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1. Introduction

Throughout the paper we consider algebras over an algebraically closed field F' of
zero characteristic.

By a Z-graded algebra we mean an algebra L = >7,., L;, L;L; C Ly,
having all homogeneous components L; finite dimensional. In [Mal], [Ma2] (see
also the earlier work [K1]) O. Mathieu classified all graded simple Lie algebras
with polynomial growth of dimensions dim L;. He proved that every such algebra
is a (twisted) loop algebra or an algebra of Cartan type or the Virasoro algebra
Vir.

The problem of classification of Z-graded Lie superalgebras with all dim L;
uniformly bounded is still open. Of particular interest is the case when the even
part of L contains Vir, that is, when L is a superconformal algebra (see [KvLl]).
In this paper we modify O. Mathieu’s result [Mal] to make it applicable to the
study of the even part of a superconformal algebra (see [MZ1], [KMZ]).

Recall that an algebra L is called prime if for any two nonzero ideals
(0) # I,J < L we have IJ # (0). A Lie algebra L is nondegenerate if a € L,
[[L,al],a] = (0) implies a = 0. Following [Z2] we say that L is a Lie algebra
with finite grading if L = Y;c7 Lay, [L@), Lj)] € La+j), the subspaces L(;) can
be infinite dimensional, but {i|Lg # (0)} is finite. The grading is not trivial if
>iz0 Ly # (0). All Jordan algebras and their generalizations can be interpreted
as Lie algebras with finite gradings (see [Z2]).
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Let L = > ,c, L; be a graded Lie algebra, all dimensions dim L; are uni-
formly bounded and L is not solvable. Then L, contains a copy of sly(F) =
Fe+ Fh + Ff, le,f] = h, |h,e] = 2e, [h,f] = —2f. The adjoint operator
ad(h) : L — L has only finitely many eigenvalues and the decomposition of L into
a direct sum of eigenspaces is a finite grading on L, which is compatible with the
initial Z-grading.

For a finite dimensional simple algebra G let £(G) = G ® F[t™*,t] be its
loop algebra. Every finite grading on G extends to a finite grading on £(G) which
is compatible with the Z-grading. If G is graded by a finite cyclic group Z/1Z,
G =Go+---+Gi_1, then we will refer to >, 001 Gi @17 as a twisted loop algebra.

The Virasoro algebra naturally acts on £(G) and the semidirect sum L =
L(G)xiyir is a prime nondegenerate Z-graded algebra.

Theorem 1. Let L =) ;c; L; be a Z-graded prime nondegenerate algebra con-
taining the Virasoro algebra, the dimensions dim L; are uniformely bounded. Sup-
pose that L has a nontrivial finite grading which is compatible with the Z -grading
above. Then L ~ L(G) >1Vir for some finite dimensional simple Lie algebra G .

We prove also the following theorem on Jordan pairs (see [L]) which gen-
eralizes [MZ1] and determines the structure of Z-graded prime nondegenerated
Jordan pairs having the dimensions of the homogeneous components uniformly
bounded.

Theorem 2. Let V = (V-,V*)=3,.,Vi be a prime nondegenerate Z -graded
Jordan pair having all dimV; uniformly bounded. Then either V is isomorphic to
a (twisted) loop pair L(W), where W is a finite dimensional simple Jordan pair
or V is embeddable in L(W) and Y ;5 LW ); €V C LW) or YXisp LW)_; C
VCLw).

2. The strongly PI case

Let f(z1,...,x,) be a nonzero element of the free associative algebra. We say
that an associative algebra A satisfies the polynomial identity f(z1,...,2,) =0
if f(ay,...,a,) = 0 for arbitrary elements aq,...,a, € A. An algebra satisfying
some polynomial identity is said to be a Pl-algebra.

For an arbitrary algebra A the multiplication algebra M(A) of A is the
subalgebra of Endg(A) generated by all right and left multiplications R(a) : © —
za, L(a) :x — ax, a € A.

An algebra A is strongly PI if its multiplications algebra M (A) is PIL

An element a in a Lie algebra L over a field F' is said to have rank 1 if
[[L,al,a] C Fa.

Lemma 2.1.  (/Z1]) There exists a function R(n) such that an arbitrary Lie
algebra generated by n-elements of rank 1 has dimension < R(n).
An ideal of the free Lie (resp. associative) algebra is said to be a T-ideal if

it is invariant under all substitutions. For an arbitrary algebra L the ideal of all
identities satisfied by L is a T-ideal.
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Lemma 2.2.  Let L be a Lie algebra over a field F', chF" =0 and a € L an
element of rank 1. Let’s consider s elements a; = aad(z;1) -+ - ad(x;y,), 1 <i<s,
iy € L. Let m = 2" + 2" 4 --- 42" and let T' be the T -ideal of all identities
that are satisfied by all Lie algebras of dimension < R(m). Then the subalgebra
< ay,...,as > satisfies all identities of T

Proof. Let’s consider the Lie algebra L = L((t™',t)) of Laurent series over L.
Clearly, L is an algebra over the field of Laurent series F((t™!,¢)). The element
a is an element of rank 1 in L, [[L,a],a] C F((t71,t))a.

