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Abstract. In 1850, Liouville proved that any C4 conformal map between
domains in R3 is necessarily the restriction of the action of one element of
O(1, 4). Cowling, De Mari, Koranyi and Reimann recently prove a Liouville-
type result: they defined a generalized contact structure on homogeneous spaces
of the type G/P, where G is a semisimple Lie group and P a minimal parabolic
subgroup, and they show that the group of “contact” mappings coincides with G.
In this paper, we consider the problem of characterizing the “contact” mappings
on a natural class of submanifolds of G/P, namely the Hessenberg manifolds.
Mathematics subject classification 2000: 22E46, 53A30, 57S20.
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1. Introduction

In 1850, Liouville proved that any C4 conformal map between domains in R3 is
necessarily a composition of translations, dilations and inversions in spheres. This
amounts to saying that the group O(1, 4) acts on the sphere S3 by conformal
transformations (and hence locally on R3 , by stereographic projection), and then
proving that any conformal map between two domains arises as the restriction
of the action of some element of O(1, 4). The same result also holds in Rn when
n > 3 (see, for instance, [17]), and with metric rather than smoothness assumptions
(see [12]).

A cornerstone in the extension process of Liouville’s result is certainly the
paper [16] by A. Korányi and H.M. Reimann, where the Heisenberg group Hn

substitutes the Euclidean space and the sphere in Cn with its Cauchy-Riemann
structure substitutes the real sphere. The authors study smooth maps whose
differential preserves the contact (“horizontal”) plane R2n ⊂ Hn and is in fact
given by a multiple of a unitary map. These maps are called conformal by
Korányi and Reimann. Their theorem states that all conformal maps belong to
the group SU(1, n).

A second step was taken by P. Pansu [18], who proved that in the quater-
nionic and octonionic case (here the set-up is slightly different: the mappings are
globally defined), a Liouville’s theorem holds under the sole assumption that the
map in question preserves a suitable contact structure of codimension greater than

ISSN 0949–5932 / $2.50 c© Heldermann Verlag



358 Ottazzi

one. Similar phenomena have been studied in more general situations: see, e.g.,
[3], [4], [13], [14].

A remarkable piece of work concerning this circle of ideas is [21], by K. Ya-
maguchi. His approach is at the infinitesimal level and is based on the theory of
G structures, as developed by N. Tanaka [19]. The crucial step in his analysis uses
heavily Kostant’s Lie algebra cohomology and classification arguments.

It is perhaps fair to say that the latest important contribution in this area
is the point of view adopted by Cowling, De Mari, Korányi and Reimann in [6]
and [7]. They introduce the notion of multicontact mapping in the context of the
homogeneous spaces G/P. Roughly speaking, it refers to a collection of special sub-
bundles of the tangent bundle with the property that their sections generate the
whole tangent space by repeated brackets. The selection of the special directions is
not only required to satisfy this Hörmander-type condition, but it is also dictated
by the stratification of the tangent space Tx at each point x ∈ G/P in terms
of restricted root spaces. If for example P is minimal, then Tx can be identified
with a nilpotent Iwasawa Lie algebra and therefore it may be viewed as the direct
sum of all the root spaces associated to the positive restricted roots. Since a
positive root is a sum of simple roots, it is natural to expect that the tangent
directions along the simple roots will play a special role. Indeed, it is proved in [7]
that, at least in rank greater than one, G acts on G/P by maps whose differential
preserves each sub-bundle corresponding to a simple restricted root, or, at worst,
it permutes them amongst themselves. It is thus natural to say that g ∈ G induces
a multicontact mapping. The main result in [7] is that the converse statement is
also true: a locally defined C2 multicontact mapping on G/P is the restriction of
the action of a uniquely determined element g ∈ G. Hence the boundaries G/P
are (in most cases) rigid. Their results have a non-trivial overlap with those by
Yamaguchi, but are independent of classification and rely on entirely elementary
techniques.

In this paper, which is part of my Ph.D. thesis, that I have written under the
scientific guidance of Filippo De Mari, we prove a Liouville-type result for a natural
class of submanifolds of G/P, namely the Hessenberg manifolds (see [1], [2], [8], [9],
[10], [11]). We show that it is possible to define a notion of multicontact mapping
(Section 3.), hence of multicontact vector field, on every Hessenberg submanifold
HessR(H) of G/P associated to a regular element H in the Cartan subspace a of
the Lie algebra g of G. The Hessenberg combinatorial data, namely the subset R
of the positive restricted roots Σ+ relative to (g, a) that defines the type of the
manifold, single out an ideal nC in the nilpotent Iwasawa subalgebra of g , labeled
by the complement C = Σ+ \ R . By means of a reduction theorem, it is shown
that without loss of generality one can work under the assumption that R contains
all the simple restricted roots (Section 4.). In order to avoid certain degeneracies,
we assume further that R contains all height-two restricted roots as well. We
prove that the normalizer of nC in g modulo nC is naturally embedded in the Lie
algebra of multicontact vector fields on HessR(H) (Section 4.). In Section 5. the
main result is proved (Theorem 5.2). It is shown that if the data R satisfy the
property of encoding a finite number of positive root systems, each corresponding
to an Iwasawa nilpotent algebra, then the above quotient actually coincides with
the Lie algebra of multicontact vector fields on HessR(H). This situation covers
a wide variety of cases (for example all Hessenberg data in a root system of type
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A` ) but not all of them. Explicit exceptions are given in the C` case. One of the
main motivations for the present study is the observation that HessR(H) can be
realized locally as a stratified nilpotent group that is not always of Iwasawa type.
Hence our work is an extension of the theories of multicontact maps developed
thus far.

2. Notation and preliminaries

We shall work with real simple Lie algebras, although most of what we do holds,
mutatis mutandis, for semisimple Lie algebras. Let g be a simple Lie algebra with
Killing form B and Cartan involution θ . Let k⊕ p be the Cartan decomposition
of g . Fix a maximal abelian subspace a of p , and denote by Σ the set of restricted
roots, a subset of the dual a′ of a . Choose an ordering on a′ , this defining the
subsets Σ+ and ∆ = {δ1, . . . , δr} of positive and simple positive restricted roots.
Since we shall always work with the restricted root spaces, we forget the adjective
“restricted” when it is referred to roots. Every positive root α can be written
as α =

∑r
i=1 niδi for uniquely defined non-negative integers n1, . . . , nr , and the

positive integer ht(α) =
∑r

i=1 ni is called the height of α . It is well-known that
there is exactly one root ω , called the highest root, that satisfies ω � α (strictly)
for every other root α . The root space decomposition of g is g = m⊕a⊕

⊕
α∈Σ gα,

where m = {X ∈ k : [X,H] = 0, H ∈ a} . The nilpotent Iwasawa algebra n is⊕
γ∈Σ+

gγ and we denote with n its counterpart θ(n). It is well known that
n is a stratified Lie algebra in the usual sense, that is [ni, nj] ⊂ ni+j, where
ni =

⊕
ht(γ)=i gγ, i = 1, . . . , ht(ω).

