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Homomorphisms between Lie JC*-Algebras and
Cauchy—Rassias Stability of Lie JC*-Algebra Derivations

Chun-Gil Park™

Communicated by A. Valette

Abstract. It is shown that every almost linear mapping h: A — B of
a unital Lie JC*-algebra A to a unital Lie JC*-algebra B is a Lie JC*-
algebra homomorphism when h(2"u o y) = h(2"u) o h(y), h(3"uoy) =
h(3™u)oh(y) or h(q™uoy) = h(q™u)oh(y) for all y € A, all unitary elements
u € Aand n=0,1,2,---, and that every almost linear almost multiplicative
mapping h: A — B is a Lie JC*-algebra homomorphism when h(2z) =
2h(z), h(3z) = 3h(x) or h(gz)gh(x) for all x € A. Here the numbers 2,3, ¢
depend on the functional equations given in the almost linear mappings or
in the almost linear almost multiplicative mappings. Moreover, we prove the
Cauchy—Rassias stability of Lie JC*-algebra homomorphisms in Lie JC*-
algebras, and of Lie JC™* -algebra derivations in Lie JC™* -algebras.
Mathematics Subject Classification: 17B40, 39B52, 461,05, 17A36.
Keywords and Phrases: Lie JC* -algebra homomorphism. Lie JC* -algebra
derivation, stability, linear functional equation.

1. Introduction

The original motivation to introduce the class of nonassociative algebras known
as Jordan algebras came from quantum mechanics (see [18]). Let L(H) be the
real vector space of all bounded self-adjoint linear operators on H, interpreted
as the (bounded) observables of the system. In 1932, Jordan observed that L(H)
is a (nonassociative) algebra via the anticommutator product x oy := YT,
A commutative algebra X with product = oy is called a Jordan algebra. A
unital Jordan C*-subalgebra of a C*-algebra, endowed with the anticommutator
product, is called a JC* -algebra.

A unital C*-algebra C, endowed with the Lie product [z,y] = *5%*
on C, is called a Lie C* -algebra. A unital C*-algebra C', endowed with the Lie
product [, -] and the anticommutator product o, is called a Lie JC* -algebra if
(C,0) is a JC*-algebra and (C,[-, -]) is a Lie C*-algebra (see [5], [6]).
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Let X and Y be Banach spaces with norms || -|| and || ||, respectively.
Consider f: X — Y to be a mapping such that f(¢z) is continuous in ¢ € R for
each fixed z € X . Assume that there exist constants § > 0 and p € [0,1) such
that

1f (@ +y) = (@) = FWI < 0(l|[” + [[y]]”)

for all z,y € X . Rassias [11] showed that there exists a unique R-linear mapping
T: X —Y such that

20
2-2r

[|[[?

If(z) = T(2)| <

for all € X. Gavruta [1] generalized the Rassias’ result: Let G be an abelian
group and Y a Banach space. Denote by ¢ : G x G — [0,00) a function such
that

Px,y) =) 277 p(2x,2y) < 0
§=0
for all x,y € G. Suppose that f: G — Y is a mapping satisfying

If(z+y) = fz) = W)l < ¢(z,y)

for all x,y € G. Then there exists a unique additive mapping 7' : G — Y such
that )

17 (z) = T(@)l| < 5¢(z,2)
for all x € G. C. Park [7] applied the Gavruta’s result to linear functional
equations in Banach modules over a C*-algebra.

Jun and Lee [2] proved the following: Denote by ¢ : X \ {0} x X \ {0} —
[0,00) a function such that

P(x,y) =) 377p(3x,3y) <o
=0

for all x,y € X \ {0}. Suppose that f: X — Y is a mapping satisfying

r—+vy
2

12£( )= f(@) = fFWll < ol y)

for all z,y € X \ {0}. Then there exists a unique additive mapping 7' : X — Y
such that

1f(z) = £(0) = T(z)| < %(55(3?, —z) + (=, 3x))

for all z € X \ {0}. C. Park and W. Park [9] applied the Jun and Lee’s result to

the Jensen’s equation in Banach modules over a C*-algebra.
Recently, Trif [17] proved the following: Let ¢ := % and 7= —7.
Denote by ¢ : X4 — [0,00) a function such that

(1, ma) = Zq_j@(qul;'“,qjivd) < o0
j=0
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for all x1,---,24 € X. Suppose that f: X — Y is a mapping satisfying

d
I
w) + 4-2C1—1 Zf(xj)

j=1

x‘l_{_..._{_x‘l
-1 Y R < gl wa)

1<j1 < <qi<d

|ld a—2C1—2f(

for all x1,---,24 € X. Then there exists a unique additive mapping T : X — Y
such that

1 ~
[f(z) = f(0) =T@)|| < 7—F=—lqz,ra, - ra)
l-ag—1C1—1 —_———
d—1 times

for all x € X. And C. Park [8] applied the Trif’s result to the Trif functional
equation in Banach modules over a C*-algebra. Several authors have investigated
functional equations (see [10]-[16]).
Throughout this paper, let ¢ = % and r = —ﬁ for positive integers
l,d with 2 <[ <d-1. Let A be a unital Lie JC*-algebra with norm || - ||,
unit e and unitary group U(A) = {u € A | vu* = u*u = e}, and B a unital Lie
JC*-algebra with norm || - || and unit €’.

Using the stability methods of linear functional equations, we prove that
every almost linear mapping h : A — B is a Lie JC™*-algebra homomorphism
when h(2"uoy) = h(2"u) o h(y), h(3"uoy) = h(3"u) o h(y) or h(q"uoy) =
h(q™u) o h(y) for all y € A, all u € U(A) and n = 0,1,2,---, and that every
almost linear almost multiplicative mapping h : A — B is a Lie JC™*-algebra
homomorphism when h(2x) = 2h(x), h(3z) = 3h(z) or h(qr) = qh(x) for all
x € A. We moreover prove the Cauchy—Rassias stability of Lie JC*-algebra
homomorphisms in unital Lie JC*-algebras, and of Lie JC™ -algebra derivations
in unital Lie JC*-algebras.

