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GENERALIZATIONS OF STEFFENSEN’S INEQUALITY BY
ABEL-GONTSCHAROFF POLYNOMIAL

JOSIP PEČARIĆ1, ANAMARIJA PERUŠIĆ2 AND KSENIJA SMOLJAK3∗

Communicated by A.R. Mirmostafaee

Abstract. In this paper generalizations of Steffensen’s inequality using Abel-
Gontscharoff interpolating polynomial are obtained. Moreover, in a special
case generalizations by Abel-Gontscharoff polynomial reduce to known weaker
conditions for Steffensen’s inequality. Furthermore, Ostrowski type inequalities
related to obtained generalizations are given.

1. Introduction

Let −∞ < a < b <∞ and let a ≤ a1 < a2 < ... < an ≤ b be the given points.
For f ∈ Cn[a, b] Abel-Gontscharoff interpolating polynomial PAG of degree (n−1)
satisfying Abel-Gontscharoff conditions

P
(i)
AG(ai+1) = f (i)(ai+1), 0 ≤ i ≤ n− 1

exists uniquely ([7], [12]).
This conditions in particular include two-point right focal conditions

P
(i)
AG2(a1) = f (i)(a1), 0 ≤ i ≤ α,

P
(i)
AG2(a2) = f (i)(a2), α + 1 ≤ i ≤ n− 1, a ≤ a1 < a2 ≤ b.

First, we give representations of Abel-Gontscharoff interpolating polynomial.
For details and proofs see [1].
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Theorem 1.1. Abel-Gontscharoff interpolating polynomial PAG of the function
f can be expressed as

PAG(t) =
n−1∑
i=0

Ti(t)f
(i)(ai+1),

where T0(t) = 1 and Ti, 1 ≤ i ≤ n − 1 is the unique polynomial of degree i
satisfying

T
(k)
i (ak+1) = 0, 0 ≤ k ≤ i− 1

T
(i)
i (ai+1) = 1

and it can be written as

Ti(t) =
1

1!2! · · · i!

∣∣∣∣∣∣∣∣∣∣

1 a1 a21 . . . ai−11 ai1
0 1 2a2 . . . (i− 1)ai−22 iai−12
...

...
... . . .

...
...

0 0 0 . . . (i− 1)! i!ai
1 t t2 . . . ti−1 ti

∣∣∣∣∣∣∣∣∣∣
=

∫ t

a1

∫ t1

a2

· · ·
∫ ti−1

ai

dtidti−1 · · · dt1, (t0 = t). (1)

In particular, we have

T0(t) = 1

T1(t) = t− a1

T2(t) =
1

2

[
t2 − 2a2t+ a1(2a2 − a1)

]
.

Corollary 1.2. The two-point right focal interpolating polynomial PAG2 of the
function f can be written as

PAG2(t) =
α∑
i=0

(t− a1)i

i!
f (i)(a1)

+
n−α−2∑
j=0

[
j∑
i=0

(t− a1)α+1+i(a1 − a2)j−i

(α + 1 + i)!(j − i)!

]
f (α+1+j)(a2).

The associated error eAG(t) = f(t)−PAG(t) can be represented in terms of the
Green’s function gAG(t, s) of the boundary value problem

z(n) = 0, z(i)(ai+1) = 0, 0 ≤ i ≤ n− 1

and appears as (see [1]):

gAG(t, s) =



k−1∑
i=0

Ti(t)
(n−i−1)!(ai+1 − s)n−i−1, ak ≤ s ≤ t;

−
n−1∑
i=k

Ti(t)
(n−i−1)!(ai+1 − s)n−i−1, t ≤ s ≤ ak+1

k = 0, 1, . . . , n (a0 = a, an+1 = b)

(2)
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Corresponding to the two-point right focal conditions Green’s function gAG2(t, s)
of the boundary value problem

z(n) = 0, z(i)(a1) = 0, 0 ≤ i ≤ α, z(i)(a2) = 0, α + 1 ≤ i ≤ n− 1

is given by (see [1]):

gAG2(t, s) =
1

(n− 1)!


α∑
i=0

(
n−1
i

)
(t− a1)i(a1 − s)n−i−1, a ≤ s ≤ t;

−
n−1∑
i=α+1

(
n−1
i

)
(t− a1)i(a1 − s)n−i−1, t ≤ s ≤ b.

(3)

Further, for a1 ≤ s, t ≤ a2 the following inequalities hold

(−1)n−α−1
∂igAG2(t, s)

∂ti
≥ 0, 0 ≤ i ≤ α

(−1)n−i
∂igAG2(t, s)

∂ti
≥ 0, α + 1 ≤ i ≤ n− 1.

Theorem 1.3. Let f ∈ Cn[a, b], and let PAG be its Abel-Gontscharoff interpolat-
ing polynomial. Then

f(t) = PAG(t) + eAG(t)

=
n−1∑
i=0

Ti(t)f
(i)(ai+1) +

b∫
a

gAG(t, s)f (n)(s)ds (4)

where Ti is defined by (1) and gAG(t, s) is defined by (2).

