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MINIMAL USCO AND MINIMAL CUSCO MAPS

ĽUBICA HOLÁ1∗ AND DUŠAN HOLÝ2

Communicated by A.R. Mirmostafaee

Abstract. The main aim of this paper is to present a survey of known results
concerning minimal usco and minimal cusco maps. We give characterizations
of minimal usco and minimal cusco maps in the class of all set-valued maps
using quasicontinuous selections. If X is a topological space and Y is a Banach
space, there is a bijection between the space of minimal usco maps from X to
Y and the space of minimal cusco maps from X to Y . We study this bijection
with respect to various topologies on underlying spaces. Some new results are
also given.

1. Introduction

The acronym usco (cusco) stands for a (convex) upper semicontinuous non-
empty compact-valued set-valued map. Such set-valued maps are interesting
because they describe common features of maximal monotone operators, of the
convex subdifferential and of Clarke generalized gradient. Examination of cuscos
and uscos leads to serious insights into the underlying topological properties of
the convex subdifferential and the Clarke generalized gradient. (It is known
that Clarke subdifferential of a locally Lipschitz function and, in particular, the
subdifferential of a convex continuous functions are weak* cuscos.) (see [8]).

Minimal usco and minimal cusco maps are used in many papers (see [8, 9, 16,
20, 25, 27, 32, 60]). Historically, minimal usco maps seem to have appeared first
in complex analysis (in the second half of the 19th century), in the form of a
bounded holomorphic function and its “cluster sets”, see e.g. [10]. Minimal usco
maps are a very convenient tool in the theory of games (see [14]) or in functional
analysis (see [5]), where a differentiability property of single-valued functions is
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characterized by their Clarke subdifferentials being minimal cuscos. Minimal
uscos/cuscos also appear in:

(i) optimization, [11, 12, 40];
(ii) the study of weak Asplund spaces, [18, 37, 52, 58, 59];
(iii) selection theorems, [51, 13];
(iv) the study of differentiability of Lipschitz functions, [6, 50, 61].

2. Preliminaries

In what follows, let X and Y be Hausdorff topological spaces, R be the space of
real numbers with the usual metric and Z+ be the set of positive integers. Also,
for x ∈ X and y ∈ Y , U(x) and V(y) are always used to denote a base of open
neighborhoods of x in X and y ∈ Y , respectively. The symbols A and IntA will
stand for the closure and interior of the set A in a topological space, respectively.

A set-valued map, or multifunction, from X to Y is a function that assigns
to each element of X a subset of Y . If F is a set-valued map from X to Y , we
denote it by F : X  Y .

If F : X  Y , then its graph is the set

{(x, y) ∈ X × Y : y ∈ F (x)}.

Conversely, if F is a subset of X × Y and x ∈ X, define F (x) = {y ∈ Y :
(x, y) ∈ F}. Then we can assign to each subset F of X × Y a set-valued map
which takes the value F (x) at each point x ∈ X and which graph is F . In this
way, we identify set-valued maps with their graphs. Following [16] the term map
is reserved for a set-valued map.

Notice that if f : X → Y is a single-valued function, we will use the symbol f
also for the graph of f .

Given two maps F and G from X to Y , we write G ⊂ F and say that G is
contained in F if G(x) ⊂ F (x) for every x ∈ X.

A map F : X  Y is upper semi-continuous at a point x ∈ X if, for every
open set V containing F (x), there exists U ∈ U(x) such that

F (U) = ∪{F (u) : u ∈ U} ⊂ V.

F is upper semi-continuous if it is upper semi-continuous at each point of
X. Following Christensen [14] we say that a map F is usco if it is upper semi-
continuous and takes nonempty compact values.

In this paper, we are primarily interested in selections of set-valued maps. If
F : X  Y is a set-valued map, then a function f : X → Y is called a selection
of F if f(x) ∈ F (x) for every x ∈ X.

A function f : X → Y is called quasicontinuous [54] at x ∈ X if, for every
V ∈ V(f(x)) and every U ∈ U(x), there is a nonempty open set W ⊂ U such
that f(W ) ⊂ V . If f is quasicontinuous at every point of X, then we say that f
is quasicontinuous.

The notion of quasicontinuity for real functions of a real variable was intro-
duced by Kempisty in his paper [38], however the property of quasicontinuity
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was perhaps the first time used by R. Baire in [2] in the study of points of sep-
arately continuous functions. There is a rich literature concerning the study of
quasicontinuity, see for example [2, 7, 15, 34, 38, 39, 41, 43, 44, 54, 26].

We say that a (single-valued) function f : X → Y is subcontinuous [19] at
x ∈ X if, for every net {xσ : σ ∈ Σ} in X converging to x, there is a convergent
subnet of {f(xσ) : σ ∈ Σ}. A function f is subcontinuous if it is subcontinuous
at every point of X.

For each function f from X to Y denote by

C(f) = {x ∈ X : f is continuous at x}.

3. Minimal usco maps

In this section, we give new characterizations of minimal usco maps from X
to Y . Minimal usco maps were studied by Drewnowski and Labuda in [16]. In
their paper they gave an interesting characterization of minimal usco maps. We
extend some results of [16].

A map F is said to be minimal usco [16] if it is a minimal element in the family
of all usco maps (with domain X and range Y ); that is, if it is usco and does not
properly contain any other usco map from X into Y . By an easy application of
the Kuratowski-Zorn principle we can guarantee that every usco map from X to
Y contains a minimal usco map from X to Y (see [8, 9, 16]).

A natural question arises which functions f : X → Y do have the property
that the closures of their graphs f in X×Y are the graphs of minimal usco maps.

If f : [0, 1]→ [0, 1] is a function with the property that f = [0, 1]× [0, 1], then
f is a usco map which is not minimal. (It is very easy to define such a function
f .)

Proposition 3.1. Let X and Y be topological spaces, and let Y be Hausdorff.
Let F be a minimal usco map from X to Y . If f is a selection of F , then F = f.

Proof. F is a closed subset of X × Y , thus f ⊂ F . By Proposition 3.2 in [16] f
is a usco map. The minimality of F implies that f = F . �

Proposition 3.2. Let X and Y be topological spaces, and let Y be Hausdorff.
Let F be a usco map from X to Y . If f = F for every selection f of F , then F
is a minimal usco map.

Proof. Suppose by way of contradiction that F is not a minimal usco map. Let
G be a minimal usco map which is contained properly in F . Let (x, y) ∈ F \G.
Let g be a selection of G. Then g ⊂ G since G is a closed set in X × Y . Thus
(x, y) /∈ g, a contradiction since g is also a selection of F . �

Proposition 3.3. Let X and Y be topological spaces. Let F be a usco map from
X to Y . Then every selection f of F is subcontinuous.
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Proof. Suppose there is a selection f of F which is not subcontinuous. Thus there
is a net {xσ : σ ∈ Σ} ⊂ X convergent to a point x such that {f(xσ) : σ ∈ Σ}
has no cluster point in Y . The compactness of F (x) implies that there is an
open set O ⊃ F (x) and σ0 ∈ Σ with f(xσ) /∈ O, for every σ ≥ σ0. The upper
semi-continuity of F at x implies that there is a V ∈ U(x) with F (z) ⊂ O
for every z ∈ V . There is σ1 ≥ σ0 such that xσ ∈ V for every σ ≥ σ1; i.e.
f(xσ) ∈ F (xσ) ⊂ O for every σ ≥ σ1, a contradiction. �

The following theorem extends Proposition 4.5 in [16].