2. Homomorphisms between Lie J(C*-algebras

Definition 2.1. A C-linear mapping H : A — B is called a Lie JC* -algebra
homomorphism if H : A — B satisfies
H(zoy) = H(z)o H(y),
H([z,y]) = [H(z), H(y)],
H(z")=H(x)"
for all z,y € A.

Remark 2.1. A C-linear mapping H : A — B is a C*-algebra homomorphism
if and only if the mapping H : A — B is a Lie JC*-algebra homomorphism.
Assume that H is a Lie JC*-algebra homomorphism. Then

H(zy) = H([z,y] + xoy) = H([z,y]) + H(z o y)
= [H(z), H(y)| + H(z) o H(y) = H(x)H (y)
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for all z,y € A. So H is a C*-algebra homomorphism.
Assume that H is a C*-algebra homomorphism. Then

Ty Yz, H(x)H(y) — H(y)H (x)

H([z,y| = H(—5—) = 5 = [H(z), H(y)],
Hzoy) = H(xy—gyar) _ H(ﬂf)H(y);rH(y)H(ﬂf) _ H(x)o H(y)

for all z,y € A. So H is a Lie JC*-algebra homomorphism.
We are going to investigate Lie JC*-algebra homomorphisms between
Lie JC™-algebras associated with the Cauchy functional equation.

Theorem 2.1. Let h : A — B be a mapping satisfying h(0) = 0 and
h(2"u o y) = h(2"u) o h(y) for all y € A, all u € U(A) and n = 0,1,2,---,
for which there exists a function ¢ : A* — [0,00) such that

o(z,y, z,w) == ZQ‘jgo(Qj:c, 27y, 27 2,27 w) < oo, (2.7)
j=0
[h(uz + py + [z, w]) — ph(z) — ph(y) — [h(z), L(w)]]]
< o(z,y,z,w), (2.4)

|h(2"u") — h(2"u)*| < ¢(2"u,2"u,0,0)  (2.id)

for all p € T :={Ne C| |N =1}, all w € U(A), all z,y,z,w € A and
n=0,1,2,---. Assume that (2.iv) lim, h(gne) = ¢. Then the mapping
h:A— B is a Lie JC* -algebra homomorphism.

Proof. Put z=w =0 and g=1¢€ T! in (2.ii). It follows from G&vruta’s
Theorem [1] that there exists a unique additive mapping H : A — B such that

1_
Ih(z) = H(2)|| < 5¢(z,2,0,0) (2.0)
for all z € A. The additive mapping H : A — B is given by

H(z) = lim —h(2"2) (2.1)

n—oo 21

forall z € A.
By the assumption, for each u € T*,

|h(2" ) = 2ph (2" )| < (2" ', 2" 2, 0,0)
for all x € A. And one can show that
luh(2" ) = 2uh(2" " 2)|| < u] - [A(2"2) = 20(2" " 2)|| < (272,277 2, 0,0)
for all ;€ T and all x € A. So

[h(2" ) — ph(2")|| <[|h(2"px) = 2ph(2" " )| + [|2uh (2" &) — ph(2"2)||
<@(2" 'z, 2" 12,0,0) + (2" 1z, 2" 12, 0,0)
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for all p € T! and all x € A. Thus 27"||h(2"ux) — ph(2"z)| — 0 as n — oo
for all 4 € T and all x € A. Hence

H(px) = lim w = lim w = pH(x) (2.2)
for all 4 € T and all = € A.

Now let A E C (A # 0) and M an integer greater than 4|A|. Then
|2-| < 2 <1-2=1. By [3, Theorem 1], there exist three elements j1, yio, jt3 €
T! such that 3% = ,u1 + po + ps. And H(z) = H(3 - 32) = 3H(3z) for all
x€A. So H(zz) =1H(z) for all z € A. Thus by (2.2)

A 1 _A M A

H(\) = H(% Ba)= M H(3 31-a) = S H(3 )

M M
= gH(leC + poT + p3x) = 3 — (H(pmz) + H(pzz) + H(psw))
M 3
3

=M e+ ) H ) = H(z)

3
= \H(x)

A
M

for all x € A. Hence

H(Cz +ny) = H(Cx) + H(ny) = CH(x) + nH (y)

for all ¢,n € C(¢,n # 0) and all z,y € A. And H(0z) = 0 = 0H(x) for all
x € A. So the unique additive mapping H : A — B is a C-linear mapping.

Since h(2"u o y) = h(2"u) o h(y) for all y € A, all v € U(A) and
n=0,1,2,---,

H(uoy)= lim inh(Z”u oy)= lim inh(Z”u) oh(y)=H(u)oh(y) (2.3)

n—oo 2 n—oo 2
for all y € A and all uw € U(A). By the additivity of H and (2.3),
2"H(uoy) = H((2"uoy) = H(uo (2"y)) = H(u) o h(2"y)
for all y € A and all u € U(A). Hence

1
H(uovy) = 2—nH(u) oh(2"y) = H(u) o 2—nh(2”y) (2.4)
for all y € A and all u € U(A). Taking the limit in (2.4) as n — oo, we obtain
H(uoy) = H(u) o H(y) (2.5)

for all y € A and all v € U(A). Since H is C-linear and each =z € A is
a finite linear combination of unitary elements (see [4, Theorem 4.1.7]), i.e.,

x =30 Nuy (A € Cuy € U(A)),

m

H(xzoy) Z)\ uj oy) Z/\jH(ujoy):Z)\jH(uj)oH(y)
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for all z,y € A.
By (2.iv), (2.3) and (2.5),