Theorem 1.4. Let f ∈ Cn[a, b], and let PAG2 be its two-point right focal Abel-
Gontscharoff interpolating polynomial. Then

f(t) = PAG2(t) + eAG2(t)

=
α∑
i=0

(t− a1)i

i!
f (i)(a1) +

n−α−2∑
j=0

[
j∑
i=0

(t− a1)α+1+i(a1 − a2)j−i

(α + 1 + i)!(j − i)!

]
f (α+1+j)(a2)

+

b∫
a

gAG2(t, s)f
(n)(s)ds (5)

where gAG2(t, s) is defined by (3).

Finally, we recall the well-known Steffensen inequality which reads, [18]:

Theorem 1.5. Suppose that f is decreasing and g is integrable on [a, b] with

0 ≤ g ≤ 1 and λ =
∫ b
a
g(t)dt. Then we have∫ b

b−λ
f(t)dt ≤

∫ b

a

f(t)g(t)dt ≤
∫ a+λ

a

f(t)dt. (6)

The inequalities are reversed for f increasing.
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Since its appearance in 1918 Steffensen’s inequality has been the subject of
investigation by many mathematicians. Various papers have been devoted to
generalizations and refinements of Steffensen’s inequality and its connection to
other important inequalities. In the following theorem we recall weaker conditions
on the function g obtained by Milovanović and Pečarić in [14].

Theorem 1.6. Let f and g be integrable functions on [a, b] such that f is de-

creasing and let λ =
∫ b
a
g(t)dt.

a) If ∫ x

a

g(t)dt ≤ x− a and

∫ b

x

g(t)dt ≥ 0 for every x ∈ [a, b], (7)

then the second inequality in (6) holds.
b) If ∫ b

x

g(t)dt ≤ b− x and

∫ x

a

g(t)dt ≥ 0 for every x ∈ [a, b], (8)

then the first inequality in (6) holds.

Steffensen’s inequality is important not only in the theory of inequalities but
also in many applications such as statistics, functional equations, special func-
tions, time scales etc. Some of these applications can be found in [2], [5], [6], [9],
[10], [11], and [15].

The aim of this paper is to obtain new generalizations of Steffensen’s inequality
using Abel-Gontscharoff interpolating polynomial. Our new generalizations in-
volve n− convex function f instead of restricting it to be a decreasing function as
in Steffensen’s inequality. As a special case of these generalizations (for n = 1) we
obtain weaker conditions for Steffensen’s inequality given in Theorem 1.6. These
new generalizations in the end enable us to construct linear functionals whose
action on particularly chosen families of functions give us exponentially convex
functions. However, there is lack of examples of this functions since there are no
operative criteria to recognize this type of functions, so our constructed examples
are valuable addition to the theory of that functions. We also get additional
results about Ostrowski type inequalities.

2. Difference of integrals on two intervals

If [a, b] ∩ [c, d] 6= ∅ we have four possible cases for two intervals [a, b] and [c, d].
We observe cases [c, d] ⊂ [a, b] and [a, b] ∩ [c, d] = [c, b] since other two cases are
obtained by changing a↔ c and b↔ d.

In this paper by T
[a,b]
w,n we denote

T [a,b]
w,n =

n−1∑
i=0

f (i)(ai+1)

b∫
a

w(t)Ti(t)dt

where Ti is defined by (1).
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Theorem 2.1. Let f : [a, b] ∪ [c, d]→ R be of class Cn on [a, b] ∪ [c, d] for some
n ≥ 1. Let w : [a, b]→ R and u : [c, d]→ R. Then if [a, b] ∩ [c, d] 6= ∅ we have∫ b

a

w (t) f (t) dt−
∫ d

c

u (t) f (t) dt− T [a,b]
w,n + T [c,d]

u,n =

∫ max{b,d}

a

Kn (s) f (n) (s) ds,

(9)

where in case [c, d] ⊆ [a, b] ,

Kn (s) =



∫ b
a
w(t)gAG (t, s) dt, s ∈ [a, c] ,∫ b

a
w(t)gAG (t, s) dt−

∫ d
c
u(t)gAG (t, s) dt, s ∈ 〈c, d] ,∫ b

a
w(t)gAG (t, s) dt, s ∈ 〈d, b] ,

(10)

and in case [a, b] ∩ [c, d] = [c, b] ,

Kn (s) =



∫ b
a
w(t)gAG (t, s) dt s ∈ [a, c] ,∫ b

a
w(t)gAG (t, s) dt−

∫ d
c
u(t)gAG (t, s) dt, s ∈ 〈c, b] ,

−
∫ d
c
u(t)gAG (t, s) dt, s ∈ 〈b, d] .

(11)

Proof. Multiplying identity (4) by w(t), then integrating from a to b and using
Fubini’s theorem we obtain
b∫

a

w(t)f(t)dt =
n−1∑
i=0

f (i)(ai+1)

b∫
a

w(t)Ti(t)dt+

b∫
a

f (n)(s)

 b∫
a

w(t)gAG(t, s)dt

 ds.