Theorem 3.4. Let X and Y be topological spaces. Let F be a usco map from X
to Y . Then the following are equivalent.

(1) F is minimal;
(2) F maps isolated points into singletons, and every selection f of F is qua-

sicontinuous.

Proof. (1) ⇒ (2). Let F be a minimal usco map from X to Y . It is easy to
verify that F maps isolated points into singletons. Let f be a selection of F .
Suppose f is not quasicontinuous at x0; of course, x0 cannot be an isolated point.
Thus, there are open sets Ox0 and Of(x0) in X and Y , respectively, such that
x0 ∈ Ox0 , f(x0) ∈ Of(x0) and such that for every nonempty open set V ⊂ Ox0

there is z ∈ V with f(z) /∈ Of(x0). By Proposition 3.3, f is subcontinuous. The
subcontinuity of f guarantees that, for every x ∈ Ox0 , F (x) ∩ (Y \ Of(x0)) 6= ∅.
Thus G = F \(Ox0×Of(x0)) is the graph of a usco map and G ⊂ F , a contradiction
with the minimality of F .
(2) ⇒ (1). Suppose F is not minimal. Let G ⊂ F be a minimal usco map, and
let (x0, y0) ∈ F \G. Let g be any selection of G. Define function h from X to Y
as follows:

h(x) =

{
y0, x = x0;
g(x) x 6= x0.

Then of course h is a selection of F which is not quasicontinuous. (There are
open sets U and V in X and Y , respectively, such that x0 ∈ U , y0 ∈ V and
(U × V ) ∩G = ∅, i.e., (U × V ) ∩ (h \ {(x0, h(x0)}) = ∅ .) �

To present our answer we need some more notions.

Notice that the notion of subcontinuity can be extended for so-called densely
defined functions.

Let A be a dense subset of a topological space X and Y be a topological space.
Let f : A → Y be a function. We say that f is densely defined. Further we
say that f : A → Y is subcontinuous at x ∈ X [42] if for every net (xi) ⊂ A
convergent to x ∈ X, (f(xi)) has a convergent subnet. It is easy to verify that
f : A→ Y is subcontinuous at x ∈ X if and only if

(*) for every open cover H of Y there is a finite subset F of H
and there is U ∈ U(x) such that f(U ∩ A) ⊂ ∪F
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(a slight modification of Theorem 2.1 in [55]).
A function f : A→ Y is subcontinuous if it is subcontinuous at every x ∈ X.

A densely defined function f is a densely defined quasicontinuous selection of
a set-valued map F , if f(x) ∈ F (x) for every x ∈ domf , the domain of f and
f : domf → Y is quasicontinuous with respect to the induced topology on domf .

Theorem 3.5. Let X and Y be topological spaces and let Y be a regular space.
Let F be a map from X to Y . Then the following are equivalent:

(1) F is a minimal usco map;
(2) There exists a quasicontinuous and subcontinuous function f from X to Y

such that f = F ;
(3) Every selection f of F is quasicontinuous, subcontinuous and f = F ;
(4) There is a densely defined quasicontinuous subcontinuous selection f of F

such that f = F .

Proof. (1) ⇒ (3) by Propositions 3.1, 3.3 and Theorem 3.4 (3) ⇒ (2) and (2)⇒
(4) are clear.

To prove (4) ⇒ (1) let f be a densely defined quasicontinuous subcontinuous
selection of F . Thus domf , the domain of f , is a dense set in X. We show that
the subcontinuity of f implies that f(x) is a nonempty compact set, for every
x ∈ X. Let x ∈ X. Of course f(x) 6= ∅. Let H be an open cover of f(x). Let H′
be a refinement of H such that for every H ′ ∈ H′ there is H ∈ H with H ′ ⊂ H
and f(x) ⊂ ∪H′. For every y ∈ Y \ f(x) let Oy be an open neighborhood of y

such that Oy ∩ f(x) = ∅. Then the family H′ ∪ {Oy : y ∈ Y \ f(x)} is an open
cover of Y . By (*) there is U ∈ U(x), H ′1, H

′
2, ...H

′
n ∈ H′ and a finite indexed set

I such that f(U ∩ domf) ⊂ ∪{H ′i : i = 1, 2, ...n}
⋃
∪{Oyi : i ∈ I}. Thus

f(x) ⊂ f(U ∩ domf) ⊂ (H ′1 ∪H ′2 ∪ ... ∪H ′n)
⋃
∪{Oyi : i ∈ I}.

Thus f(x) ⊂ H1 ∪H2 ∪ ... ∪Hn, where Hi ∈ H for i = 1, 2, ...n.
Now we will show that f is upper semi-continuous. Suppose there is x ∈ X such

that f is not upper semi-continuous at x. Let V be an open set in Y with f(x) ⊂ V
such that for every U ∈ U(x) there are xU ∈ U and yU ∈ f(xU)\V . The regularity
of Y implies that there is an open set G in Y such that f(x) ⊂ G ⊂ G ⊂ V . Thus
for every U ∈ U(x) we have (xU , yU) ∈ f ∩ (U × (Y \ G)). For every U ∈ U(x)
there is aU ∈ domf ∩ U such that f(aU) ∈ Y \ G. Since the net (aU)U∈U(x)
converges to x, the subcontinuity of f at x implies that there is a cluster point
y ∈ Y \G of the net (f(aU))U∈U(x), a contradiction since y ∈ f(x) ⊂ G.

To prove that f is minimal usco, suppose by way of contradiction that f is not
a minimal usco map. Let L be a minimal usco map which is contained properly
in f . Let (x, y) ∈ f \ L. Let U ∈ U(x) and V be an open neighborhood of
y such that (U × V ) ∩ L = ∅. Let G be an open neighborhood of y such that
y ∈ G ⊂ G ⊂ V . Since (x, y) ∈ f , there is (z, f(z)) ∈ (U ∩ domf) × G. The
quasi-continuity of f at z implies that there is a nonempty open set H in X such
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that H∩domf ⊂ U ∩domf and f(H∩domf) ⊂ G. The set H∩U is a nonempty
open set contained in U and f(H∩U) ⊂ G ⊂ V , a contradiction since L ⊂ f . �

Now we mention some applications of the above characterizations.

- The condition (2) in Theorem 3.5 gives a useful tool how to construct minimal
usco maps.

- From the condition (2) in Theorem 3.5 and a result from [34] which claims
that if X is a Baire space, Y is a p-space with a Gδ-diagonal and f : X → Y is
a quasicontinuous function, then the set C(f) is a dense Gδ-set, we can prove a
result concerning the set of points of single-valuedness of minimal usco maps.

To remind the definition of a p-space [21], let Y be a topological space, y ∈ Y
and G be a collection of subsets of Y . Then st(y,G) =

⋃
{G ∈ G : y ∈ G}.

A completely regular space Y is a p-space [21] if there exists a sequence (Un)
of families of open subsets of βY such that

(i) each Un covers Y ;
(ii) for each y ∈ Y ,

⋂
n st(y,Un) ⊂ Y .