For a series b = Y, b;t', b; € L, let’s denote min(b) = by, if by # 0 and
b; =0 for every i < k.

For arbitrary elements z;;, 1 < i < s, 1 < 7 < r;, we have e2ad(@ijt) _

e¥@ist) = qd(x)t + (- )12,

Therefore,
&ad(xil) e a/d(xiri) — min(a(e2ad($i1t) — ead(xilt)>> e (€2ad($irit) — ead(xirit)> . (*)

Since ea(ijt) = e20d(xiit) gre automorphisms of L it follows that the elements

aefrad@at) .. ghrad@ie) 1 < k) . <F, <2 are elements of rank 1 in L.

Let’s denote as B the subalgebra of L generated by m elements:
aekrad@at) .. ehriad@init) where ky, ...k, € {1,2}, 1 <i <s. We have
dimF((t717t)) B S R(m) .

Taking (*) into account, an arbitrary commutator o in ay,...,a, is either
0 or min(b) where b € B.

Let f(z1,...,x,) € T. Without loss of generality we will assume that f is
multilineal. Let us consider k arbitrary commutators oq,...,0% in ay,...,as. If
0; = 0 for some 7, then f(oy,...,0,) = 0. In the other case, there exist elements
bi,...,br € B such that o; = min(b;), 1 < i < s. Hence, f(oy,...,04) =0 or
flo1,...,0,) =min f(by,...,b). But f(by,...,br) =0 and so Lemma is proved.

Recall that a centroid of an algebra A is the centralizer of the multiplication
algebra M(A) in Endgr(A)

Lemma 2.3. Let A= ,c, A; be a graded algebra whose centroid I' =% ,c, I';
contains a homogeneous invertible element v € T'; of degree i # 0. Then A ~ L(G)
is a (twisted) loop algebra.

Proof. Let v, € T'; with ’y[l =~ € I'; and let ajl-,...,a? € A; be linearly
independent elements. Then

%‘%1-7 e »%‘a;l € Aiyj
are also linearly independent. Hence dim A; = dim A;;; = dim A_,,, for arbitrary
jez.
Taking ¢ the smallest index such that there exists an invertible ~;, we can
define a finite dimensional algebra structure in G = Ag + A; + --- + A;_1 by the
new law:
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b — a;by, ifl+h<i
U h = V[I(albh) 1fl+h22

It is clear that A is isomorphic to >;_; y0a; G @ 7. Lemma is proved

Lemma 2.4.  Let A be a subset of Z closed under addition and let m = ged(A).
Then either A =mZ or m{i € Z,i > k} C A C mZsy or —m{i € Z,i > k} C
A CmZ<y for some k> 1.

Proof. Suppose at first that A contains both a positive element ¢ > 1 and a
negative element —j, 7 > 1. Then A contains the additive subgroup ;7.

The quotient A/ijZ C Z/ijZ is a sub-semigroup of a finite group, hence
A/ijZ is a group. Hence A is a subgroup of Z and therefore A = mZ.

Now suppose that A C Z5(. Then, clearly A C mZ>q. Choose k > 1 such
that km € A. There exist elements A{,...,\. € A and integers kq,...,k, in Z
such that k1A + -+ kA = m.

Choose a sufficiently large integer ¢ such that ¢+ik; > 0 forall j =1,...,r
and for all 4,0 <i <k —1. The element A = ¢(>/_; \;) is in A. We claim that
A + mZzo g A.

Indeed, for 0 <¢ <k —1 we have A +mi € 3.7 | Z>o\; C A.

Now it is easy to see that for an arbitrary element N € A, if M, \ +
m,..., N+ (k—1)m € A then X + km € A as well and therefore the element
A" = A+m has the same property as \'. Hence N'+mZ>o C A. Lemma is proved.

Lemma 2.5. Let I' = > T be a Z-graded (commutative and associative) do-
main over an algebraically closed field F such that the dimensions dimgI'; are
uniformly bounded. Then, either T' o~ F[t™™ t"] or Y5, Ft™ C T C F[t™] or
Yisp Ft7™ CT C F[t™™], where m > 1, k> 1.

Proof. Let us prove first that dimpT; < 1 for every i. Let d = max{dim T}
i € Z}. Choose two arbitrary nonzero elements, a;,b; € I';.

Since dimg ;4 < d, there exists a nontrivial linear dependence relation
V40§ + Ya-1a] b + - + b = 0.

The polynomial f(x) = y42? + v4_12471 + - -+ + 7 can be decomposed as f(z) =
Ya(r — ap)(x — ag) -+ (x — ag), with 74 # 0, ag,a9,...,a4 € F.
We have 0 = f(%) = %z(%j —ay)(E —ag) -

b;

(3

Hence a; = agb; for some k. Now A = {i € Z|I'; # (0)} is a subsemigroup
of Z and the result is a consequence of Lemma 2.4.