(12)

Furthermore, multiplying identity (4) by u(t), then integrating from c to d and us-
ing Fubini’s theorem we obtain similar identity to identity (12). Now subtracting
these two identities we obtain (9). �

Remark 2.2. Using two-point right focal Abel-Gontscharoff polynomial, i.e. us-
ing (5), inequality (9) becomes∫ b

a

w (t) f (t) dt−
∫ d

c

u (t) f (t) dt−Q[a,b]
w,n +Q[c,d]

u,n =

∫ max{b,d}

a

Kn (s) f (n) (s) ds,

where gAG(t, s) is replaced by gAG2(t, s) in definition of Kn(s) and by Q
[a,b]
w,n we

denote

Q[a,b]
w,n =

α∑
i=0

f (i)(a1)

i!

b∫
a

w(t)(t− a1)idt

+
n−α−2∑
j=0

f (α+1+j)(a2)

 j∑
i=0

(a1 − a2)j−i

(α + 1 + j)!(j − i)!

b∫
a

w(t)(t− a1)α+1+idt

 .
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Theorem 2.3. Let f : [a, b] ∪ [c, d] → R be n−convex on [a, b] ∪ [c, d] and let
w : [a, b]→ R and u : [c, d]→ R. Then if [a, b] ∩ [c, d] 6= ∅ and

Kn(s) ≥ 0, (13)

we have ∫ b

a

w (t) f (t) dt− T [a,b]
w,n ≥

∫ d

c

u(t)f (t) dt− T [c,d]
u,n (14)

where in case [c, d] ⊆ [a, b] , Kn(s) is defined by (10) and in case [a, b] ∩ [c, d] =
[c, b] , Kn(s) is defined by (11).

Proof. Since f is n-convex, without loss of generality we can assume that f is
n−times differentiable and f (n) ≥ 0 see [17, p. 16 and p. 293]. Now we can apply
Theorem 2.1 to obtain (14). �

Remark 2.4. As in Remark 2.2, using two-point right focal Abel-Gontscharoff
polynomial, inequality (14) becomes∫ b

a

w (t) f (t) dt−Q[a,b]
w,n ≥

∫ d

c

u(t)f (t) dt−Q[c,d]
u,n .

3. Generalization of Steffensen’s inequality by
Abel-Gontscharoff polynomial

For a special choice of weights and intervals in results from previous section we
obtain generalizations of Steffensen’s inequality.

Theorem 3.1. Let f : [a, b]∪ [a, a+ λ]→ R be n−convex on [a, b]∪ [a, a+λ] for
some n ≥ 1 and let w : [a, b]→ R. Then if

Kn(s) ≥ 0, (15)

we have ∫ b

a

w (t) f (t) dt− T [a,b]
w,n ≥

∫ a+λ

a

f (t) dt− T [a,a+λ]
1,n (16)

where in case a ≤ a+ λ ≤ b,

Kn (s) =


∫ b
a
w(t)gAG (t, s) dt−

∫ a+λ
a

gAG (t, s) dt, s ∈ [a, a+ λ],∫ b
a
w(t)gAG (t, s) dt, s ∈ 〈a+ λ, b] ,

(17)

and in case a ≤ b ≤ a+ λ,

Kn (s) =


∫ b
a
w(t)gAG (t, s) dt−

∫ a+λ
a

gAG (t, s) dt, s ∈ [a, b],

−
∫ a+λ
a

gAG (t, s) dt, s ∈ 〈b, a+ λ] .

(18)

Proof. We take c = a, d = a+ λ and u(t) = 1 in Theorem 2.3. �

Remark 3.2. For n = 1 and λ ≤ b− a, K1(s) becomes

K1 (s) =


−
∫ s
a
w(t)dt+ s− a, s ∈ [a, a+ λ],∫ b
s
w(t)dt, s ∈ 〈a+ λ, b] .



GENERALIZATIONS OF STEFFENSEN’S INEQUALITY 51

So, if ∫ s

a

w(t)dt ≤ s− a for a ≤ s ≤ a+ λ (19)

and ∫ b

s

w(t)dt ≥ 0 for a+ λ < s ≤ b (20)

and f is increasing, from Theorem 3.1 we have∫ b

a

w(t)f(t)dt− f(a+ λ)

∫ b

a

w(t)dt ≥
∫ a+λ

a

f(t)dt− λf(a+ λ).

Furthermore, for λ =
∫ b
a
w(t)dt we obtain the right-hand side of Steffensen’s in-

equality for an increasing function f . In [14] Milovanović and Pečarić showed that
conditions (19) and (20) are equivalent to condition (7), so for n = 1 Theorem 3.1
reduces to Theorem 1.6 a).