Let G be a Lie group whose Lie algebra is g . Let P = MAN be a minimal
parabolic subgroup of G. We may assume that the center of G is trivial. Indeed,
if Z is the center of G, then Z ⊂ P, and so G/P and (G/Z)/(P/Z) may be
identified. Moreover, the action of G on G/P factors to an action of G/Z. Among
all groups with trivial centers and the same Lie algebra g , the largest is the group
Aut(g) of all automorphisms of g , and the smallest is the group Int(g) of the
inner automorphisms of g , the connected component of the identity of Aut(g).
Any group G1 such that Int(g) ⊆ G1 ⊆ Aut(g), with corresponding minimal
parabolic subgroup P1 , gives rise to the same space, meaning that G1/P1 may be
identified with Aut(g)/P if P is a minimal parabolic subgroup of Aut(g). For the
purposes of this paper the correct assumption is that G is connected and centerless,
and hence we can assume G = Int(g) and that P is a minimal parabolic subgroup
of G.

By means of the Bruhat decomposition ([15],Ch.VII, Sec.4) the group N
may be seen as open and dense in G/P. Indeed, if we denote by b the base point
in G/P (that is, the identity coset), the Bruhat lemma states that the mapping
ψ : N → G/P defined by ψ(n) = nb is injective and its image is dense and open.
The differential ψ∗ then maps n , the tangent space to N at the identity e , onto Tb ,
the tangent space to G/P at the base point. When δ is a simple root, we denote
by Sδ,b the subspace ψ∗(gδ) of Tb . In Lemma 2.2 of [7] it is shown that the action
of any element p ∈ P on G/P induces an action p∗ on the tangent space Tb which
in turn induces an action ψ−1

∗ p∗ψ∗ on n . This last action preserves all the spaces
gδ for simple δ . This lemma allows us to identify n with the tangent space Tx

at any point x in G/P, and to identify the subspaces gδ of n with subspaces Sδ,x
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of Tx . Indeed we may write x as gb , where g ∈ G; then the images g∗ψ∗gδ are
well defined, and independent of the representative g of the coset, although the
identification gδ → Sδ,x does depend on the representative. Since we never make
use of the explicit identification, we shall always write gδ in place of Sδ,x . This
interpretation of the tangent space to G/P allows the definition of multicontact
mapping as it is given in [7].

3. Multicontact mappings on Hessenberg manifolds

Let R be some proper subset of the set of the positive roots Σ+ . We call it of
Hessenberg type if it satisfies the following property:

if α ∈ R and β is any negative root such that α+ β ∈ Σ+ , then α+ β ∈ R .

Write bR = a ⊕ n ⊕
⊕

γ∈R gγ and fix a regular element H in the Cartan
subspace a . Then

HessR(H) = {〈g〉P ∈ G/P : Adg−1H ∈ bR}.

Denote with mα the multiplicity of the root α , that is the dimension of the root
space gα .

Proposition 3.1. [9] HessR(H) is a smooth submanifold of G/P of dimension∑
α∈Rmα .

Denote by C the complement in Σ+ of R . Any Hessenberg manifold can be locally
viewed as an algebraic submanifold of N. More precisely, the intersection of N with
a Hessenberg manifold is defined by a set of linear equations of the form

pα,j(x) = 0, α ∈ C, j = 1, . . . ,mα, (1)

where

pα,j = α(H)xα,j + (terms containing xβ,i, with ht(β) < ht(α)).

It is rather easy to check that

nC =
⊕
α∈C

gα (2)

is an ideal in n .

We ask ourselves how to relate with n the tangent space to some point
of HessR(H). The coefficients of the polynomials (1) depend on H and more
is true: those that are not zero are in fact given by functions that never vanish
on the set of regular elements in a . Thus, the slice S of N obtained by setting
xα,j = 0 if α ∈ C is diffeomorphic to HessR(H) ∩ N for every regular element H .
The graph mapping φ : ({xβ,k}β∈R, 0) 7−→ ({xβ,k}β∈R, {pα,j(xβ,k)}α∈C) gives the
diffeomorphism. Consider the basis {Xα,j : α ∈ Σ+, 1 ≤ j ≤ mα} of left-invariant
vector fields on N, where

Xα,j(n) = (ln)∗e
∂

∂xα,j

∣∣∣
e
,
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and write

Xα,j =
∑

γ∈Σ+

mγ∑
k=1

aα,j
γ,k

∂

∂xγ,k

,

where aα,j
γ,k are some smooth functions on N. If α =

∑
δ∈∆ aδδ and β =

∑
δ∈∆ bδδ

are two positive roots, we write α � β if aδ ≤ bδ for all δ ∈ ∆. We say that
α1 + · · · + αn is a chain if each αj and each partial sum α1 + · · · + αj is a root
for all j = 1, . . . , n . Ordered pairs of roots can be joined by chains:

Lemma 3.2. [7] Let α and β be distinct positive roots and suppose that α � β .
Then there exist simple roots δ1, . . . , δp such that α = β + δ1 + · · ·+ δp is a chain.

Lemma 3.3. For every root α ∈ Σ+ and j = 1, . . . ,mα we have

aα,j
γ,k =


0 if ht(α) ≥ ht(γ) and α 6= γ
0 if α = γ and k 6= j
1 if α = γ and k = j
P if ht(α) < ht(γ),

(3)

where P is a polynomial that does not vanish only if α � γ . In this case,
it depends only on those variables labeled by those roots α1, · · · , αq for which
α+ α1 + · · ·+ αq = γ is a chain. This implies that

Xα,j =
∑
γ∈C

mγ∑
k=1

aα,j
γ,k

∂

∂xγ,k

, (4)

for every α ∈ C .

Proof. The proof of the above statements follows from a direct calculation that
arises from the left-invariance and that involves the Baker-Campbell-Hausdorff
formula.

For every α ∈ Σ+ , and 1 ≤ j ≤ mα , consider the vector field Xα,j whose (γ, k)
component is

rα,j
γ,k =

{
aα,j

γ,k if γ ∈ R and k = 1, · · · ,mγ

0 otherwise.

The Xα,j are vector fields on S, and from (4) Xα,j = 0 for every α ∈ C . Moreover,
(3) implies that the set {Xα,j : α ∈ R, j = 1, · · · ,mα} is a basis of the tangent
space at any point of S. Indeed, writing the matrix of the coefficients of {Xα,j :
α ∈ R, j = 1, · · · ,mα} , ordering the roots according to any lexicographic order,
we obtain a triangular matrix with ones along the diagonal. Hence {φ∗(Xα,j) :
α ∈ R, j = 1, · · · ,mα} is a basis of the tangent space at all points of an open set
of HessR(H).

Denote by X(N) the Lie algebra of all smooth vector fields on N.

Proposition 3.4. Given X and Y ∈ X(N), the following formula holds at
every point n ∈ S

[X, Y ](n) = [X,Y ](n).
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Proof. Let X and Y ∈ X(N) and write X = X +X , where

X :=
∑
β∈R

mβ∑
i=1

rβ,i
∂

∂xβ,i

, X :=
∑
γ∈C

mγ∑
k=1

cγ,k
∂

∂xγ,k

,

and similarly Y = Y + Y . Then

[X, Y ](n) = [X, Y ](n) + [X, Y ](n) + [X, Y ](n) + [X, Y ](n).

Clearly [X, Y ] = [X, Y ] . Moreover, [X, Y ] = [X, Y ] = 0, because when expanded
in terms of partial derivatives, each of the above brackets contains only coefficients
of the form (∂/∂xγ,k)rβ,i , which vanish whenever γ ∈ C and β ∈ R because of (3).

