e,j,d(`)λn(`)

so that α(`) = Pe,j,d(`)N , where N is chosen large enough that z is polynomial.
Then

Ω′ = π−1(Ω(e1,e2,...,en−1)) ∩ {` ∈ g∗: Pe,j,d(`) 6= 0} = Ωe,j.

Case 2: case 1 does not hold.
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Here there is a Gn−1 -invariant polynomial function y on g0∗ which is
not G -invariant, and which has the property that

` 7→ [Zn, y](`) :=
d

dt

∣∣∣∣
t=0

y
(
exp(−tZn)`

)
is a non-zero G -invariant polynomial function, say z . It is easily seen that if
z(`) 6= 0, then g(`) ⊂ g0 . One sets

q(`) =
y(`)
z(`)

, ϕ(`) = π
(
exp(q(`)Zn)`

)
,

and
Ω′ = ϕ−1(Ω′0) ∩ {` ∈ g∗: z(`) 6= 0}.

By virtue of our assumption that Ω′0 = Ω(e1,e2,...,en−1) , we have π(`) ∈ Ω′0 if
and only if ϕ(`) ∈ Ω′0 , so Ω′ = π−1(Ω′0) ∩ {` ∈ g∗: z(`) 6= 0} .

Now since y is a rational combination of the Gn−1 invariants λn−1
j ,

j /∈ en−1 , there is j such that [Zn, λ
n−1
j ] 6= 0. Let i be the smallest such j .

Then [Zn, λ
n−1
i ] is Gn−1 invariant and depends only upon πi−1(`), it must be

a rational combination of the λn−1
j , j < i . By minimality of i , [Zn, λ

n−1
i ] = z

must be G -invariant. The point is that we can take y = λn−1
i , and we make this

natural choice so that

z(`) = [Zn, λ
n−1
i ](`) and q(`) =

λn−1
i (`)
z(`)

.

Let e = en−1 ∪ {i, n} ; we claim that, with this choice of y(`), z(`), and q(`)
above, one has Ω′ = Ω(e1,e2,...,en−1,en) . Write in−1 = {i1 < i2 < · · · < idn−1}
and set k − 1 = max{r: ir < i} . Then for any ` ∈ π−1(Ω(e1,e2,...,en−1)), we
have e(`) = en−1 ∪ {i, n} if and only if 〈`, [ρk−1(Zn, `), Zi]〉 6= 0. Recall that
ρk−1(Zn, `) is of the form Zn + W (`) where W (`) belongs to gn−1 , and that
ρk−1(Zn, `) belongs to g`

i−1 . Write

y(`) = `i + f(`1, `2, . . . , `i−1) = Zi(`) + f(`).

Now since y is gn−1 -invariant, then [W (`), y] = 0 holds for each ` belonging
to π−1(Ω(e1,e2,...,en−1)). On the other hand, since ρk−1(Zn, `) ∈ g`

i−1 we have
[ρk−1(Zn, `), f ](`) = 0 also. Hence

z(`) = [Zn, y](`) = [ρk−1(Zn, `), y](`) = [ρk−1(Zn, `), Zi](`).

Thus z(`) 6= 0 if and only if 〈`, [ρk−1(Zn, `), Zi]〉 6= 0. Our claim follows.
We sum up the preceding as follows:

Proposition 3.1. Let g be a nilpotent Lie algebra over R , let {gj : 1 ≤
j ≤ n} be a Jordan Hölder sequence of ideals in g , and let Ω(e1,e2,...,en−1,en)

be the Zariski-open fine layer in g∗ . Then there is a determination of the
construction in ([17], Section 4, proof of Théorème) whereby the Zariski-open
set obtained precisely coincides with the fine layer Ω(e1,e2,...,en−1,en) , and such
that the functions p1, p2, . . . , pd , q1, q2, . . . , qd obtained are precisely those of the
non-parametric construction.
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4. Explicit canonical coordinates

We return to the setup of Section 2 now: g is completely solvable over R , with
the basis {Zj} chosen so that gj is an ideal for all j . For each j, 1 ≤ j ≤ n , let
γj be the real-valued homomorphism on g defined by

[X,Z∗j ] = γj(X)Z∗j mod span{Z∗j+1, . . . , Z
∗
n},

and let µj be the corresponding positive character of G : µj(expX) = exp γj(X).
Our goal is to combine the methods of [2] with the explicit constructions

of [10] (see also [8] and [9]) in order to obtain explicit formulas for globally-
defined orbital canonical coordinates. We have seen that in the nilpotent case,
the fine layering is sufficient for this purpose, but, as it is shown in [10], the
completely solvable case requires a stratification that is further refined. We shall
now describe this so-called ”ultra-fine” stratification.

Let Ωe,j be a fine layer, with d the dimension of the orbits contained in
Ωe,j . For each 1 ≤ r ≤ d , we have the mapping

ρr : s× Ωe,j → s

as defined in Section 1, where, for each ` ∈ Ωe,j , the functions ρr(·, `) are
used to compute Pfaffians corresponding to the alternating form β` . Define, for
1 ≤ r ≤ d ,

bir
(`) =

γir (ρr−1(Zjr , `))
〈`, [Zir

, ρr−1(Zjr
, `)]〉

.

Then bir
is a real semi-invariant rational function on Ω with multiplier µ−1

ir
,

and the function θir
(`) = `ir

−bir
(`)−1 depends only upon `1, `2, . . . , `ir−1 ([10],

Lemma 4.1). For ` ∈ Ωe,j , set ϕ(`) = {i ∈ i : bi(`) 6= 0} and for each subset ϕ
of i , set

Ωe,j,ϕ = {` ∈ Ωe,j : ϕ(`) = ϕ}.

The non-empty layers Ωe,j,ϕ constitute a G -invariant partition of g∗ that we
call the ultra-fine stratification corresponding to the basis {Zj} chosen.

Now fix an ultra-fine layer Ω = Ωe,j,ϕ . We employ the results of [10],
as described in, and with the notation of [8], with simplifications appropriate for
the completely solvable case. Write e = {e1 < e2 < · · · < e2d} , Then functions
rb : Ω → g, 1 ≤ b ≤ 2d , are defined so that for each ` ∈ Ω,

t 7→ exp(t1r1(`)) exp(t2r2(`)) · · · exp(t2dr2d(`))` (∗)

defines an analytic diffeomorphism of R2d with the coadjoint orbit of ` . If eb is
a value of the sequence i , say eb = ir , then rb(`) ∈ g has the form

rb(`) =
ρr−1(Zjr , `)

〈`, [Zir
, ρr−1(Zjr

, `)]〉
.
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If eb = jr , the formula for rb is the same but with the letters “i” and “j ”
reversed. A substitution procedure (described in the proof of Lemma 4.1 below)
transforms (∗) into a G -invariant map P ∗ : Ω → Ω whose image Σ is a cross-
section for the coadjoint orbits in Ω. Write P ∗(`) =

∑
j P

∗
j (`)Z∗j . Then for each

1 ≤ j ≤ n , explicit, real-valued functions µj(`) and yj(`) are constructed on Ω,
so that

P ∗j (`) =


µj(`)`j + y◦j (`), j /∈ e
0, j ∈ e, j /∈ ϕ
sign(bj(`)) + yj(`), j ∈ ϕ.

It is shown ([8], Corollary 1.3.14) that for each ` ∈ Ω, µj(`) and yj(`) depend
only upon `1, `2, . . . , `j−1 . Let V = span{Z∗j : j /∈ e or j ∈ ϕ} . The orbital
cross-section Σ = P ∗(Ω) ⊂ Ω is precisely the set

Σ = {` ∈ Ω ∩ V : |bi(`)| = 1, if i ∈ ϕ}.