Let L = > ,czL; be a strongly PI Z-graded prime nondegenerate Lie
algebra. Let d = max;czdim L;. Let I denote the centroid of L, I'j, is the set of
homogeneous elements from I'.
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Lemma 2.6. (1) T" # (0) is an integral domain and the ring of fractions
(T\{0})~'L is a simple finite dimensional Lie algebra over the field K = (T"'\{0})T".
(2) The algebra L = (I, \ {0})~'L is a graded simple algebra and dimpL; <
d, for an arbitrary i € Z.
(3) FEither L is isomorphic to a (twisted) loop algebra or there is a graded
embedding ¢ : I' — F[t™™,t"] such that

Y Ft™ C () CF[t™ or Y Ft™™ C (') C F[t™™].

i>k 1>k

Proof. For the assertion (1) cf. see [Ro].

(2) We only need to check that L is graded simple. Let I be a non-zero
graded ideal of L. By (1), (I'\ {0})"*1 = (T'\ {0})"'L.

Let dimg (T \ {0})™'L = r and f.(z1,...,7,) is a multilinear central
polynomial that corresponds to r x r matrices. Then (I'\ {0})7'L is a faith-
ful irreducible module over the multiplication algebra M < (T'\ {0})7'L >.
Hence, M < (T'\ {0})7'L >~ M,(K). Consequently, there exist operators
w; = ad(a;r)---ad(a;,), 1 < i < ¢, a;; homogeneous elements of / such that
fr(wi, ... wy) # 0. Clearly, f.(wi,...,wy) € 's. Now,

L= (Lfi(wi,...,wy))fr(ws,... ,wq)_l CIfr(wr,... ,wq)_l C (I \ {0}) 711

This proves (I'y \ {0})7'7 = (I', \ {0})"'L and so L is graded simple.

In order to prove (3) we will show that dimI'y < d for an arbitrary k.
Let’s take d+1 arbitrary elements v1,...,74+1 € I'x and a non zero homogeneous
element a; € L;. Since a;y1,a;%ve,...,0;Va+1 € Liix, there exists a non trivial
linear dependence relation Z?ﬂ §aiy; =0, & € F. Since non zero elements in I'
have zero nuclei and a; € Ker Y721 £;v;, it follows that Y% &, = 0.

We have proved that dimgI'y, < d and so the assertion (3) follows from
Lemmas 2.3 and 2.5.

Indeed, by Lemma 2.5, either I' ~ F[t7™ ¢™] or there exists the wanted
embedding. If ' ~ F[t~™,t™], then L is a loop algebra by Lemma 2.3.

Lemma 2.7. Let L = Y ,c;L; be a prime, nondegenerate, strongly PI Lie
algebra, dimL; < d, as in the previous lemma. Let’s assume that Vir =3 ,c, Vir;
can be embedded into Der(L) as a graded algebra. Then L is isomorphic to a
(nontwisted) loop algebra.

Proof. If L is not isomorphic to a (twisted) loop algebra, then by Lemma 2.6
there exists a graded embedding ¢ : I' — F[t7,t™], m > 1, such that either
sk Ft'™ C () C F[t™] or Yysy Ft=™ C o(T') C F[t~™] for some k > 1.

Let us assume that 3,5, Ft'™ C @(I') C F[¢t™]. This implies that T' is
generated by a finite set of elements v, € I';,, 1 =1,2,... r.

Let s = maxj<;<, s;. The Virasoro algebra acts on I'. For each generator ~;
the subspace v;Vir_(,4+1) = (0), since it is contained in I" and has negative degree.
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So Vir_(s41) is contained in the kernel of the action of the Virasoro algebra on
the derivations of I'. By the simplicity of the Virasoro algebra, we have that
I'Vir = (0).

Now the Virasoro algebra acts on a finite dimensional Lie algebra Ly =
(T'\ {0})"'L and the action is not trivial since Vir C Der(L). This leads to a
contradiction, since the Virasoro algebra is not strongly PI.

We showed that L is isomorphic to a loop algebra. Let us show that
this loop algebra is not twisted. Indeed, let I' ~ F[t=™ ¢t™], m > 2. Then
I'Viry =T'Vir_; = (0). Since Vir; # (0) and the algebra Vir is simple it follows
that I'Vir = (0). Now we can argue as above.

Lemma 2.8.  Let L be a prime nondegenerate Lie algebra and let I be a nonzero
wdeal of L. Then I is a prime nondegenerate algebra.

Proof. We will prove first that I is nondegenerate. Indeed, let 0 # a € I and
[{,al],a] = (0). Since L is nondegenerate, there exists an element = € L such
that [[z,al],a] # 0. Now, Lad([[z,a],a])? = Lad(a)?ad(x)*ad(a)? C Iad(a)* = (0),
(cf. [Ko]), a contradiction.

Now we will prove that [ is prime. Let I’, I” be non-zero ideals of I, with
[I', "] = (0). Let idy(I") the ideal of L generated by I". If [id,(I"),I'] = (0),
then the nonzero ideal of L, idy(I"), has a non zero centralizer, which contradicts
primeness of L. Hence, J = [I',id(I")] is a non zero ideal of I. We have

ad(L)ad(I")* C ad(I"ad(L)ad(I') + ad(l)ad(I") C ad(I'\M < L > .