H(y) = H(eoy) = H(e)oh(y) = ¢ oh(y) = h(y)

for all y € A. So

H(y) = h(y)
for all y € A.
It follows from (2.1) that
. h(2%x)
H(x) = nh—>nolo 52n (2.6)
forall x € A. Let x =y =0 in (2.ii). Then we get
17 ([, w]) = [A(2), h(w)][] < ¢(0,0, z,w)
for all z,w € A. So
1 n n n n 1 n n
2n 1R([272, 2" w]) = [A(2"2), h(Z*w)]|| < 5550(0,0,2%2,2"w)
1
< 2—ngo(0,0, 2"z, 2" w) (2.7)

for all z,w € A. By (2.i), (2.6), and (2.7),

for all z,w € A.
By (2.i) and (2.iii), we get

H(u*) = lim —h(2 nu ) = lim —h(22nu) = ( lim —h(gnu)

= H(u)*

)*

for all u € U(A). Since H : A — B is C-linear and each x € A is a finite linear
combination of unitary elements, i.e., x = Z;n:l Ajuj (A\; € Cou; € U(A)),

= (Z AjH (uy))" = H(Z Ajug)" = H(z)"

for all x € A.
Therefore, the mapping h : A — B is a Lie JC*-algebra homomorphism,
as desired. ]
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Corollary 2.2. Let h : A — B be a mapping satisfying h(0) = 0 and
h(2"uoy) = h(2"u) o h(y) forally € A, all we U(A) and n=0,1,2,---, for
which there exist constants 6 > 0 and p € [0,1) such that

[h(pz + py + [z, w])—ph(z) — ph(y) — [M(2), H(w)]]
< O0(1zl|P + Nyll? + [12]|P + [|w][P),
1h(27u*) — h(2™u)*|| < 2- 2770

for all p € TY, all u € U(A), all x,y,z,w € A and n = 0,1,2,---. Assume
that lim,, oo h(gne) = ¢'. Then the mapping h : A — B is a Lie JC*-algebra
homomorphism.

Proof.  Define ¢(z,y,z,w) = 0(|[z[[" + |[yl[" + [|z[|” + [[w]|["), and apply
Theorem 2.1. [

Theorem 2.3. Let h : A — B be a mapping satisfying h(0) = 0 and
h(2"uw o y) = h(2"u) o h(y) for all y € A, all u € U(A) and n = 0,1,2,---,
for which there exists a function ¢ : A* — [0,00) satisfying (2.i), (2.iii) and
(2.iv) such that

1A (p + py + |2, w]) — ph(z) = ph(y) = [A(2), H(W)]]| < p(2,y,2,w)  (2.0)

for w=1,i, and all x,y,z,w € A. If h(tx) is continuous in t € R for each
fixed x € A, then the mapping h: A — B is a Lie JC* -algebra homomorphism.

Proof. Put z =w =0 and g =1 in (2.v). By the same reasoning as in
the proof of Theorem 2.1, there exists a unique additive mapping H : A — B
satisfying (2.0). The additive mapping H : A — B is given by

H(z) = lim ih(2n313)

n—oo 2M

for all z € A. By the same reasoning as in the proof of [11, Theorem], the
additive mapping H : A — B is R-linear.

Put y=2=w =0 and g =1 in (2.v). By the same method as in the
proof of Theorem 2.1, one can obtain that

h(2"1 h(2™
H(iz) = lim % = lim Z(Q—nx) =iH(x)
for all x € A. For each element A € C, A = s 4 it, where s,z € R. So

H(\x) = H(sx +itx) = sH(x) + tH (ix) = sH(x) + itH(x) = (s + it)H(x)
= \H (z)

forall A\e C and all x € A. So
H(Cz +ny) = H(Cz) + H(ny) = CH(z) + nH (y)

for all (,n € C, and all x,y € A. Hence the additive mapping H : A — B is
C-linear.
The rest of the proof is the same as in the proof of Theorem 2.1. |
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Theorem 2.4. Let h: A — B be a mapping satisfying h(2x) = 2h(x) for all
x € A for which there exists a function ¢ : A* — [0,00) satisfying (2.i), (2.ii),
(2.iii) and (2.iv) such that

[7(2"uw 0 y) — h(2"u) o h(y)]| < ¢(u,y,0,0) (2.vi)

forallye A, all u e U(A) and n =0,1,2,---. Then the mapping h: A — B
is a Lie JC* -algebra homomorphism.

Proof. By the same reasoning as in the proof of Theorem 2.1, there exists a
unique C-linear mapping H : A — B satisfying (2.0).
By (2.vi) and the assumption that h(2z) = 2h(z) for all z € A,

n n 1 maon m mon m
1h(2*woy) = h(2"u) o h(y)|| = 7 17(2"2" w0 2y) — h(2™2%u) o h(2™y)|

1 1
S 4_m(10(2mu’ Zmyv O; 0) S 2_m¢(2mu7 Zmya 07 0)7

which tends to zero as m — oo by (2.i). So
h(2"uoy) = h(2"u) o h(y)

forall y € A, all u e U(A) and n=0,1,2,---. But by (2.1),

1
H(z) = lim 2—nh(2”$) = h(z)
forall z € A.
The rest of the proof is the same as in the proof of Theorem 2.1. |

Now we are going to investigate Lie JC*-algebra homomorphisms be-
tween Lie JC*-algebras associated with the Jensen functional equation.