If Ω is not the minimal layer in the ultra-fine stratification, then it is not an open
subset of g∗ , and may not even be a submanifold. With the following lemma,
we extend the construction of P ∗ to an open set containing Ω.

Lemma 4.1. Associated to the index data e, j, ϕ , there is an explicit, dense
open subset U of s∗ = (g∗)C , and an explicit analytic function σ : U → s∗ whose
restriction to Ω is P ∗ .

Proof. For each ` ∈ s∗ let ρ0(Z, `) = Z , set

U1 = {` ∈ s∗ : 〈`, [Zi1 , Zj1 ]〉 6= 0}

and m1 = span {Zi1 , Zj1} . For each ` ∈ U1 , we have m1 ∩ m`
1 = (0), and

we let ρ1(Z, `) be the projection of Z into m`
1 parallel to m1 . Set U2 = {` ∈

U1 : 〈`, [Zi2 , ρ1(Zj2 , `)]〉 6= 0} and m2(`) = m1+ span {ρ1(Zi2 , `), ρ1(Zj2 , `)} .
For each ` ∈ U2 , let ρ2(Z, `) be the projection of Z into m2(`)` parallel to
m2(`). Continuing in this way, we obtain a Zariski open set Ud of s∗ and for
0 ≤ r ≤ d−1, a rational projection function ρr : s×Ud → s . (We abuse notation
slightly here, as the restriction of ρr to s×Ω is also called ρr above.) For each
i = ir ∈ i and ` ∈ Ud , we set

bi(`) =
γi(ρr−1(Zjr

, `))
〈`, [Zi, ρr−1(Zjr , `)]〉

.

For each i ∈ ϕ , bi(`) is a rational function that is non-singular, hence analytic,
on Ud . Set

U = {` ∈ Ud : Re(bi(`)) 6= 0, i ∈ ϕ}.

It is clear that Ω ⊂ U . The first step in the construction of σ is to extend
certain functions that are used in the construction of P ∗ to the set U . (We
have already done this for the functions bi .) For each 1 ≤ b ≤ 2d , we define
rb(`), ` ∈ U by exactly the same formula as above; it is clear from this formula
that ` 7→ rb(`) is analytic at each point of U . Also for each i = ir ∈ i we have
that θi(`) = `i − bi(`)−1 is analytic on U .
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Now fix j, 1 ≤ j ≤ n , and let a be the smallest subindex b such that
eb ≥ j (if j > e2d set a = 2d+ 1). For each multi-index q ∈ {0, 1, 2, . . .}a−1 , set

u◦j (q, `) = 〈`, pj−1

(
ad(ra−1(`))qa−1 · · · ad(r2(`))q2ad(r1(`))q1(Zj)

)
〉

where pj−1 : s → sj−1 is projection parallel to span{Zj , . . . , Zn} . It is clear that
for each multi-index q , u◦j (q, `) is analytic at each ` in U . For each t ∈ Ra−1 ,
set

y◦j (t, `) =
∑

q 6=(0,0,...,0)

tq

q!
u◦j (q, `).

To prove convergence of this series, we let s and s∗ have the Euclidean metrics
obtain by their identifications with Cn via their respective bases {Zj} and {Z∗j } .
Let B be any compact subset of U . For each 1 ≤ b ≤ a − 1, we have Mb > 0
such that ‖ad rb(`)‖ < Mb holds for all ` ∈ B . Thus

‖pj−1

(
(ad(ra−1(`))qa−1 · · · ad(r2(`))q2ad(r1(`))q1(Zj)

)
‖ < Mq1

1 Mq2
2 · · ·Mqa−1

a−1

holds for all ` ∈ B . Now let N > 0 such that ‖`‖ < N holds in B ; then for
each multi-index q and ` ∈ B we have |u◦j (q, `)| < N Mq1

1 Mq2
2 · · ·Mqa−1

a−1 . Now
for all t ∈ Ca−1 and ` ∈ B we have∑

q 6=(0,...,0)

| t
q

q!
u◦j (q, `)| ≤ N

∑
q 6=(0,...,0)

| t
q

q!
| Mq1

1 Mq2
2 · · ·Mqa−1

a−1

= N
(
e|t1|M1e|t2|M2 · · · e|ta−1|Ma−1 − 1

)
.

Hence the power series for y◦j (t, `) converges absolutely on each set Ca−1 × B .
In particular, y◦j (t, `) is analytic at each point of Ca−1 × U .

Finally, set

µj(t, `) = exp

(
a−1∑
b=1

tb γj

(
rb(`)

))
,

It is clear that µj(t, `) is also analytic at each point of Ca−1 ×U (and that it is
defined by a convergent power series of a similar form as y◦j (t, `)). This completes
the first step of the construction. We pause to remark that the restrictions of
the functions above to Ω have a number of special properties ( see [8], [10]) that
do not necessarily continue to hold for the extended functions.

The second step is to define a function Qj : C2d × U → s∗ whose
restriction to R2d × Ω parametrizes each orbit: O` = {Q(t, `) : t ∈ R2d} . Write
Q(t, `) =

∑n
j=1Qj(t, `)Z∗j , and fix 1 ≤ j ≤ n . Then Qj is defined as follows. If

j /∈ e set
Qj(t, `) = µj(t, `)`j + y◦j (t, `).

If j ∈ e , then set

Qj(t, `) = µj(t, `)
(
`j + ta

)
+ y◦j (t, `),
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if j /∈ ϕ while if j ∈ ϕ set

Qj(t, `) = µj(t, `)
(
etaγj(ra(`))bj(`)−1 + θj(`)

)
+ y◦j (t, `).

It is clear from the preceding that for each j , Qj is analytic on C2d × U . Now
consider the restriction of Qj to R2d × Ω. An examination of ([8], the proof of
Lemma 1.3.12, and Proposition 1.3.13), shows that for each ` ∈ Ω,

Q(t, `) = exp(t1r1(`)) exp(t2r2(`)) · · · exp(t2dr2d(`))`,

and Q parametrizes each orbit as claimed.
The next step is to define substitution functions Φa(`), 1 ≤ a ≤ 2d .

For each ε ∈ {−1, 1}ϕ , set Uε = {` ∈ U : sign(Re(bi(`))) = εi, i ∈ ϕ} so that
U = ∪ Uε . Choose a branch of the logarithm on C that is analytic on Re(z) > 0.
For a = 1, if j = e1 /∈ ϕ , then set Φ1(`) = −`j , while if j = ea ∈ ϕ , then for
` ∈ Uε , set Φ1(`) = (γj(r1(`))−1 log(εjbj(`)). It is clear that these functions are
analytic at each point of U . Assume that for 1 ≤ b ≤ a − 1, Φb(`) is defined
and anaytic on U . Set y◦j (`) = y◦j (Φ(`), `). Then y◦j , being the composition of
the analytic functions `→ (Φ1(`),Φ2(`), . . . ,Φa−1(`), `) and y◦j (t, `), is analytic
on U . Similarly we set µj(`) = µj(Φ1(`),Φ2(`), . . . ,Φa−1(`), `) and we see that
µj is analytic on U . Now if j = ea /∈ ϕ , set

Φa(`) = −y◦j (`)µj(`)−1 − `j

while if j = ea ∈ ϕ , then

Φa(`) = γj(ra(`))−1 log
(
µj(`)−1εjbj(`)

)
.

In light of the preceding we have that Φa(`) is analytic at each point ` in U .
We are now in a position to construct the mapping σ : set

σj(`) = Qj(Φ(`), `), ` ∈ U .