Finally, [X, Y ] = 0, because in [X, Y ] only the coefficients of components labeled
by C will appear, but they become zero once we project them on S.

Let gδ = span{Xδ,i : i = 1, · · · ,mδ} . The proposition above implies that the
vector fields in the family {gδ}δ∈∆R , ∆R = ∆ ∩ R generate at each point the
tangent space of S by the Lie brackets. Let A,B be some open subsets of
HessR(H). Without loss of generality, we can assume A,B ⊂ (N ∩ HessR(H)).
Let f : A → B be a diffeomorphism. We say that f is a multicontact map if

f∗(φ∗(gδ)) ⊆ φ∗(gδ), for every simple root δ in R .

4. Multicontact vector fields

Lifting the multicontact conditions to the infinitesimal level. Since all
Hessenberg manifolds corresponding to different choices of regular H give rise to
the same slice S, the group of multicontact maps does not depend on H . Therefore,
from now on we focus our attention on the slice S of N. Fix an open set A of
S. We lift the problem to the Lie algebra level, by considering multicontact vector
fields, that is, vector fields F on A whose local flow {ψF

t } consists of multicontact
maps. If δ ∈ ∆R , then

d

dt
(ψF

t )∗(Xδ)
∣∣∣
t=0

= −LF (Xδ) = [Xδ, F ],

where L denotes the Lie derivative. Hence a smooth vector field F on A is a
multicontact vector field if and only if

[F, gδ] ⊆ gδ for every δ ∈ ∆R . (5)

We write a vector field on A as

F =
∑
γ∈R

mγ∑
j=1

fγ,jXγ,j, (6)

where fγ,j are smooth functions on A . Condition (5) becomes

[F,Xδ,i] =

mδ∑
k=1

λi
δ,kXδ,k, δ ∈ ∆R, i = 1, . . . ,mδ,
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where {λi
δ,k} is a set of smooth functions. We can write the multicontact conditions

as the system of equations

∑
γ∈R

mγ∑
j=1

Xδ,i(fγ,j)Xγ,j +
∑
γ∈R

mγ∑
j=1

(
mγ−δ∑
l=1

ciljδ,γ−δfγ−δ,l

)
Xγ,j = −

mδ∑
j=1

λi
δ,jXδ,j,

as δ varies in ∆R and i = 1, . . . ,mδ . Equivalently, F is a multicontact vector
field on A if and only if for all γ ∈ R and some functions {λi

δ,j} the following
equations are satisfied on A :

Xδ,i(fδ,j) = −λj
δ,i

Xδ,i(fγ,j) = 0 if γ − δ 6∈ Σ+ ∪ {0}
Xδ,i(fγ,j) +

∑mγ−δ

l=1 ciljδ,γ−δfγ−δ,l = 0 if γ − δ ∈ Σ+

(7)

for all the simple roots δ in ∆R and 1 ≤ i, j ≤ mδ . We may clearly forget the
equation Xδ,i(fδ,j) = −λj

δ,i because λj
δ,i is arbitrary.

We write MC(N) and MC(S) for the Lie algebra of multicontact vector
fields on some open subset of N and S respectively. If F ∈ MC(S) is as in (6),
then Xδ,ifγ,j = Xδ,ifγ,j . Thus, from now on we shall write Xδ,i in place of Xδ,i

whenever treating multicontact vector fields, if no ambiguity arises.

Let C be the complement in Σ+ of some Hessenberg type set. We say that a
function f on N is C -independent if it does not depend on the coordinates labeled
by C . From (4) it follows that if R is a Hessenberg type set of roots and γ ∈ C ,
then a (basis) left invariant vector field Xγ,k on N does not depend on the partial
derivative vector fields that are labeled by the positive roots in C . This implies in
particular that the system of equations

Xγ,kf = 0 for every γ ∈ C and k = 1, . . . ,mγ (8)

is equivalent to the C -independence, namely to

∂

∂xγ,k

f = 0 for every γ ∈ C and k = 1, . . . ,mγ. (9)

Dark zones. We split (7) into suitable independent subsystems, each defining
multicontact vector fields on some Hessenberg manifold of lower dimension, and
we show that we can focus our attention to only one of them at a time. Call a
positive root µ in R maximal if µ+α 6∈ R for any other root α ∈ Σ+ . Since, by
definition of R , µ+α /∈ R if α ∈ C , it suffices to check maximality for all α ∈ R .
Denote by RM the set of maximal roots. For a fixed µ ∈ RM , we call shadow of
µ the set

Sµ = {α ∈ R : α � µ}.
It is not difficult to show that the union

⋃
µ∈RM

Sµ covers R .

We partition R into the disjoint union of dark zones , a dark zone being a
connected component of R in a loose sense, that is, a maximal union of shadows
Z = ∪k

i=1Sµi
with the property that either k = 1 or any Sµi

intersects at least
another Sµj

in the same dark zone. By their very definition, dark zones are disjoint.
This will allows us to reduce the problem of solving (7) to the problem of solving
several simpler systems, each naturally associated to a dark zone.



364 Ottazzi

Suppose that Z1, . . . ,Zp is a numbering of the dark zones of R . Given
F ∈ X(S) as in (6), we write F =

∑p
i=1 Fi, where Fi =

∑
γ∈Zi

∑mγ

j=1 fγ,jXγ,j.
Clearly, each Fi is itself a vector field in X(S). Since Fi picks the components of
F along the directions labeled by Zi , it is natural to consider the sub-slice of S
that corresponds to it, as we now explain.

Fix a dark zone Z . The set of roots contained in Z generate the positive
set of an irreducible root system, say Σ+(Z), and the corresponding Lie algebra

n(Z) =
⊕

β∈Σ+(Z)

gβ

is a nilpotent Iwasawa algebra. The roots in Z play, within Σ+(Z), the role of
a Hessenberg set of roots. Also, n(Z) is a subalgebra of n and we may consider
the (connected, simply connected, nilpotent) Lie subgroup N(Z) of N whose Lie
algebra is n(Z). Thus, if Z is a dark zone we write

SZ = {n ∈ N : xγ,k = 0 if γ 6∈ Z}.

Coming back to the decomposition R = Z1 ∪ · · · ∪ Zp , we write for simplicity Si

in place of SZi
. We prove the following reduction result.

Theorem 4.1. If F ∈ MC(S), then Fi ∈ MC(Si) for all i = 1, . . . , p.
Conversely, given Gi ∈MC(Si) with i = 1, . . . , p, then

∑
iGi ∈MC(S).

The proof requires some remarks, that we state in the next lemmas.

Lemma 4.2. Let Z ⊂ R be a dark zone and let α ∈ Z . The (γ, k) component
of the vector field Xα,j is zero for every γ ∈ R \ Z .

Proof. Suppose α ∈ Z , γ ∈ R \ Z and suppose the (γ, k)-component of the
vector field Xα,j is not zero. By Lemma 3.3, there exist roots α1, . . . , αq such that
α + α1 + · · ·+ αq = γ is a chain, so that in particular γ − αq − · · · − αj is also a
root for j = 1, . . . , q − 1. Now, since γ ∈ R , then γ ∈ Sµ for some maximal root
µ . Therefore α = γ − αq − · · · − α1 ∈ Sµ . This implies that both α and γ belong
to the same shadow, and hence to the same dark zone, that is a contradiction.

