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INVARIANT MEANS ON CHART GROUPS

WARREN B. MOORS

Communicated by A.R. Mirmostafaee

Abstract. The purpose of this paper is to give a stream-lined proof of the
existence and uniqueness of a right-invariant mean on a CHART group. A
CHART group is a slight generalisation of a compact topological group. The
existence of an invariant mean on a CHART group can be used to prove
Furstenberg’s fixed point theorem.

1. Introduction and preliminaries

Given a nonempty set X and a linear subspace S of RX that contains all the
constant functions we say that a linear functional m : S → R is a mean on S if:

(i) m(f) ≥ 0 for all f ∈ S that satisfy f(x) ≥ 0 for all x ∈ X;
(ii) m(1) = 1, where 1 is the function that is identically equal to 1.

If all the functions in S are bounded on X then this definition is equivalent to
the following:

1 = m(1) = ‖m‖
where, ‖m‖ := sup{m(f) : f ∈ S and ‖f‖∞ ≤ 1}.

If (X, ·) is a semigroup then we can define, for each g ∈ X, Lg : RX → RX and
Rg : RX → RX by,

Lg(f)(x) := f(gx) for all x ∈ X and Rg(f)(x) := f(xg) for all x ∈ X.

Note that for all g, h ∈ X, Lg ◦ Lh = Lhg, Rg ◦Rh = Rgh and Lg ◦Rh = Rh ◦ Lg.
If S is a subspace of RX that contains all the constant functions and Lg(S) ⊆ S
[Rg(S) ⊆ S] for all g ∈ X then we call a mean m on S left-invariant [right-
invariant] if,

m(Lg(f)) = m(f) [m(Rg(f)) = m(f)] for all g ∈ X and all f ∈ S.
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We now need to consider some notions from topology. Suppose that X and
Y are compact Hausdorff spaces and π : X → Y is a continuous surjection.
Then π# : C(Y ) → C(X) defined by, π#(f) := f ◦ π is an isometric algebra
isomorphism into C(X). Moreover, we know (from topology/functional analysis)
that f ∈ π#(C(Y )) if, and only if, f ∈ C(X) and f is constant on the fibers of π
(i.e., f is constant on π−1(y) for each y ∈ Y ).

The final notion that we need for this section is that of a right topological
group (left topological group). We shall call a triple (G, ·, τ) a right topological
group (left topological group) if (G, ·) is a group, (G, τ) is a topological space and,
for each g ∈ G, the mapping x 7→ x · g (x 7→ g · x) is continuous on G. If (G, ·, τ)
is both a right topological group and a left topological group then we call it a
semitopological group.

If (G, ·, τ) and (H, ·, τ ′) are compact Hausdorff right topological groups and
π : G→ H is a continuous homomorphism then it easy to check that

Rg(π
#(f)) = π#(Rπ(g)(f)) for all f ∈ C(H) and g ∈ G.

If π : X → Y is surjective then (π#)−1 : π#(C(H))→ C(H) exists. Therefore,

(π#)−1(Rg(h)) = Rπ(g)((π
#)−1(h)) for all h ∈ π#(C(H)) and g ∈ G.

From these equations we can easily establish our first result.

Proposition 1.1. Let (G, ·, τ) and (H, ·, τ ′) be compact Hausdorff right topologi-
cal groups and let π : G→ H be a continuous epimorphism (i.e., a surjective ho-
momorphism). If m is a right-invariant mean on C(H) then m∗ : π#(C(H))→ R
defined by, m∗(f) := m((π#)−1(f)) for all f ∈ π#(C(H)) is a right-invariant
mean on π#(C(H)). If C(H) has a unique right-invariant mean then π#(C(H))
has a unique right-invariant mean.

We can now state and prove our main theorem for this section.

Theorem 1.2. Let (G, ·, τ) and (H, ·, τ ′) be compact Hausdorff right topological
groups and let π : G→ H be a continuous epimorphism. If the mapping

m : G× ker(π)→ G defined by, m(x, y) := x · y for all (x, y) ∈ G× ker(π)

is continuous and C(H) has a right-invariant mean then C(G) has a right-
invariant mean. Furthermore, if C(H) has a unique right-invariant mean then
so does C(G).