Let’s choose an arbitrary nonzero element a € J, a = Y_; a;ad(x;) - - - ad(x;,,) with
a; €1", z;j€ L, r; >0. So, for r = max; r; we have

aad(I')* €Y aad(I'YM < L >= (0).

Hence, aad(J)*" = (0).

This proves that J has a nontrivial center, what contradicts the nondegen-
eracy of I and proves the lemma.

Lemma 2.9.  Let L =37, L; be a Z-graded prime nondegenerate Lie algebra
containing the Virasoro algebra and having all the dimensions dimL; uniformly
bounded. Suppose that L contains a nonzero graded ideal I which is strongly PI.
Then L is isomorphic to the semidirect sum of a loop algebra L(G) (for some
finite dimensional simple Lie algebra G ) and the Virasoro algebra

Proof. By Lemma 2.8 [ is a prime nondegenerate algebra. Moreover, since L is
prime, the action of Vir on [ is faithful. Hence by Lemma 2.7 I ~ £(G), with
dimG < oco. Again, since [ is prime and nondegenerate it follows that the algebra
G is simple. For an arbitrary element a € L let adj(a) denote the linear operator
adi(a) : I — I, x — [z,a]. The mapping a — ad;(a) is an embedding of L into
the Lie algebra

Der(L(G)) = L(G) >aVir.
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Since the Virasoro algebra is simple and not strongly PI, it follows that
Virn I = (0). Now comparing the dimensions of the homogeneous components
we conclude that the embedding L — Der(L(G)), a — ad;(a) is an isomorphism.
The Lemma is proved

3. Lie-Jordan Connections
In this section we will study connections between Lie algebras and Jordan systems.

A Jordan pair P = (P~, P") is a pair of vector spaces with a pair of trilinear
operations

{,,}:P"xP"xP — P, {,,}: Pt xP xPt— P*"
that satisfies the following identities:

(P.1) {2, y77, {27, 277, 27} } = {27, {y™7, 27,277}, 27},

(P.2) {7,477, 27}y u”} = {27, {y™7, 2%,y ™7}, u},

(P.3) {{a7, 977,27}, 277 {27, y77,27}} =
{27y {2,277 2%}y ™7}, 27},
for every z°,u” € P?, y= 7,277 € P77, 0 = % (see [L]).

If L =370 _, Lg is a finite grading, then the pair (L(_y), L,)) with the
operations {x7,y~ 7,27} = [[27,y 9], 2°], 0 = £ is a Jordan pair

An element a € P? is called an absolute zero divisor of the pair P if
{a,P77,a} = (0). A Jordan pair is said to be nondegenerate if it does not contain
nonzero absolute zero divisors

A Jordan pair is said to be prime if the product of any two nonzero ideals
is not zero, where an ideal of P is a pair of subspaces I = (I, I") that satisfies
the obvious condition.

The smallest ideal M (P) of the pair P whose quotient is nondegenerate is
called the McCrimmon radical of P.

An element a of a Lie algebra is a sandwich if [[L, a],a] = 0. The Kostrikin
radical of a Lie algebra L is the smallest ideal K (L) whose quotient is nondegen-
erate.

The central point in this connection is given by the following two lemmas,
that reduce our original problem in Lie algebras to a Jordan pairs problem.

Lemma 3.1.  Let L be a Lie algebra with a finite grading L = >2¢__, Ly,
Ly = Y1 [L—ky, Lx)] and Ly # (0). If L is prime and nondegenerate, then:
(1) Every nonzero ideal of L has a nonzero intersection with Ly,

(2) The Jordan pair V = (L(_n), L)) is prime and nondegenerate.
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Proof. (1) Let (0) # /<L and suppose that /ML,y = (0). Then, [[I, Ln)], L] C
I'N Ly =(0). Consider the subalgebra L' =1+ L.

Clearly, [[L', L)), Liny] = (0). Hence, L, is in the Kostrikin radical of
L' and using Lemma 2.8 and Proposition 2 of [Z1] we conclude that [/, L(,)] C
K(L'YNI = K(I)=(0). This contradicts primeness of L.

(2) The non-degeneracy of V' follows from the fact that every absolute zero
divisor of V' is a sandwich of L.

Now, let us assume that I and J are nonzero ideals of V' and that INJ =
(0). Let I and J be the ideals of L generated by I and .J respectively. By (1),
the nonzero ideal I N.J has nonzero intersection with V. Let P = (I N LN
j,fﬂjﬂL(n)) V.

Zelmanov proved in [Z1] that the quotient pairs I N V/I and J N V/J
coincide with their McCrimmon radicals. We will prove that this implies that

PCM(V).

Let’s recall that a sequence of elements in a Jordan pair xi,z5,... € V7,
o =+, is called an m-sequence if z;,1 € {x;, V™7, 2;}. In [Z3] it was proved that
the McCrimmon radical consists of those elements = such that every m-sequence
starting by z finishes in zero.