Lemma 4.3. The coefficients of a multicontact vector field F are determined
by its gµ components, as µ varies in RM .

Proof. The proof of this statement is analogous to the proof of Proposition 3.3
of [7].

Lemma 4.4. [7] Let α, β ∈ Σ such that α+ β is a root, then

{[X, Y ] : X ∈ gα, Y ∈ gβ} = gα+β,

and {Z ∈ gβ : [gα, Z] = {0}} = {0}.
Lemma 4.3 suggests a hierarchic structure of the equations (7). In particular, if
γ+δ1 + · · ·+δs = α is a chain, there exist vector fields X1 ∈ gδ1 , . . . , Xs ∈ gδs such
that the differential monomial X1 · · ·Xs maps a α-component to a γ -component of
a vector field whose coefficients solve (7). The next result follows from Lemma 4.4.
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Lemma 4.5. Let F ∈MC(S) be as in (6). Then Xfγ,j = 0 for every γ ∈ Sµ ,
every j = 1, . . . ,mγ and every X ∈ gα with α /∈ Sµ .

Proof. If α /∈ Sµ , then it is either out of R or it is in some other shadow. If
α ∈ C , then Xfγ,j = 0 by (8).

Assume α ∈ R . It is enough to prove the statement for γ = µ . Indeed,
suppose the result true for all fµ,j ’s. Then, by the equivalence of (8) and (9), these
functions are (Σ+ \ Sµ)-independent, because Sµ is a Hessenberg type subset. If
γ + δ1 + · · · + δp = µ is a chain, then by Lemma 4.3 there exist vector fields
X1, . . . , Xp in gδ1 , . . . , gδp such that X1 · · ·Xpfµ,j = fγ,k . Each Xi , i = 1, . . . , p ,
has the form calculated in Lemma 3.3, that is

Xi =
∑

α∈Σ+

mα∑
j=1

ai
α,j

∂

∂xα,j

,

where aα,j is a nonzero polynomial only if there exists a chain of roots going from
δi to α . In this case ai

α,j is a polynomial in the variables {xβ,l} with β ≺ α .
In particular this holds for i = p and we show next that this forces Xpfµ,j to be
(Σ+\Sµ)-independent. Indeed, if ap

α,j depends on some variable in (Σ+\Sµ), then
α ∈ (Σ+ \ Sµ) and therefore ∂fµ,j/∂xα,k = 0 for all k = 1, . . . ,m =α . Hence all
coefficients fγ,j with ht(γ) = ht(µ)− 1 are (Σ+ \ Sµ)-independent. By iteration,
the conclusion holds for every possible height, thus for every γ .

It remains to be proved that the lemma is true for fµ,i . If α is simple, then
it is clear by (7) that Xfµ,j = 0. Let now α = δ1 + · · ·+δp be a non simple root in
R \ Sµ . Then there exists δ ∈ {δ1, . . . , δp} such that δ /∈ Sµ , for otherwise α � µ
and µ would not be maximal. By Lemma 4.4 there exist vector fields X1, . . . , Xp

in gδ1 , . . . , gδp , respectively, such that X = [Xp, [. . . , [X2, X1]] . . . ] . Then there
exists a set Λ of permutations of p elements such that

[Xp, [. . . , [X2, X1]] . . . ]fµ,j = (
∑
λ∈Λ

cλXλ(1) · · · · ·Xλ(p))fµ,j,

for some costants cλ . Let h ∈ {1, . . . , p} be the largest index such that δλ(h−1) /∈
Sµ , so that clearly δλ(k) is in Sµ for all k ≥ h . We show that each differential
monomial that appears in the sum of the right hand side is zero on fµ,j . Consider
Xλ(i) . . . Xλ(p) , with i ≥ h . Three possible cases arise.

(i) µ − δλ(p) − · · · − δλ(i) = 0, so that µ = δλ(p) + · · · + δλ(i) . In this case α is
the sum of µ and some other simple roots. Hence α is a root in R greater
than µ , a contradiction.

(ii) There exists i ≥ h such that µ − δλ(p) − · · · − δλ(i+1) is a positive root and
µ−δλ(p)−· · ·−δλ(i) is not a root. In this case, from Lemma 4.3 and the remark
thereafter, the differential monomial Xλ(i+1) · · · · · Xλ(p) maps fµ,j into a
component that belongs to the root space associated to µ−δλ(p)−· · ·−δλ(i+1) ,
say g . Since µ− δλ(p)−· · ·−−δλ(i+1)− δλ(i) is not a root, Xλ(i)g = 0 by (7).

(iii) µ− δλ(p)− · · · − δλ(i) is a root for all i ≥ h . Again the differential monomial
Xλ(h) . . . Xλ(p) maps fµ,j into a component along the root space labeled by
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µ − δλ(p) − · · · − δλ(h) . But µ − δλ(p) − · · · − δλ(h) − δλ(h−1) is not a root,
for otherwise δλ(h−1) would lie in Sµ . Therefore we can conclude as in the
previous case. Thus Xλ(h−1) . . . Xλ(p) maps the function fµ,j to zero.

Proof of Theorem 4.1.

“⇒”. Lemma 4.5 applies in particular to each dark zone, in the sense that
a coefficient fγ,k of a multicontact vector field on S is annihilated by those left
invariant vector fields corresponding to the roots that do not belong to the dark
zone where γ lies. Since each dark zone plays the rôle of a Hessenberg set of
roots,= its complement defines an ideal in n , namely

nZc =
⊕

α∈Σ+\Z

gα,

where Zc = Σ+ \ Z . The corresponding nilpotent Lie group admits the set
{Xα,j : α ∈ Σ+ \ Z} as a basis for its tangent space at each point. From (4)
in Lemma 3.3, all these vector fields depend on the coordinate vector fields labeled
by the positive roots in Σ+ \ Z . Recall in particular that from (8) and (9)

Xγ,kf = 0 for all γ /∈ Z ⇐⇒ ∂

∂xγ,k

f = 0 for all γ /∈ Z.

This fact, toghether with Lemma 4.5, tells us that the coefficients of the vector
field Fi are functions on Si , that is, they are (R \ Z)-independent. Moreover, by
Lemma 4.2, the projections Xδ onto the tangent space at each point of S are in
fact projections on the tangent space of Si . Therefore Fi ∈ X(Si). Hence Fi is in
MC(Si) if and only if{

Xδ,i(fγ,j) = 0 γ − δ 6∈ Σ+ ∪ {0}
Xδ,i(fγ,j) +

∑mγ−δ

l=1 ciljδ,γ−δfγ−δ,l = 0 γ − δ ∈ Σ+,
(10)

with δ ∈ ∆ ∩ Zi and γ ∈ Zi . We conclude by observing that these equations are
satisfied by assumption.

“⇐”. Each vector field Gi can be naturally viewed as a vector field on S.
Furthermore, since each Gi satisfies the system of equations (10), then the vector
field

∑
iGi satisfies the system (7). Thus, it defines a multicontact vector field on

S. This concludes the proof of the theorem.

Theorem 4.1 allows us to assume that R contains all simple roots, and that
it consists of exactly one dark zone .

