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Abstract. We prove that a Lie conformal algebra L with bounded locality
function is embeddable into an associative conformal algebra A with the same
bound on the locality function. If L is nilpotent, then so is A , and the nilpo-
tency index remains the same. We also give a list of open questions concerning
the embedding of Lie conformal algebras into associative conformal.
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Introduction

Conformal algebras. A conformal algebra is, roughly speaking, a linear space
A with infinitely many bilinear products (n) : A × A → A , parameterized by an
non-negative integer n , and a derivation D : A → A . An important property of
these products is that for any fixed a, b ∈ A we have a(n)b = 0 when n is large
enough. See § 1. below for formal definitions.

Conformal algebras where introduced in [7] as the simplification of the
vertex algebra structure. Sometimes they are also called “vertex Lie algebras” [4,
9]. Curiously, similar algebraic structures appeared in the Hamiltonian formalism
in the theory of non-linear evolution equations [5]. For more information on
conformal algebras see e.g. [3, 7, 8, 13] and the references therein.

Formulation of the problem. For any variety of algebras, like associative, Lie,
Jordan, etc, there is the corresponding variety of conformal algebras, see §1.4 for
the rigorous statement. Given an associative conformal algebra A , we can define
a different family of products [n] : A× A → A by

a[n]b = a(n)b−
∑
s>0

(−1)n+s 1

s!
Ds

(
b(n + s)a

)
. (1)

With these new products (and the same derivation D), the space A becomes a
Lie conformal algebra, which we will denote by A(−) . This is analogous to the
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fact that on any associative algebra A one can define the Lie algebra structure by
using commutators, or Jordan algebra structure by using anti-commutators. Like
in these classical cases, a natural question is whether any Lie conformal algebra
can be obtained as a subalgebra of A(−) for some associative conformal algebra
A . In this case, A is called an enveloping algebra of L .

As shown in [11], the answer to the above question is negative for the
following reason. Let L be a Lie conformal algebra, generated by a set G . Consider
all words w = g1(n1) · · · (nl−1)gl ∈ L (with arbitrary order of parentheses) for
gi ∈ G and ni ∈ Z+ . Suppose that there is an integer S(l) = SL,G(l) with the
following property: any word w as above with

∑
i ni > S(l) is zero. We call S(l)

the locality function of L . It is easy to show that if |G| < ∞ , then SL,G(l) always
exists and for a different set of generators H , the difference |SL,G(l)−SL,H(l)| has
at most linear growth in l . We have shown in [11] that if a finitely generated Lie
conformal algebra L is embeddable into an associative conformal algebra, then
S(l) must have linear growth. On the other hand, for a free Lie conformal algebra
the growth of S(l) is quadratic [11, 12], so it is not embeddable into associative.

Results of this paper. We prove the following theorem:

Theorem 1. Let L be a Lie conformal algebra, generated by a set G . Assume
that there is K ∈ Z such that SL,G(l) 6 K for any l . Then L is embeddable into
an associative conformal algebra A such that SA,G(l) 6 K for all l .

In particular, the condition of Theorem 1 applies when the algebra L is
nilpotent. We say that L is nilpotent of index k if all words a1(m1) · · · (ml−1)al

are zero when l > k . Then we can prove

Theorem 2. Any nilpotent Lie conformal algebra has a nilpotent associative
conformal enveloping algebra of the same index.

We remark that not all algebras that satisfy the assumption of Theorem 1
are nilpotent. For example, the loop algebra L (see §1.6 below) has locality
function 1, but is not nilpotent. See §2.1 for other examples.

Both Theorems 1 and 2 will be derived from Proposition 2 in §2.1. The
argument was partially inspired by [1].

Open questions. First of all, it remains unclear whether a linear growth of the
locality function is a sufficient condition for the embedding of a Lie conformal
algebra into an associative. My guess is that this is false, but I don’t have a
counterexample.