Theorem 3.3. Let f : [a, b]∪ [b− λ, b]→ R be n−convex on [a, b]∪ [b− λ, b] for
some n ≥ 1 and let w : [a, b]→ R. Then if

Kn(s) ≥ 0, (21)

we have ∫ b

b−λ
f (t) dt− T [b−λ,b]

1,n ≥
∫ b

a

w (t) f (t) dt− T [a,b]
w,n (22)

where in case a ≤ b− λ ≤ b,

Kn (s) =


−
∫ b
a
w(t)gAG (t, s) dt, s ∈ [a, b− λ],∫ b

b−λ gAG (t, s) dt−
∫ b
a
w(t)gAG (t, s) dt, s ∈ 〈b− λ, b] ,

(23)

and in case b− λ ≤ a ≤ b,

Kn (s) =


∫ b
b−λ gAG (t, s) dt, s ∈ [b− λ, a],∫ b

b−λ gAG (t, s) dt−
∫ b
a
w(t)gAG (t, s) dt, s ∈ 〈a, b] .

(24)

Proof. First we change a ↔ c, b ↔ d and w ↔ u in Theorem 2.3 and consider
cases [a, b] ⊆ [c, d] and [a, b] ∩ [c, d] = [c, b]. Then we take c = b − λ, d = b and
u(t) = 1 to finish the proof. �

Remark 3.4. For n = 1 and λ ≤ b− a, K1(s) becomes

K1 (s) =


∫ s
a
w(t)dt, s ∈ [a, b− λ],

b− s−
∫ b
s
w(t)dt, s ∈ 〈b− λ, b] .

So, if ∫ s

a

w(t)dt ≥ 0 for a ≤ s ≤ b− λ (25)

and ∫ b

s

w(t)dt ≤ b− s for b− λ < s ≤ b (26)
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and f is increasing from Theorem 3.3 we have∫ b

b−λ
f(t)dt− λf(b− λ) ≥

∫ b

a

w(t)f(t)dt− f(b− λ)

∫ b

a

w(t)dt.

Furthermore, for λ =
∫ b
a
w(t)dt we obtain the left-hand side of Steffensen’s in-

equality for an increasing function f . Similar as in [14] we can show that condi-
tions (25) and (26) are equivalent to condition (8). Hence, for n = 1 Theorem 3.3
reduces to Theorem 1.6 b).

4. Estimation of the difference

In this section we give Ostrowski type inequalities related to results from pre-
vious sections.

Theorem 4.1. Suppose that all assumptions of Theorem 2.1 hold. Assume (p, q)
is a pair of conjugate exponents, that is 1 ≤ p, q ≤ ∞, 1/p + 1/q = 1. Let∣∣f (n)

∣∣p : [a, b] ∪ [c, d] → R be an R-integrable function for some n ≥ 1. Then we
have ∣∣∣∣∫ b

a

w(t)f (t) dt−
∫ d

c

u (t) f (t) dt− T [a,b]
w,n + T [c,d]

u,n

∣∣∣∣
≤
∥∥f (n)

∥∥
p

(∫ max{b,d}

a

|Kn (s)|q ds

) 1
q

.

(27)

The constant
(∫ max{b,d}

a
|Kn (s)|q ds

)1/q
in the inequality (27) is sharp for 1 <

p ≤ ∞ and the best possible for p = 1.

Proof. Using inequality (9) and applying Hölder’s inequality we obtain∣∣∣∣∫ b

a

w(t)f (t) dt−
∫ d

c

u (t) f (t) dt− T [a,b]
w,n + T [c,d]

u,n

∣∣∣∣
=

∣∣∣∣∣
∫ max{b,d}

a

Kn(s)f (n)(s)ds

∣∣∣∣∣ ≤ ∥∥f (n)
∥∥
p

(∫ max{b,d}

a

|Kn (s)|q ds

) 1
q

.

For the proof of the sharpness of the constant
(∫ max{b,d}

a
|Kn (s)|q ds

) 1
q

we will

find a function f for which the equality in (27) is obtained.
For 1 < p <∞ take f to be such that

f (n)(s) = sgnKn(s) |Kn(s)|
1

p−1 .

For p =∞ take f (n)(s) = sgnKn(s).
For p = 1 we will prove that∣∣∣∣∣
∫ max{b,d}

a

Kn (s) f (n)(s)ds

∣∣∣∣∣ ≤ max
s∈[a,max{b,d}]

|Kn(s)|

(∫ max{b,d}

a

∣∣f (n)(s)
∣∣ ds) (28)
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is the best possible inequality. Suppose that |Kn(s)| attains its maximum at
s0 ∈ [a,max{b, d}]. First we assume that Kn(s0) > 0. For ε small enough we
define fε(s) by

fε(s) =


0, a ≤ s ≤ s0,
1
ε n!

(s− s0)n, s0 ≤ s ≤ s0 + ε,
1
n!

(s− s0)n−1, s0 + ε ≤ s ≤ max{b, d}.

Then for ε small enough∣∣∣∣∣
∫ max{b,d}

a

Kn(s)f (n)(s)ds

∣∣∣∣∣ =

∣∣∣∣∫ s0+ε

s0

Kn(s)
1

ε
ds

∣∣∣∣ =
1

ε

∫ s0+ε

s0

Kn(s)ds.

Now from inequality (28) we have

1

ε

∫ s0+ε

s0

Kn(s)ds ≤ Kn(s0)

∫ s0+ε

s0

1

ε
ds = Kn(s0).