Let # € P? and let # = 21,29, ... be an m-sequence. Since z € INV7, it
follows that there exists s; > 1 such that z; € I for all i > s;.

Similarly, there exists s, > 1 s.t. x; € J for all j > s,. Hence, for
every k > max(sy, s2) we have that xx € I'NJ = (0). Now, (0) # P C M(V)
contradicts the nondegeneracy of V', what proves the lemma.

Lemma 3.2.  Let L = >3;__, Ly be a Lie algebra with a finite grading. Let
us assume that the Jordan pair V = (L(_y), L)) is prime and nondegenerate and
that an arbitrary nonzero ideal of L has nonzero intersection with V. Then L is
prime and nondegenerate.

Proof. Clearly, the algebra L is prime, because if I,J are non zero ideals of
L with [I,J] = (0), then I' = INV, J = JNV are nonzero ideals of V
and {17, J 0V} ={J7, 17 V=°yCInJ=(0), 0 ==, what contradicts
primeness of V.

In [Z2] it was proved that K(L)N L1y is contained in the McCrimmon rad-
ical of the pair V', hence K(L)N L,y = (0), what implies, under our assumptions,
that K(L) = (0) and so L is nondegenerate.

4. The Jordan Case

The last two lemmas have reduced our original problem to a problem concerning
Jordan pairs. So, our aim now will be to prove Theorem 2.

We will need the following lemma
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Lemma 4.1.  Let G be a simple finite dimensional Lie algebra with a Z/1Z -
grading, G = Yicz/zYi-
If dim Gy < d, then dimpG < N(d) = max(d(2d + 1),248).

Proof. The mapping d: G — G, a; — ia; is a derivation. Since every derivation
is inner, there exists an element h € G such that d = ad(h). So h is semisimple
and is contained in some Cartan subalgebra H. Since H is abelian, the elements
of H commute with A and given that [a;, h] = d(a;) = ia;, necessarily H C G.
But dimGy < d, which implies dimH < d.

Now the bound follows from the classification of simple finite dimensional
Lie algebras.

Proof of Theorem 2
We will divide the proof of the theorem in three cases

Case 1. We will assume first that (V') is strongly PI (where IC(V') denotes
the Lie algebra associated to V' via the Tits-Kantor-Koecher construction).

Recall that the Tits-Kantor-Koecher Lie algebra (V') can be characterized
in the following way: K(V) = K(V)_1+K(V)o+K(V); is a Z-graded Lie algebra,
K(V)o = [K(V)_1,K(V)1], (K(V)_1,K(V)1) =V and K(V), does not contain
nonzero ideals of IC(V).

We will see that under our assumption, the algebra IC(V') is prime. Let
us show that every nonzero ideal of K(V) has non zero intersection with V.
Since the Jordan pair V' is prime, there are no elements 0 # x~ € V~ with
[z7, VT V] = (0). Similarly, there are no elements 0 # z* € V1 with
[T, V=, V7] =(0).

If 1INVt #(0), then (0) # I NVT, V-, V-] CINV~. That is, for an
arbitrary ideal I of V', INV* # (0) if and only if 7NV~ # (0).

Let © = x_+x9+x, € I. Let us assume that z_ # 0. Then [z, V1 V1] =
[z_, VT, V¥ #0and [z, VT, VT CI. So [z,VF, V] CINVT and INV™T # (0).
Similarly, if 2 # 0, then I NV~ # (0).

Hence I C [V, V'], which implies I = (0).

Now we can prove that (V) is prime. Indeed, let’s consider Iy, Iy two
non zero ideals of (V). Then I, NV # (0), Ie NV # (0). Since V is prime,
ILiNIpNV #(0) and, in particular, I; N Iy # (0).

Since L = K(V), is a prime and strongly PI Lie algebra it follows that the
centroid T' of L is nonzero and the algebra (I'\ {0})'L is finite dimensional over
T\ {op~'r.

Let us see that T' can be identified with the centroid of V', that is, VT C
V* and V7T C V. Indeed, let’s consider the derivation d : L — L, d(a;) = ia;,
that multiplies V* by £1 and annihilates [VV=,V*]. The centroid I' decomposes
into eigenspaces with respect to the actionof d : I'=1_o+T_1+ T+ 11+ 1.

Since every element of U;.oI'; is nilpotent and L is prime, we have that I" = Iy,
that is, I' maps V* to V* and V~ to V.
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The centroid I' is a graded commutative domain, I' = > ,c,I'; with
dimI; < 1. If ' =T, then I' = F and dimpV < 0.

If there exist 4,5 > 1 with I'; # (0) # I'_;, then V is a (twisted) loop
Jordan pair.

Let’s consider finally the case when every negative component of I' is zero
(the case with all positive components of I" equal to zero is similar).

Let v; be a homogeneous element of the centroid with degree I, v, : V — V.
Then Kery, <V, Im 7, <V and they annihilate each other. Since V' is prime, it
follows that ~; is injective.