An important special case is when the Lie conformal algebra is of finite type,
which means that it is a module of finite rank over the algebra of polynomials in
D [3]. It is shown in [11] that such algebras have linear locality functions. It has
been conjectured [11] that a finite type Lie conformal algebra has a finite type
conformal associative enveloping algebra. This conjecture is closely related to
another conjecture that states that a finite type torsion-free Lie conformal algebra
always has a faithful module of finite type (see §1.7 for the definitions and further
discussion). This is the conformal analogue of classical Ado’s theorem [1, 6].
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The results of this paper show embeddability when the locality function is
uniformly bounded. In §2.1 we conjecture that a central extension of a finite type
Lie conformal algebra with bounded locality function also has a bounded locality
function. This would imply a general way of generating examples of such algebras.

1. Definitions and Notations

All algebras and spaces are assumed to be over a field k of characteristic zero.
Throughout the paper we will use the divided powers notation x(n) = 1

n!
xn , and

Z+ will stand for the set of non-negative integers.

1.1. The definition.

Definition 1. [7] A conformal algebra is a space A equipped by a collection
of bilinear products A⊗A → A , a⊗ b 7→ a(n)b , indexed by n ∈ Z+ , and a linear
map D : A → A such that

(C1) a(n)b = 0 for n � 0 ;

(C2) D
(
a(n)b

)
= (Da)(n)b + a(n)(Db) = −n a(n− 1)b + a(n)(Db) .

If only the condition (C2) is satisfied, then we will call A a preconformal algebra.

Iterating (C2), we get

(
D(k)a

)
(n)b = (−1)n

(
n

k

)
a(n− k)b,

a(n)
(
D(k)b

)
=

∑
s>0

(
n

s

)
D(k−s)

(
a(n− s)b

)
.

(2)

1.2. Formal series. A typical way of constructing a conformal algebra is as
follows. Take a “usual” algebra A . Consider the space of formal series A[[z, z−1]] .
We will write a series α ∈ A[[z, z−1]] as

α(z) =
∑
n∈Z

α(n) z−n−1, α(n) ∈ A.

For α, β ∈ A[[z, z−1]] define their n-th product

(α(n)β)(z) =
∑
m∈Z

(
α(n)β

)
(m) z−m−1

by
(α(n)β)(z) = Resw α(w)β(z)(z − w)n,

so that (
α(n)β

)
(m) =

n∑
s=0

(−1)s

(
n

s

)
α(n− s)β(m + s). (3)

Series α, β ∈ A[[z, z−1]] are local of order N ∈ Z+ , if

α(w)β(z)(w − z)N = 0.
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In terms of coefficients this means

N∑
s=0

(−1)s

(
N

s

)
α(n− s)β(m + s) = 0

for any m, n ∈ Z . It is easy to see that if α and β are local of order N , then
α(n)β = 0 for n > N .

Proposition 1. [7, 8] If A ⊂ A[[z, z−1]] is a space of series such that

(i) any two series α, β ∈ A are local;

(ii) α(n)β ∈ A for any α, β ∈ A;

(iii) ∂zα ∈ A for any α ∈ A,

then A is a conformal algebra with D = ∂z . If only conditions (ii) and (iii) hold,
then A is a preconformal algebra.

Remark 1. If A is either associative or Lie algebra, then condition (i) of
Proposition 1 can be weakened: it is enough to assume the locality only for a set
of generators G of A. This fact is know as the Dong’s lemma.

1.3. Coefficient algebra. Conversely, any conformal algebra can be obtained
as in Proposition 1. Moreover, to any conformal algebra A there corresponds
a “usual” algebra A = Coeff A , called the coefficient algebra of A , and the
inclusion π : A ↪→ A[[z, z−1]] with the following universal property. For any
other homomorphism ϕ : A → B[[z, z−1]] of A to the space of formal series,
such that ϕ(A) satisfies the conditions of Proposition 1, there is a unique algebra
homomorphism ρ : A → B such that ρ(π(a)) = ϕ(a) for any a ∈ A .

The coefficient algebra A = Coeff A is constructed in the following way.
Consider the space of Laurent series A[t, t−1] in an independent variable t with
coefficients in A . For a ∈ A , denote a(n) = atn . As a linear space A is
isomorphic to the quotient of A[t, t−1] over the subspace generated by the vectors
(Da) + n a(n − 1) for a ∈ A . The formula for the product in A is derived from
(3):

a(m)b(n) =
∑
s>0

(
m

s

)(
a(s)b

)
(m + n− s).