Since,

lim
ε→0

1

ε

∫ s0+ε

s0

Kn(s)ds = Kn(s0)

the statement follows. In case Kn(s0) < 0 we define

fε(s) =


1
n!

(s− s0 − ε)n−1, , a ≤ s ≤ s0,

− 1
ε n!

(s− s0 − ε)n, s0 ≤ s ≤ s0 + ε,

0, s0 + ε ≤ s ≤ max{b, d},

and the rest of the proof is the same as above. �

Theorem 4.2. Suppose that all assumptions of Theorem 2.1 for c = a and d =
a+ λ hold. Assume (p, q) is a pair of conjugate exponents, that is 1 ≤ p, q ≤ ∞,
1/p+ 1/q = 1. Let

∣∣f (n)
∣∣p : [a, b] ∪ [a, a+ λ]→ R be an R-integrable function for

some n ≥ 1. Let Kn(s) be defined by (17) in case a ≤ a + λ ≤ b and by (18) in
case a ≤ b ≤ a+ λ. Then we have∣∣∣∣∫ b

a

w(t)f (t) dt−
∫ a+λ

a

f (t) dt− T [a,b]
w,n + T

[a,a+λ]
1,n

∣∣∣∣
≤
∥∥f (n)

∥∥
p

(∫ max{b,a+λ}

a

|Kn (s)|q ds

) 1
q

.

(29)

The constant
(∫ max{b,a+λ}

a
|Kn (s)|q ds

)1/q
in the inequality (29) is sharp for 1 <

p ≤ ∞ and the best possible for p = 1.

Proof. We take c = a, d = a+ λ and u(t) = 1 in Theorem 4.1. �

Theorem 4.3. Suppose that all assumptions of Theorem 2.1 for c = b − λ and
d = b hold. Assume (p, q) is a pair of conjugate exponents, that is 1 ≤ p, q ≤ ∞,
1/p+ 1/q = 1. Let

∣∣f (n)
∣∣p : [a, b] ∪ [b− λ, b]→ R be an R-integrable function for
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some n ≥ 1. Let Kn(s) be defined by (23) in case a ≤ b − λ ≤ b and by (24) in
case b− λ ≤ a ≤ b. Then we have∣∣∣∣∫ b

b−λ
f (t) dt−

∫ b

a

w(t)f (t) dt− T [b−λ,b]
1,n + T [a,b]

w,n

∣∣∣∣
≤
∥∥f (n)

∥∥
p

(∫ b

min{a,b−λ}
|Kn (s)|q ds

) 1
q

.

(30)

The constant
(∫ b

min{a,b−λ} |Kn (s)|q ds
)1/q

in the inequality (30) is sharp for 1 <

p ≤ ∞ and the best possible for p = 1.

Proof. First we change a ↔ c, b ↔ d and w ↔ u in Theorem 2.1 and then we
take c = b − λ, d = b and u(t) = 1. The rest of the proof is similar to the proof
of Theorem 4.1. �

5. n− exponetial convexity and exponential convexity

We begin this section by giving some definitions and notions which are used
frequently in the results. For more details see e.g. [4], [13] and [16].

Definition 5.1. A function ψ : I → R is n-exponentially convex in the Jensen
sense on I if

n∑
i,j=1

ξiξj ψ

(
xi + xj

2

)
≥ 0,

hold for all choices ξ1, . . . , ξn ∈ R and all choices x1, . . . , xn ∈ I. A function
ψ : I → R is n-exponentially convex if it is n-exponentially convex in the Jensen
sense and continuous on I.

Remark 5.2. It is clear from the definition that 1-exponentially convex function
in the Jensen sense is in fact a nonnegative function. Also, n-exponentially convex
function in the Jensen sense is k-exponentially convex in the Jensen sense for every
k ∈ N, k ≤ n.

Definition 5.3. A function ψ : I → R is exponentially convex in the Jensen
sense on I if it is n-exponentially convex in the Jensen sense for all n ∈ N.

A function ψ : I → R is exponentially convex if it is exponentially convex in
the Jensen sense and continuous.

Remark 5.4. It is known that ψ : I → R is log-convex in the Jensen sense if
and only if

α2ψ(x) + 2αβψ

(
x+ y

2

)
+ β2ψ(y) ≥ 0,

holds for every α, β ∈ R and x, y ∈ I. It follows that a positive function is
log-convex in the Jensen sense if and only if it is 2-exponentially convex in the
Jensen sense.

A positive function is log-convex if and only if it is 2-exponentially convex.
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Proposition 5.5. If f is a convex function on I and if x1 ≤ y1, x2 ≤ y2, x1 6=
x2, y1 6= y2, then the following inequality is valid

f(x2)− f(x1)

x2 − x1
≤ f(y2)− f(y1)

y2 − y1
.

If the function f is concave, the inequality is reversed.

Definition 5.6. Let f be a real-valued function defined on the segment [a, b]. The
n−th order divided difference of the function f at distinct points x0, ..., xn ∈ [a, b],
is defined recursively (see [3], [17]) by

f [xi] = f(xi), (i = 0, . . . , n)

and

f [x0, . . . , xn] =
f [x1, . . . , xn]− f [x0, . . . , xn−1]

xn − x0
.