The notion of a p-space was introduced by Archangelskii in 1963. Every Čech-
complete space is a p-space, every Moore space is a p-space.

A topological space Y has a Gδ-diagonal if the diagonal ∆ = {(y, y) : y ∈ Y }
of Y × Y is a Gδ-set in Y × Y .

Proposition 3.6. Let X be a Baire space and Y be a p-space with a Gδ-diagonal.
If F : X  Y is a minimal usco map, then the set of points at which F is single-
valued contains a dense Gδ-set.

Proof. Let f : X → Y be a selection of F . By Theorem 3.5 f is quasicontinuous
and f = F . By the above mentioned result from [34] the set C(f) is a dense
Gδ-set in X. It is easy to verify that F (x) = {f(x)} for every x ∈ C(f). �

In the paper [16] the authors gave an example of a minimal usco map which is
two-valued at every point. The example shows that the condition on Y to be a
p-space with a Gδ-diagonal in Proposition 3.6 is essential.

Example 3.7. A nowhere single-valued minimal usco map. For each t ∈ T =
(0, 1), the map Ft : [0, 1] [0, 1] defined by

Ft(x) =

 {0}, 0 ≤ x < t;
{0, 1}, x = t;
{1}, t < x ≤ 1.

is evidently minimal usco. By Proposition 3.6 in [16] the corresponding product
map F : [0, 1] [0, 1]T is usco.

Suppose G : [0, 1]  [0, 1]T is usco, G ⊂ F , and G(s) 6= F (s) for some
s ∈ [0, 1]. Let ps be the projection of [0, 1]T onto the sth copy of [0, 1] in this
product. Then the map Gs : [0, 1]  [0, 1], defined by Gs(x) = ps[G(x)], is
easily seen to be usco. Moreover, Gs ⊂ Fs and Gs(s) 6= Fs(s), where the latter
follows from the fact that Ft(s) is a singleton for t 6= s. Since Fs is minimal usco,
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we must have Gs = Fs, a contradiction. Then the restriction of F to (0, 1) is a
nowhere single-valued minimal usco map.

Holá in [23] showed that the condition of Baireness in Proposition 3.6 is essen-
tial.

Example 3.8. Let X be the space of rational numbers with the usual topology.
Enumerate X by {qn : n ∈ Z+} and define the set-valued map F : X  R
as F (x) = {

∑
n:qn<x

1
2n
,
∑

n:qn≤x
1
2n
}. Then F is a minimal usco map which is

nowhere single-valued.
To prove that F is upper semicontinuous, let x ∈ X and ε > 0. There is

n0 ∈ Z+ such that
∑

n≥n0

1
2n
< ε. Put δx = min{|qi − x| : i ≤ n0, qi 6= x} and

put Ox = (x − δx
2
, x + δx

2
). Then, for every z ∈ Ox, we have F (z) ⊂ Sε[F (x)],

where Sε[F (x)] = {s ∈ R : d(s, F (x)) < ε}. (Let z ∈ Ox, z < x. Then∑
n:qn≤z

1
2n
−
∑

n:qn≤x
1
2n

=
∑

x<qn≤z
1
2n
< ε.)

To prove that F is minimal, suppose there is an usco map G such that G ⊂ F
and there is qn such that F (qn) 6= G(qn). Suppose that G(qn) = {

∑
i:qi<qn

1
2i
}

(the other case is similar). The upper semicontinuity of G implies that there
is a neighborhood O of qn such that G(z) ⊂ S 1

2qn
[G(qn)] for every z ∈ O, a

contradiction, since for every z ∈ O, z > qn, we have G(z) >
∑

i:qi≤qn
1
2i

.

Notice that a topological space Y is called Stegall space, if for every Baire
topological space X and every minimal usco map F : X  Y the map F is
single-valued at points of a dense subset of X. We will mention here at least the
paper of Kalenda [37].

- The following remark shows that the condition (4) in Theorem 3.5 gives a
useful tool how to construct a minimal usco map in a given usco map.

Remark 3.9. Let X be a Baire space and F : X  R be usco. Let f : X → R
be a function defined as follows: f(x) = inf{t ∈ R : t ∈ F (x)} for x ∈ X. Then
f is a lower semi-continuous function. It is known (see [17]) that the set C(f) is

a dense Gδ-set in X. Thus by Theorem 3.5 the map G = fdC(f) is a minimal
usco map from X to R and G ⊂ F .

Also if h : X → R is defined as h(x) = sup{t ∈ R : t ∈ F (x)} for x ∈ X, then
h is upper semi-continuous and by [17] the set C(h) of the points of continuity

of h is a dense Gδ-set in X. Thus by Theorem 3.5 the map H = hdC(h) is a
minimal usco map from X to R and H ⊂ F .

Proposition 5.1.24 in [9] gives a construction of a minimal usco map contained
in a given usco map from a general topological space with values in R.

Other approach to minimality of set-valued maps can be found in [45, 46, 39,
53].

A set-valued mapping F : X  Y is said to be minimal if for each pair of
open subsets U of X and W of Y such that F (U) ∩W 6= ∅ there exists a non-
empty open subset V ⊆ U such that F (V ) ⊆ W . This definition is modeled
on the characterizing property of minimality of usco mappings [53]; i.e. an usco
mapping F : X  Y is a minimal usco if and only if F : X  Y is minimal.
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4. Densely continuous forms

In this part of the paper we continue the study of so-called densely continuous
forms introduced by McCoy and Hammer in [29] and then studied by Holá, Mc
Coy, Holý, Vadovič in [22, 31, 35, 36]. We will also present characterizations of
densely continuous forms.

Densely continuous forms from X to Y can be considered as maps (set-valued
mappings) from X to Y which have a kind of minimality property found in the
theory of minimal usco maps. In particular, every minimal usco map from a Baire
space X into a metric space Y is a densely continuous form.

To define a densely continuous form from X to Y [29], let DC(X, Y ) be the set
of all functions f from X to Y such that the C(f) is dense in X. We call such
functions densely continuous. Of course DC(X, Y ) contains the set C(X, Y ) of
all continuous functions from X to Y . There are many other interesting subsets
in DC(X, Y ). For example, if Y is a locally compact second countable space
and X is a Baire space, then DC(X, Y ) contains all functions from X to Y with
closed graphs [22].

If Y is the set R of all real numbers and X is a Baire space, then also all upper
and lower semi-continuous functions on X belongs to DC(X, Y ).

We define the set D(X, Y ) of densely continuous forms by

D(X, Y ) = {fdC(f) : f ∈ DC(X, Y )}.

The densely continuous forms from X to Y may be considered as maps (set-
valued) mappings. For each x ∈ X and Φ ∈ D(X, Y ) define Φ(x) = {y ∈ Y :
(x, y) ∈ Φ}.

Define by A(X, Y ) the following set of functions

A(X, Y ) = {f : X → Y : for every x ∈ X and for every neighborhood U

of (x, f(x)) there exists y ∈ C(f) such that (y, f(y)) ∈ U}.

Of course A(X, Y ) ⊂ DC(X, Y ). The inclusion is proper. The function f :
R→ R defined by f(0) = 0 and f(x) = 1/x otherwise, belongs to DC(X, Y ) and

not to A(X, Y ). For the densely continuous form Φ = fdC(f) we have Φ(0) = ∅.
It is very easy to verify that every function from A(X, Y ) is quasicontinuos.