Note that the sum here is finite due to (C1). The canonical inclusion A →
A[[z, z−1]] is given by a 7→

∑
n∈Z a(n) z−n−1 .

In §2.2 below we are going to need to following fact:

Lemma 1. [8, 10] Assume that A is a free k[D]-module, and let B ⊂ A be
its basis over k[D]. Then the set

{
b(n)

∣∣ b ∈ B, n ∈ Z
}

is a k-linear basis of
Coeff A.
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Remark 2. The requirement that A is a free k[D]-module is not as restrictive
as it might appear. In any conformal algebra A one can define the so-called torsion
ideal t = D-tor A +

⋂
n>0 DnA, where D-tor A = { a ∈ A | ∃ p(D) ∈ k[D], p(D) 6=

0, p(D)a = 0 } is the D -torsion of A, so that A/t is a free k[D]-module. It is
easy to show [3] that t belongs to the left annihilator of A, i.e. a(n)b = 0 for any
a ∈ t, b ∈ A and n ∈ Z+ .

1.4. Varieties of conformal algebras. In the case when the coefficient
algebra A = Coeff A belongs to a certain variety of algebras, the conformal algebra
A is said to belong to the corresponding conformal variety. For example, if A is an
associative (respectively, a Lie or a Jordan) algebra, then A is called an associative
conformal (respectively, a Lie conformal or a Jordan conformal) algebra. Moreover,
if A belongs to a certain variety of algebras, then any conformal subalgebra of
A[[z, z−1]] as in Proposition 1 belongs to the corresponding conformal variety. In
this paper we deal only with Lie or associative conformal algebras. To distinguish
between them, we will denote the products in a conformal algebra by [n] whenever
the product in the coefficient algebra is denoted by the brackets [ ·, · ] .

There is a correspondence between the identities in a conformal algebra
and the identities in its coefficient algebra. An identity R holds in A = Coeff A

if and only if a certain identity (or family of identities) Conf R holds in A .
For example, the associativity (ab)c = a(bc), the Jacoby identity [[a, b ], c ] =
[a, [b, c ] ] − [b, [a, c ] ] and the (skew-)symmetry ab = ± ba correspond to the
following conformal identities respectively:

conformal associativity:

(
a(m)b

)
(n)c =

∑
s>0

(−1)s

(
m

s

)
a(m− s)

(
b(n + s)c

)
(4)

conformal Jacoby identity:

(
a[m]b

)
[n]c =

∑
s>0

(−1)s

(
m

s

)(
a[m− s]

(
b[n + s]c

)
− b[n + s]

(
a[m− s]c

))
quasi-symmetry:

a(n)b = ±
∑
s>0

(−1)s+nD(s)
(
b(n + s)a

)
(5)

We will need in §2.2 the following strengthening of the above correspon-
dence.

Lemma 2. Let A be an associative algebra, and A ⊂ A[[z, z−1]] a preconformal
algebra of formal series with coefficients in A. Then the identity (4) holds in A.

Proof. Take k ∈ Z . The k -th coefficient of the left- and right-hand sides of
(4) are, respectively∑

i,j>0

(−1)i+j

(
m

i

)(
n

j

)
a(m− i)b(n + i− j)c(k + j)
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and ∑
i,j,s>0

(−1)i+j+s

(
m

s

)(
m− s

i

)(
n + s

j

)
a(m− s− i)b(n + s− j)c(k + i + j).

Replace the indices in the second formula by the rule i → i − s , j → j − i + s ,
and then we are done by the combinatorial identity

i∑
s=0

(−1)s+j

(
m

s

)(
m− s

i− s

)(
n + s

j − i + s

)
= (−1)i+j

(
m

i

)(
n

j

)
.

For a Lie conformal algebra L denote by Z(L) = { a ∈ L | a(n)b = 0 ∀ b ∈
L, n ∈ Z+ } the center of L . Due to the quasi-symmetry (5), we have b(n)a = 0
for any a ∈ Z(L), b ∈ L and n ∈ Z+ .