A set of solutions. In [7], the authors determine the multicontact vector fields
on the Iwasawa group N, by solving a system of differential equations similar to
(7). In particular, if V =

∑
γ∈Σ+

∑mγ

j=1 vγ,jXγ,j is a vector field on N, then V is
of multicontact type if it satisfies the following system of equations{

Xδ,i(vγ,j) = 0 if γ − δ 6∈ Σ+ ∪ {0}
Xδ,i(vγ,j) +

∑mγ−δ

l=1 ciljδ,γ−δvγ−δ,l = 0 if γ − δ ∈ Σ+,
(11)

where γ varies in Σ+ , δ in ∆, and the vγ,j are smooth functions on N. Write
V =

∑
γ∈Σ+

∑mγ

j=1 vγ,jXγ,j. If V solves (11), then the projection V satisfies (7).
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Moreover, if the coefficients vγ,j are C -independent for every γ ∈ R , then the
vector field V is tangent at each point to S. Summarizing, in this case V is a
multicontact vector field on S. In [7] it is proved that the multicontact vector
fields on N are all of the form τ(E) for some E ∈ g , where

τ(E)h(n) =
d

dt
h([exp(−tE)n])

∣∣∣
t=0
, (12)

where [gn] denotes the N-component of gn in the Bruhat decomposition of G/P.
We ask ourselves for which E ∈ g the coefficients of τ(E) are C -independent.
Denote by q the parabolic subalgebra of g defined as the normalizer in g of nC

q := NgnC = {X ∈ g : [X, Y ] ∈ nC,∀Y ∈ nC}.

Clearly q ⊃ m⊕ a⊕ n , so that q is a parabolic subalgebra of g .

Theorem 4.6. Let R ⊆ Σ+ a Hessenberg type set, C the complement of R,
and q = NgnC . For every E ∈ q, τ(E) is a multicontact vector field on S. In
particular, the map

ν : q −→ X(S) (13)

defined by ν(E) = τ(E) is a Lie algebra homomorphism. If ∆ ⊂ R, then the
kernel of ν is nC . Thus ν(q) is isomorphic to q/nC .

Proof. We show first that the coefficients of τ(E) are C -independent for every
E ∈ =q . Let E ′ ∈ nC . Then

[τ(E), τ(E ′)] = [
∑
α∈R

mα∑
i=1

fα,iXα,i +
∑
β∈C

mβ∑
j=1

fβ,jXβ,j,
∑
γ∈C

mγ∑
k=1

gγ,kXγ,k]

must lie in τ(nC). By direct calculation, this happens if and only if Xγ,k(fα,i) = 0,
or equivalently if and only if ∂

∂xγ,k
(fα,i) = 0 for every α ∈ R and γ ∈ C .

The map ν is a homomorphism because τ and the projection operator are
such. Hence ν(q) is a Lie algebra of multicontact vector fields on S.

We now investigate the kernel of ν in the case ∆ ⊂ R . Since τ(E) =∑
γ∈C
∑mγ

k=1 gγ,kXγ,k for every E ∈ nC , the inclusion nC ⊆ kerν follows. We prove
the opposite inclusion by treating separetely each component of E ∈ kerν , written
according to the decomposition q = m ⊕ a ⊕ n ⊕ (n ∩ q). Write n = exp(W ) =
exp(

∑
α∈Σ+

Wα), where Wα ∈ gα .

If E ∈ n ∩ kerν , then τ(E) = 0. Write E =
∑

γ∈Σ+

∑mγ

k=1 aγ,kEγ,k and compute

τ(E)f =
d

dt
f(exp(−tE)n)

∣∣∣
t=0

=
d

dt
f(exp(−tE +W − t

2
[E,W ] + . . . ))

∣∣∣
t=0
.

If E were not in nC , there would exist β ∈ R and j = 1, . . . ,mβ such that
aβ,j 6= 0. If f : n 7→ xβ,j then we have that τ(E)f is a polynomial in {xα,i}α∈Σ+

whose term of degree zero is aβ,j . On the other hand

τ(E)xβ,j = 0 ∀ β ∈ R,
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because its decomposition on the basis of left invariant vector fields involves only
components corresponding to the roots in C . This is a contradiction.

Let E ∈ a ∩ kerν . Recalling that we view N as a dense subset of G/P and that
exp(tE) ∈ P, we have

τ(E)f(n) =
d

dt
f(exp(−tE)n)

∣∣∣
t=0

=
d

dt
f(exp(−tE)n exp(tE))

∣∣∣
t=0

=
d

dt
f(exp(

∑
α∈Σ+

e−tα(E)Wα))
∣∣∣
t=0
.

Choose now f : n 7→ xγ,j , so that

τ(E)f(n) =
d

dt
(e−tγ(E)xγ,j)

∣∣∣
t=0
f(n) = −γ(E)xγ,j.

This is zero for every γ ∈ R because E is in the kernel of ν , so that γ(E) = 0 for
every γ ∈ R . Since R ⊃ ∆ and ∆ is a basis of a∗ , the dual space of a , it follows
that E = 0.

Let E ∈ m ∩ kerν . Since m normalizes every root space, if f : n 7→ xγ,j , then

τ(E)f(n) =
d

dt
f(exp(e−adtEW ))

∣∣∣
t=0

=
d

dt
f(exp(

∑
α∈Σ+

∞∑
n=1

(−1)ntn
(adE)n

n!
Wα))

∣∣∣
t=0

= ((−adE)Wγ)j.

Whenever γ ∈ R we have ((−adE)Wγ)j = 0 for every j . Thus (adE)gγ = 0
for every γ ∈ R . In particular (adE)gδ = 0 for every simple root δ , and
Jacobi identity implies (adE)n = 0. Since θE = E , it follows that (adE)g−δ =
(adθE)gδ = (adE)gδ = 0. Hence (adE)g = 0. Thus E ∈ Z(g) = {0} .

Let now E ∈ gβ ∩ q ∩ kerν for some negative root β , so that τ(E) = 0.

For every E ′ ∈ n we have

[τ(E), τ(E ′)] = [
∑
α∈C

mα∑
i=1

fα,iXα,i,
∑
β∈R

mβ∑
j=1

gβ,jXβ,j +
∑
γ∈C

mγ∑
k=1

gγ,kXγ,k]

All terms of the bracket above lie on nC , except for summands of the form

fα,iXα,i(gβ,j)Xβ,j,

but Xα,i(gβ,j) = 0, for every α ∈ C and β ∈ R , because the coefficients gβ,j are
C -independent. It follows in particular that

[τ(E), τ(E ′)] = 0,

thus [E,E ′] ∈ kerν for every E ′ ∈ n . Therefore one can chose E ′ such that
[E,E ′] ∈ m ⊕ a . But this is a contradiction, because no elements of m ⊕ a lie in
the kernel of ν .
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5. Iwasawa sub-models

The converse of Theorem 4.6 is true under the hypothesis (I) and (II) of the
Theorem 5.2 below.

Lemma 5.1. If the vector space nµ =
⊕

α∈Sµ
gα is a subalgebra of n, then it is

an Iwasawa nilpotent Lie algebra.

Proof. The algebra nµ coincides with the nilpotent algebra generated by the
root spaces corresponding to the simple roots in Sµ . Hence it is the Iwasawa
Lie algebra canonically associated to a connected Dynkin diagram, toghether with
admissible multiplicity data [20].