The following example shows that the opposite is not true.

Example 4.1. [57] Let X = R with the usual Euclidean topology, and let Y = R
with the Sorgenfrey topology. Let f : X → Y be the identity function. Then f
is quasicontinuous, but the set C(f) = ∅.

However if X is a Baire space and Y is a p-space with a Gδ-diagonal, then
every quasicontinuous function f : X → Y has a dense set C(f) of the points of
continuity [34]; i.e., f belongs to A(X, Y ).

Clearly, if f : X → Y , then f ∈ A(X, Y ) if and only if f = fdC(f).

We have the following characterization of elements of D(X, Y ).
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Proposition 4.2. Let X and Y be topological spaces, Y regular and F : X  Y
such that F (x) 6= ∅ for every x ∈ X. Then the following are equivalent:

(1) F ∈ D(X, Y );
(2) There is a function f ∈ A(X, Y ) such that f = F ;
(3) Every selection f of F belongs to A(X, Y ) and f = F .

Proof. (1) ⇒ (3). Let f be a selection of F . There is g ∈ DC(X, Y ) such that

F = gdC(g). Of course, F (x) = {g(x)} for every x ∈ C(g); i.e., f(x) = g(x) for
every x ∈ C(g). It is easy to verify that C(g) ⊂ C(f). (Let x ∈ C(g). Suppose
x /∈ C(f). There is a V ∈ V(f(x)) such that for every U ∈ U(x) there is an
xU ∈ U with f(xU) /∈ V . Let H ∈ V(f(x)) be such that H ⊂ V . The continuity
of g at x implies that there is an O ∈ U(x) such that g(O) ⊂ H. Then O×(Y \H)
is a neighborhood of (xO, f(xO)) which has an empty intersection with the graph

of g, a contradiction, since f ⊂ gdC(g).)
Thus, the set C(f) of the points of continuity of f is dense in X; i.e., f ∈

DC(X, Y ). Since f ⊂ F = gdC(g) ⊂ fdC(f), we have that f ∈ A(X, Y ) and
F = f .

(3) ⇒ (2) is trivial. (2) ⇒ (1) is also trivial since if f ∈ A(X, Y ), then of

course f ∈ DC(X, Y ) and by above, f = fdC(f). �

Corollary 4.3. Let X be a Baire space and Y be a p-space with a Gδ-diagonal.
Let F : X  Y be such that F (x) 6= ∅ for every x ∈ X. The following are
equivalent:

(1) F ∈ D(X, Y );
(2) There is a quasicontinuous function f : X → Y such that f = F ;
(3) Every selection f of F is quasicontinuous and f = F .

Denote by MU(X, Y ) the space of all minimal usco maps from X to Y . A
natural question arises under which conditions does F ∈ D(X, Y ) belong to
MU(X, Y ). We have the following answer.

Proposition 4.4. Let X and Y be topological spaces, Y regular and F ∈ D(X, Y ).
Then the following are equivalent:

(1) F ∈MU(X, Y );
(2) F (x) 6= ∅ for every x ∈ X and every selection f of F is subcontinuous.

It is also interesting to know when does F ∈MU(X, Y ) belong to D(X, Y ).

Proposition 4.5. Let X and Y be topological spaces, Y regular and F ∈MU(X, Y ).
Then the following are equivalent:

(1) F ∈ D(X, Y );
(2) {x ∈ X :| F (x) |= 1} is dense in X.

Proof. (1) ⇒ (2) is clear. To prove (2) ⇒ (1) put

H = {x ∈ X :| F (x) |= 1}.

Let f be a selection of F . Then H ⊂ C(f). Thus f ∈ DC(X, Y ) and fdC(f) ∈
D(X, Y ). It is sufficient to show that fdC(f) = F . Since fdC(f) is a densely
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defined quasicontinuous subcontinuous selection of fdC(f), from (4) Theorem 3.5

we know that fdC(f) is a minimal usco map and it is contained in F . So we are
done. �

Corollary 4.6. Let X be a Baire space and Y be a p-space with a Gδ-diagonal.
Then MU(X, Y ) ⊂ D(X, Y ).

Proof. Let F ∈ MU(X, Y ). By Proposition 3.6 {x ∈ X :| F (x) |= 1} contains a
dense Gδ-set. Thus F ∈ D(X, Y ). �

McCoy and Hammer in [29, 47] studied also the space D?(X,R) of locally
bounded densely continuous forms with values in R.

If Φ is a mapping from X to R (single-valued or set-valued) and A ⊂ X, we
say that Φ is bounded on A, provided that the set

Φ(A) = ∪{Φ(x) : x ∈ A}
is a bounded subset of R. We say that Φ is locally bounded, provided that each
point of X has a neighborhood on which Φ is bounded.

Now define D?(X,R) to be the set of all members of D(X,R), that are locally
bounded.

Remark 4.7. Let U(X,R) be the set of all real-valued usco maps. ThenD∗(X,R) ⊂
U(X,R). In fact, if Φ ∈ D∗(X,R), then for all x ∈ X, Φ(x) is a nonempty com-
pact set. By a result of Berge ([4] page 112) any map with a closed graph which
has a compact range is upper semi-continuous. Since upper semi-continuity is a
local property, every Φ ∈ D∗(X,R) belongs to U(X,R). By Proposition 3.3 every
selection of Φ ∈ U(X,R) is subcontinuous, thus by Proposition 4.4 Φ is minimal
usco and D∗(X,R) ⊂MU(X,R).

If X is a Baire space, then MU(X,R) ⊂ D?(X,R). In fact, by Corollary 4.6
MU(X,R) ⊂ D(X,R). It is easy to show that every usco map from X to R is
locally bounded. Thus MU(X,R) ⊂ D?(X,R). Therefore, if X is a Baire space
MU(X,R) = D?(X,R).

5. Minimal cusco maps

A map F from a topological space X to a linear topological space Y is cusco
if it is usco and F (x) is convex for every x ∈ X.

We say that a map F from a topological space X to a linear topological space
Y is said to be minimal cusco if it is a minimal element in the family of all cusco
maps (with domain X and range Y ); that is, if it is cusco and does not contain
properly any other cusco map from X into Y . By Kuratowski-Zorn principle we
can guarantee that every cusco map from X to Y contains a minimal cusco map
from X to Y (see [8, 9, 16]).

Let Y be a linear topological space and B ⊂ Y be a set. By coB we denote
the closed convex hull of the set B (see [1]).

The proof of the following Lemma is a folklore result, but a reasonably old
proof of this appears in [56], Lemma 7.12.
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Lemma 5.1. Let X be a topological space and Y be a Hausdorff locally convex
linear topological space. Let G be a usco map from X to Y and coG(x) be compact
for every x ∈ X. Then the map F defined as F (x) = coG(x) for every x ∈ X is
a cusco map.

Remark 5.2. There are three important cases when the closed convex hull of a
compact set is compact. The first is when the compact set is a finite union of
compact convex sets. The second is when the space is completely metrizable
and locally convex. This includes the case of all Banach spaces with their norm
topologies. The third case is a compact set in the weak topology on a Banach
space (see [1]).