1.5. The relation between associative and Lie conformal algebras. Let A

be an associative conformal algebra. Then we can define another family of products
[n] , n ∈ Z+ , on A by the formula (1). This will define a Lie conformal algebra
structure on A , which we will denote by A(−) . Recall that any associative algebra
A can be turned into a Lie algebra A(−) by taking the commutator [a, b ] = ab−ba
for the product. It is easy to check that (Coeff A)(−) = Coeff(A(−)).

Here is another useful formula that holds in A :

a(m)b(n)c− b(n)a(m)c =
∑
s>0

(
m

s

)(
a[s]b

)
(m + n− s)c (6)

In §2.2 we will deal with the following situation. Let L be a Lie conformal
algebra and L = Coeff L be its coefficient Lie algebra. Let A ⊃ L be an associative
enveloping algebra of L . Then we get L ⊂ A[[z, z−1]] . Let A ⊂ A[[z, z−1]] be the
associative preconformal algebra generated by L . By Lemma 2, the conformal
associativity (4) holds in A . The following statement is checked in a similar way.

Lemma 3. The formula (6) holds for any a, b ∈ L, c ∈ A and m, n ∈ Z+ .

1.6. Example: loop algebras. Let g be an algebra. Let L = g[[t, t−1] .
Denote a(m) = atm for a ∈ g and m ∈ Z , so that a(m)b(n) = (ab)(m + n). For
a ∈ g set

ã =
∑
m∈Z

a(m) z−m−1 ∈ L[[z, z−1]].

It is easy to see that ã and b̃ are local of order 1 and ã(0)̃b = ãb . Let L ⊂ L[[z, z−1]]
be the conformal algebra generated by ã for all a ∈ g . It is called the loop algebra
of g . As a k[D]-module, L is freely generated by G = { ã | a ∈ g } , so Lemma 1
implies that L = Coeff L .

We remark that a monomial ã1(m1) · · · ãl−1(ml−1)ãl ∈ L (with arbitrary
order of parentheses) is equal to 0 if

∑
mi > 0, so the locality function SL,G = 1.

It is easy to show that if a conformal algebra has locality function 1, then it must
be a loop algebra.
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In the case when g is a Lie algebra, it often comes with an invariant
bilinear form 〈· | ·〉 , and then the corresponding loop algebras L and L have central

extensions L̂ = L ⊕ kc and L̂ = L ⊕ kc . The brackets in L̂ are [a(m), b(n) ] =

[a, b ](m + n) + mδm,−n〈a | b〉 , the locality of ã and b̃ is 2, and the conformal

products are ã(0)̃b = [̃a, b ] , ã(1)̃b = c . We identify c with c(−1) ∈ L̂[[z, z−1]] .
This is called the affine Lie algebra corresponding to g . The locality function of
L̂ corresponding to the generators G ∪ {c} is equal to 2.

1.7. Representations of conformal algebras. Let M be a k[D] module of
finite rank.

Definition 2. [2] A conformal operator α on M is a series

α =
∑
n>0

α(n) z−n−1 ∈ End(M)[[z−1]],

such that

(CO1) for any fixed v ∈ M we have α(n)v = 0 for n � 0 ,

(CO2) [D, α(n) ] = −n α(n− 1) .

Denote the space of all conformal operators by CEnd(M) ⊂ End(M)[[z−1]] .

In fact, any conformal operator α ∈ CEnd(M) is zero on D-tor M , so we
can assume that M is a free k[D]-module without loss of generality.

We observe that the formula (3) makes sense when α, β ∈ CEnd(M), and
also CEnd(M) is closed under the derivation D = ∂z , so it can be shown that
CEnd(M) is an associative conformal algebra [2].

Let A be an associative (respectively, a Lie) conformal algebra, then by
definition, M is a module over A if there is a conformal algebra homomorphism
A → CEnd(M) (respectively, A → CEnd(M)(−) ). For example, the algebra
A is a module over itself with the representation map A → CEnd(A) given by
a 7→

∑
n>0 a(n) z−n−1 .