From ~,(V;) C Viyy, it follows that dimV; = dim V;y; < dim V. For every
1, 0 < <[ —1, the ascending sequence: ---dimV; < dimV;,; < dm Vo < ---
stabilizes in some k;, that is, dim Vi, = dim Vi (x,41)-

Let k() = max{k;|0 <i <1l—1}. For every h > k(v) the linear mapping
v+ Vi, — Vi is bijective.

Let T, be the set of homogeneous elements in T' (so (I'y \ {0})7!'V is a

graded Jordan pair over (I'y, \ {0})7'T" and an arbitrary nonzero homogeneous
element of I';'T is invertible).

Let n = min{l > 0|C; = ([','T"); # 0}. If 0 # ¢, € C,, then there
exist 4,7, ¢ > j, and 0 # v € I';, 0 # v € I'; with ¢, = ,yj—l%_ Let k
be a multiple of n such that & > max(k(vy;),k(7;)) (let’s notice that we can
write Vhﬂ-vj’l CV, C Vi h >k, even if there is no 7;1 in T'). Hence,
Viin = VansiV; - = Vignti—i%Y; - = ViCa-

Let’s consider the finite-dimensional vector space V = Vo + Vi + ---V,_1
with Vh:Vh+k for 0§h§n—1

fo<rs<n-—1,b0.,€Vl,, b, €V._5%, o==l, then

{b(lz+r7 bl;—(liw %+7'} € 37c+2r+s'
Let 2k+2T+S = ln+t7 l Z 0, 0 S t S n—1. Then ‘/Egk+27«+s = Vk+ln+t = V}H-tcir
Define

o —0c o *x o —0 o —1 o
0 bl b Y = A bl bl b e € Vi = Vi

Then V becomes a finite-dimensional Z/nZ-graded Jordan pair with this new
product and we get the wanted result.

Case 2. We will assume now that V' is finitely generated

According to the classification of prime non-degenerated Jordan pairs by
E. Zelmanov, we know that a finitely generated prime Jordan pair V' is either
special or strongly PI. Since the strongly PI case is already known, we only need
to consider the special case.

In order to prove Theorem 2 in this case, we need to know the relation
between the Gelfand Kirillov dimension of a special Jordan pair and the Gelfand
Kirillov dimension of its associative enveloping algebra. We will use a result similar
to the one used by Skosirskii ([SK1]) for algebras.
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Lemma 4.2.  Let (P~,P") be a special Jordan pair finitely generated by
a1,0Q32,...,0,. Then every word in the associative enveloping pair can be expressed
as a linear combination of elements of the form w'ww”, where w is a Jordan word
and the lengths of W' and W" are not greater than 2n.

Proof. There exists an associative algebra A (that can be assumed finitely
generated by aq, ..., a,) such that (P, PT) C (A7, A") and A= A"+ (A At +
ATAT)+ AT,

Let w = v{vy “vg - - - be a product of Jordan words v; and the total degree
of win ay,...,a, is N.

We will use an inverse induction on the length of v,, maximal among the
lengths of elements v{. If the length is NV, then v = v?. Let us assume that
some v; 7 placed to the right (similarly to the left) of the element v” has length
> 3. Using that vy v]v; = {vk,vj, v}~ — v v v, we can assume, without loss
of generality, that this element and v? are adjacent.

But
v7a" a7 = (v7a” b + b%a"v%)a"? — b7 (a v7a” )

where elements in brackets are Jordan words of length strictly greater than the
length of v7.

Rewrite every Jordan word vy except v? as an expression in the generators
I o,—0 0 —0
U—Z"'U a’jl aj2aj3 “ e
A double occurrence of a generator a;” to the right of v gives rise to
“%a%a’;?, the case which has been considered above.

a;’aga;

+

(Zj,

Finally, we get that w is of the form:

w = ( . .)'Uo-ai_lo—a’?éa,%g e
where all the generators a;,%, a;3°, ... are distinct.
Hence the length to the right of v” (and similarly to the left) is < 2n,
where n is the number of generators.

Lemma 4.3. If P is a finitely generated special Jordan pair and A is an
associative algebra as in Lemma 4.2 with (P~,P*t) C (A7, A"), then GK —
dim(P) = GK — dim(A).
Proof. Let U be a finite dimensional vector space that generates P and A.

Then L i

GK — dim(A) = limsup e
n—00 Inn

But U™ C U'W™U”, where U’ and U” are subspaces of bounded dimen-
sions (not more than C') and W™ is spanned by Jordan words in elements of U
of length > m = n — 4r} where r is the dimension of the vector space U. So
dim U™ < C?dim W™.

Hence,
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. " . -

GK — dim(A) = limsup lndlimU < lim sup In(C*. dim W™) _
n—00 Inn n—o0 Inn

lim sup nC” + In{dim W) :limsupﬂ =GK —dim P

m— oo ln(m —+ 47“) U, lnm

Now we can conclude the proof of Theorem 2 in the finitely generated case.

If the considered Jordan pair P is finitely generated and special, its asso-
ciative enveloping algebra A is finitely generated and GK — dim(A) = 1. By the
result by Small, Stafford and Warfield Jr. [SSW] we know that A is PI. Hence P
is strongly PI and the result follows from Case 1.