The value f [x0, . . . , xn] is independent of the order of the points x0, . . . , xn.
Previous definition may be extended to include the case in which some or all of
the points coincide. Assuming that f (j−1)(x) exists, we define

f [x, . . . , x︸ ︷︷ ︸
j−times

] =
f (j−1)(x)

(j − 1)!
. (31)

Motivated by inequalities (14),(16) and (22), under assumptions of Theorems
2.3, 3.1 and 3.3 we define following linear functionals:

L1(f) =

∫ b

a

w (t) f (t) dt−
∫ d

c

u(t)f (t) dt− T [a,b]
w,n + T [c,d]

u,n (32)

L2(f) =

∫ b

a

w (t) f (t) dt−
∫ a+λ

a

f (t) dt− T [a,b]
w,n + T

[a,a+λ]
1,n (33)

L3(f) =

∫ b

b−λ
f (t) dt−

∫ b

a

w (t) f (t) dt− T [b−λ,b]
1,n + T [a,b]

w,n (34)

Also, we define I1 = [a, b]∪ [c, d], I2 = [a, b]∪ [a, a+λ] and I3 = [a, b]∪ [b−λ, b].

Remark 5.7. Under the assumptions of Theorems 2.3, 3.1 and 3.3 respectively
it holds Li(f) ≥ 0, i = 1, 2, 3 for all n− convex functions f .

Now we will show how to generate means for our list of linear functionals.

Theorem 5.8. Let f : Ii → R (i = 1, 2, 3) be such that f ∈ Cn(Ii). If inequalities
in (13) (i = 1), (15) (i = 2) and (21) (i = 3) hold, then there exist ξi ∈ Ii such
that

Li(f) = f (n)(ξi)Li(ϕ), i = 1, 2, 3 (35)

where ϕ(x) = xn

n!
.
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Proof. Let us denote m = min f (n)(x) and M = max f (n)(x). For a given function
f ∈ Cn(Ii) we define functions F1, F2 : Ii → R with

F1(x) =
Mxn

n!
− f(x) and F2(x) = f(x)− mxn

n!
.

Now F
(n)
1 (x) = M − f (n)(x) ≥ 0, x ∈ Ii, so we conclude Li(F1) ≥ 0 and then

Li(f) ≤ M · Li(ϕ). Similarly, from F
(n)
2 (x) = f (n)(x) − m ≥ 0 we conclude

m · Li(ϕ) ≤ Li(f).

If Li(ϕ) = 0, (35) holds for all ξi ∈ Ii. Otherwise, m ≤ Li(f)
Li(ϕ)

≤ M . Since

f (n)(x) is continuous on Ii there exist ξi ∈ Ii such that (35) holds and the proof
is complete. �

Theorem 5.9. Let f, g : Ii → R (i = 1, 2, 3) be such that f, g ∈ Cn(Ii) and
g(n)(x) 6= 0 for every x ∈ Ii. If inequalities in (13) (i = 1), (15) (i = 2) and (21)
(i = 3) hold, then there exist ξi ∈ Ii such that

Li(f)

Li(g)
=
f (n)(ξi)

g(n)(ξi)
, i = 1, 2, 3. (36)

Proof. We define functions φi(x) = f(x)Li(g) − g(x)Li(f), i = 1, 2, 3. Accord-

ing to Theorem 5.8 there exists ξi ∈ Ii such that Li(φi) = φ
(n)
i (ξi)Li(ϕ). Since

Li(φi) = 0 it follows f (n)(ξi)Li(g)− g(n)(ξi)Li(f) = 0 and (36) is proved. �

We will use previously defined functionals to construct exponentially convex
functions, a special type of convex functions that are invented by S. N. Bernstein
over eighty years ago in [4]. An elegant method of constructing n− exponentially
convex and exponentially convex functions is given in [13]. We use this method
to prove the n−exponential convexity for above defined functionals. In the sequel
the notion log denotes the natural logarithm function.

Theorem 5.10. Let Ω = {fp : p ∈ J}, where J is an interval in R, be a family
of functions defined on an interval Ii, i = 1, 2, 3 in R such that the function
p 7→ fp[x0, . . . , xm] is n−exponentially convex in the Jensen sense on J for every
(m + 1) mutually different points x0, . . . , xm ∈ Ii, i = 1, 2, 3. Let Li, i = 1, 2, 3
be linear functionals defined by (32)− (34). Then p 7→ Li(fp) is n−exponentially
convex function in the Jensen sense on J .
If the function p 7→ Li(fp) is continuous on J , then it is n−exponentially convex
on J .

Proof. For ξj ∈ R, j = 1, . . . , n and pj ∈ J, j = 1, . . . , n, we define the function

g(x) =
n∑

j,k=1

ξjξkf pj+pk
2

(x).