A set-valued map F from a topological space X to a linear topological space
Y is hyperplane minimal [8] if for every open half-space W in Y and open set
U in X with F (U) ∩W 6= ∅ there is a nonempty open subset V ⊂ U such that
F (V ) ⊂ W . It is known [8] that a cusco map from a topological space X into
Hausdorff locally convex linear topological space Y is minimal cusco if, and only
if, it is hyperplane minimal.

If f : X → Y is a quasicontinuous function from a topological space to a linear
topological space then f is hyperplane minimal. The following example shows
that a hyperplane minimal function is not quasicontinuous in general.

Example 5.3. Let X = Y = R with the usual topology. Define f : X → Y as
follows: f(x) = −1 if x < 0, f(0) = 0 and f(x) = 1 if x > 0.

Notice that all known characterizations of minimal cusco maps are given in the
class of cusco maps (see [20, 8]). So the following characterization of minimal
cusco maps in the class of all set-valued maps can be of some interest:

Theorem 5.4. Let X be a topological space and Y be a Hausdorff locally convex
(linear topological) space. Let F be a map from X to Y . Then the following are
equivalent:

(1) F is a minimal cusco map;
(2) F is nonempty compact valued and there is a quasicontinuous, subcontinu-

ous selection f of F such that co f(x) = F (x) for every x ∈ X;
(3) F is nonempty compact valued and there is a hyperplane minimal, subcon-

tinuous selection f of F such that co f(x) = F (x) for every x ∈ X;
(4) F is nonempty compact valued and every selection f of F is hyperplane

minimal, subcontinuous and co f(x) = F (x) for every x ∈ X.

Proof. (1) ⇒ (2). Let G ⊂ F be a minimal usco map contained in F . Let f
be a selection of G. By Theorem 3.5 f is a quasicontinuous and subcontinuous
selection of G such that f = G. So f is also a selection of F . By Proposition 2.7
in [8] we have co f(x) = F (x) for every x ∈ X.

(2)⇒ (3) is trivial since every quasicontinuous function from X to Y is hyper-
plane minimal.

(3)⇒ (1). Let f be a hyperplane minimal, subcontinuous selection of F . Since
f is subcontinuous, f is usco by [33]. Since co f(x) = F (x) for every x ∈ X
and F (x) is compact for every x ∈ X, F is cusco by Lemma 5.1. Thus it is
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sufficient to show that F is minimal. Suppose, by way of contradiction, that F
is not minimal. Thus there is a minimal cusco map L ⊂ F such that there is a
point (x0, y0) ∈ F \ L. Since L(x0) is a convex set and cof(x0) = F (x0), without
loss of generality we can suppose that y0 ∈ f(x0) \L(x0). Since L(x0) is a closed
convex set and y0 /∈ L(x0), there is a nonzero continuous linear functional strongly
separating L(x0) and y0. So let h : Y → R be a continuous linear functional and
λ ∈ R such that

L(x0) ⊂ {y ∈ Y : h(y) < λ} and h(y0) > λ.

Since the map L is upper semicontinuous there is U ∈ U(x0) such that L(U) ⊂
{y ∈ Y : h(y) < λ} and since y0 ∈ f(x0) and f is hyperplane minimal, there
is a nonempty open set V ⊂ U such that f(V ) ⊂ {y ∈ Y : h(y) > λ}. Thus
f(V ) ⊂ {y ∈ Y : h(y) ≥ λ}. For every x ∈ V we have cof(x) ∩ L(x) = ∅, a
contradiction.

Since (4) ⇒ (3) is trivial, it is sufficient to prove that (1) ⇒ (4). Let f be a
selection of F . Since every selection of a usco map is subcontinuous, f must be
subcontinuous. f is usco and f ⊂ F implies that cof(x) is compact for every
x ∈ X. By Lemma 5.1 the map G defined as G(x) = cof(x) for every x ∈ X is
cusco. Since G ⊂ F and F is minimal, we have cof(x) = F (x) for every x ∈ X.
It is easy to verify from Theorem 2.6 in [8] that f is hyperplane minimal. �

We have the following variant of Theorem 5.4:

Theorem 5.5. Let X be a topological space and Y be a Hausdorff locally con-
vex (linear topological) space in which the closed convex hull of a compact set is
compact. Let F be a map from X to Y . The following are equivalent:

(1) F is minimal cusco map;
(2) There is a quasicontinuous subcontinuous function f : X → Y such that

cof(x) = F (x) for every x ∈ X;
(3) There is a hyperplane minimal subcontinuous function f : X → Y such

that cof(x) = F (x) for every x ∈ X;
(4) Every selection f of F is hyperplane minimal and subcontinuos and cof(x) =

F (x) for every x ∈ X.

Notice that Theorem 5.5 gives us a rule how to construct minimal cusco maps
with values in Hausdorff locally convex (linear topological) spaces in which the
closed convex hull of a compact set is compact.

It is interesting to note that Theorem 5.4 (and also Theorem 5.5) implies the
well-known result that every convex function on an open convex subset of a finite
dimensional normed linear space is Frechet differentiable on a dense Gδ-subset of
its domain. Let f be a convex function defined on an open convex subset A of
a finite dimensional normed linear space X. It is known that the subdifferential
mapping x  ∂f(x) is a minimal cusco map from A into X [56]. Further f is
Frechet differentiable at x ∈ A if and only if the subdifferential mapping x  
∂f(x) is single-valued. By Theorem 5.4 (2) there is a quasicontinuous selection
h of the subdifferential mapping such that coh(x) = ∂f(x). It is easy to verify
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that if x is a point of continuity of h, then coh(x) = {h(x)}. It is known (see
[34]) that the set of points of continuity of a quasicontinuous function defined on
a Baire space with values in a p-space with a Gδ-diagonal is a dense Gδ-set.

We have the following extension of Theorem 2.18 in [8]:

Theorem 5.6. Let X be a topological space and Y be a Hausdorff locally convex
(linear topological) space. Let F be a map from X to Y . The following are
equivalent:

(1) F is minimal cusco map;
(2) F has a nonempty compact values and there is a densely defined quasi-

continuous, subcontinuous selection f of F such that cof(x) = F (x) for every
x ∈ X;

(3) F has a nonempty compact values and there is a densely defined hyperplane
minimal, subcontinuous selection f of F such that cof(x) = F (x) for every x ∈
X.

Proof. (1)⇒ (2) is clear from Theorem 5.4. (2)⇒ (3) is trivial.
(3) ⇒ (1). Let f be a densely defined hyperplane minimal, subcontinuous

selection of F such that cof(x) = F (x) for every x ∈ X. As in the proof of
Theorem 3.5 we can show that f is usco. Since F has compact values, the map
x  cof(x) is cusco (by Lemma 5.1). To prove that F is minimal cusco we can
use the same argument as in the proof of (3)⇒ (1) of Theorem 5.4. �

To see that Theorem 5.6 is an extension of Theorem 2.18 in [8] we need the
following comment:

Let X be a topological space and Y be a Hausdorff locally convex (linear
topological) space. If f is densely defined subcontinuous function such that cof(x)
is compact for every x ∈ X, then CSC(f)(x) = cof(x) for every x ∈ X, where

CSC(f)(x) = ∩{cof(V ) : V ∈ U(x)} [8].