Case 3. The General Case

Lemma 4.4. LetV =3} ;. V; be a Z-graded Jordan pair having all dimensions
dimV; uniformly bounded. Then the locally nilpotent radical Loc(V') is equal to
the McCrimmon radical M(V').

Proof. It is known that M (V) C Loc(V) (see [Z4]).

Choose an arbitrary homogeneous element vf € V7 and consider the ho-
motope Jordan algebra J = V77 xxy = {x,v],y}. Assign a new degree to
homogeneous elements of J, deg(V;”?) = i + k. With this degree J becomes
a graded Jordan algebra having all dimensions dim/J; uniformly bounded. In
[MZ1] it was proved that Loc(J) = M(J). Since Loc(V)™? C Loc(J) and
{vg, M(J),vl} € M(V) (see [Z4]), we conclude that {v{, Loc(V),v7} C M (V).

In particular, an arbitrary homogeneous element of Loc(V) lies in
M (Loc(V')) € M(V'). This implies that Loc(V) C M(V'). The Lemma is proved.

Let V be a Jordan pair satisfying the assumptions of Theorem 2 and let V
be a finitely generated graded subpair of V. The nondegenerate pair V /M (V))
can be approximated by finitely generated prime nondegenerate Jordan pairs. By
the Case 2 each of these pairs is either £(U) or can be embedded into a loop pair
L(U), where U is a simple finite dimensional pair. By Lemma 4.1, dimU < N(d),
where d = maxdim V.

Let T" be the ideal of the free Jordan pair consisting of those elements which
are identically zero in all Jordan pairs of dimension < N(d).

We proved that for an arbitrary finitely generated subpair V of V, the
set of values T(V) lies in the locally nilpotent radical Loc(V). This implies
that T'(V) C Loc(V). By Lemma 4.4 Loc(V) = M(V) = (0), which implies
T(V) = (0). Hence the pair V is strongly PI, which is the Case 1. Theorem 2 is
proved.

In the next section we will need the following lemma about loop Jordan
pairs.

Let W be a simple finite dimensional Jordan pair graded by Z/I1Z, W =
YWy, and let L(W) = Yi—y moa: Wi @ 9 be a (twisted) loop pair.
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Lemma 4.5.  For any k > 1 we have
1) The subpair 3 ;s L(W); s finitely generated,

2) Every subpair P C L(W) containing Y~ L(W); is prime and nonde-
generate.

Proof. 1) We will prove that Y ;5, £(W); is generated by S22 L(W);.

Let ¢ >3k+2l,ac W/, 0<j<Il-1,j=qgmod !l and a®t? € L(W),.

We have that W7 = {W? W=7 W?} (by simplicity of W), so a =
Si{a,b77,a;7}, with af € Wee, b7 € W3, and a;” € Wiy, 0 < 7(1),
pu(i), p(i) <1 —1.

Choose integers k < ¢1(i),q2(i) < k41— 1 such that ¢,(¢) = 7(i) mod I,
¢2(2) = p(i) mod I and g3(i) = ¢ — q1 (i) — qa(7).

From ¢ > 3¢ + 21, it follows that g¢3(i) > k. Now,

=

a®tl = Z{a;tf ® tql(i), b ® tQB(i)7 a;'U ® tq2(i)}7

7

that is,
LW)g €D AL ) g1, LV ) gg, LIW)g, }

where k < q1,¢2,93 < q.

2) Note that if Q is a homogeneous operator in the multiplication algebra
of LW) and (X} £L(W);)Q = (0), then Q=0

Let P be a subpair of L(W) with P D Y22, L(W),;. If a” € P? is an
absolute zero divisor of the pair P, then (X' L(W);)U(a) = (0). This implies
that L(W)U(a) = (0). Since L£(W) is nondegenerate, it follows that a = 0. We
have proved that P is nondegenerate.

Let I, J be non zero graded ideals of P with I N J = (0).

Take 0 £ a” @t € I, 0 £ @1 € J and c(z1,...,2,,...) an arbitrary
multilineal expression in the free Jordan pair. Then

c(a” @07 @1, LW, Y LW);,...) = (0).

i>k i>k

This implies that c(a?, b7, W, W,...) = (0), what contradicts primeness of W.
This proves the lemma.

5. The Lie Case

Lemma 5.1.  Let A be a simple Z/1Z -graded finite dimensional algebra and let
a be a homogeneous element of degree d(a). Consider the loop algebra

Yiejmod1 Ai @t and its subalgebra Y5, A; @ t/. Choose an integer n > m such
that n = d(a) mod | and let I be the ideal generated by a @ t" in 3~ A; @ 7.
Then I DY ., A; @t/ for some p > m.

j=>m

Jj=p
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Proof.