Theorem 5.2. Let g be a simple Lie algebra of real rank strictly greater than
two and R ⊂ Σ+ a subset of Hessenberg type satisfying

(I) each shadow in the Hessenberg set defines a subalgebra of n,

(II) each shadow contains at least two simple roots.

Then the Lie algebra of multicontact vector fields on HessR(H) is isomorphic to
q/nC , for every regular element H ∈ a and where q = NgnC .

If (II) is not true, then R defines a rank one Iwasawa subalgebra. In this case,
the finite dimensionality of the Lie algebra MC (S) is no longer guaranteed1.

Proof of Theorem 5.2.

We must show that if F ∈ MC(S), then F = τ(E) for some E ∈ q . We
look again at the system of differential equation (7). If F ∈ MC(S), then its
coefficients solve all the subsystems that we can extract from (7). In particular we
consider a subsystem for each shadow, namely:

Xδ,i(fγ,j) = 0 if γ − δ 6∈ Σ+ ∪ {0}
Xδ,i(fγ,j) +

∑mγ−δ

l=1 ciljδ,γ−δfγ−δ,l = 0 if γ − δ ∈ Σ+

Xδ,i(fγ,j) = 0 δ /∈ Sµ,

(14)

for every root γ in Sµ . We want to interpret (14) like the system of differential
equations that defines the multicontact vector fields on nilpotent Iwasawa Lie
groups. Indeed, Lemma 4.5 tells us that the functions fγ,j , as γ varies in Sµ , are
(Σ+ \ Sµ)-independent. Hence

Xδ,i(fγ,j) = Xµ
δ,i(fγ,j), for every γ, δ ∈ Sµ,

where Xµ
δ,i is the vector field that is obtained from Xδ,i by setting all the compo-

nents that are labeled by roots that are not in Sµ equal to zero . We then consider,
in place of (14), the equivalent system{

Xµ
δ,i(fγ,j) = 0 if γ − δ 6∈ Σ+ ∪ {0} = A8

Xµ
δ,i(fγ,j) +

∑mγ−δ

l=1 ciljδ,γ−δfγ−δ,l = 0 if γ − δ ∈ Σ+,
(15)

1Personal comunication by the authors of [7], who intend to clarify this matter in full detail
in a forthcoming paper.
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where γ, δ ∈ Sµ . Define nµ as in Lemma 5.1. Using hypothesis (I) of Theorem 5.2,
Lemma 5.1 implies that the Lie algebra nµ is an Iwasawa nilpotent Lie algebra. The
system of differential equations above coincides with the multicontact conditions
for a vector field on Nµ = exp nµ , because the vector fields Xµ

δ,i are exactly the
left–invariant vector fields on Nµ . This latter assertion is a consequence of a direct
calculation .

Lemma 5.3. Let F ∈ X(S). Then F ∈ MC(S) if and only if its projection
F µ =

∑
α∈Sµ

∑mα

i=1 fα,iXα,i is a multicontact vector field on Nµ for every maximal
root µ.

Proof. “⇒”. By Lemma 4.5, any multicontact vector field on S can be natu-
rally viewed as a vector field on Nµ for every maximal root µ . If the coefficients
of F solve the system of differential equations (7), then in particular they solve
all subsystems (15), that is any projected vector field F µ is in MC(Nµ).

“⇐”. If F has the property that each F µ solves (15), then F solves all
the equations in (7), so that it is in MC(S).

Write gµ = nµ + θnµ + mµ + aµ , where mµ = m∩ [nµ, θnµ], and aµ = a∩ [nµ, θnµ].
From [7] it follows that the multicontact vector fields on Nµ are all of the form
τµ(E), where

τµ(E)f(n) =
d

dt
f([exp(−tE)n])

∣∣∣
t=0
,

with E ∈ gµ , n ∈ Nµ and some function f on Nµ .

Lemma 5.4. The set of vector fields {τ(E)µ, E ∈ gµ} generates the Lie algebra
MC(Nµ), where

τ(E)µ =
∑
γ∈Sµ

mγ∑
j=1

fγ,jXγ,j,

whenever τ(E) =
∑

γ∈Σ+

∑mγ

j=1 fγ,jXγ,j . In particular, if E ∈ q, it follows that
τ(E)µ 6= 0 if and only if E ∈ gµ \ {0}.

Proof. Let E ∈ gµ . We show that E ∈ b , the normalizer in g of the nilpotent
ideal consisting of all the root spaces labeled by Sc

µ = Σ+ \Sµ , namely b = NgnSc
µ
.

Since gµ = mµ+aµ+nµ+θnµ and mµ+aµ+nµ ⊆ b , we can suppose that E ∈ θnµ .
Write E =

∑
Eβ (here β varies in a subset of negative roots) . If E /∈ b , then

there exists β ∈ Σ− such that Eβ /∈ b . Since b normalizes, there would exists
α ∈ Sc

µ such that α + β /∈ SCµ . Hence (I) implies α = (α + β) + (−β) ∈ Sµ , a
contradiction. Theorem 4.6 applied to Sµ implies that τ(E)µ ∈MC(Nµ).

We now show that τ(E)µ 6= 0 for every E ∈ gµ \ {0} . Suppose that
there exists E ∈ gµ such that τ(E)µ = 0. Write E = H + K +

∑
Eα , with

H ∈ aµ and K ∈ mµ . Since Y 7→ Y µ preserves (homomorphic images of) root
spaces, the hypothesis τ(E)µ = 0 is equivalent to assuming τ(H)µ = τ(K)µ = 0
and τ(Eα)µ = 0 for every α . Proceeding as in the second part of the proof of
Theorem 4.6, we get H = K = Eα = 0.

Finally, let E ∈ q . Then τ(E) ∈MC(S),and τ(E)µ ∈MC(Nµ). If E /∈ gµ ,
then the latter assertion is true only if τ(E)µ = 0.
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Corollary 5.5. Let I =
⋂

µ∈E Sµ with E a subset of maximal roots in R.
Then:

(i) the nilpotent Lie algebra nI =
⊕

α∈I gα is an Iwasawa Lie algebra.

(ii) Let gI denote the Lie subalgebra of g generated by nI and θnI , and let
NI = exp nI . The vector fields of the type

τ(E)I =
∑
α∈I

mγ∑
j=1

fγ,jXγ,j,

with E ∈ gI , are in MC(NI).

(iii) If E ∈ q, then E ∈ gI \ {0} implies that τ(E)I 6= 0.

Proof. (i) Let α and β two roots in I such that α+ β is a root. Then by (I)
follows that α+β ∈ Sµ for every µ ∈ E . Hence α+β ∈ I , and nI is a subalgebra
in n . By Lemma 5.1, nI is an Iwasawa nilpotent Lie algebra.

Fix a numbering µ1, . . . , µp of the maximal roots and write gi for gµi . By
Lemma 5.3, we can associate to each F ∈ MC(S) a vector (F 1, . . . , F p), where
each F i = F µi ∈MC(Nµi) is the natural projection. Moreover, Lemma 5.4 implies
F i = τ(Ei)i for some Ei ∈ gi , so that (F 1, . . . , F p) = (τ(E1)1, . . . , τ(Ep)p). If we
prove

E1 = · · · = Ep = E, for some E ∈ q, (16)

then the theorem follows.