Notice that in [8] only densely defined selections of cusco maps are considered.
However the condition of subcontinuity of f is essential as the following example

shows. (The inclusion cof(x) ⊂ CSC(f)(x) can be proper.)

Example 5.7. Let X = R = Y with the usual topology. Let f : X → Y be
defined as follows: f(x) = 0 for every x ≤ 0 and f(x) = 1/x for every x > 0. Then
cof(x) = {f(x)} for every x ∈ X, CSC(f)(0) = [0,∞) and CSC(f)(x) = {f(x)}
otherwise. Of course f is not subcontinuous at 0.

We have the following variant of Theorem 5.6:

Theorem 5.8. Let X be a topological space and Y be a Hausdorff locally con-
vex (linear topological) space in which the closed convex hull of a compact set is
compact. Let F be a map from X to Y . The following are equivalent:

(1) F is minimal cusco map;
(2) There is a densely defined quasicontinuous subcontinuous function f with

values in Y such that cof(x) = F (x) for every x ∈ X;
(3) There is a densely defined hyperplane minimal subcontinuous function f

with values in Y such that cof(x) = F (x) for every x ∈ X.
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Notice that Theorem 2.14 in [8] is an easy consequence of Theorem 5.8. The
function f : G → R from Lemma 2.13 in [8] is defined on a dense Gδ-set G of
a topological space T . It is easy to verify that f is subcontinuous. Since f is
continuous on G, by Theorem 5.8 the map x  cof(x) (for every x ∈ T ) is
minimal cusco. Of course for Φ in Theorem 2.14 in [8] we have Φ(x) = cof(x)
for every x ∈ T .

Remark 5.9. Let X be a Baire space and F : X → R be cusco. Let f : X → R
be defined as f(x) = inf{t ∈ R : t ∈ F (x)} for x ∈ X. Using Remark 3.9 and

Theorem 5.8 we see that the map x  cofdC(f)(x) is a minimal cusco map
contained in F .

Similarly, if h : X → R is defined as h(x) = sup{t ∈ R : t ∈ F (x)} for x ∈ X
then the map x cohdC(h)(x) is a minimal cusco map contained in F .

6. Minimal cusco maps and extreme functions

Let B be a subset of a linear topological space. By E(B) we denote the set of
all extreme points of B.

Let X be a topological space and Y be a Hausdorff locally convex (linear
topological) space. Let F : X  Y be a map with nonempty compact values.
Then a selection f of F such that f(x) ∈ E(F (x)) for every x ∈ X is called an
extreme function of F . (By Corollary 7.66 in [1] every nonempty compact subset
of a Hausdorff locally convex (linear topological) space has an extreme point. The
hypothesis of local convexity cannot be dispensed. [1], page 298)

Lemma 6.1. Let X be a topological space and Y be a Hausdorff locally convex
(linear topological) space. Let F be a minimal cusco map from X to Y and G be
a minimal usco map from X to Y such that G ⊂ F . Then E(F (x)) ⊂ G(x) for
every x ∈ X.

Proof. Let x ∈ X. By Proposition 2.7 in [8] we have that F (x) = coG(x) for
every x ∈ X. By Theorem 2.10.15 in [48] which was proved by D.P. Milman in
[49] every extreme point of coG(x) is contained in G(x). Thus E(F (x)) ⊂ G(x)
for every x ∈ X. �

Theorem 6.2. Let X be a topological space and Y be a Hausdorff locally convex
(linear topological) space. Let F be a map from X to Y . The following are
equivalent:

(1) F is a minimal cusco map;
(2) F is nonempty compact, convex valued, F has a closed graph, every extreme

function of F is quasicontinuous, subcontinuous and any two extreme functions
of F have the same closures of their graphs;

(3) F is nonempty compact valued, every extreme function f of F is quasicon-
tinuous, subcontinuous and F (x) = cof(x) for every x ∈ X.

Proof. (1) ⇒ (2). Of course, F has to have nonempty compact, convex values
and F has to have a closed graph. Let f be an extreme function of F . We will
show that f is quasicontinuous and subcontinuous. Let G be a minimal usco
map contained in F (there is a unique minimal usco map contained in F by
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Theorem 7.3). By Lemma 6.1 we have E(F (x)) ⊂ G(x) for every x ∈ X. Since
f(x) ∈ E(F (x)) for every x ∈ X, f is a selection of G. By Theorem 3.5 f must be
quasicontinuous, subcontinuous and f = G. Thus every two extreme functions
have to have the same closures of their graphs.

(2) ⇒ (3). Let f be an extreme function of F . (Such a function exists, for
F (x) is a nonempty compact set for every x ∈ X.) Since f is quasicontinuous
and subcontinuous, f is a minimal usco map by Theorem 3.5 and f ⊂ F . We
claim that F (x) = cof(x) for every x ∈ X.

Suppose there is (x, y) ∈ X × Y such that y ∈ F (x) \ cof(x). Without loss of
generality we can suppose that y ∈ E(F (x)), since by Krein-Milman theorem
a compact convex set is the closed convex hull of its extreme points. Since
y /∈ cof(x), there are two open and disjoint sets O1, O2 in Y such that

cof(x) ⊂ O1 and y ∈ O2.

Let U ∈ U(x) be such that f(U) ⊂ O1. Let g be an extreme function of F such
that g(x) = y, a contradiction with the fact that every two extreme functions of
F have the same closures of their graphs.

(3) ⇒ (1). To prove that F is a minimal cusco map, let f be an extreme
function of F . Since f is quasicontinuous and subcontinuous, by Theorem 3.5 f
is minimal usco and by Lemma 5.1 and Proposition 2.7 in [8] a map x cof(x)
is minimal cusco. Since F (x) = cof(x) for every x ∈ X, we are done. �

Let F ⊂ X × R such that F (x) is a nonempty bounded set for every x ∈
X. Then there are two real-valued functions supF and inf F defined on X by
supF (x) = sup{t ∈ R : t ∈ F (x)} and inf F (x) = inf{t ∈ R : t ∈ F (x)}.
Theorem 6.3. Let X be a topological space and F be a map from X to R. The
following are equivalent:

(1) F is a minimal cusco map;
(2) F is nonempty compact, convex valued, F has a closed graph, supF and

inf F are quasicontinuous, subcontinuous functions and supF = inf F ;
(3) F is nonempty compact valued, supF and inf F are quasicontinuous, sub-

continuous functions and F (x) = co supF (x) = co inf F (x).

Proof. (1)⇒ (2) is clear from the above Theorem. (2)⇒ (3). We will prove that
F (x) = co supF (x) for every x ∈ X. Suppose there is (x, y) ∈ X × R such that
y ∈ F (x) \ co supF (x). Let ε > 0 be such that

(y − 2ε, y + 2ε) ∩ co supF (x) = ∅.
The upper semicontinuity of z  co supF (z) at x ∈ X implies that there is
U ∈ U(x) such that co supF (z) ⊂ (y+ε,∞) for every z ∈ U . Since supF = inf F
and inf F (x) ≤ y < y + ε, we have a contradiction.