It is clear from our work thus far in this proof that σ is analytic at each point `
in U . To see that the restriction of σ to Ω is P ∗ , we rely upon the description of
the construction of P ∗ in [10] (or [8] for a description with notation more closely
matching the present notation). By a substitution procedure, explicit functions
Φa(z1, z2, . . . , za, `), 1 ≤ a ≤ 2d are obtained so that Q(t, `) is transformed into
a function P (z1, z2, . . . , z2d, `):

P (z, `) = Q(Φ1(z, `), . . . ,Φ2d(z, `), `).

The function P ∗ is then defined as P ∗(`) = P (z∗, `) where z∗a = 0 if ea /∈ ϕ
and z∗a = εj if j = ea ∈ ϕ , ` ∈ Ωε . For the functions Φa(`) defined above,
an examination of the functions Φa(z∗, `) from [10] shows that for each ` ∈ Ω,
Φa(z∗, `) = Φa(`). Thus for each ` ∈ Ω,

P ∗(`) = P (z∗, `) = Q(Φ(z∗, `), `) = σ(`).
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Remark 4.1. For every 1 ≤ j ≤ n , the complex function σj has the same
form as its real-valued restriction P ∗j to Ω: for ` ∈ U ,

σj(`) =


µj(`)`j + y◦j (`), j /∈ e
0, j ∈ e, j /∈ ϕ
sign(bj(`)) + yj(`), j ∈ ϕ.

where, in the case j ∈ ϕ , yj(`) = µj(`)θj(`) + y◦j (`).
We observe that for each 1 ≤ t < n , this procedure can be carried out

for the Lie algebra gt , with respect to the basis Zj , 1 ≤ j ≤ t , yielding the
ultra-fine layers Ωt

et,jt,ϕt , and for each layer, the associated Zariski open set U t ,
the cross-section map σt , and the cross-section Σt . In order to apply the non
parametric construction of [2], we must verify that the projection πt maps each
ultra-fine layer Ω into the corresponding layer Ωt .

Fix t , 1 ≤ t ≤ n−1, and recall the index set Rt = {r1 < r2 < · · · < rdt}
from Lemma 2.2, so that, with it defined by ita = ira

, jt
a = jra

, 1 ≤ a ≤ dt , and
et the union of the values of it and jt , we have πt(Ωe,j) ⊂ Ωt

et,jt . We also have
the mappings ρt

a : gt ×Ωt
et,jt → gt , and in light of Lemma 2.2, we shall describe

the relationship between the maps ρr and ρt
a . First we set some additional

notation for convenience. Having fixed ` ∈ Ωe,j , we write ρr(Z) = ρr(Z, `) and
ρt

a(Z) = ρt
a(Z, `t)(Z ∈ st). For 1 ≤ r ≤ d put

Yr = ρr−1(Zir
), Xr = ρr−1(Zjr

),

and for 1 ≤ a ≤ dt , put

Y t
a = ρt

a−1(Zira
), Xt

a = ρt
a−1(Zjra

).

Then for each 1 ≤ r ≤ d one has

ρr(Z) = Z −
r∑

s=1

〈`, [Z,Xs]〉
〈`, [Ys, Xs]〉

Ys −
r∑

s=1

〈`, [Z, Ys]〉
〈`, [Xs, Ys]〉

Xs

and similarly for ρt
a(Z).

Lemma 4.2. Fix ` ∈ Ωe,j with `t = πt(`) . For 1 ≤ a ≤ dt , set

Yt
a = span{Yr : r /∈ Rt, r < ra}.

Then one has the following.
(a) Yt

a ⊂ s`
t .

(b) If ra−1 < r < ra , then for Z ∈ st , ρr(Z) = ρt
a−1(Z)modYt

a .
(c) For Z ∈ st , 1 ≤ a ≤ dt ,

〈`, [Z, Yra
]〉 = 〈`t, [Z, Y t

a ]〉, 〈`, [Z,Xra
]〉 = 〈`t, [Z,Xt

a]〉,
ρra

(Z) = ρt
a(Z) mod Yt

a.



Arnal, Ben Ammar, Currey and Dali 545

Proof. We proceed by induction on 1 ≤ a ≤ dt ; first suppose that a = 1. Let
Z be any element of st . For each r < r1 , we have t < jr so by definition of jr ,

st ∩ hr−1(`) ⊂ hr(`).

Now ρr−1(Z) ∈ st ∩ hr−1(`) so we have

〈`, [Z, Yr]〉 = 〈`, [ρr−1(Z), Yr]〉 = 0.

Hence st ⊂ {Yr}` so Yr ∈ (st)` . We conclude from the preceding that Yt
1 ⊂ (st)` .

It follows that for r < ra ,

ρr(Z) = Z −
r∑

s=1

〈`, [Z,Xs]〉
〈`, [Ys, Xs]〉

Ys = ρt
0(Z) mod Yt

1.

Now we apply this formula to Zir1
and Zjr1

to get

〈`, [Z, Yr1 ]〉 = 〈`, [Z, ρr1−1(Zir1
)]〉 = 〈`, [Z, ρt

0(Zir1
)]〉 = 〈`, [Z, Y t

1 ]〉,

as well as 〈`, [Z,Xr1 ]〉 = 〈`, [Z,Xt
1]〉 (in a similar way), and then

ρr1(Z) = ρr1−1(Z)− 〈`, [Z,Xr1 ]〉
〈`, [Yr1 , Xr1 ]〉

Yr1 −
〈`, [Z, Yr1 ]〉
〈`, [Xr1 , Yr1 ]〉

Xr1

= ρt
0(Z)− 〈`, [Z,Xt

1]〉
〈`, [Y t

1 , X
t
1]〉
Y t

1 −
〈`, [Z, Y t

1 ]〉
〈`, [Xt

1, Y
t
1 ]〉

Xt
1 mod Yt

1

= ρt
1(Z) mod Yt

1.

The lemma is now verified for a = 1.
Suppose then that a > 1 and that the lemma holds for a − 1. Let

Z ∈ st and ra−1 < r < ra . Again by definition of jr it follows that Z ∈ {Yr}`

so Yr ∈ (st)` . Having Yt
a−1 ⊂ (st)` by induction, we conclude that Yt

a ⊂ (st)` .
Hence

ρr(Z) = ρra−1(Z)−
r∑

s=ra−1+1

〈`, [Z,Xs]〉
〈`, [Ys, Xs]〉

Ys −
r∑

s=ra−1+1

〈`, [Z, Ys]〉
〈`, [Xs, Ys]〉

Xs

= ρt
a−1(Z)−

r∑
s=ra−1+1

〈`, [Z,Xs]〉
〈`, [Ys, Xs]〉

Ys mod Yt
a−1

= ρt
a−1(Z) mod Yt

a.

As in the case a = 1, we apply this formula with r = ra − 1 to Zira
and Zjra

to get

〈`, [Z, Yra
]〉 = 〈`, [Z, ρra−1(Zira

)]〉 = 〈`, [Z, ρt
a−1(Zira

)]〉 = 〈`, [Z, Y t
a ]〉,

similarly 〈`, [Z,Xra ]〉 = 〈`, [Z,Xt
a]〉 , and finally

ρra
(Z) = ρra−1(Z)− 〈`, [Z,Xra

]〉
〈`, [Yra

, Xra
]〉
Yra

− 〈`, [Z, Yra
]〉

〈`, [Xra
, Yra

]〉
Xra

= ρt
a−1(Z)− 〈`, [Z,Xt

a]〉
〈`, [Y t

a , X
t
a]〉
Y t

a −
〈`, [Z, Y t

a ]〉
〈`, [Xt

a, Y
t
a ]〉

Xt
a mod Yt

a

= ρt
a(Z) mod Yt

a.