Theorem 2.5. Let h : A — B be a mapping satisfying h(0) = 0 and
h(3"uoy) = h(3"u) o h(y) for all y € A, all w € U(A) and n = 0,1,2,---,
for which there exists a function ¢ : (A\ {0})* — [0,00) such that

o(z,y, z,w) := Z3‘j90(3jx,3jy,3jz,3jw) < 00, (2.vi17)
7=0
px + py + [z, w]
[127( 5 ) = ph(z) — ph(y)=[h(2), h(w)]|

<o(r,y,z,w),  (2.vid)
|h(3"u*) — h(3™u)*|| <e(3"u,3"u,0,0) (2.ix)
or all w e T, all u € ,all xyy,z,w € A and n = 0,1,2,---. Assume

for all T!, all U(A l A and 0,1,2 A

that lim,, . h(g’:e) = ¢e'. Then the mapping h : A — B is a Lie JC*-algebra

homomorphism.
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Proof. Put z =w =0 and g =1 € T! in (2.viii). It follows from Jun

and Lee’s Theorem [2, Theorem 1] that there exists a unique additive mapping
H : A — B such that

||h($) _H($)|| < (@(I, _$7070)+¢(_I73$7070))

Wl

for all x € A\ {0}. The additive mapping H : A — B is given by

H(z) = lim inh(?)”m)

n—oo

forall z € A.
By the assumption, for each pu € T*,

12h(3™ px) — ph(2 - 3" tx) — ph(4-3" ') < (23" 12,4-3""12,0,0)
for all z € A\ {0}. And one can show that

|h(2- 3" 12) + ph(4- 3" 1z) — 2uh(3™2)|
<pl-|A(2- 3" a) + h(4- 3" x) — 2h(3"2)||
<p(2-3" g 4.3""12,0,0)

for all p € T* and all z € A\ {0}. So

13" ) — ph(3" )| =3 ) — S ah(2 -3 ) — (437 )
+ %uh@ 3" ) + %Mh(‘l 3" ) — ph(3"2)|

§1H2h(3”ux) — ph(2-3""tx) — ph(4- 3n_1f’7)H
+ L uh(2- 37 12) 4 uh(a - 37712) — 2ub(3na)|

2
§§¢(2 23"y, 4.3"712,0,0)

for all p € T' and all z € A\ {0}. Thus 37"||h(3"uz) — ph(3"x)|| — 0 as
n — oo for all 4 € T! and all x € A\ {0}. Hence

h(3"px)

3n

= lim ph(3"z) = puH(x)

n— oo 3n

H(pz) = nlLr%O
for all 4 € T! and all x € A\ {0}.
By the same reasoning as in the proof of Theorem 2.1, the unique additive
mapping H : A — B is a C-linear mapping.
By a similar method to the proof of Theorem 2.1, one can show that the
mapping h: A — B is a Lie JC*-algebra homomorphism. [ ]
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Corollary 2.6. Let h : A — B be a mapping satisfying h(0) = 0 and
h(3"uoy) = h(3"u) o h(y) forally e A, all we U(A) and n=0,1,2,---, for
which there exist constants 6 > 0 and p € [0,1) such that

ux + py + [Zv w] )—,uh(l’) _ ,uh(y) — [h(2)7 h(w)]H

2
< O(|[” + Iyl + [12]1” + [|wl[?),
|h(3"u™) — h(3™u)*|| < 2-3"P0
forall p € TY, all u € U(A), all x,y,z,w € A\{0} and n=0,1,2,---. Assume
that lim, o h(gne) = ¢’. Then the mapping h : A — B is a Lie JC*-algebra
homomorphism.
Proof.  Define (z,y,zw) = 0(1[al[” + [[yll” + [|2[” + [[w]|?), and apply
Theorem 2.5. [ ]

One can obtain similar results to Theorems 2.3 and 2.4 for the Jensen
functional equation.

Finally, we are going to investigate Lie JC*-algebra homomorphisms
between Lie JC*-algebras associated with the Trif functional equation.

[127(

Theorem 2.7. Let h : A — B be a mapping satisfying h(0) = 0 and
h(g"uwoy) = h(q"u) o h(y) for all y € A, all w € U(A) and n = 0,1,2,---,
for which there exists a function o : A2 — [0,00) such that

oo
&(xb Ty Td, va) = Zq_%o(qjxl, to 7qjxd7 qua qu) < 00, (21[})
j=0

r1+ -+ ur Z, W
HI1 Md+ [z, w]

d
|d a—2C1—2h( )+a—2Ci-1 Y ph(z)

d d q—2C1_2 —
J_
“L Y ph(FEE ) S L@ (20)
1<j1 << <d
S(,O(-Tl, cy, Xd, Z7w)7
|h(g"u*) — h(q"w)*|| <@(q"u, -, q"u,0,0) (2.zii)
————
d times

for all p € T', all w € U(A), all z1,---,74,2,w € A and n = 0,1,2,---.
Assume that lim,, oo % =¢€'. Then the mapping h: A — B is a Lie JC*-
algebra homomorphism.

Proof. Put z =w =0 and g =1 € T! in (2.xi). It follows from Trif’s
Theorem [17, Theorem 3.1] that there exists a unique additive mapping H :
A — B such that

1 ~
[h(z) — H(z)|| £ 7—F=—¢(qz, 12, -+, 72,0,0)
l-a-1C1—1 ———
d—1 times

for all x € A. The additive mapping H : A — B is given by
1
H(z) = lim —h(¢"x)

n—oo q"

forall z € A. n
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Put 1 = -=z4=2 and z =w =0 in (2.xi). For each p € T!,

|d a—2Ci—2(h(pz) — ph(z))|| < o(z,---,2,0,0)
——
d times

forall z € A. So

g "|ld a—2Ci—2(h(uq™ ) — ph(q"x))|| < ¢ "p(q"z,---,¢"x,0,0)
—_——
d times

for all x € A. By (2.x),

q "|d a—2Ci—o(h(pnq"x) — ph(q"x))|| — 0

as n — oo for all u € T' and all z € A. Thus

¢ "|Ih(ug"x) — ph(q"z)|| — 0
as n — oo for all p € T! and all z € A. Hence

H(uz) = lim h(q—f"”’) = lim 1h(q"z)

for all p € T' and all z € A.