(3)⇒ (1). By Theorem 3.5 supF is minimal usco. By Lemma 5.1 and Propo-
sition 2.7 in [8] the map x co supF (x) is minimal cusco, so we are done. �

It is interesting to note that Theorem 2.14 in [8] follows also from Theorem 6.3.
In fact, let f be a function from Lemma 2.13 in [8]. LetH = f be the closure of the
graph of f . Then for Φ in Theorem 2.14 in [8] we have Φ(t) = [inf H(t), supH(t)].



140 Ľ. HOLÁ, D. HOLÝ

Since inf H = f = supH and inf H, supH are quasicontinuous and subcontinu-
ous, Φ is minimal cusco. It is clear that H(x) = {f(x)} at every x ∈ G.

7. Minimal usco and minimal cusco maps

In this part we give a characterization of such maps which are minimal usco
and minimal cusco simultaneously. We also show that there is a bijection between
the space of minimal usco maps and the space of minimal cusco maps.

Let X be a topological space and Y be a Hausdorff locally convex (linear
topological) space. Denote by MU(X, Y ) the set of all minimal usco maps from
X to Y (see part 4) and by MC(X, Y ) the set of all minimal cusco maps from X
to Y . Of course MU(X, Y ) ∩MC(X, Y ) 6= ∅. It follows from the next example
that MU(X, Y ) \MC(X, Y ) 6= ∅ and also MC(X, Y ) \MU(X, Y ) 6= ∅.
Example 7.1. Let X = [−1, 1] with the usual Euclidean topology. Consider the
maps F and G from X to R defined by:

F (x) =

 1, x ∈ [−1, 0);
{−1, 1}, x = 0;
−1, x ∈ (0, 1].

G(x) =

 1, x ∈ [−1, 0);
[−1, 1], x = 0;
−1, x ∈ (0, 1].

Definition 7.2. Let X be a topological space and Y be a Hausdorff locally
convex (linear topological) space. We say that f is *-quasicontinuous at x if for
every y ∈ cof(x), for every V ∈ U(y) and every U ∈ U(x) there is a nonempty
open set W ⊂ U such that f(W ) ⊂ V . If f is *-quasicontinuous at every point
of X, we say that f is *-quasicontinuous.

Example 7.3. Consider the function f from R to R defined by:

f(x) =

{
sin 1

x
, x 6= 0;

0 x = 0.

The function f is not continuous at x = 0, but it is *-quasicontinuous at 0.

Theorem 7.4. Let X be a topological space and Y be a Hausdorff locally con-
vex (linear topological) space. Let f be a function from X to Y . Then f is
*-quasicontinuous at x if and only if every selection of f is quasicontinuous at x
and f(x) = cof(x).

It follows from the previous Theorem that every *-quasicontinuous function is
quasicontinuous.

Theorem 7.5. Let X be a topological space and Y be a Hausdorff locally convex
(linear topological) space. Let F be a map from X to Y . Then the following are
equivalent:

(1) F ∈MU(X, Y ) ∩MC(X, Y );
(2) There exists a *-quasicontinuous and subcontinuous function f from X to

Y such that f = F ;
(3) Every selection f of F is *-quasicontinuous, subcontinuous and f = F .
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Proof. (1) ⇒ (3) Let f be a selection of F . Since F ∈ MU(X, Y ), by Theorem
3.5 f is quasicontinuous, subcontinuous and f = F . Since F ∈ MC(X, Y ),
cof(x) = F (x). So by Theorem 7.4 f is *-quasicontinuous.

(3)⇒ (2) is trivial.
(2) ⇒ (1) Let f be a *-quasicontinuous and subcontinuous function from X

to Y such that f = F . Thus f is quasicontinuous and by Theorem 7.4 F (x) =
f(x) = cof(x). By Theorem 3.5 F is minimal usco map and since by Lemma 5.1
F is cusco, by Proposition 2.7 in [8] F is minimal cusco. �

Denote by F (X, Y ) the set of all maps with closed values from a topological
space X to a Hausdorff locally convex (linear topological) space Y . Define the
function ϕ : MU(X, Y )→ F (X, Y ) as follows: ϕ(F )(x) = coF (x).

To study properties of the mapping ϕ we start with the following result.

Theorem 7.6. Let X be a topological space and Y be a Hausdorff locally convex
(linear topological) space. Let F : X  Y be a minimal cusco map. There is a
unique minimal usco map contained in F .

Proof. Let G,H be two minimal usco maps contained in F . It is sufficient to
prove that G(x) ∩H(x) 6= ∅ for every x ∈ X. Then the map L : X  Y defined
as L(x) = G(x) ∩ H(x) for every x ∈ X is usco and L ⊂ G, L ⊂ H. Thus
G = L = H.

By Lemma 5.1 and the minimality of F , ϕ(G) = ϕ(H) = F . Now, by the
Krein-Milman and Milman theorems we have that

∅ 6= E(F (x)) ⊂ G(x) ∩H(x) for all x ∈ X.
�

Theorem 7.7. Let X be a topological space and Y be a Hausdorff locally con-
vex (linear topological) space in which the closed convex hull of a compact set is
compact. The map ϕ is bijection from MU(X, Y ) to MC(X, Y ).

Proof. Let F ∈ MU(X, Y ). To show that ϕ(F ) ∈ MC(X, Y ) note that by
Lemma 5.1 the map G defined as G(x) = coF (x) for every x ∈ X is a cusco map
and by Proposition 2.7 in [8] G is minimal cusco.

Next we show that ϕ maps MU(X, Y ) onto MC(X, Y ). Let G ∈ MC(X, Y )
and let F be a minimal usco map contained in G. By Lemma 5.1 the map
x  coF (x) is a cusco map such that coF (x) ⊂ G(x) for every x ∈ X. Since G
is minimal cusco, G(x) = coF (x) for every x ∈ X.

Finally, to show that ϕ is one-to-one, suppose that F, G ∈ MU(X, Y ) and
F 6= G. Suppose, by way of contradiction, that ϕ(F ) = ϕ(G). So by Theorem
7.6 F = G, a contradiction. �

8. Topological properties

In this part we will consider topologies on the space of minimal usco and
minimal cusco maps and we will study topological properties of the mapping ϕ
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defined in the end of the section 7 and also further important mappings defined
on the space of minimal usco maps (see [25, 28]).

Following [29] we will define topologies of pointwise convergence, uniform con-
vergence on compacta and uniform convergence.

Let X be a Hausdorff topological space and (Y, d) be a metric space. As above
denote by F (X, Y ) the set of all maps with closed values from X to Y .

By K(X) and F(X) we mean the family of all nonempty compact and finite
subsets of X, respectively.

The open d-ball with center z0 ∈ Y and radius ε > 0 will be denoted by Sε(z0)
and the ε-parallel body

⋃
a∈A Sε(a) for a subset A of Y will be denoted by Sε(A).

We denote by 2Y the space of all closed subsets of Y , by CL(Y ) the space of
all nonempty closed subsets of Y .

If A ∈ CL(Y ), the distance functional d(., A) : Y 7→ [0,∞) is described by the
familiar formula

d(z, A) = inf{d(z, a) : a ∈ A}.
Let A and B be nonempty subsets of (Y, d). The excess of A over B with

respect to d is defined by the formula

ed(A,B) = sup{d(a,B) : a ∈ A}.
The Hausdorff (extended-valued) metric Hd on 2Y [3] is defined by

Hd(A,B) = max{sup{d(a,B) : a ∈ A}, sup{d(b, A) : b ∈ B}},
if A and B are nonempty. If A 6= ∅ take Hd(A, ∅) = Hd(∅, A) =∞.