This completes the proof.
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We observe that for each 1 ≤ a ≤ dt , Yt
a ⊂ Ker γira

. With this in mind,
an application of Lemma 4.2 (b) and (c), when Z = Zira

and with ra = rt
a, shows

that for ` ∈ Ωe,j ,

bti(`
t) =

γira
(ρt

a−1(Zjra
, `t))

〈`t, [Zira
, ρt

a−1(Zjra
, `t)]〉

=
γira

(ρra−1(Zjra
, `))

〈`, [Zira
, ρra−1(Zjra

, `)]〉
= bi(`)

The following is now immediate.

Proposition 4.3. Let g be a completely solvable Lie algebra over R , choose
a real Jordan-Hölder basis for g , and let Ω = Ωe,j,ϕ be an ultra-fine layer in g∗ .
Fix t, 1 ≤ t < n and set

ϕt = it ∩ ϕ.

Then πt(Ω) ⊂ Ωet,jt,ϕt and πt(Σ) ⊂ Σt . Hence the associated cross-section map
σt is defined and analytic on the neighborhood πt(U) ∩ U t of πt(Ω) .

Lemma 4.4. For the data e, j and ϕ associated to the ultra-fine layer Ω , let U
and Un−1 be the open sets associated with e, j, ϕ and en−1, jn−1, ϕn−1 (resp.)
via Lemma 4.1. Suppose that n ∈ e , so that we are in the situation of Lemma
2.1. Set n = jk , i = ik , and set π = πn−1 . Define q(`) on U ∩ π−1(Un−1) as
follows:
(1) If i /∈ ϕ ,

q(`) =
σn−1

i (π(`))
µi(`)〈`, [ρk−1(Zn, `), Zi]〉

=
`i

〈`, [ρk−1(Zn, `), Zi]〉
+

yn−1
i (π(`))

µn−1
i (π(`))〈`, [ρk−1(Zn, `), Zi]〉

.

(2) If i ∈ ϕ ,

q(`) =
log(εibi(`))

γi

(
ρk−1(Zn, `)

) − log
(
µn−1

i (π(`))
)

γi

(
ρk−1(Zn, `)

) .
Then q(`) is analytic on U ∩π−1(Un−1) , and its restriction to Ω is precisely the
function of Lemma 2.1, associated to the cross-section Σ .

Proof. It is clear from the proof of Lemma 4.1 that q(`) is analytic on
U ∩ π−1(Un−1), so we need only prove that its restriction to Ω satisfies the
conditions for the function described in Lemma 2.1.

Let ` ∈ Ω; then σ(`) = P ∗(`) and we use the simpler notation σ(`)
here. Recall that σ(`) belongs to the cross-section Σ, while σn−1(`) belongs to
the cross-section Σn−1 for Gn−1 -orbits in Ωn−1 . We begin by observing that
the function q(`) of Lemma 2.1 must satisfy

σn−1
(
π
(
exp(q(`))Zn`

))
= σn−1

(
π
(
σn(`)

))
.

By Proposition 4.3, σn−1
(
π(σn(`))

)
= π

(
σn(`)

)
, and hence q(`) satisfies

σn−1
(
π
(
exp(q(`))Zn`

))
= π

(
σn(`)

)
.
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Since ρk−1(Zn, `) = Zn modgn−1 , it follows that

σn−1
(
π
(
exp(q(`)Zn)`

))
= σn−1

(
π
(
exp(q(`)ρk−1(Zn, `))`

))
,

so
σn−1

(
π
(
exp(q(`)ρk−1(Zn, `)) `

))
= π

(
σn(`)

)
.

Put `′ = exp
(
q(`)Zn

)
` , we compute the above in the i-th direction. Observe

first that the left hand side is

µn−1
i (π(`′)) `′i + yn−1

i (π(`′)),

and since ρk−1(Zn, `) ∈ g`
i−1 , then `′j = `j , 1 ≤ j < i , and hence

µn−1
i (π(`′)) = µn−1

i (π(`)), yn−1
i (π(`′)) = yn−1

i (π(`)).

Now suppose that we are in case (1). Then

`′i = `i − q(`)〈`, [ρk−1(Zn, `), Zi]〉

so we have

µn−1
i (π(`))

(
`i − q(`) < `, [ρk−1(Zn, `), Zi]〉

)
+ yn−1

i (π(`)) =

=
(
σn−1(π(exp(q(`)ρk−1(Zn, `)) `)

)
i
= 0.

Solving for q(`) in the above gives the result for case (1).
In case (2), one has

`′i = eq(`)γi(ρk−1(Zn,`))bi(`)−1 + θi(`)

so
µn−1

i (π(`))
(
eq(`)γi(ρk−1(Zn,`))bi(`)−1 + θi(`)

)
+ yn−1

i (π(`)) =

= |bi(`)|bi(`)−1 + yn
i (π(`)).

Now by ([8] Proposition 1.3.13), we have

yn
i (`) = µn−1

i (π(`))θi(`) + yn−1
i (π(`)). (∗)

On the other hand, using the formula for σn
i and the formula above one computes

that

σn
i (`) = |bi(`)|bi(`)−1 + yn

i (`) = σn−1
i (π(`))

= µn−1
i (π(`))(eq(`)γi(ρk−1(Zn,`))bi(`)−1 + θi(`)) + yn−1

i (π(`)).
(∗∗)

Combining the two equations (∗) and (∗∗) gives

µn−1
i (π(`))eq(`)γi(ρk−1(Zn,`))bi(`)−1 = |bi(`)|bi(`)−1.

Now again solving for q(`) gives the result for case (2).

The following theorem summarizes our results thus far.
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Theorem 4.5. Let G be a completely solvable Lie group with Lie algebra
g , choose a real Jordan-Hölder basis {Zj} . Let P be the corresponding ultra-
fine stratification of g∗ , and let Ω be a layer belonging to P . Then there is
an explicit construction of an open set V in g∗C , and complex-valued functions
p1, p2, . . . , pd, q1, q2, . . . , qd on V , such that V contains Ω , and such that for
each coadjoint orbit O in Ω ,

p1|O, p2|O, . . . , pd|O, q1|O, q2|O, . . . , qd|O

are real-valued, global canonical coordinates for O . Moreover, for each 1 ≤
j ≤ n , 0 ≤ r ≤ d , there is an entire function αj,r(σ(`), ·) such that for each
1 ≤ j ≤ n and ` ∈ Ω one has

`j =
∑

r: jr≤j

αj,r(σ(`), q(`))pr(`) + αj,0(σ(`), q(`)).

Proof. Let e, j, ϕ be the index data associated to the ultra-fine layer Ω,
and let U be the open set associated with this data via Lemma 4.1. Suppose
that pn−1

1 , . . . , pn−1
dn−1

, qn−1
1 , . . . , qn−1

dn−1
have been constructed explicitly so that for

some open set Vn−1 ⊂ U , each is analytic on Vn−1 . If n /∈ e , then we are done,
so suppose that n ∈ e , so that dn−1 = d− 1. Set pd(`) = `n and define qd(`) as
in Lemma 4.4, according as ik /∈ ϕ or ik ∈ ϕ . Recall that `→ qd(`) is analytic
on U ∩ π−1(Un−1). Define

V = {` ∈ U ∩ π−1(Un−1) : exp
(
qd(`)Zn

)
` ∈ Vn−1}

and for ` ∈ V and 1 ≤ r ≤ d− 1, set

pr(`) = pn−1
r

(
exp(qd(`)Zn)`

)
and qr(`) = qn−1

r

(
exp(qd(`)Zn)`

)
.