Proof. Let L := ker(π). Then from the hypotheses and [1, Theorem 2] (L, ·, τL)
(here τL is the relative τ -topology on L) is a compact topological group. Thus
(L, ·, τL) admits a unique Borel probability measure λ (called the Haar measure
on L) such that∫
L

Lg(f)(t) dλ(t) =

∫
L

Rg(f)(t) dλ(t) =

∫
L

f(t) dλ(t) for all g ∈ L and f ∈ C(L).

Let P : C(G)→ π#(C(H)) be defined by,

P (f)(g) :=

∫
L

f(g · t) dλ(t) i.e., P (f)(g) is the “average” of f over the coset gL.
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Firstly, since m is continuous on G×L (and L is compact) P (f) ∈ C(G) for each
f ∈ C(G). Secondly, since λ is invariant on L it is routine to check that P (f)
is constant on the fibers of π. Hence, P (f) ∈ π#(C(H)). We now show that for
each g ∈ G and f ∈ C(G),∫
L

Lg(f)(t) dλ(t) =

∫
L

f(g · t) dλ(t) =

∫
L

f(t · g) dλ(t) =

∫
L

Rg(f)(t) dλ(t). (∗)

To this end, fixed g ∈ G and define G : C(L)→ C(L) by, G(f)(t) := f(g−1 · t · g).
Since m is continuous, t 7→ (g−1 · t) · g is continuous and so G is well-defined, i.e.,
G(f) ∈ C(L) for each f ∈ C(L). We claim that

f 7→
∫
L

G(f)(t) dλ(t)

is a right-invariant mean on C(L). Clearly, this mapping is a mean so it remains
to show that it is right-invariant. To see this, let l ∈ L. Then g · l · g−1 ∈ L and∫

L

G(Rl(f))(t) dλ(t) =

∫
L

Rl(f)(g−1 · t · g) dλ(t)

=

∫
L

f(g−1 · t · g · l) dλ(t)

=

∫
L

f(g−1 · [t · (g · l · g−1)] · g) dλ(t)

=

∫
L

G(f)(t · (g · l · g−1)) dλ(t)

=

∫
L

Rg·l·g−1(G(f))(t) dλ(t)

=

∫
L

G(f)(t) dλ(t) since λ is right-invariant.

Now, since there is only one right-invariant mean on C(L) we must have that∫
L

G(f)(t) dλ(t) =

∫
L

f(g−1 · t · g) dλ(t) =

∫
L

f(t) dλ(t) for all f ∈ C(L).

It now follows that equation (∗) holds. Next, we show that Rg(P (f)) = P (Rg(f))
for all g ∈ G and f ∈ C(G). To this end, let g ∈ G and f ∈ C(G). Then for any
x ∈ G,

Rg(P (f))(x) = P (f)(x · g) =

∫
L

f(x · g · t) dλ(t) =

∫
L

f(x · t · g) dλ(t) by (∗)

=

∫
L

Rg(f)(x · t) dλ(t) = P (Rg(f))(x).

Let µ be the unique right-invariant mean on π#(C(H)), given to us by Proposi-
tion 1.1. Let µ∗ : C(G) → R be defined by, µ∗(f) := µ(P (f)). It is now easy to
verify that µ∗ is a right-invariant mean on C(G).

So it remains to prove uniqueness. Suppose that µ∗ and ν∗ are right-invariant
means on C(G). Since, by Proposition 1.1, we know that µ∗|π#(C(H)) = ν∗|π#(C(H))
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it will be sufficient to show that µ∗(f) = µ∗(P (f)) and ν∗(f) = ν∗(P (f)) for each
f ∈ C(G). We shall apply Riesz’s representation theorem along with Fubini’s
theorem. Let µ be the probability measure on G that represents µ∗ and let
f ∈ C(G). Then

µ∗(f) =

∫
G

f(s) dµ(s) =

∫
L

∫
G

f(s · t) dµ(s) dλ(t)

=

∫
G

∫
L

f(s · t) dλ(t) dµ(s)

=

∫
G

P (f)(s) dµ(s) = µ∗(P (f)).