It follows that if a Lie conformal algebra L has a faithful finite type module
M , then CEnd(M) is an associative conformal enveloping algebra of L . In
particular, this applies to the case when Z(L) = 0 so that L is a faithful module
over itself. Together with Theorems 1 and 2 this provides some grounds to
the conjecture that any finite type Lie conformal algebra is embeddable into an
associative conformal algebra.

For further information about these and other conformal algebras consult
e.g. the reviews [8, 13] and the references therein.

2. Conformal algebras with bounded locality function

Let L be a conformal algebra generated by a set G ⊂ L . Recall that the locality
function S(l) = SL,G(l) is an integer such that any word w = g1(n1) · · · (nl−1)gl ∈
L , where gi ∈ G and ni ∈ Z+ , is zero whenever

∑
i ni > S(l). If |G| < ∞ ,

then the existence of S(l) follows from (C1). If L is a Lie conformal algebra,
then the quantitative version of Dong’s lemma [12] implies that if the locality
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N(a, b) of any two generators a, b ∈ G is uniformly bounded by N ∈ Z+ , then
S(l) 6 1

2
Nl(l − 1)− l + 1.

2.1. The main Proposition. To every generator g ∈ G ⊂ L we assign a
weight wt g ∈ Z+ . (The word “degree” will be used later for different purpose).
For a monomial w = g1[n1] · · · [nl−1]gl or w = g1(n1) · · · (nl−1)gl (with arbitrary
order of parentheses), where gi ∈ G and ni ∈ Z+ , we set wt w =

∑
i wt gi +

∑
i ni .

We also set wt D = −1.

Both Theorem 1 andTheorem 2 follow from the following statement:

Proposition 2. Assume that there is an integer r > 0 such that any monomial
of weight r or more is equal to zero in L. Then L is embedded into an envelop-
ing conformal associative algebra A, that has the same property: any conformal
monomial w in G is zero in A whenever wt w > r .

Theorem 1 (respectively, Theorem 2) is a special case of Proposition 2 ob-
tained by setting wt g = 1 (respectively, wt g = 0) for every g ∈ G . We will prove
Proposition 2 in §2.2.

We have seen one example of a Lie conformal algebra with bounded locality
function in §1.6. It is easy to see that any central extension of a loop algebra also
has a bounded locality function. We state the following conjecture.

Conjecture 1. Let L be a Lie conformal algebra of finite type generated by a
finite set G so that SL,G(l) < K . Let M be a k[D]-module, generated by a set M,

on which L acts trivially, and let L̂ be a central extension of L. Then SL̂,G∪M is
also uniformly bounded.

By “central extension” we mean that there is a short exact sequence of
conformal algebra homomorphisms 0 → M → L̂ → L → 0, such that M ⊆ Z(L̂).

2.2. Proof of Proposition 2.

2.2.1. Two filtrations on L.

Let L be a Lie conformal algebra, satisfying the conditions of Proposition 2. Define
a filtration

L ⊇ . . . ⊇ L′i−1 ⊇ L′i ⊇ L′i+1 ⊇ . . . ⊇ L′r = 0

on L by setting

L′i = Span
{

w = Dmg1[n1] · · · [nl−1]gl

∣∣ gj ∈ G, wt w > i
}
.

We have L′i = 0 for i > r due to the fact that there are no words of weight
l or more in L . Clearly, we also have

⋃
i L

′
i = L . For an element a ∈ L set

deg′ a = max{ i | a ∈ L′i } . Note that for a Lie conformal monomial w in G we
have wt w 6 deg′ g .

Here are some easy properties of this filtration that we are going to need:

Lemma 4. (a). L′i[n]L′j ⊆ L′i+j+n , DL′i ⊆ L′i−1 .

(b). L = k[D]L′0 .
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Proof. (a) follows from the fact that the formulas (2) are homogeneous. To
prove (b), note that since every generator g ∈ G has wt g > 0, an element a ∈ L

of negative degree must belong to DL .

Next we set
Li =

{
a ∈ L

∣∣ ∃n : Dna ∈ L′i−n

}
.