By the same reasoning as in the proof of Theorem 2.1, the unique additive
mapping H : A — B is a C-linear mapping.

By a similar method to the proof of Theorem 2.1, one can show that the
mapping h: A — B is a Lie JC*-algebra homomorphism. ]

Corollary 2.8. Let h : A — B be a mapping satisfying h(0) = 0 and
h(q"uoy) = h(q™u) o h(y) forally € A, all ue U(A) and n=0,1,2,---, for
which there exist constants 6 > 0 and p € [0,1) such that

pxy + + pzyg [z, w]
1+ )
+ + 4_20_ E uh(x;
d dd—20l72) d-201-1 ()

J=1

|d 4—2C1—2h(

LY (T k() hw))

1<ji<<qi<d l
d
< OO P+ 1|22 + [w]P),
j=1

l1h(g"u*) — h(q"uw)*|| < dq¢™P0

for all p € TY, all u € U(A), all 21, -+,24,2,w € A and n = 0,1,2,---.
e.

Assume that lim,,_, Mae) — Then the mapping h : A — B is a Lie JC* -

qn
algebra homomorphism.
Proof. Define ¢(w1,- -+, 24, 2,w) = 0(35_, [+ |2 + ||w][), and apply
Theorem 2.7. u

One can obtain similar results to Theorems 2.3 and 2.4 for the Trif
functional equation.
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3. Stability of Lie JC*-algebra homomorphisms in Lie JC*-algebras

We are going to show the Cauchy-Rassias stability of Lie JC*-algebra homo-
morphisms in Lie JC*-algebras associated with the Cauchy functional equation.

Theorem 3.1. Let h: A — B be a mapping with h(0) = 0 for which there
exists a function ¢ : A — [0,00) such that

o(z,y, z,w,a,b) = Z2‘jg0(2jx, 27y, 292, 29w, 27a,27b) < oo,  (3.4)
j=0
1A (px + py + [z, w] + a0 b) — ph(z) — ph(y) — [A(2), h(w)] = h(a) o h(b)]
S SD(nya Z7 w7a7 b)? (3'2.1.)
<

h(2™u*) — h(2™u)*|| < @(2"u, 274, 0,0,0,0)  (3.4ii)

forall w e T, all u e U(A), n=0,1,2,---, and all x,y,z,w,a,b € A. Then
there exists a unique Lie JC™ -algebra homomorphism H : A — B such that

Ih(x) ~ H()| < 53(z,2,0,0,0,0) (3.i)

forall x € A.

Proof. Put z=w=a=b=0and u=1¢€ T! in (3.i). It follows from
Gavruta’s Theorem [1] that there exists a unique additive mapping H : A — B
satisfying (3.iv). The additive mapping H : A — B is given by

H(z) = lim —h(2"2)

n—oo 21

forall z € A.
The rest of the proof is similar to the proof of Theorem 2.1. ]

Corollary 3.2. Let h: A — B be a mapping with h(0) = 0 for which there
exist constants 6 > 0 and p € [0,1) such that

[h(pz + py + [z, w] + a0 b) — ph(z) — ph(y) — [h(z), h(w)] — h(a) o h(b)|
< O([l[[” + [lyll” + Iz + Jwl[” + [[a][” + [|6]]7),
|R(2"u*) — h(2™u)*|| < 2- 2770

forall we T, all u e U(A), n=0,1,2,---, and all x,y,z,w,a,b € A. Then
there exists a unique Lie JC* -algebra homomorphism H : A — B such that

26
2-2p

1h(z) — H(z)|| <

1E1s

forall x € A.

Proof.  Define o(z,y, 2, w, a,b) = O(|[z[[" +||y[[" +||2[[" +[[w][" +[[a][P +[[b]|"),
and apply Theorem 3.1. [ ]
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Theorem 3.3. Let h: A — B be a mapping with h(0) = 0 for which there
exists a function ¢ : A® — [0,00) satisfying (3.i) and (3.iii) such that
1Pz + py + [z, w] + a0 b) — ph(x) — ph(y)—[h(2), h(w)] — h(a) o h(b)]
S (p(x7 y? Z? w7 a? b)
for p = 1,i, and all x,y,z,w,a,b € A. If h(tx) is continuous in t € R for

each fired © € A, then there exists a unique Lie JC* -algebra homomorphism
H : A — B satisfying (3.iv).

Proof. The proof is similar to the proof of Theorem 2.3. |

We are going to show the Cauchy—Rassias stability of Lie JC™*-algebra
homomorphisms in Lie JC*-algebras associated with the Jensen functional equa-
tion.

Theorem 3.4. Let h: A — B be a mapping with h(0) = 0 for which there
exists a function ¢ : (A\ {0})® — [0,00) such that

o(z,y, z,w,a,b) = ZS_jw(Bja:,?)jy,sz, 3w, 3 a,3’b) < oo, (3.0)

5=0
J2n( YL OIE DOy ) — uh(y) — (b().h(w)] — h(a) o h(D)|

< p(x,y,z,w,a,b), (3.v1)

|h(3"u™) — h(3™u)*|| <e(3"u,3"u,0,0,0,0) (3.vii)

for all p € T, all u € U(A), n=0,1,2,---, and all x,y,z,w,a,b € A\ {0}.
Then there exists a unique Lie JC* -algebra homomorphism H : A — B such
that

|h(z) — H(z)|| < 2 (¢(x, —2,0,0,0,0) + §(—=,3x,0,0,0,0)) (3.viii)

W =

for all x € A\ {0}.

Proof. Put z=w=a=b=0and pu=1¢€ T in (3.vi). It follows from Jun
and Lee’s Theorem [2, Theorem 1] that there exists a unique additive mapping
H : A — B satisfying (3.viii). The additive mapping H : A — B is given by

1
H(z) = lim 3—nh(3":1:)
for all x € A.

The rest of the proof is similar to the proof of Theorem 2.5. (]

Corollary 3.5. Let h: A — B be a mapping with h(0) = 0 for which there
exist constants 6 > 0 and p € [0,1) such that

pr+py + [zw]+aob

2h
|25 ( .