Then V is open, and pr (resp. qr ) is a composition of the function ` →
exp
(
qd(`)Zn

)
` , which is analytic on V with values in Vn−1 , followed by the

function pn−1
r (resp. qn−1

r ), which is analytic on Vn−1 .
The last formula is obtained by induction from the definition of the

functions qr and pr, 1 ≤ r ≤ d (see [2]).

5. Global Parametrization of a Layer

Let Ω = Ωe,j,ϕ be an ultra-fine layer with Σ = P ∗(Ω). Recall that, if ϕ 6= Ø,
then for each ε ∈ {−1, 1}ϕ , Ωε = {` ∈ Ω : sign(bi(`)) = εi, i ∈ ϕ} , so Σ =

⋃
ε Σε

where Σε = Σ ∩ Ωε = {` ∈ Σ : bi(`) = εi, i ∈ ϕ} . Set V0 = span{Z∗i : i /∈ e}
and Vϕ = span{Z∗i : i ∈ ϕ} . Let π0 be the projection onto V0 parallel to the
vectors Z∗j , j ∈ e . Similarly let πϕ be the orthogonal projection onto Vϕ . We
claim that Σε is in fact the graph of a rational function fε : π0(Σε) → Vϕ .

Before proving this claim, we outline some important features of the
constructions of [10] (again using notation from [8]).
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(i) For ` ∈ Ω and j ∈ ϕ , yj(`) = µj(`)θj(`) + y◦j (`).
(ii) For ` ∈ Σ, Φa(`) = 0, 1 ≤ a ≤ 2d (since σ(`) = ` in this case).
(iii) For any ` ∈ Σ, y◦j (`) = 0 and µj(`) = 1, hence yj(`) = θj(`) if j ∈ ϕ . Recall
that θj(`) is a rational function depending only upon the restriction πj−1(`) of
` to gj−1 .

Write fε(`) =
∑

i∈ϕ fε,i(`)Z∗i where fε,i is real-valued. For each 1 ≤
j ≤ n let πj

0 = πj ◦ π0 , πj
ϕ = πj ◦ πϕ , V j

0 = πj(V0) and V j
ϕ = πj(Vϕ). We

construct f j
ε : πj

0(Σε) → V j
ϕ , 1 ≤ j ≤ n inductively, so that its graph coincides

with πj(Σε).
Suppose that j = 1. If j /∈ e , V 1

0 = RZ∗1 , and we define f1
ε = 0 on

π1
0(Σε). It is obvious that the graph of f1

ε coincides with π1(Σε). If 1 ∈ e then
1 ∈ ϕ , so V 1

ϕ = RZ∗1 and π1
0(Σ) = (0). So we set f1

ε (0) = ε1 in this case, and it
is clear that π1(Σε) = ε1Z

∗
1 = graph f1

ε .
Now suppose that we have a rational function f j−1

ε : πj−1
0 (Σε) → V j−1

ϕ

such that graph(f j−1
ε ) = πj−1(Σε), that is

πj−1(Σε) = {πj−1
0 (`) + f j−1

ε (πj−1
0 (`)) : πj−1

0 (`) ∈ πj−1
0 (Σε)}.

Case 1: j /∈ e .
Here V j

ϕ = V j−1
ϕ and πj

ϕ = πj−1
ϕ . Define f j

ε : πj
0(Σε) → V j

ϕ by

f j
ε (πj

0(`)) = f j−1
ε (πj−1

0 (`)).

Let `j = πj(`) ∈ πj(Σε). Then πj
0(`) ∈ π

j
0(Σε) and by induction

πj
ϕ(`) = πj−1

ϕ (`) = f j−1
ε (πj−1

0 (`)) = f j
ε (πj

0(`)).

Hence `j = πj
0(`)+f

j
ε (πj

0(`)) ∈ graph(f j
ε ). On the other hand, if g ∈ graph(f j

ε ),
then for some ` ∈ Σε , g = πj

0(`)+f
j
ε (πj

0(`)). Now with the induction assumption
we have

πj−1(g) = πj−1
(
πj

0(`) + f j
ε (πj

0(`))
)

= πj−1
0 (`) + f j−1

ε (πj−1
0 (`)) = πj−1(`)

and gj = `j , hence

g = πj(g) = πj−1(g) + gjZ
∗
j = πj(`).

Case 2: j ∈ e \ ϕ .
Here by construction of Σε , we have that πj(`) = πj−1(`) holds for every

` ∈ Σε . Also, V j
ϕ = V j−1

ϕ and V j
0 = V j−1

0 , so we define f j
ε : πj

0(Σε) → V j
ϕ by

f j
ε = f j−1

ε .

By induction, graph(f j
ε ) = graph(f j−1

ε ) = πj−1(Σε) = πj(Σε).
Case 3: j ∈ ϕ .
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Here we have πj
0(`) = πj−1

0 (`) for every ` ∈ Sigmaε . For i ∈ ϕ , i < j ,
set f j

ε,i = f j−1
ε,i and define

f j
ε,j(π

j
0(`)) = εj + θj

(
πj−1

0 (`) + f j−1
ε (πj−1

0 (`))
)
.

Let πj(`) ∈ πj(Σε). By induction we have πj−1(`) = πj−1
0 (`) + f j−1

ε (πj−1
0 (`)).

Since ` ∈ Σε , then by (iii) above and the definition of f j
ε,j we have

`j = P ∗j (`) = sign(bj(`)) + yj(`) = εj + θj(πj−1(`)) = f j
ε,j(π

j
0(`)).

Hence

πj(`) = πj−1(`) + `jZ
∗
j

= πj−1
0 (`) + f j−1

ε (πj−1
0 (`)) + f j

ε,j(π
j
0(`))Z

∗
j = πj

0(`) + f j
ε (πj

0(`))

On the other hand, if g ∈ graph(f j
ε ), so that for some ` ∈ Σε , g = πj

0(`) +
f j

ε (πj
0(`)), then

πj−1(g) = πj−1
(
πj

0(`) + f j
ε (πj

0(`))
)

= πj−1
0 (`) + f j−1

ε (πj−1
0 (`)) = πj−1(`).

But since ` ∈ Σε ,

gj = f j
ε,j(π

j
0(`)) = εj + θj(πj−1(`)) = P ∗j (`) = `j .

Thus g = πj(g) = πj(`), and the claim is proved.
Observe that the restriction of π0 to Σε is injective. Set Wε = π0(Σε).

It is now clear that Wε is precisely the set of all `0 ∈ V0 such that fε is defined
at `0 and such that `0 + fε(`0) satisfies the algebraic conditions that define Ωε .
We sum up the preceding in the following

Proposition 5.1. Let Ω = Ωe,j,ϕ be an ultra-fine layer, with Σ =
⋃

ε Σε the
cross-section defined in [10]. Set V0 = span{Z∗j : j /∈ e} and Vϕ = span{Z∗j :
j ∈ ϕ} . Then for each ε ∈ {−1, 1}ϕ , there is an algebraic subset Wε of V0 and
a rational function fε : Wε → Vϕ such that Σε is the graph of fε . The set Wε

is explicitly described as follows. Set D(fε) = {`0 ∈ V0 : fε is defined at `0} .
Then

Wε = {`0 ∈ D(fε) : `0 + fε(`0) ∈ Ωε}.

Next we state an explicit version of ([2], Théorème 1.6) for completely
solvable Lie algebras.