This defines another filtration on L of the form

L ⊇ . . . ⊇ Li−1 ⊇ Li ⊇ Li+1 ⊇ . . . .

Set L∞ =
⋂

i Li and deg a = sup{ i | a ∈ Li } for a ∈ L . Clearly, we have L′i ⊆ Li ,
therefore deg a > deg′ a . More precisely, we have

deg a = sup
n
{n + deg′Dna}. (7)

Here are some properties of the filtration {Li} :

Lemma 5. (a). Li[n]Lj ⊆ L′i+j+n . In particular, Li[n]Lj = 0 if i+ j +n > r .

(b). Lr ⊆ Z(L) .

(c). deg Da = deg a− 1 for any a ∈ L .

Proof. (a) Let a ∈ Li and b ∈ Lj . Since a[n]b = 0 for n � 0, we can, using
induction, assume that a[s]b ∈ L′i+j+s for any s > n .

There are k,m ∈ Z+ , such that D(k)a ∈ L′i−k and D(m)b ∈ L′j−m . Using
Lemma 4 (a) and (2), we get

L′i+j+n 3
(
D(k)a

)
[k + m + n]

(
D(m)b

)
= (−1)k

(
k + m + n

k

) m∑
s=0

(
m + n

m− s

)
D(s)

(
a[n + s]b

)
≡ (−1)k

(
k + m + n

k

)(
m + n

m

)
a[n]b mod L′i+j+n,

since by Lemma 4 (a) and induction, D(s)
(
a[n + s]b

)
∈ L′i+j+n for s > 0.

(b) Since L′0 ⊆ L0 , Lemma 4 (b) implies that L = k[D]L0 , and by (a) we have
a[n]b = 0 for any a ∈ L0 and b ∈ Lr .

(c) By Lemma 4 (a) we have deg′Da > deg′ a− 1. Using this and (7), we get

deg Da = sup
n>0

{
n + deg′Dn+1a

}
= sup

n>0

{
n− 1 + deg′Dna

}
= deg a− 1.

It follows from (b) and (c) that L∞ is a central ideal of L .

2.2.2. The basis B . Let Bi ⊂ Li be a k-linear basis of Li modulo Li+1 +DLi+1 .
By Lemma 4 (b), if i < 0, then Bi = ∅ . Denote B =

⋃r−1
i=0 Bi . Let T = k[D]Lr .

By Lemma 5 (a) and (b), this is a central ideal of L .
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Lemma 6. The set B is a k[D]-linear basis of L mod T . The expansion of
an element a ∈ L of deg a = i in this basis is

a =
∑

n∈Z+, b∈B

kn,b Dnb + a0, kn,b ∈ k, a0 ∈ T, (8)

such that deg Dnb = deg b− n > i whenever kn,b 6= 0 .

Proof. First we show that any element a ∈ Li has expansion (8). Indeed, if
i > r , this is obvious, so by induction we can assume that any a ∈ Li+1 has such
an expansion. Now, we can decompose a = a1 + a2 so that a1 ∈ Spank Bi and
a2 ∈ Li+1 + DLi+1 ; by induction, a2 has an expansion (8), therefore, so does a .

This shows that B spans L modulo T over k[D] . Let us prove that the set
B is linearly independent over k[D] modulo T .

We observe that in the k[D]-module L/T we have Ker D = 0. Indeed,
every element t ∈ T can be written as t = Dt0 + t1 for t0 ∈ T and t1 ∈ Lr . So
if Da ∈ T , then write Da = Dt0 + t1 , and get D(a − t0) = t1 ∈ Lr , hence by
Lemma 5 (c) we get deg(a− t0) > r + 1. Therefore, a− t0 ∈ T , hence also a ∈ T .

Now assume that we have a linear relation∑
n∈Z+, b∈B

kn,b Dnb ∈ T, kn,b ∈ k.

By the previous paragraph, we can assume that the set B′ = { b ∈ B | k0,b 6= 0 }
in non-empty. Let i be the minimal degree of the elements in this set, and let
B′i = Bi∩B′ be the elements degree i in B′ . The linear relation above implies that
B′ is linear dependent modulo DL + Li+1 , which contradicts the definition of Bi ,
since DL ∩ Li = DLi+1 due to Lemma 5 (c).