) = ph(z) = ph(y) = [h(z), h(w)] = h(a) o h(b)]]

< O[] "+ [[yll” + [[zl[" + [[w] " + [[al|” + [[6]]"),
|A(3"u*) — R(3™u)*|| < 2- 3770



406 PARK

for all p € T, all w € U(A), n =0,1,2,--+, and all x,y,z,w,a,b € A\ {0}.
Then there exists a unique Lie JC*-algebra homomorphism H : A — B such

that
3+ 3P

Ih(e) - H@)l < 5

01|[[”

for all z € A\ {0}.
Proof.  Define o(z,y, 2, w, a,b) = O(|[z[[" +||y[[" +||2[|" +[[w][" +[[a][P +[[b]|"),
and apply Theorem 3.4. [ ]

One can obtain a similar result to Theorem 3.3 for the Jensen functional
equation.

Now we are going to show the Cauchy—-Rassias stability of Lie JC™*-
algebra homomorphisms in Lie JC*-algebras associated with the Trif functional
equation.

Theorem 3.6. Let h: A — B be a mapping with h(0) = 0 for which there
exists a function ¢ : A% — [0,00) such that

oo
P(x1, - wa, 2w, 0,0) ==Y g I o(r, - w4, 2, P w, ¢ a, D)
=0

< 00, (3.iz)

ux1+---+u1‘d+ [z,w]+aob

d
p 4730 )+ a—2C1—1 Zﬂh(%)

J=1

Y (B ) h(w)] - hl@) o ()] (3.0)

|d 4—2C1—2h(

1<j1<- <51 <d

S (,0(1'1, e, Xd, 2, W, a, b)7
|h(q"u*) — h(q"u)"|| < ©(¢"u,---,q"u,0,0,0,0) (3.x1)
N ————
d times

forall w e T, all u e U(A), n=0,1,2,---, and all z1,---,2q,2,w,a,b € A.
Then there exists a unique Lie JC*-algebra homomorphism H : A — B such
that

1 ~ ..
||h<£L‘) - H(I)H < —QD(QI,’T'QE, -1z, 0,0,0, 0) (3”%”)
l-g-1C1—1 ———
d—1 times
forall x € A.

Proof. Put z2=w=a=b=0and p=1¢€ T in (3.x). It follows from
Trif’s Theorem [17, Theorem 3.1] that there exists a unique additive mapping
H : A — B satisfying (3.xii). The additive mapping H : A — B is given by

H(z) = lim iﬂh(q”x)

n—oo q

for all x € A.
The rest of the proof is similar to the proof of Theorem 2.7. |
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Corollary 3.7. Let h: A — B be a mapping with h(0) = 0 for which there
exist constants 0 >0 and p € [0,1) such that

d
pxry + -+ pxg  [z,w|+aob
d 4_2C1_5h + + g4—2C— hz;
ld a—2C1—2h( y dd—QCl—Q)d2l1jz::lu(])
x.1+...+x.l
—l > (& ] L) —[h(z), h(w)] — h(a) o h(D)||
1<51 << <d
d
< OO N [P+ 2P + [[wl[P + [lal[” + |[b]7),
j=1

17(q"u™) = h(q"u)"[| < dg""0

forall e T, all ue U(A), n=0,1,2,---, and all z1, -, 24,2,w,a,b € A.

Then there exists a unique Lie JC*-algebra homomorphism H : A — B such
that

Hh(l’) — H(a;>|| < qlfp(qp 4 (d — 1)7~p)9

2P
S TG 1) |||

forall x € A.

Proof. Define p(z1,- -+, 24,2, w,a,b) = 0(2?21 |27+ 2] [P +||w] [P +||a| [P+
16]|P), and apply Theorem 3.6.

One can obtain a similar result to Theorem 3.3 for the Trif functional
equation.

4. Stability of Lie J(C*-algebra derivations in Lie JC*-algebras

Definition 4.1. A C-linear mapping D : A — A is called a Lie JC* -algebra
derivation if D : A — A satisfies

D(zoy) = (Dz)oy+zo(Dy),
D([z,y]) = [Dz,y] + [x, Dy],
D(z*) = D(x)*

for all z,y € A.

Remark 4.1. A C-linear mapping D : A — A is a C*-algebra derivation if

and only if the mapping D : A — A is a Lie JC*-algebra derivation.
Assume that D is a Lie JC*-algebra derivation. Then

D(zy) = D([z,y] + z oy) = D([z,y]) + D(z o y)
= [Dz,y| + [z, Dy] + (Dz) oy + x o (Dy) = (Dz)y + z(Dy)

for all z,y € A. So D is a C*-algebra derivation.
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Assume that D is a C*-algebra derivation. Then

(Dz)y + z(Dy) — (Dy)x — y(Dz)

D([z,y)) = D(ZL=YE) —

2 2
= [thy] + [ﬂf,Dy],
D(zoy) = D(FLYE _ (Dz)y + z(Dy) + (Dy)x + y(Dx)
2 2

= (Dz)oy +z o (Dy)

for all x,y € A. So H is a Lie JC*-algebra derivation.
We are going to show the Cauchy—Rassias stability of Lie JC™*-algebra
derivations in Lie JC*-algebras associated with the Cauchy functional equation.

Theorem 4.1. Let h: A — A be a mapping with h(0) = 0 for which there
exists a function ¢ : A — [0,00) satisfying (3.i) and (3.iii) such that

1Pz + py + [z, w] + a0 b) — ph(z) — ph(y) — [h(z), w] = [z, h(w)]
—h(a)ob—aoh(b)|| < p(x,y,z,w,a,b) (4.i)

for all p € T and all z,y,z,w,a,b € A. Then there exists a unique Lie JC* -
algebra derivation D : A — A such that

Ih(z) — D(z)|| < =@(z,2,0,0,0,0) (4.i4)

N —

forall x € A.