The proof of (16) needs a technical result (Lemma 5.7) that characterizes
q in terms of roots, and in particular its “negative” part q ∩ n =

∑
α∈D gα , with

D ⊂ Σ− .

Given a root α =
∑

δ∈∆ nδ(α)δ we denote by Y(α) the subset of ∆ con-
sisting of those δ for which nδ(α) 6= 0, and we call it the simple support of α .

Proposition 5.6. [5] (i) Let α ∈ Σ. Then Y(α) is a connected subset of the
Dynkin diagram associated to Σ.

(ii) Let Y be any connected non empty subset of a Dynkin diagram. Then∑
β∈Y β is a root.

We say that a simple root δ is a boundary simple root if there exists a maximal
root ν in R whose simple support is a connected diagram that does not contain δ
but to which δ is adjacent, i.e. such that there exists δ′ ∈ Y(ν) with the property
that δ + δ′ is a root. The set of all the boundary simple roots will be denoted by
B .

Lemma 5.7. Let q ∩ n =
∑

α∈D gα .

(i) If δ is a simple root, then −δ /∈ D if and only if δ ∈ B .

(ii) If α is any positive root, then −α /∈ D if and only if the simple support of
α contains a simple root in B .
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Proof. We prove (i) first.

“⇐”. Let δ ∈ B and let ν be a maximal root to whose shadow δ is
adjacent. Proposition 5.6 implies that

∑
ε∈Y(ν) ε+ δ = σ + δ is a root. Moreover,

it does not lie in R . Indeed, if σ + δ ∈ R , then it would belong to a shadow
containing Sν , contradicting the maximality of ν . On the other hand, σ itself
is a root, again by Proposition 5.6, and it lies in R , because it is sum of simple
roots in a same shadow Sν . Thus, we found a root in C , namely σ + δ , such that
(σ + δ)− δ /∈ C . Therefore −δ /∈ D .

“⇒”. Suppose δ /∈ B . Let α ∈ C with δ ≺ α and consider its simple
support Y(α). We shall show that α − δ ∈ C whenever α − δ ∈ Σ. Take a
maximal connected set F of simple roots in Y(α) with the following properties:

� δ ∈ F ;

� there exists a shadow containing F .

This means that δ ∈ F ⊂ Sν for some ν , but no larger connected subset of Y(α)
containing δ is contained in any other single shadow. Necessarly F is a proper
subset of Y(α), for otherwise α would lie in R . Take ε ∈ Y(α) adjacent to F .
Then two cases arise.

(a) Y(α − δ) does contain δ . In this case Y(α − δ) contains both F and ε .
Thus α− δ /∈ R , for otherwise F ∪ {ε} would be a connected set contained
in a single shadow (namely any shadow containing α − δ ) and it would be
larger than F .

(b) Y(α− δ) does not contain δ . Then Y(α− δ) is connected and δ is adjacent
to it. If α− δ ∈ R then δ would be a boundary root because Y(α− δ) ⊂ Sν

for some maximal root ν , and δ /∈ Sν (for otherwise α = (α − δ) + δ ∈ Sν ,
which is impossible). Hence δ would be adjacent to the simple support of
Sν , contradicting δ 6∈ B . Therefore α− δ /∈ R .

We have seen that in all cases −δ ∈ D . This concludes the proof of (i).

As for (ii), take a non simple root −α /∈ D . Then Y(α) contains at least
one simple root δ /∈ −D . Indeed, since q is a subalgebra, if Y(α) were contained
in −D , then α itself would lie in q . Thus Y(α) contains a boundary simple root.
Conversely, if α ∈ Σ+ is such that Y(α) contains a simple root in B , then it
contains a simple root that is not in −D , so that −α is not in D .

We can now prove (16). Write Ei =
∑

α∈Σi∪{0}E
i
α , with Σi = Sµi

∪ (−Sµi
).

By definition, τ(Ei)i ∈ MC(Nµi) if and only if τ(Ei
α)i ∈ MC(Nµi) for every

α ∈ Σi ∪ {0} .

Recall that q = m ⊕ a ⊕ n ⊕ (n ∩ q), and write q =
⊕

α∈G gα, where
G = Σ+ ∪ {0} ∪ D . We shall prove the following two claims:

(a) α ∈ G ⇒ Ei
α = Ej

α , for every i, j ;

(b) α /∈ G ⇒ Ei
α = 0.

These two facts allows us to define an element E =
∑

α∈Σ∪{0}Eα by

Eα =

{
Ei

α if α ∈ G
0 if α /∈ G,
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for all i = 1, . . . , p . In particular, E ∈ q and (16) follows.

(a) If α ∈ G , then Ei
α ∈ q for every i = 1, . . . , p . By Theorem 4.6,

τ(Ei
α) ∈ MC(S) and, by Lemma 5.4, τ(Ei

α) ∈ MC(Nµ) for every maximal root
µ . Moreover, Lemma 5.4 also implies that τ(Ei

α)j 6= 0 if and only if Ei
α ∈ gµj .

Suppose that Ei
α belongs to gµj with j 6= i and let I = Sµi

∩Sµj
(I is not empty,

otherwise gµi and gµj would not have a common element). Then statement (iii)
of Corollary 5.5 implies that the components of τ(Ei

α)i labeled by I do not vanish
identically. This forces F j 6= 0, because

τ(Ej
α)I = τ(Ei

α)I 6= 0.

Moreover, since gβ ⊂ q , the identity τ(Ej
α − Ei

α)I = 0 holds only if Ei
α = Ej

α ,
again by (iii) in Corollary 5.5. This proves (a).

(b) Let α /∈ G , and suppose that Ei
α 6= 0. We show that this hypothe-

sis takes us to a contradiction. In particular, we shall show that in the vector
(F 1, . . . , F p) appears one component that is not of multicontact type, there im-
plying that F itself is not a multicontact vector field.

By definition of G , the root α must be negative. Furthermore, by (ii) of
Lemma 5.7, there exists δ ∈ B such that δ + δ1 + · · · + δq = −α . Let Sµj

be a
shadow to which δ is adjacent. Then there exists at least a shadow to which δ
belongs that intersects Sµj

. Indeed, if this does not happen, then δ would belong
to a dark zone disjoint from Sµj

, which is impossible. Call Sµk
such a shadow and

J = Sµj
∩ Sµk

6= Ø. We show that a multicontact vector field corresponding to
the root α cannot be identically zero in its components labeled by the intersection
J (Sµj

∩ Sµk
). In short, we prove that

τ(Ei
α)J 6= 0. (17)

If the equation above holds, then the relation τ(Ei
α)J = τ(Ej

α)J forces F j =
τ(Ej)j to be non-zero because τ(Ej

α)j 6= 0. On the other hand −α /∈ Sµj
, for

otherwise δ would lie in Sµj
. This implies that τ(Ej

α)j is not in MC(Nµj) by
Lemma 5.4. This, in turn, implies that F µj , hence F , is not a multicontact vector
field, that is the contradiction we expected.