Proposition 5.2. Let g be a completely solvable Lie algebra over R , choose
a real Jordan-Hölder basis {Zj} for g and let Ω = Ωe,j,ϕ be an ultra-fine layer
with cross-section Σ as defined in [10]. Then Ω is parametrized as follows: for
any ` in Ω , let O` be the orbit of ` and P ∗(`) = O ∩ Σ . Choose ε so that
P ∗(`) ∈ Σε and write P ∗(`) = λ(`) + fε(λ(`)) where λ(`) ∈ Wε . Then the map

ψ : Ωε −→Wε × R2d

` 7−→
(
λ(`), p(`), q(`)

)
,

is a bijection and a global parametrization of Ωε in the sense of ([2] Théorème
1.6).
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The following example shows that the cross-sections Σ need not be a
submanifold if g∗ . Let g be the nilpotent Lie algebra with basis

(Z11, Z22, Z13, Z31, Y1, Y2, Y3, X1, X2, X3)

and the non-vanishing brackets:

[X1, Y1] = Z11, [X2, Y2] = Z22, [X1, Y3] = Z13, [X3, Y1] = Z31.

We look for the (ultra) fine layer Ωe,j with e = {5, 6, 8, 9} and j = {8, 9} . Then
Ωe,j is defined by the following relations:

λ11 = 〈`, Z11〉 6= 0, λ22 = 〈`, Z22〉 6= 0, λ31λ13 = 〈`, Z31〉〈`, Z13〉 = 0

and Σ is

Σ = {` ∈ Ωe,j : 〈`,X1〉 = 〈`,X2〉 = 〈`, Y1〉 = 〈`, Y2〉 = 0}.

The points ` in Σ such that λ31 = λ13 = 0 are singular.

Remark 5.1. In [15] M. Saint Germain built a formal Weinstein local chart for
any ` in the dual g∗ of a nilpotent Lie algebra g . That means, he gave formal
series:

z1, . . . , zn−2d, q1, . . . , qd, p1, . . . , pd,

such that formally:

{zi, zj} = µij(z), {zi, pj} = {zi, qj} = {pi, pj} = {qi, qj} = 0, and {pi, qj} = δij .

Any `′ in an open set containing ` can be expressed as a formal series of the
pj , qj and zj . All these formal series belong to the projective limit Ŝ(g) of the
space of polynomial functions on g∗ with respect to the successive powers of the
ideal IO of functions vanishing on the orbit O of ` .

The construction of Proposition 5.2 is explicitly computable rather than
formal, but it does not give a Weinstein chart. Indeed, although the functions
pi , qi are defined on an open set V , λ is only defined on the ultra-fine layer Ω.
Even if λ(`) is a regular point in Ω ∩ V0 , and (λ, p, q) gives a local chart in Ω,
there is no natural extension of this chart to a local chart in g∗ . For instance, we
consider the nilpotent Lie algebra g with basis (Z, Y,X,W ) and non vanshing
brakets:

[W,X] = Y, [X,Y ] = Z.

If ` = ζZ∗ + γY ∗ + βX∗ + µW ∗ belongs to the layer

Ω = {`: ζ = 0, γ 6= 0}

then q(`) = β
γ , p(`) = µ , V0 = span{Z∗, Y ∗} , but Ω ∩ V0 = {(0, γ): γ 6= 0}

and λ(`) = γ . The open V in Theorem 4.5 is V = {`: γ 6= 0} , the extension
λ(`) = γ to V does not give a Weinstein chart. Instead, we can set

λ(`) = sign(γ)
√
γ2 + 2µζ.

This gives a local Weinstein chart extending (λ, p, q).
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Remark 5.2. The situation is much better for the minimal layer Ω because
V0 ∩ Ω is now an open set in V0 which provides coordinates for the manifold Σ
and Proposition 5.2 gives us a global G -invariant Weinstein chart for Ω.

6. Star algebras

In this section we restrict ourselves to the minimal Zariski-open layer Ωe,j,ϕ . Let
us denote it by Ω, and let Σ be the cross-section in Ω as constructed in [10] and
described above. Recalling the spaces V0 and Vϕ , the set Wε is now an open
set in V0 and Σε is the graph of a rational mapping fε from Wε to Vϕ .

Now, it is easy to define a G -invariant local chart around each point
`0 in Ωε . We choose on the vector space V0 the Euclidean norm associated
to the basis (Z∗s )s/∈e , there is η > 0 such that the ball B(π0 (P ∗(`0)) , η)
centered in π0 (P ∗(`0)),with radius η is included in Wε . Let us put h(`) =
π0 (P ∗(`)− P ∗(`0)). The domain of our chart is
U = {`:π0(P ∗(`)) ∈ B (π0(P ∗(`0)), η)} , it is diffeomorphic to
B (π0(P ∗(`0)), η)× R2d by Ψ(`) = (hs(`), qi(`), pi(`)) with
h(`) =

∑
s/∈e hs(`)Z∗s , and 1 ≤ i ≤ d .

As an application of Theorem 4.5 and Section 5, we shall now extend
results of [3] to the global parametrization of U . We consider thus deformed
structure related to the problem of quantization not only for a particular orbit
in g∗ but globally, for the minimal ultra-fine layer Ω.

Let us recall briefly the general setup of geometric quantization for a
Poisson manifold like U (see [18]). First, by construction, the Vergne polarization
at P ∗(`) (` ∈ U ) is (see [2]):

hd(P ∗(`)) =

{
X ∈ s:

∂(X ◦Ψ−1)
∂pi

∣∣∣∣
Ψ(P∗(`))

= 0, 1 ≤ i ≤ d

}
.

This (algebraic) polarization allows us to define the space of “polarized” functions
on U :

C∞(U)0 =
{
u ∈ C∞(U) : X−u(`) = ∂tu(exp(−tX)`)|t=0 ≡ 0, X ∈ hd(P ∗(`))

}
=
{
u ∈ C∞(U) :

∂(u ◦Ψ−1)
∂pi

≡ 0, 1 ≤ i ≤ d

}
.

We identify the function v on U with the function v ◦Ψ−1 . Let us define:
-the Liouville form θ =

∑
i pidqi ,

-the Hamiltonian vector field Xv =
∑

i ∂pi
v∂qi

− ∂qi
v∂pi

of v ,
- the Poisson bracket {v, u} = Xvu of v and u .
The geometric quantization of v is an operator Qv defined on C∞(U)0 by:

Qv(u) = vu+
h̄

i
{v, u} − θ(Xv)u,



Arnal, Ben Ammar, Currey and Dali 553

where h̄ is the Planck constant. The operator Qv is well defined if and only if
v is “quantizable” i. e. v ∈ C∞(U)1 , where:

C∞(U)1 =
{
v ∈ C∞(U): {v, C∞(U)0} ⊂ C∞(U)0

}
=
{
v ∈ C∞(U):

∂2v

∂pi∂pj
≡ 0, 1 ≤ i, j ≤ d

}
.

Q is thus a linear map from the space C∞(U)1 to the space L (C∞(U)0) of
linear endomorphisms of C∞(U)0 such that:

Q1u = u, Qqj
u = qju and Qpj

u =
h̄

i

∂u

∂qj
.

Moreover Q satisfies, for quantizable functions v and v′ ,

Q h̄
i {v,v′} = Qv ◦Qv′ −Qv′ ◦Qv.