A similar argument show that ν∗(f) = ν∗(P (f)). This completes the proof. �

This paper is the culmination of work done many people, starting with the
work of H. Furstenberg in [4] on the existence of invariant measures on distal
flows. This work was later simplified and phrased in terms of CHART groups
by I. Namioka in [8]. The results of Namioka were further generalised by R.
Ellis, [3]. In 1992, P. Milnes and J. Pym, [5] showed that every CHART group
(that satisfies some countability condition) admits a unique right-invariant mean
(unique right-invariant measure) called the Haar mean (Haar measure). Later, in
[6], Milne and Pym managed to remove the countability condition from the proof
contained in [5] by appealing to a result from [3]. Finally, in [7], a direct proof of
the existence and uniqueness of a right-invariant mean on a CHART group was
given, however, this proof still relied upon the results from [5].

In the present paper we give a stream-lined proof (that does not require knowl-
edge from topological dynamics) of the existence and uniqueness of a right-
invariant mean on a CHART group.

2. Groups

Let (G, ·, τ) be a right topological group and let H be a subgroup of G. We
shall denote by (H, τH) the set H equipped with the relative τ -topology. It is
easy to see that (H, ·, τH) is also a right topological group.

Now let G/H be the set {xH : x ∈ G} of all left cosets of H in G and give
G/H the quotient topology q(τ) induced from (G, τ) by the map π : G → G/H
defined by π(x) := xH.

Note that π is an open mapping because, if U is an open subset of G then

π−1(π(U)) = UH =
⋃
{Ux : x ∈ H}

and this last set is open since right multiplication is a homeomorphism on G.

If H is a normal subgroup of a right(left)[semi] topological group (G, ·, τ) then
one can check that (G/H, ·, q(τ)) is also a right(left)[semi] topological group.

In order to continue our investigations further we need to introduce a new
topology.
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2.1. The σ-topology. Let (G, ·, τ) be a right topological group and let ϕ : G×
G→ G be the map defined by

ϕ(x, y) := x−1 · y.

Then the quotient topology on G induced from (G × G, τ × τ) by the map ϕ is
called the σ(G, τ)-topology or σ-topology.

The proof of the next result can be found in [8, Theorem 1.1,Theorem 1.3]
or [9, Lemma 4.3].

Lemma 2.1. Let (G, ·, τ) be a right topological group. Then,

(i) (G, σ) is a semitopological group.
(ii) σ ⊆ τ .
(iii) (G/H, q(τ)) is Hausdorff provided the subgroup H is closed with respect

to the σ-topology on G.

2.2. Admissibility and CHART groups. Let (G, ·, τ) be a right topological
group and let Λ(G, τ) be the set of all x ∈ G such that the map y 7→ x · y is τ
continuous. If Λ(G, τ) is τ -dense in G then (G, τ) is said to be admissible.

The proof for the following proposition may be found in [8, Theorem 1.2,
Corollary 1.1] or [9, Proposition 4.4, Proposition 4.5].

Proposition 2.2. Let (G, ·, τ) be an admissible right topological group.

(i) If U is the family of all τ -open neighbuorhoods of e in G then
{U−1U : U ∈ U} is a base of open neighbuorhoods of e in (G, σ).

(ii) If N(G, τ) :=
⋂
{U−1U : U ∈ U} then N(G, τ) = {e}

σ
.

A compact Hausdorff admissible right topological group (G, ·, τ) is called a
CHART group.

The proof for the following result may be found [8, Proposition 2.1] or [9,
Proposition 4.6].

Proposition 2.3. Let (G, ·, τ) be a CHART group. Then the following hold:

(i) If L is a σ-closed normal subgroup of G, then so is N(L, σL).
(ii) If m : (G/N(L, σL), q(τ)) × (L/N(L, σL), q(τ)) → (G/N(L, σL), q(τ)) is

defined by

m(xN(L, σL), yN(L, σL)) := x · yN(L, σL) for all (x, y) ∈ G× L

then m is well-defined and continuous.