It remains to prove equation (17). Suppose τ(Ei
α)J = 0. This will give that

τ(Ei
−δ)

J = 0 which, in turn, implies that δ is not a boundary root, a contradiction.
First, by τ(Ei

α)J = 0, it follows that for every E ′ ∈ n is

[τ(Ei
β), τ(E ′)] = [

∑
γ1∈J c

mγ1∑
i=1

fγ1,iXγ1,i,
∑
γ2∈J

mγ2∑
j=1

gγ2,jXγ2,j +
∑

γ3∈J c

mγ3∑
k=1

gγ3,kXγ3,k].

All terms of the bracket above lie in X(NJ c
), except

fγ1,iXγ1,i(gγ2,j)Xγ2,j,

but Xγ1,i(gγ2,j) = 0, for every γ1 ∈ J c and γ2 ∈ J , because the coefficients gγ2,j

are (Σ+ \ J )-independent. Indeed, J is a Hessenberg set and its complement J c

defines an ideal nJ c in n whose normalizer contains n . Therefore, since E ′ ∈ n ,
it also lies in NgnJ c , so that the coefficients of τ(E ′)J are (Σ+ \J )-independent.
Hence [τ(Ei

α), τ(E ′)] ∈ X(NJ c
) , that implies

τ([Ei
α, E

′])J = [τ(Ei
α), τ(E ′)]

J
= 0
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for every E ′ ∈ n . The same argument can be iterated for showing that

τ([[Ei
α, E

′], . . . , E(n)])J = [[τ(Ei
α), τ(E ′)], . . . , τ(E(n))]

J
= 0 (18)

for every collection of elements E ′, . . . , E(n) in n .

Let δ1, . . . , δq simple roots such that α+ δ1 + · · ·+ δq = −δ is a chain, and
E1 ∈ gδ1 , . . . , Eq ∈ gδq such that

[[Ei
α, E1], . . . , Eq] = E−δ ∈ g−δ \ {0}.

We apply (18) to the bracket above, there obtaining τ(E−δ)
J = 0. Since θE−δ ∈ n ,

(18) together with Prop 6.52 in [15] gives

0 = [τ(E−δ), τ(θE−δ)]
J = B(E−δ, θE−δ)τ(Hδ)

J . (19)

By Lemma 5.7, since δ ∈ B , there exists a simple root δ′ ∈ Sµj
such that δ + δ′

is a root. This implies that 〈δ, δ′〉 6= 0, because δ − δ′ is never a root. Hence
δ′(Hδ) 6= 0, so that Hδ ∈ gµj ∩ gµk . By Corollary 5.5, it follows that τ(Hδ)

J 6= 0,
contradicting (19). This concludes our proof.

Remarks. One can easily see that if the root system corresponding to g

is Ar , then hypothesis (I) holds for every subset R ⊆ Ar of Hessenberg type.
Nevertheless, it is also easy to build counter-examples to Theorem 5.2. Indeed, it
is enough to consider g = Sp(2,R) with corresponding positive roots {α, β, α +
β, 2α+β} and Hessenberg structure given by R = {α, β, α+β} . Here hypothesis
(I) does not hold and a direct calculation of the Lie algebra of multicontact vector
fields gives a larger space than q/nC .

Finally, we note that by [7] it follows that all the results we proved are true
under the assumption that the multicontact mappings are C2 .

6. Multiconformal mappings

Consider NC = exp nC . Since NC is a normal subgroup of N, the quotient N/NC
is a nilpotent Lie group. We identify the Lie algebra of N/NC with n/nC , and
we define a natural multicontact structure on this quotient simply considering the
subbundles {〈gδ〉nC : δ ∈ ∆} , where 〈E〉nC denotes the coset of E in n/nC . Let
f be a diffeomorphism between open subsets of N/NC . Then f is a multicontact
mapping if for every simple root δ

f∗(〈gδ〉nC) ⊂ 〈gδ〉nC .

The coordinates system on the slice S define the analytic structure on N/NC .
Thus, N/NC and S are diffeomorphic by the assignment

χ : 〈({xα,i}α∈Σ+)〉NC 7→ ({xα,i}α∈R, 0),

where 〈n〉NC denotes the coset of n ∈ N in the quotient group. The differential χ∗
maps the left–invariant vector field 〈Xα,i〉nC to Xα,i , therefore the multicontact
structure on N/NC is mapped onto the multicontact structure on S. Let Q =
Int(q). We have Int(q) ⊂ Int(g), because Int(q) = eadq , Int(g) = eadg and q ⊂ g .
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Lemma 6.1. The action of every element q ∈ Q on N induces a well-posed
action on the quotient N/NC , namely

q̂(〈n〉NC) = 〈[qn]〉NC ,

where [qn] is the N-component of qn in the Bruhat decomposition.

Proof. Let n ∈ N and nC ∈ NC . Then n and nnC both represent 〈n〉NC ∈
N/NC . We show that [qn] and [qnnC] represent the same element in N/NC , that
is [qn][qnnC]

−1 ∈ NC . Let p ∈ P such that [qn] = qnp . Since NC is a normal
subgroup of Q, there exists n′C ∈ NC such that [qnnC] = [n′Cqn] = n′C[qn] = n′Cqnp.
Then [qn][qnnC]

−1 = qnp(n′Cqnp)
−1 = (n′C)

−1 ∈ NC , as required.

Proposition 6.2. Let Q be as above, and A an open subset of N/NC . For
every q ∈ Q, the map

q̂ : A ⊂ N/NC → N/NC

is a multicontact mapping on A. Furthermore q̂ = idA for every q ∈ NC .

Proof. Since q ∈ G = Int(g), it is a multicontact mapping on G/P. Thus,
q∗(gδ) ⊆ gδ for every simple root δ ([7]). Let E ∈ gδ , for some δ ∈ ∆, and
consider a representative in n/nC of 〈E〉nC , say E + E ′ , with E ′ ∈ nC . Then

q̂∗(〈E〉nC) = 〈(lq)∗(E + E ′)〉nC .

By definition

(lq)∗(E
′) =

d

dt
(q exp(tE ′))

∣∣∣
t=0
.

Since [q, nC] ⊂ nC , a straightforward calculation implies that (lq)∗(E
′) ∈ nC .

Therefore there exists E ′′ ∈ nC such that

q̂∗(〈E〉nC) = 〈(lq)∗e(E + E ′)〉nC = 〈q∗(E) + E ′′〉nC ⊂ 〈gδ + nC〉nC ⊂ 〈gδ〉nC .

Since 〈nCn〉NC = 〈n〉NC , it follows that n̂C maps 〈n〉NC in itself, for every n ∈ N.
Hence the proposition holds.

Now, the inner product on n derived from the Killing form may be propagated to
the tangent space of any point of G/P using the G action: the result is determined
up to the action of an element of A ([7]). Let 〈X〉nC and 〈Y 〉nC ∈ 〈gδ〉nC and let
X and Y ∈ gδ be left invariant vector fields on N representing 〈X〉nC and 〈Y 〉nC .

Such representatives are unique. Then B̂θ(〈X〉nC , 〈Y 〉nC) := Bθ(X, Y ) defines a
well-posed conformal structure on each stratus 〈gδ〉nC , whenever δ is a simple
root. We then say that a multicontact map f is multiconformal if the restriction
of f∗ to 〈gδ〉nC is a multiple of an isometry, for every simple root δ . A direct
calculation shows that the left action of Q is multiconformal. Since the action of
NC induces the identity map, we then have that Q/NC is a group of multiconformal
mappings.
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