Let aj,...,as be homogeneous elements of A and b = aP(aq)--- P(as),
where P = R or L. We choose integers ji,...Js > m such that ji = d(ax) mod
[, k=1,...s. Then (a ® t")P(a; ® t/*)--- Plas @ t/*) = b®t? € I and for an
arbitrary k € Z>o we have that

b® tq+kl _ (a ® tn)P(al ® tj1+kl> .. P(as RQ t]s) c [

Let’s take a basis eq,...,e, of A that consists of elements of the type e; =
aR(a;,)- - R(a;,), where the elements a;; are homogeneous. According to what we
have mentioned above, there exist integers ¢i,. .., ¢, > m such that e; ® t%+%>0 ¢
I. It suffices to take p = max<;<, ¢;.

Remark. The assertion of the Lemma 5.1 is true also for Z/lZ-graded simple
finite dimensional Jordan pairs.

We can already prove the main result giving the structure of prime Z-graded
Lie algebras.

Proof of Theorem 1

Let L =3z Li = >°;__, Lu) be a Lie algebra that satisfies the assump-
tions of Theorem 1. By Lemma 3.1 and Theorem 2, we know that V' = (L), L))
can be embedded into a loop pair L(W), V — L(W), where W is a simple finite-
dimensional Jordan pair and either Y5, L(W); €V or Y5, L(W)_; C V, for
some k > 1. Let’s assume that Y5, L(W); C V.

For an arbitrary scalar o« € F' we define a homomorphism
Yo : Wep F[t it — W

via t — a. Since @a(Xisp LW)i) = @a(Xisk LW)—;) = W, it follows that
0o (V) =W.

Let’s denote I, = Keryp,NV and I, the ideal in the Lie algebra generated
by I,. Using Lemma 14 in [Z1] we have that [, NV = I,.

Let G be the Tits-Kantor-Koecher construction associated to the Jordan
pair W. A Z/lZ-graduation of W induces a Z/lZ-graduation of G and so G
is Z x Z/1Z-graded. The 0 component of this Z x Z/lZ-graduation contains a
Cartan subalgebra H.

Every Z x Z/lZ-homogeneous component of G decomposes as a sum of
eigenspaces with respect to the action of H. All the eigenspaces have dimension 1
and there exists a nonzero eigenvector x such that [[G, z], 2] = Fx. Hence, every
homogeneous component W7 # (0), with ¢ = %+, contains a non zero element a’
such that {a’, W=7 d'} = Fd'.

Choose an integer ¢ > k, ¢ =p mod [ and let @’ ® 19 =a € Y5, LIW); C
V.

By Lemma 5.1 the ideal idy (a) of the Jordan pair (generated by the element
a) contains a Y ;s,,, L(W); for some m > k.
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By Lemma 4.4(1), the subpair 3,5, L(W); is finitely generated. Choose,
inside of the ideal idy(a) generated by a in the algebra L, a finite set of elements
a; = aad(z;,) - - -ad(xim)), 1 <i<s, x;; € L that are 0Z x 0Z/1Z-homogeneous
and include generators of >, L(W);.

Consider L' =< ay,...,as > the subalgebra generated by the elements
a,...,as, m=2"+...4+2" (asin Lemma 2.1) and T the T'-ideal generated by
all identities satisfied by all Lie algebras of dimension < R(m).

For an arbitrary scalar, 0 # a € F', we have ¢,(a) = afd

Hence [[0a(L), pala)], pa(a)] € {a', W7, d'} = Fa' = Fpa(a).

By Lemma 2.1, the Lie algebra ¢, (L’) satisfies all the identities of T'. Since
ﬂ0¢aepl~a = (0) (notice that (ﬂ0¢aepl~a) NV = Notacrls = (0)), it follows that
(L) =(0)

Let J(L') a Z x Z/1Z-graded maximal ideal of L such that J(L') N L, =
J(L') N Li_, = (0) (it exists by Zorn Lemma). The Jordan pair (L{_,, L{,) is
prime and nondegenerate by Lemma 4.4(1).

An arbitrary non-zero graded ideal of L'/J(L’) has nonzero intersection
with the pair (L{_,), L{,)). By Lemma 3.2, the algebra L'/J(L’) is prime and
nondegenerate. Furthermore, T'(L'/J(L")) = (0), so L'/ J(L') is strongly PI. Using
Lemma 2.6(2) and Mathieu’s theorem (see [Ma2]), (I'y(L'/J(L")\{0})~*(L'/J(L'))
is isomorphic to a loop algebra £(G). By Lemma 4.1, dim p(G) < m = max(d(2d+
1),248). Let T,, be the ideal of the free Lie that consists of all the identities that
are satisfied identically in all Lie algebras of dimension < m. Then T,,(L") C J(L')
and so T,,(L") N Ly = (0).

Since L' is an arbitrary finitely generated subalgebra of idy(a) containing
a given (finite) subset and such subalgebras cover the ideal idp(a), we conclude
that T,,(idr(a)) N Ly = (0).

But the ideal T,,(id;(a)) of id(a) is invariant with respect to all the
derivations of idr(a). Hence T,,(idL(a)) is an ideal of L. By Lemma 3.1(1),
T (idr(a))N Ly = (0) implies T, (idr(a)) = (0). So the algebra idy (a) is strongly
PI. Finally it suffices to apply Lemma 2.9 to finish the proof of Theorem 1.
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