2.2.3. The algebra U. Let L = Coeff L be the coefficient Lie algebra of L .
Consider its universal enveloping algebra U(L) and let U be the augmentation
ideal of U(L).

Consider the space U [[z, z−1]] of formal series with coefficients in U . Let
U ⊂ U [[z, z−1]] be the associative preconformal algebra generated by the series∑

m∈Z a(m) z−m−1 for a ∈ L . By Lemma 2 and Lemma 3 the identity (4) holds
for any a, b, c ∈ U and (6) holds for any a, b ∈ L and c ∈ U .

Define a filtration U ⊇ . . . ⊇ Ui−1 ⊇ Ui ⊇ Ui+1 ⊇ . . . on U by setting

Ui = Span
{

Dma1(m1) · · · al−1(ml−1)al

∣∣∣
aj ∈ L, mj ∈ Z+,

l−1∑
j=1

mj +
l∑

j=1

deg aj −m > i
}

.

Here the order of parentheses is arbitrary, but note that using the formula (4), it
is enough to take only right-normed words.

The filtration {Ui} is defined in a similar way to the filtration {L′i} on
L , constructed in §2.2.1, so it satisfies the properties, analogous to Lemma 4 (a),
which are proved in the same way:
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Lemma 7. Ui(n)Uj ⊆ Ui+j+n , DUi ⊆ Ui−1 .

2.2.4. Let T = Coeff T ⊂ L be the coefficient algebra of T . Then T is a central
ideal of L and we have L/T = Coeff(L/T). By Lemma 1, since B is a k[D]-linear
basis of L mod T , the set { b(n) | b ∈ B, n ∈ Z } ⊂ L is a k-linear basis of L
mod T .

Let N ⊂ U be the ideal of U generated by T = Coeff T . Then the
algebra U/N is equal to the augmentation ideal of the universal enveloping algebra
U(L/T ). Choose a linear order on B . For m, n ∈ Z and a, b ∈ B we will write
a(m) < b(n) if either m < n or m = n and a < b . The PBW theorem states that
the set

S =
{

b1(n1) · · · bl(nl)
∣∣ bi ∈ B, ni ∈ Z, bi(ni) > bi+1(ni+1)

}
⊂ U (9)

is a k-linear basis of U mod N . We will order the words from S first by length
and then alphabetically from right to left, so that for u = b1(n1) · · · bl(nl), u′ =
b′1(n

′
1) · · · b′l(n′l) ∈ S we write u 6 u′ if bl(nl) = b′l(n

′
l), . . . , bi+1(ni+1) = b′i+1(n

′
i+1),

but bi(ni) 6 b′i(n
′
i) for some 1 6 i 6 l .

Since T is a central ideal of L , the set N2 = TN ⊂ N is a proper subideal
of N spanned by all words a1(m1) · · · al(ml) for ai ∈ L , mi ∈ Z , l > 2, such
that ai ∈ T for some 1 6 i 6 l . Clearly we have N2 ∩ L = 0.

Similarly, we define N ⊂ U to be the span of all words

Dna1(n1) · · · al−1(nl−1)al, ai ∈ L

(for arbitrary order of parentheses), such that ai ∈ T for some 1 6 i 6 l , and
N2 ⊂ N to be the span of the same words of length at least 2. Clearly, N and N2

are ideals of U such that u(n) ∈ N for u ∈ N and u(n) ∈ N2 for u ∈ N2 , and we
have N2 ∩ L = 0.

2.2.5. Basis in U. Recall from §2.2.2 that we have a set B ⊂ L which is a
k[D]-linear basis of L/T . Define

W =

b1(n1)
(
b1(n2) · · ·

(
bl−1(nl−1)bl

)
···

)
∈ U

∣∣∣∣∣∣∣
bi ∈ B, ni ∈ Z+

bi(ni) > bi+1(ni+1)

for 1 6 i 6 l − 2

 .

For w = b1(n1)
(
b1(n2) · · ·

(
bl−1(nl−1)bl

)
···

)
∈ W set deg w =

∑
j deg bj +

∑
j nj ,

so that w ∈ Udeg w .