Using the assumption that the function p 7→ fp[x0, . . . , xm] is n-exponentially
convex in the Jensen sense, we have

g[x0, . . . , xm] =
n∑

j,k=1

ξjξkf pj+pk
2

[x0, . . . , xm] ≥ 0,
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which in turn implies that g is a m-convex function on J , so Li(g) ≥ 0, i = 1, 2, 3.
Hence

n∑
j,k=1

ξjξkLi

(
f pj+pk

2

)
≥ 0.

We conclude that the function p 7→ Li(fp) is n-exponentially convex on J in the
Jensen sense.

If the function p 7→ Li(fp) is also continuous on J , then p 7→ Li(fp) is n-
exponentially convex by definition. �

The following corollaries are immediate consequences of the above theorem:

Corollary 5.11. Let Ω = {fp : p ∈ J}, where J is an interval in R, be a family
of functions defined on an interval Ii, i = 1, 2, 3 in R, such that the function
p 7→ fp[x0, . . . , xm] is exponentially convex in the Jensen sense on J for every
(m + 1) mutually different points x0, . . . , xm ∈ Ii. Let Li, i = 1, 2, 3, be linear
functionals defined by (32)-(34). Then p 7→ Li(fp) is an exponentially convex
function in the Jensen sense on J . If the function p 7→ Li(fp) is continuous on
J, then it is exponentially convex on J .

Corollary 5.12. Let Ω = {fp : p ∈ J}, where J is an interval in R, be a family
of functions defined on an interval Ii, i = 1, 2, 3 in R, such that the function
p 7→ fp[x0, . . . , xm] is 2-exponentially convex in the Jensen sense on J for every
(m + 1) mutually different points x0, . . . , xm ∈ Ii. Let Li, i = 1, 2, 3 be linear
functionals defined by (32)-(34). Then the following statements hold:

(i) If the function p 7→ Li(fp) is continuous on J , then it is 2-exponentially
convex function on J . If p 7→ Li(fp) is additionally strictly positive, then
it is also log-convex on J . Furthermore, the following inequality holds
true:

[Li(fs)]
t−r ≤ [Li(fr)]

t−s [Li(ft)]
s−r

for every choice r, s, t ∈ J , such that r < s < t.
(ii) If the function p 7→ Li(fp) is strictly positive and differentiable on J, then

for every p, q, u, v ∈ J , such that p ≤ u and q ≤ v, we have

µp,q(Li,Ω) ≤ µu,v(Li,Ω), (37)

where

µp,q(Li,Ω) =


(
Li(fp)

Li(fq)

) 1
p−q

, p 6= q,

exp

(
d
dp
Li(fp)

Li(fp)

)
, p = q,

(38)

for fp, fq ∈ Ω.

Proof. (i) This is an immediate consequence of Theorem 5.10 and Remark
5.4.

(ii) Since p 7→ Li(fp) is positive and continuous, by (i) we have that p 7→ Li(fp)
is log-convex on J , that is, the function p 7→ logLi(fp) is convex on J .
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Applying Proposition 5.5 we get

logLi(fp)− logLi(fq)

p− q
≤ logLi(fu)− logLi(fv)

u− v
, (39)

for p ≤ u, q ≤ v, p 6= q, u 6= v. Hence, we conclude that

µp,q(Li,Ω) ≤ µu,v(Li,Ω).

Cases p = q and u = v follow from (39) as limit cases.
�

Remark 5.13. Note that the results from the above theorem and corollaries still
hold when two of the points x0, . . . , xm ∈ Ii, i = 1, 2, 3 coincide, say x1 = x0, for
a family of differentiable functions fp such that the function p 7→ fp[x0, . . . , xm] is
n-exponentially convex in the Jensen sense (exponentially convex in the Jensen
sense, log-convex in the Jensen sense), and furthermore, they still hold when all
m + 1 points coincide for a family of m differentiable functions with the same
property. The proofs use (31) and suitable characterization of convexity.

6. Applications to Stolarsky type means

In this section, we present several families of functions which fullfill the con-
ditions of Theorem 5.10, Corollary 5.11, Corollary 5.12 and Remark 5.13. This
enables us to construct a large families of functions which are exponentially con-
vex. For a discussion related to this problem see [8].

Example 6.1. Consider a family of functions

Ω1 = {fp : R→ R : p ∈ R}

defined by

fp(x) =

{
epx

pn
, p 6= 0,

xn

n!
, p = 0.

Here, dnfp
dxn

(x) = epx > 0 which shows that fp is n-convex on R for every p ∈ R and

p 7→ dnfp
dxn

(x) is exponentially convex by definition. Using analogous arguing as in
the proof of Theorem 5.10 we also have that p 7→ fp[x0, . . . , xm] is exponentially
convex (and so exponentially convex in the Jensen sense). Using Corollary 5.11
we conclude that p 7→ Li(fp), i = 1, 2, 3, are exponentially convex in the Jensen
sense. It is easy to verify that this mapping is continuous (although mapping
p 7→ fp is not continuous for p = 0), so it is exponentially convex. For this family
of functions, µp,q(Li,Ω1), i = 1, 2, 3, from (38), becomes

µp,q(Li,Ω1) =


(
Li(fp)

Li(fq)

) 1
p−q

, p 6= q,

exp
(
Li(id·fp)
Li(fp)

− n
p

)
, p = q 6= 0,

exp
(

1
n+1

Li(id·f0)
Li(f0)

)
, p = q = 0,

where id is the identity function. Also, by Corollary 5.12 it is monotonic function
in parameters p and q.
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We observe here that

(
dnfp
dxn
dnfq
dxn

) 1
p−q

(log x) = x so using Theorem 5.9 it follows that:

Mp,q(Li,Ω1) = log µp,q(Li,Ω1), i = 1, 2, 3

satisfies

min{a, c, b− λ} ≤Mp,q(Li,Ω1) ≤ max{b, d, a+ λ}, i = 1, 2, 3.