Remark 2.4. By considering the mapping π : G/N(L, σL)→ G/L, Theorem 1.2
and Proposition 2.3 we see that if (G/L, q(τ)) admits a unique right-invariant
mean then so does (G/N(L, σL), q(τ)). Hence if N(L, σL) is a proper subset of
L then we have made some progress towards showing that G ∼= G/{e} admits a
unique right-invariant mean.
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3. N(L, σL) 6= L

In this section we will show that if L is a nontrivial σ-closed normal subgroup
of a CHART group (G, ·, τ) then N(L, σL) is a proper subset of L.

Lemma 3.1. Let (H, ·) be a group and X be a nonempty set. Then for any
f : H → X, S := {s ∈ H : f(hs) = f(h) for all h ∈ H} is a subgroup of H.

Proof. Clearly, e ∈ S. Now suppose that, s1, s2 ∈ S. Let h be any element of H
then

f(h(s1s2)) = f((hs1)s2) = f(hs1) = f(h)

Therefore, s1s2 ∈ S. Next, let s be any element of S and h be any element of H
then

f(h) = f(h(s−1s)) = f((hs−1)s) = f(hs−1).

Therefore, s−1 ∈ S. �

Lemma 3.2. Let (G, ·, τ) be a compact right topological group and let σ be a
topology on G weaker than τ such that (G, ·, σ) is also a right topological group.
If U is a dense open subset of (G, σ) then U is also a dense subset of (G, τ).

Proof. Let C := G\U . Then C is a σ-closed (hence τ -closed) nowhere-dense
subset of G. If U is not τ -dense in G then C contains a nonempty τ -open
subset. By the compactness of (G, τ) there exists a finite subset F of G such
that G =

⋃
{Cg : g ∈ F}. Now each Cg is nowhere dense in (G, σ) since each

right multiplication is a homeomorphism. This forms a contradiction since a
nonempty topological space can never be the union of a finite number of nowhere
dense subsets. �

Lemma 3.3. Let (G, ·, τ) be a CHART group and let Λ = Λ(G, τ). If A and B
are nonempty open subsets of (G, τ), then A−1B = (A ∩ Λ)−1B.

Proof. Let x ∈ A−1B. Then for some a ∈ A, ax ∈ B. Since B is open and A∩Λ is
dense in A there is a c ∈ A∩Λ such that cx ∈ B. Hence x ∈ c−1B ⊆ (A∩Λ)−1B.
Thus, A−1B ⊆ (A ∩ Λ)−1B. The reverse inclusion is obvious. �

Lemma 3.4. Let (G, ·, τ) be a compact Hausdorff right topological group. If S is
a nonempty subsemigroup of Λ(G, τ) then S is a subgroup of G.

Proof. In this proof we shall repeatedly use the following fact, [2, Lemma 1]
“Every nonempty compact right topological semigroup admits an idempotent
element (i.e., an element u such that u · u = u). Firstly, it is easy to see that S
is a subsemigroup of G. Hence, (S, ·) is a nonempty compact right topological
semigroup and so has an idempotent element u. However, since G is a group it
has only one idempotent element, namely e. Therefore, e = u ∈ S. Next, let s be
any element of S. Then S · s is a nonempty compact right topological semigroup
of S. Therefore, there exists an element s′ ∈ S such that (s′ · s) · (s′ · s) = (s′ · s).
Again, since G is a group, s′ · s = e. By multiplying both sides of this equation
by s−1 we see that s−1 = s′ ∈ S. �

The following lemma is a simplified form of the structure theorem found in [7].
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Lemma 3.5. Let (G, ·, τ) be a CHART group and let σ denote its σ-topology.
Suppose L is a nontrivial σ-closed subgroup of G. Then N(L, σL) is a proper
subset of L.