Lemma 8. The set W is a k[D]-linear basis of U/N , such that the expansion
of an element u ∈ Ui in this basis has form

u =
∑

n∈Z+, w∈W

kn,w D(n)w + u0, kn,w ∈ k, u0 ∈ N, (10)

where deg D(n)w = deg w − n > i whenever kn,w 6= 0 .
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Proof. Let us show first that W is linearly independent over k[D] modulo N .
Suppose

u =
∑
n,w

kn,w D(n)w ∈ N.

Then u(−1) =
∑

n,w kn,w w(−n− 1) ∈ N . For

w = b1(n1)
(
b1(n2) · · ·

(
bl−1(nl−1)bl

)
···

)
∈ W

we compute, iterating (4),

w(−n− 1) =

n1∑
i1=0

· · ·
nl−1∑

il−1=0

(−1)i1+...+il−1

(
n1

i1

)
· · ·

(
nl−1

il−1

)
× b1(n1 − i1) · · · bl−1(nl−1 − il−1)bl(i1 + . . . + il−1 − n− 1).

If we expand w(−n− 1) into a linear combination of the elements of S (see (9))
modulo N , then the minimal term among the terms of maximal length in this
expansion will be

b1(n1) · · · bl−1(nl−1)bl(−n− 1).

We observe that these terms are different for every pair n ∈ Z+ , w ∈ W .
Therefore, the set {w(−n− 1) |n ∈ Z+, w ∈ W } is linearly independent modulo
N , hence all kn,w = 0.

Now we show that any element u ∈ Ui has expansion (10). By definition,
Ui is spanned by words Dma1(m1) · · · al−1(ml−1)al for aj ∈ L and mj ∈ Z+ , such
that

∑
j mj +

∑
j deg aj −m > i . Expand every aj in such a word into a linear

combination (8), and then use (4) and (6) to write this word in the form (10). By
Lemma 6, every term in the expansion (8) for aj will have degree at least deg aj ,
so the condition on degrees in (10) follows from the fact that the relations (4) and
(6) are homogeneous.

2.2.6. The ideal I. Set

I = Spank[D]

{
a1(m1) · · · al−1(ml−1)al ∈ U

∣∣∣∣ aj ∈ L, mj ∈ Z+, l > 2∑
j mj +

∑
j deg aj > r

}
.

Lemma 9. (a). I is an ideal of U .

(b). For any a, b ∈ L we have a(n)b ∈ I for n � 0 .

(c). I ∩ L = 0 .

Proof. (a) Let u = a1(m1) · · · al−1(ml−1)al be a generator of I . Then a(n)u ∈
I for any a ∈ L0 and n ∈ Z+ . Since L = k[D]L0 by Lemma 4 (b), we get
L(n)I ⊆ I for any n ∈ Z+ . But U is generated by L as an algebra, therefore (4)
implies that U(n)I ⊆ I for any n ∈ Z+ .

(b) We have a(n)b ∈ I for n > l − deg a− deg b .

(c) Let u = a1(m1) · · · al−1(ml−1)al ∈ I as above. It follows from Lemma 8 and
§2.2.4 that the expansion (10) of u will have the following two properties:
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(i) deg w > r whenever kn,w 6= 0;

(ii) u0 ∈ N2 .

Clearly, the expansion (10) of any k[D]-linear combination of such elements u also
has properties (i) and (ii). We are left to note, that if a linear combination (10)
with properties (i) and (ii) belongs to L , then it is 0. Indeed, any word w ∈ W of
degree r or more has length at least 2, since deg b 6 r−1 for any b ∈ B . Therefore,
all kn,b = 0 and the combination is in N2 . But we also have N2 ∩ L = 0.

Now Proposition 2 easily follows from Lemma 9: Take A = U/I . This
is an associative conformal algebra, since the conformal associativity holds by
Lemma 2 and the locality is due to (b), it contains L because of (c) and any word
w = g1(n1) · · · (nl−1)gl , gi ∈ G , of weight r or more belongs to I , therefore, w = 0
in A .
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