Proof. Put z=w=a=>b=0 in (4.i). By the same reasoning as in the proof
of Theorem 2.1, there exists a unique C-linear involutive mapping D : A — A
satisfying (4.ii). The C-linear mapping D : A — A is given by

1
D(z) = lim Q—nh(2”x) (4.1)
for all z € A.
It follows from (4.1) that

h(2%"x)

D(z) = lim Son

n—oo

(4.2)

forall r € A. Let x =y =a=0b=0 in (4.i). Then we get
181z, w]) = [A(2), w] — [z, A(w)]|| < ¢(0,0,z,w,0,0)

for all z,w € A. Since

1 1
2%QO(O,O,Q"Z,2"w,0,0) < 2—n<p(0,0,2"z,2”w,0,0),
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1 n n n n n n 1 n n
2%Hh([Q z,2"w]) — [h(2"2),2"w] — [2" 2, h(2"w)]|| < 2%go((),()ﬂ z,2"w,0,0)

1
Sz—nsO(O,O,znz,an,o,O) (4.3)
for all z,w € A. By (3.i), (4.2), and (4.3),
2n " n
Dz w]) = tim MEED g R[22 2M0))

n—00 22n " n—oo 22n
h(2"z) 2"w 2"z h(2"w)

7 9n ] + [ on ’ omn
= [D(2),w] + [z, D(w)]

)

= lim (][ o

for all z,w € A.
Similarly, one can obtain that

D(aob) = lim w ~ lim h((2”a2)2<; (2"0))
= i (200 By (o M2

= (Da)ob+ ao (Db)

for all a,b € A. Hence the C-linear mapping D : A — A is a Lie JC™*-algebra
derivation satisfying (4.ii), as desired. u

Corollary 4.2.  Let h: A — A be a mapping with h(0) = 0 for which there
exist constants 8 >0 and p € [0,1) such that

[Pz + py + [2,w] + a0 b) = ph(z) — ph(y) = [h(2), w] = [z, h(w)]
— h(a)ob—aoh(B)|
<Ol l” + Iyl + 12017 + [lwl” + llall” + [|6]]*),
|h(2"u") — h(2"uw)*|| < 2-2"P0

forall p e T, all u e U(A), n=0,1,2,---, and all x,y,2,w,a,b € A. Then
there exists a unique Lie JC* -algebra derivation D : A — A such that

20
_ p
Ih@) = D) < 5= ]
forall x € A.
Proof.  Define (z,y,z,w,a,b) = 0([|x[|” + [|y[|” + || 2[|” + lw[|” +[lal|” + [|16]|"),
and apply Theorem 4.1. [ ]

Theorem 4.3. Let h: A — A be a mapping with h(0) = 0 for which there
exists a function ¢ : AS — [0,00) satisfying (3.1) and (3.iii) such that

[h(pz + py + [z, w] + a0 b) — ph(z) — ph(y) — [A(z), w] — [z, h(w)]
—h(a)ob—aoh(b)| < p(x,y,z,w,a,b)
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for p=1,i, and all x,y,z,w,a,b € A. If h(tx) is continuous in t € R for each
fixred x € A, then there exists a unique Lie JC* -algebra derivation D : A — A
satisfying (4.ii).
Proof. By the same reasoning as in the proof of Theorem 2.3, there exists a
unique C-linear mapping D : A — A satisfying (4.ii).

The rest of the proof is the same as in the proofs of Theorems 2.1, 3.1
and 4.1. ]

We are going to show the Cauchy—Rassias stability of Lie JC™*-algebra
derivations in Lie JC™-algebras associated with the Jensen functional equation.

Theorem 4.4. Let h: A — A be a mapping with h(0) = 0 for which there
exists a function ¢ : (A\ {0})® — [0,00) satisfying (3.v) and (3.vii) such that

pr +py + [z wl+aob
2

[127( ) = ph(zx) — ph(y) = [h(z), w] = [, h(w)]

—h(a)ob—aoh(b)] < p(x,y, z,w, a, bl4.ii7)

for all p € T and all x,y,z,w,a,b € A\ {0}. Then there exists a unique Lie
JC* -algebra derivation D : A — A such that

Ih(x) = D(@)| < £ (3w, ~2,0,0,0,0) + F(~,32,0,0,0,0))  (4v)
for all z € A\ {0}.

Proof. Put z = w = a =0 = 0 in (4.ii). By the same reasoning as in
the proof of Theorem 2.5, there exists a unique C-linear involutive mapping
D : A — A satisfying (4.iv). The C-linear mapping D : A — A is given by

D(x) = lim 3inh(3"x) (4.4)

for all x € A.
It follows from (4.4) that

. h(3%"z)
D(z) = nh_)rglo 32m (4.5)
forall x € A. Let x =y =a=>0=0 in (4.iii). Then we get

[2, w]
2

127 ) = [h(2), w] = [z, A(w)][| < ¢(0,0, z,w,0,0)

for all z,w € A. Since

1 1
3Tng0(0,0,3"z,3”w,0,0) < 3—n<p(0,0,3”z,3"w,0,0),
1 1 n n n n n n n n
3 2 3

1
< 3—ncp(0, 0,3"z,3"w,0,0) (4.6)
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for all z,w € A. By (3.v), (4.5), and (4.6),

3271

2h(2- 2h(1[37 2z, 3"
o))y 2O wl) 2% 3 )
2 n—oo 32n n—o00 32n
, h(3"z) 3w 3"z h(3"w)
=1

= [D(2), w] + [z, D(w)]
for all z,w € A. But since D is C-linear,

lzv]

D[z w)) = 2D(2)