Proof. Let U denote the family of all open neighbuorhoods of e in (G, τ). Then it
follows from Proposition 2.2 that V = {U−1U : U ∈ U} is a base for the system
of open neighbourhoods of e in (G, σ). Then {V ∩ L : V ∈ V} is a basis for the
system of neighbourhoods of e in (L, σL). From the definition of N(L, σL) (see
Proposition 2.2 part (ii)) it follows that

N(L, σL) =
⋂
{(V ∩ L)−1(V ∩ L) : V ∈ V}.

The proof is by contradiction. So assume that N(L, σL) = L. Then

L =
⋂
{(V ∩ L)−1(V ∩ L) : V ∈ V}.

Hence, for each V ∈ V , (V ∩ L)−1(V ∩ L) = L, or equivalently, for each V ∈ V ,
(V ∩ L) is dense in (L, σL). That is, for each U ∈ U , (U−1U ∩ L) is open and
dense in (L, σL) and hence, by Lemma 3.2, dense in (L, τL).

Since L 6= {e}, there exists a point a ∈ L such that a 6= e. Note that since
(G, τ) is compact and Hausdorff there is a continuous function f on (G, τ) such
that f(e) = 0 and f ≡ 1 on a τ -neighbuorhood of a.

For the rest of the proof, the topology always refers to τ and we shall denote
Λ(G, τ) by Λ. By induction on n, we construct a sequence {Un : n ∈ N} in U , a
sequence {Vn : n ∈ N} of nonempty open subsets of G, each of which intersects
L and sequences {un : n ∈ N} and {vn : n ∈ N} in G which satisfy the following
conditions:

(i) vn ∈ U−1n−1Un−1∩(Vn−1∩Λ) = (Un−1∩Λ)−1Un−1∩(Vn−1∩Λ); by Lemma 3.3.
(ii) un ∈ Un−1 ∩ Λ;
(iii) Vn ⊂ Vn ⊂ Vn−1 ⊂ f−1(1) and Vn ∩ L 6= ∅;
(iv) unVn ⊂ Un−1;
(v) if Hn denotes the semigroup generated by {u1, v1, u2, v2, . . . , un, vn}; which

we enumerate as: Hn := {hnj : j ∈ N} and

Un := {t ∈ G : |f(hij t)− f(hij)| < 1/n for 1 ≤ i, j ≤ n}

then Hn ⊂ Λ and e ∈ Un ⊂ Un ⊂ Un−1.

Construction. We let U0 := G and let V0 be the interior of f−1(1) and u0, v0
are not defined. Assume that n ∈ N and that Uk, Vk are defined for 0 ≤ k < n
and vk, uk are defined for 0 < k < n. By our assumption there exists an x ∈
(Un−1∩Λ)−1Un−1∩ (Vn−1∩L). So there is a un ∈ Un−1∩Λ such that unx ∈ Un−1.
Since un ∈ Λ, x ∈ Vn−1 and Un−1 is open, there is an open neighbourhood Vn
of x such that x ∈ Vn ⊂ Vn ⊂ Vn−1 and unVn ⊂ Un−1. Then Vn ∩ L 6= ∅ since
x ∈ Vn ∩ L. Thus (ii)-(iv) are satisfied. Let vn be any element of Vn ∩ Λ, then
by (iv) and (ii), (i) is satisfied and Hn ⊂ Λ is defined. Finally, since the map
t 7→ |f(gt)− f(g)| is continuous for g ∈ Λ, the set Un is an open neighbourhood
of e and so condition (v) is satisfied. This completes the construction.

We let
U∞ =

⋂
{Un : n ∈ N} and H =

⋃
{Hn : n ∈ N}



INVARIANT MEANS ON CHART GROUPS 43

and let u∞, v∞ be cluster points of the sequences {un : n ∈ N}, {vn : n ∈ N}
respectively. Clearly u∞ ∈ U∞, v∞ ∈ V0 and H is a subgroup of G, by Lemma
3.4. Moreover, by the construction, f(ht) = f(h) for each h ∈ H and each
t ∈

⋂
{Un : n ∈ N}. Therefore, if we let

S = {s ∈ H : f(hs) = f(h) for each h ∈ H}
= {s ∈ H : f(hs) = f(h) for each h ∈ H}

then
⋂
{Un : n ∈ N} ∩H ⊂ S and S is a subgroup of G by Lemma 3.1. Further-

more, by (ii), u∞ ∈ U∞ ∩H ⊂ S and by (iv) unv∞ ∈ Un−1 ∩H for each n ∈ N.
Hence

u∞v∞ ∈
⋂
n∈N

Un−1 ∩H ⊂ S.