Such a quantization can also be described, without operator, as a formal
associative deformation of the ususal pointwise product in C∞(U) whose the
first non trivial term is given by the Poisson bracket (see [4]). More precisely, we
define the Moyal star product by the formal series:

u ? v =
∞∑

s=0

(
h̄

2i

)s 1
s!
P s(u, v), (∗)

where P s is the sth -power of the Poisson bracket. On Rn ' V0 ⊕ R2d with
coordinates (x1, . . . , xn) = (hs, qi, pi), we consider the bilinear skew-symmetric
form:

ω(x, x′) =
d∑

i=1

piq
′
i − qip

′
i.

Let Λ = (Λij)1≤i,j≤n be the matrix of ω , then

P 0(u, v) = uv, P r(u, v) =
n∑

i1,···,ir=1
j1,···,jr=1

Λi1j1 · · ·Λirjr
∂ru

∂xi1 · · · ∂xir

∂rv

∂xj1 · · · ∂xjr

.

The series (∗) is considered as a formal series in h̄ and ? is an associative product
on C∞(U)[[h̄]] .

Let us restrict ourselves for a moment to the functions v(h, q, p) which
are restriction to Rn of entire functions on Cn . We shall just say v is an entire
function. If u(h, q) is a polarized entire function, we define Tu as the function:

Tu(h, q, p) = exp(
2
ih̄

∑
j

pjqj)u(h, 2q).
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Then a direct computation shows that T is one-to-one with range the space of
entire functions w such that w ? qj = 0 for all j and if

v(h, q, p) =
d∑

j=1

vj(h, q)pj + v0(h, q)

is quantizable and u polarized, both entire functions, then we claim v ? Tu is
defined by a series (∗) converging for any value of h̄ 6= 0 and:

v ? Tu = T (Qvu) .

Indeed, if v(h, q) is polarized,

(v ? Tu)(h, q, p) =
∞∑

s=0

(
h̄

2i

)s 1
s!
P s(v, Tu)(h, q, p)

=
∞∑

s=0

(
h̄

2i

)s 1
s!

d∑
i1,...,is=1

(−1)s ∂sv

∂qi1 . . . ∂qis

(h, q)
∂se

2
ih̄ p.q

∂pi1 . . . ∂pis

u(h, 2q)

= e
2
ih̄ p.q

 ∞∑
s=0

1
s!

d∑
i1,...,is=1

qi1 . . . qis

∂sv

∂qi1 . . . ∂qis

(h, q)

u(h, 2q)

= e
2
ih̄ p.qv(h, 2q)u(h, 2q) = T (vu)(h, q, p).

Similarly:

(pj ? Tu) (h, q, p) = pj(Tu)(h, q, p) +
h̄

2i
∂

∂qj
(Tu)(h, q, p)

= pj(Tu)(h, q, p)− pje
2
ih̄ p.qu(h, 2q) +

h̄

2i
e

2
ih̄ p.q2

∂u

∂qj
(h, 2q)

= T

(
h̄

i

∂u

∂qj

)
(h, q, p).

This proves our claim since ? is associative and any quantizable function v can
be written as:

v =
d∑

j=1

vjpj + v0 =
d∑

j=1

vj ? pj + v0 +
d∑

j=1

h̄

2i
∂vj

∂qj
.

Thus the Moyal star product allows us to extend the definition of the quantization
v 7→ Qv to a larger class of functions by putting Qwu = T−1 (w ? Tu) and we
get, by construction:

Qw1?w2 = Qw1 ◦Qw2 .

We consider now the space C[[h, q]][p] of polynomial functions in the
variables pi with coefficients formal power series in the variables hs and qi . The
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Moyal product is in fact a finite sum if u and v are in C[[h, q]][p] and, in this
case, u ? v is an element of C[[h, q]][p] , for any value of h̄ .

Let Φ be the mapping:

Φ : S(g) −→ C[[h, q]][p]

which associates to each polynomial function ` 7−→ U(`), on g∗ , the Taylor
expansion in 0 of the analytic function U ◦Ψ−1(h, q, p). Since (U ,Ψ) is a chart,
Φ is injective. Let us put A = Φ(S(g)). We consider among the elements of A
the polarized and the quantizable ones:

A0 =
{
u ∈ A:

∂u

∂pi
≡ 0
}
,

A1 =
{
u ∈ A:

∂2u

∂pi∂pj
≡ 0
}
.

In order to globalize the study beginning in [3], we shall prove that our coordi-
nates functions h , q , p are in a convenient completion of the spaces A0 and A1 .

Definition 6.1. Let u =
∑

a,b,c αa,b,ch
aqbpc be in A , here we use the usual

notations for a = (as) in N{1,...,n}\e , |a| =
∑

s/∈e as , ha =
∏

s/∈e h
as
s , for b = (bj)

in Nd , |b| =
∑d

j=1 bj , qb =
∏d

j=1 q
bj

j and similarly for the variables pj . We define
1. the (h, q)-valuation of u by valh,q(0) = +∞ and:

valh,q(u) = min {|a|+ |b|: ∃ c: αa,b,c 6= 0} ,

2. the ? -valuation by val?(0) = +∞ and:

val?(u) = val?

(∑
c

uc(h, q)pc

)
= min

{
(valh,q(uc)− |c|) : c ∈ Nd

}
,

3. the metric d? on A by:

d?(u, v) = d?(u− v, 0) = e−val?(u−v).

In fact, ? is continuous on the metric space (A, d?) and can be extended
to the completion A of A for d? . We define A0 , A1 as the completions of A0 ,
A1 with respect to d? . Due to the continuity of ? , it is easy to prove that A0

is an algebra for the usual pointwise product and A1 is an A0 -module. See [5]
for a detailed study of these properties.

Theorem 6.2. Let (hs, qi, pi) be the coordinate functions defined above. Then
1. for all s not in e , hs belongs to A0 ,
2. for all i , 1 ≤ i ≤ d , qi belongs to A0 ,
3. for all i , 1 ≤ i ≤ d , pi belongs to A1 .

Proof. Let g1 ⊂ · · · ⊂ gn = g be the increasing sequence of ideals used to
define recursively the variables (h, q, p). Denote by Ωt , Wt , ht

s , qt
i , pt

i , At ,
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At
0 and so on the objects constructed for g∗t . We shall prove the result for all

intermediate variables (ht, qt, pt). For t = 1, this is trivial and to prove Theorem
6.2 by induction on t , it is enough to prove it at the last step. As usual, π is the
restriction map from g∗ onto g∗n−1 . Let us suppose the result holds for gn−1 .
There is two cases.
Case 1: n /∈ e .
By definition the set Wε is

Wε =
{
` ∈ V n−1

0 ⊕ RZ∗n : Pe,j(`+ fε(`)) 6= 0, sign(bj(`+ fε(`)) = εj , j ∈ ϕ
}
.

We saw that in this case:

Pe,j(`+ fε(`)) = Pn−1
en−1,jn−1(`n−1 + fε(`n−1))

and
bj(`+ fε(`)) = bj(`n−1 + fε(`n−1)).

Thus
Wε = π−1

(
Wn−1

ε

)
= Wn−1

ε × R.

Fix `0 in Ωε , choose η > 0 such that B (π0(P ∗(`0)), η) is included in
Wε then

Bn−1
(
πn−1(P ∗n−1(`n−1

0 )), η
)
⊂ Wn−1

ε .

There is a new invariant function, hn(`) = P ∗n(`)− P ∗n(`0), the other coordinate
functions `j : ` 7→ 〈`, Zj〉 do not change:

Ψ(`) =
(
hn−1

s (π(`)), hn(`), qn−1
i (π(`)), pn−1

i (π(`))
)
.