= [D(2), w] + [z, D(w)]

for all z,w € A.
Similarly, one can obtain that

2 aob oh(L(3" 37}
2D(220) =t T 40Dy, 2H5(70) 0 (370))
2 — 00 32n — 0O 32n
= Jm ((h(gna)) ° (?;)nb) * (33na ° <h(§"b))>

= (Da)ob+ ao (Db)
for all a,b e A. So

b
D(aob) = 2D(a; ) = (Da)ob+ao (Db)
for all a,b € A. Hence the C-linear mapping D : A — A is a Lie JC™*-algebra
derivation satisfying (4.iv), as desired. [

Corollary 4.5. Let h: A — A be a mapping with h(0) = 0 for which there
exist constants 0 >0 and p € [0,1) such that

MO LI OO0y () h(y) — [h(z), ] ~ [z, A(w)

—h(a)ob—aoh(b)| < O(z|”+ [ly[|” + |z]" + [[w[” + [a]|” + [[6]]"),
1A(3"u*) — h(3™u)*|| < 2- 3770

12h(

for all p € T, all u e U(A), n=0,1,2,---, and all x,y,z,w,a,b € A\ {0}.
Then there exists a unique Lie JC* -algebra derivation D : A — A such that
3+ 37

) = D)l < 3

0ll|[”

for all z € A\ {0}.

Proof.  Define ¢(z,y,z,w,a,b) = 0(||z[|” + [|y[|” + || 2[| + |w[|” + [|al|” + [|6]|),
and apply Theorem 4.4. [ |

One can obtain a similar result to Theorem 4.3 for the Jensen functional
equation.

Finally, we are going to show the Cauchy—Rassias stability of Lie JC™*-
algebra derivations in Lie JC™ -algebras associated with the Trif functional equa-
tion.
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= 0 for which there

Theorem 4.6. Let h: A — A be a mapping with h(0)
(3.xi) such that

exists a function ¢ : AT* — [0,00) satisfying (3.ix) and

d
pxry + -+ pxg o [z,w]+aob
_C)_ h(x;
7 + 4 aCs )+ da—2C) 12# (75)
Tj, +- x5
—1 > ph(~ ) — [h(z),w] = [z A(w)] - (4.0)
1<ji<-<gi<d
_h(a)ob_aoh(b)H < QD(ZL’l,"',.de,Z,'w,CL,b)

ld 4—2C1—2h(

for all p € T and all z1,---,24,2z,w,a,b € A. Then there exists a unique Lie
JC* -algebra derivation D : A — A such that

1

[h(z) — D(z)]| < m@(

qr,rz,---,1rx,0,0,0,0) (4.vi)
—_———

d—1 times

forall x € A.

Proof. Put z=w=a=5b=0 in (4.v). By the same reasoning as in the proof
of Theorem 2.7, there exists a unique C-linear involutive mapping D : A — A
satisfying (4.vi). The C-linear mapping D : A — A is given by

D(x) = lim — h(g"z) (4.7)

n—oo q

for all z € A.
It follows from (4.7) that

) h q2n$
forall z€ A. Let z1 =---=2z4=a=b=0 in (4.v). Then we get
[z, w]
Id a-aCroah(-—22 )~ h(2), 0] = [z, Bw)]]| < 9(0, .0, 2,w,0,0)
d g—2C1—2 ——

d times
for all z,w € A. Since

1 1
(]2_n (07 T 7O7qnzaqnw7070) S q_ngp(o’ e 707qnz7qnw7070)7

d times d times

|dg—2Ci—2h( q"z,q"w]) — [h(q"2),¢"w] — [¢" 2z, h(¢"w)]|

1
dg—2C1—2

1
< —-¢(0,--,0,¢"2,¢"w,0,0) < —(0,---,0,¢"2,¢"w,0,0) (4.9)

1
o

d times d times
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for all z,w € A. By (3.ix), (4.8), and (4.9),

2n

[z, w] o da—2Cioh( [z w])
dg_oCi_oD(—————) =1
dm2ti=2 (dd QCl 2) nl—{go q2n
da—2C1—2h( q"z, q"w)) n n n n
= lim 201 ;| ] — lim h(q Z)’q w]+[q z7h(q w)])
1 00 q2n N 00 qn qn qn qn

= [D(z),w] + [z, D(w)]for all z,w € A.
But since D is C-linear, vglue-8pt

D([z,w]) =d 4—2C1—2D([z, w]
d 4—2C)_2) = [D(2),w] + [z, D(w)] for all z,w € A.

Similarly, one can obtain that D(a o b) = (Da)ob+ ao (Db) for all a,b € A.
Hence the C-linear mapping D: A — A is a Lie JC*-algebra derivation satisfying
(4.vi), as desired. [

Corollary 4.7. Let h: A — A be a mapping with h(0) = 0 for which there
exist constants @ >0 and p € [0,1) such that

d
pxry + -+ pxg [z, w]+aob

d q4—2C1_2h _2C_ h(z;

|| d QCl 2 ( d + dd72cl—2 )+d QCZ IZ,UJ (x])

J=1

- (P (), w) — [z, h(w)] — ha) 0 b

1<ji<-<51<d
d
—aoh(b)|| <0 Z [z 17 + [[2[1” + lw|” + [[al[” + [|b]|7),

12 (q"u™) — h(q w)*|| < dg"?o

for all p € T, all w € U(A), n =0,1,---, and all x1,--+,x4, 2, w,a,b € A.
Then there exists a unique Lie JC* -algebra derivation D : A — A such that

¢ P(q" + (d—1)rP)0

h(z P
Iha) = Do) < T L
forall x € A.
Proof.  Define @(w1,- -, 24, 2,w,a,b) = 0(35_ [l +[|2]|P + [[w][” + [lal|? +
|6]|P), and apply Theorem 4.6. u

One can obtain a similar result to Theorem 4.3 for the Trif functional
equation.
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