Therefore, v∞ = u−1∞ (u∞v∞) ∈ S−1S ⊂ S. Now, f(s) = 0 for all s ∈ S since

f(es) = f(e) = 0 for all s ∈ S.

Therefore, f(v∞) = 0. On the other hand, since v∞ ∈ V0 ⊂ f−1(1), f(v∞) = 1.
This contradiction completes the proof. �

4. Invariant means on CHART groups

In this section we will show that every CHART group admits a unique right-
invariant mean.

Theorem 4.1. Every CHART group (G, ·, τ) possesses a unique right-invariant
mean m on C(G).

Proof. Let L be the family of all σ-closed normal subgroups L of G for which
C(G/L) has a unique right-invariant mean. Clearly, L 6= ∅ as G ∈ L. Now, (L,⊆)
is a partially ordered set. We claim that (L,⊆) possesses a minimal element. To
prove this, it is sufficient to show that every totally ordered subfamily M of L
has a lower bound (in L). To this end, let M := {Mα : α ∈ A} be a nonempty
totally ordered subfamily of L. Let

M0 :=
⋂
{Mα : α ∈ A}.

Then M is a σ-closed normal subgroup of G and M0 ⊆ Mα for every α ∈ A.
Thus, to complete the proof of the claim we must show that M0 ∈ L, i.e., show
that C(G/M0) admits a unique right-invariant mean. For each α ∈ A, let πα :
G/M0 → G/Mα be defined by, πα(gM0) := gMα. Then πα is a continuous, open
and onto map and its dual map π#

α : C(G/Mα) → C(G/M0) is an isometric
algebra isomorphism of C(G/Mα) into C(G/M0). By Proposition 1.1, for each
α ∈ A, there exists a unique right-invariant mean mα on π#

α (C(G/Mα)). From the
Hahn-Banach extension theorem it follows that each mean mα has an extension to
a mean m∗α on C(G/M0). Let A :=

⋃
{π#

α (C(G/Mα)) : α ∈ A}. Then A is a sub-
algebra of C(G/M0), that contains all the constant functions and separates the
point of G/M0 since M0 :=

⋂
{Mα : α ∈ A}. Therefore, by the Stone-Weierstrass

theorem, A is dense in C(G/M0). Let m be a weak∗ cluster-point of the net
(m∗α : α ∈ A) in BC(G/M0)∗ . Clearly, m is a mean on C(G/M0). Furthermore, it is
routine to show that (i) m|A is a right-invariant mean on A and (ii) m|A is the



44 W.B. MOORS

only (unique) right-invariant mean on A . It now follows from continuity that m
is the one and only right-invariant mean on C(G/M0), i.e., M0 ∈ L.

Let L0 be a minimal element of L. Then by Remark 2.4, N(L0, σL0) ∈ L.
However, since N(L, σL0) ⊆ L0 and L0 is a minimal element of L we must have
that N(L, σL) = L0. Thus, by Lemma 3.5, it must be the case that L0 = {e}.
This completes the proof. �

Let us now note that the unique right-invariant mean given above is also par-
tially left invariant in the sense that for each g ∈ Λ(G, τ), m(Lg(f)) = m(f) for
all f ∈ C(G). To see why this is true, consider the mean m∗ on C(G) defined
by, m∗(f) := m(Lg(f)) for each f ∈ C(G) and some g ∈ Λ(G, τ). Then for any
h ∈ G,

m∗(Rh(f)) = m(Lg(Rh(f))) = m(Rh(Lg(f))) = m(Lg(f)) = m∗(f).

Therefore, m∗ is a right-invariant mean on C(G). Thus, m∗ = m and so

m(Lg(f)) = m∗(f) = m(f) for all f ∈ C(G) and all g ∈ Λ(G, τ).
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