Thus, by definition, An−1
0 can be viewed as a subspace of A0 and An−1

1 as a
subspace of A1 , moreover hn

s , for s < n , qn
i and pn

i are in A0 , respectively A1 .
The only function to consider is hn = hn

n .
Thanks to Theorem 4.5, we have:

`n ◦Ψ−1(h, q, p) =
d∑

i=1

αi(h, q)pi + α0(h, q).

But the functions αi(h, q) are analytic on B (π0(P ∗(`0)), η)×R2d . We can write:

αi(h, q) =
∑
a,b

αi,a,bh
aqb.

Since each hs , qj is in A0 and val?(hs) = val?(qj) = 1, each of these series
converges to an element in A0 . Since pi is in A1 ,

α0(h, q) = `n ◦Ψ−1(h, q, p)−
d∑

i=1

αi(h, q)pi
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is in A1 . But α0 does not depend upon pi , thus it is in A0 . Now by definition,

α0(h, 0) = `n ◦Ψ−1(h, 0, 0) = P ∗n(`) = P ∗n(`0) + hn.

We can write:

α0(h, q) = P ∗n(`0) + hn +
∑
|b|≥1

∑
a

α0,a,bh
aqb.

The same argument as above prove that hn is in A0 .
Case 2: n = jk ∈ e .
In this case, we define the function qd as in Section 2. The cross-section Σ is the
subset of the cross-section Σn−1 defined by hn−1

ik
(`) = 0. Thus V n−1

0 = V0⊕RZ∗ik

and the chart centered in `0 ∈ Ω is defined as the function Ψ:

Ψ(`) =

=
(
hn−1

s (exp(qd(`)Zn)`)(s/∈e) , q
n−1
j (exp(qd(`)Zn)`) , pn−1

j (exp(qd(`)Zn)`)
)
.

Let u be in An−1
0 . That means there is a polynomial function U in the

variables `1, . . . , `n−1 such that at the step n− 1, u = U ◦ (Ψn−1)−1 . We shall
write un−1 = U ◦ (Ψn−1)−1 . But we can consider the function U as an element
in S(g) and u as the function un = U ◦Ψ−1 . Let us define Z−n U as the function:

Z−n U(`) =
d

dt
U(exp(−tZn)`)|t=0.

Since by construction,

Ψ?(Z−n )un = Z−n U ◦Ψ−1 =
∂

∂qd
un.

Thus:

un(hn, qn, pn) =
∑
m≥0

(−qd)m

m!
Ψn−1

? (Z−n )mun−1(hn−1, qn−1, pn−1)

where

hn−1
ik

= 0, hn−1
s = hn

s (s 6= ik), qn−1
i = qn

i , and pn−1
i = pn

i .

Let us define xn−1
a as qn−1

s if a = is , pn−1
s if a = js and hn−1

a otherwise. Then,
thanks to Theorem 4.5, we get:

`n−1
a = F (xn−1

1 , . . . , xn−1
a , qn−1

1 , . . . , qn−1
d−1 ).

or
xn−1

a = H(`n−1
1 , . . . , `n−1

a , qn−1
1 , . . . , qn−1

d−1 ).
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Especially, if r = js > a , ∂pn−1
s

`n−1
a = 0 and if Cc

a,b are the structure constants
of g :

∂pn−1
s

(Z−n `a) = ∂pn−1
s

∑
b≤a

Cb
n,a`

n−1
b

 = 0.

Thus ∂pn−1
s

(Z−n q
n−1
t ) = 0 if t ≤ s . But the vector field Z−n preserves the Poisson

bracket on Un−1 , thus:

0 = Z−n {qn−1
s , qn−1

t } = {(Z−n q(n−1)
s ), qn−1

t }+ {qn−1
s , (Z−n q

n−1
t )}

= ∂pn−1
t

(Z−n q
n−1
s )− ∂pn−1

s
(Z−n q

n−1
t ),

hence ∂pn−1
s

(Z−n q
n−1
t ) = 0 for all t . Now:

0 = exp(−qdZ−n ){qn−1
i , un−1} =

{
exp(−qdZ−n )qn−1

i , exp(−qdZ−n )un−1
}

= {qn
i , u

n}

then un is still in An
0 .

Let us compare the valuations of un−1 and un . Let X be an element of
gn−1 . We have:

X ◦Ψ−1(hn, qn, pn) =
∞∑

m=0

(−qn
d )m

m!
(ad Zn)m(X) ◦ (Ψn−1)−1(hn−1, qn−1, pn−1)

where
hn−1

ik
= 0, hn−1

s = hn
s (s 6= ik), qn−1

i = qn
i , p

n−1
i = pn

i .

If the (h, q)-valuation of X ◦ (Ψn−1)−1 is 0, then the (h, q)-valuation of X ◦Ψ−1

is still 0 and if the (h, q)-valuation of X ◦ (Ψn−1)−1 is strictly positive, then the
(h, q)-valuation of X ◦Ψ−1 satisfies:

valh,q(X ◦Ψ−1) ≥ valh,q(X ◦ (Ψn−1)−1).

Indeed,

0 = exp(−qdZ−n )hn−1
ik

= hn−1
ik

− qdZ
−
n (hn−1

ik
) +

∑
m≥2

(−qd)m

m!
(Ψ∗Z

−
n )m(hn−1

ik
).

But Z−n (hn−1
ik

) 6= 0, thus the (h, q)-valuation of hn−1
ik

is at least 1.

Let now u be in An−1

0 , then u is the sum of a series:

un−1 =
∞∑

m=0

un−1
m

where un−1
m = Um ◦ (Ψn−1)−1 , Um is a polynomial function in the variables `t

and lim
m→∞

valh,qu
n−1
m is +∞ . We consider each um as a function in An

0 , then:

valh,qu
n
m ≥ valh,qu

n−1
m , lim

m→∞
valh,qu

n
m = +∞
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and u belongs to An

0 . Moreover valh,qu
n ≥ valh,qu

n−1 .
Consider now the new coordinate function qn

d . We saw it is an analytic
Gn−1 -invariant function on Un−1 , thus it depends analytically on the variables
hn−1

j only. But these variables are in An−1

0 , we can see them as functions λn
j in

An

0 and:
valh,q(λn

j ) ≥ valn−1
h,q hn−1

j = 1.

The power series defining qn
d thus converges in A0 , this coordinate function

belongs to A0 .
With the same argument as above, if un−1 is in An−1

0 (respectively
in An−1

1 ) then, if un is the function un−1 viewed as an element of An−1

0

(respectively in An−1

1 ), Ψ?(Z−n )(un) is in An

0 (respectively in An

1 ). Now, if
un−1 is either hn−1

j or qn−1
i or pn−1

i , then the new coordinates hn
j , qn

i and pn
i

have the following form:

fn =
∞∑

m=0

(−qn
d )m

m!
(
Ψ?Z

−
n

)m (un).

All these functions are in the spaces A0 (respectively A1 ). Finally, by construc-
tion the coordinate pn

d is in A1 .

Remark 6.1. As it is proved in [3], if g is an exponential, non completely
solvable Lie algebra, then for some orbit it can be impossible to put the q
coordinates in A0 . In fact, examples indicate that a natural parametrization
of Ω needs to use complex coordinates.

Remark 6.2. If g is nilpotent, the analytic functions used become rational,
with invariant denominators. Thus we can introduce a new metric dh , defined
only from the h -valuation, in this case the h and q functions are in the closure
of A0 for dh and the p functions in the closure for dh of A1 . Since the topology
defined by dh is stronger than the topology defined by d? on A0 , this gives a
better localization of these coordinate functions. We recover the result of [15] for
the minimal layer.
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Département de Mathématiques, Faculté
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