So, Mp,q(Li,Ω1) is a monotonic mean.

Example 6.2. Consider a family of functions

Ω2 = {gp : (0,∞)→ R : p ∈ R}

defined by

gp(x) =

{
xp

p(p−1)···(p−n+1)
, p /∈ {0, 1, . . . , n− 1},

xj log x
(−1)n−1−jj!(n−1−j)! , p = j ∈ {0, 1, . . . , n− 1}.

Here, dngp
dxn

(x) = xp−n > 0 which shows that gp is n−convex for x > 0 and

p 7→ dngp
dxn

(x) is exponentially convex by definition. Arguing as in Example 6.1 we
get that the mappings p 7→ Li(gp), i = 1, 2, 3 are exponentially convex. For this
family of functions µp,q(Li,Ω2), i = 1, 2, 3, from (38), is now equal to

µp,q(Li,Ω2) =



(
Li(gp)
Li(gq)

) 1
p−q

, p 6= q,

exp

(
(−1)n−1(n− 1)!

Li(g0gp)
Li(gp)

+
n−1∑
k=0

1
k−p

)
, p = q /∈ {0, 1, . . . , n− 1},

exp

(−1)n−1(n− 1)!
Li(g0gp)
2Li(gp)

+
n−1∑
k=0
k 6=p

1
k−p

 , p = q ∈ {0, 1, . . . , n− 1}.

Again, using Theorem 5.9 we conclude that

min{a, b− λ, c} ≤
(
Li(gp)

Li(gq)

) 1
p−q

≤ max{a+ λ, b, d}, i = 1, 2, 3.

So, µp,q(Li,Ω2), i = 1, 2, 3 is a mean.

Example 6.3. Consider a family of functions

Ω3 = {φp : (0,∞)→ R : p ∈ (0,∞)}

defined by

φp(x) =

{
p−x

(− log p)n
, p 6= 1

xn

n!
, p = 1.

Since dnφp
dxn

(x) = p−x is the Laplace transform of a non-negative function (see [19])
it is exponentially convex. Obviously φp are n-convex functions for every p > 0.
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For this family of functions, µp,q(Li,Ω3), i = 1, 2, 3 from (38) is equal to

µp,q(Li,Ω3) =


(
Li(φp)

Li(φq)

) 1
p−q

, p 6= q,

exp
(
−Li(id·φp)

p Li(φp)
− n

p log p

)
, p = q 6= 1,

exp
(
− 1
n+1

Li(id·φ1)
Li(φ1)

)
, p = q = 1,

where id is the identity function. This is a monotone function in parameters p
and q by (37). Using Theorem 5.9 it follows that

Mp,q(Li,Ω3) = −L(p, q) log µp,q(Li,Ω3), i = 1, 2, 3

satisfies

min{a, b− λ, c} ≤Mp,q(Li,Ω3) ≤ max{a+ λ, b, d}.

So Mp,q(Li,Ω3) is a monotonic mean. L(p, q) is a logarithmic mean defined by

L(p, q) =

{
p−q

log p−log q , p 6= q

p, p = q.

Example 6.4. Consider a family of functions

Ω4 = {ψp : (0,∞)→ R : p ∈ (0,∞)}

defined by

ψp(x) =
e−x
√
p

(−√p)n
.

Since dnψp

dxn
(x) = e−x

√
p is the Laplace transform of a non-negative function (see

[19]) it is exponentially convex. Obviously ψp are n-convex functions for every
p > 0. For this family of functions, µp,q(Li,Ω4), i = 1, 2, 3 from (38) is equal to

µp,q(Li,Ω4) =


(
Li(ψp)

Li(ψq)

) 1
p−q

, p 6= q,

exp
(
− Li(id·ψp)

2
√
pLi(ψp)

− n
2p

)
, p = q,

where id is the identity function. This is monotone function in parameters p and
q by (37). Using Theorem 5.9 it follows that

Mp,q(Li,Ω4) = −(
√
p+
√
q) log µp,q(Li,Ω4), i = 1, 2, 3

satisfies min{a, b − λ, c} ≤ Mp,q(Li,Ω4) ≤ max{a + λ, b, d}, so Mp,q(Li,Ω4) is a
monotonic mean.
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51000 Rijeka, Croatia

E-mail address: anamarija.perusic@gradri.hr

3 Faculty of Textile Technology, University of Zagreb, Prilaz baruna Fil-
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