We will often use the following equalities on CL(Y ) [3]:

Hd(A,B) = inf{ε > 0 : A ⊂ Sε(B) and B ⊂ Sε(A)},
Hd(A,B) = max{ed(A,B), ed(B,A)}.

The topology generated by Hd is called the Hausdorff metric topology.
The topology τp of pointwise convergence on F (X, Y ) is induced by the uni-

formity Up of pointwise convergence which has a base consisting of sets of the
form

W (A, ε) = {(Φ,Ψ) : ∀ x ∈ A Hd(Φ(x),Ψ(x)) < ε},
where A ∈ F(X) and ε > 0. The general τp-basic neighborhood of Φ ∈ F (X, Y )
will be denoted byW (Φ, A, ε), i.e. W (Φ, A, ε) = W (A, ε)[Φ] = {Ψ : Hd(Φ(x),Ψ(x))
< ε, for every x ∈ A}. IfA = {a}, we will writeW (Φ, a, ε) instead ofW (Φ, {a}, ε).

We will define the topology τUC of uniform convergence on compact sets on
F (X, Y ). This topology is induced by the uniformity UUC which has a base
consisting of sets of the form

W (K, ε) = {(Φ,Ψ) : ∀ x ∈ K Hd(Φ(x),Ψ(x)) < ε},
where K ∈ K(X) and ε > 0. The general τUC-basic neighborhood of Φ ∈ F (X, Y )
will be denoted by W (Φ, K, ε), i.e. W (Φ, K, ε) = W (K, ε)[Φ].

Finally we will define the topology τU of uniform convergence on F (X, Y ) [29].
Let % be the (extended-valued) metric on F (X, Y ) defined by

%(Φ,Ψ) = sup{Hd(Φ(x),Ψ(x)) : x ∈ X},
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for each Φ,Ψ ∈ F (X, Y ). Then the topology of uniform convergence for the space
F (X, Y ) is the topology generated by the metric %.

We will need the following lemma.

Lemma 8.1. Let Y be a normed linear space. Let A,B be nonempty closed
subsets of Y . Then Hd(coA, coB) ≤ Hd(A,B).

Proof. At first we show that ed(coA, coB) ≤ ed(A,B). It is known (see [3] exercise
1.5.3. b), that if C is convex then ed(coA,C) = ed(A,C). So ed(coA, coB) =
ed(A, coB). Since B ⊂ coB we have that

ed(coA, coB) = ed(A, coB) ≤ ed(A,B).

Similarly we can show that

ed(coB, coA) = ed(B, coA) ≤ ed(B,A).

Since for every C,D ∈ CL(Y )

Hd(C,D) = max{ed(C,D), ed(D,C)},

we are done. �

Theorem 8.2. Let X be a topological space and Y be a Banach space. The
map ϕ from (MU(X, Y ), τ) onto (MC(X, Y ), τ) is continuous if τ is one of the
following topologies τp, τUC , τU .

Proof. The proof follows from the above Lemma. �

The following example shows that the map ϕ−1 from (MC([−1, 1]), τp) onto
(MU([−1, 1]), τp) is not continuous.

Example 8.3. Let X = [−1, 1] with the usual Euclidean topology. Let F and
G are maps from Example 7.1. Then F = ϕ−1(G). We claim that ϕ−1 is not
continuous at G. For every n ∈ Z+ let Pn be the map from [−1, 1] to R defined
by

Pn(x) =


1, x ∈ [−1, 0);
[−1, 1], x = 0;
sin 1

x
, x ∈ (0, 2

(4n−1)π ];

−1, x ∈ [ 2
(4n−1)π , 1].

It is easy to see that for every A ∈ F(X) and every ε > 0 there exists an
n0 ∈ Z+ such that Pn ∈ W (G,A, ε) for every n ≥ n0. For every n ∈ Z+ we have
that Hd(F (0), ϕ−1(Pn)(0)) = 1. Then for every n ∈ Z+ Pn /∈ W (F, 0, 1

2
) and so

the map ϕ−1 is not continuous at G.

Theorem 8.4. Let X be a locally compact space and Y be a Banach space. The
map ϕ from (MU(X, Y ), τUC) onto (MC(X, Y ), τUC) is homeomorphism.
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Proof. By Theorem 7.7 ϕ is a bijection. By Theorem 8.2 it is sufficient to prove
that ϕ−1 is continuous. Let G ∈ MC(X, Y ) and F = ϕ−1(G). Let K ∈ K(X)
and ε > 0. We show that there exist K1 ∈ K(X) and ε1 > 0 such that
ϕ−1(W (G,K1, ε1)) ⊂ W (F,K, ε). Let K1 ∈ K(X) be such that K ⊂ IntK1. Put
ε1 = ε

3
. Let H ∈ W (G,K1, ε1) and x ∈ K. We show that F (x) ⊂ Sε(ϕ

−1(H)(x)).
Let y ∈ F (x). By Proposition 3.6 and Theorem 3.5 for ε

3
and for every U ∈ U(x)

there exists xU ∈ U ∩IntK1 such that F (xU) is single-valued and F (xU) ∈ S ε
3
(y).

From the fact that F (xU) is single-valued it follows that G(xU) is single-valued
too and consequently F (xU) = G(xU). Since H(xU) ⊂ S ε

3
(G(xU)) we have that

ϕ−1(H)(xU) ⊂ S ε
3
(F (xU)) and hence there exists yU ∈ ϕ−1(H)(xU) such that

d(yU , F (xU)) < ε
3
. Hence d(y, yU) < 2ε

3
. So there exists a subnet of the net

{(xU , yU) : U ∈ U(x)} which converges to a point (x, z), where z ∈ ϕ−1(H)(x).
So F (x) ⊂ Sε(ϕ

−1(H)(x)). The inclusion ϕ−1(H)(x) ⊂ Sε(F (x)) can be proved
similarly. �

The following Example shows that the condition of local compactness in The-
orem 8.4 is essential.

Example 8.5. Let X = [−1, 1] with the topology, where the open sets in X are
all subsets of X not containing 0 and all subsets of X containing 0 that have
countable complement. Every compact set in X is finite. Thus the topology τUC
on MU(X,R) and MC(X,R) reduces to the topology τp. So we can use Example
8.3.

Theorem 8.6. Let X be a Baire space and Y be a Banach space. The map ϕ
from (MU(X, Y ), τU) onto (MC(X, Y ), τU) is homeomorphism.

Proof. The proof is similar to the proof of Theorem 8.4. �

We will consider also the Vietoris topology V on MU(X,R) and on MC(X,R).
First we will consider the Vietoris topology V on the space CL(X × R) of
nonempty closed subsets of X × R. The basic open subsets of CL(X × R) in
V are the subsets of the form

W+ ∩W−
1 ∩ ... ∩W−

n ,

where W,W1, ...,Wn are open subsets of X × R, W+ = {F ∈ CL(X × R) : F ⊂
W}, and each W−

i = {F ∈ CL(X × R) : F ∩Wi 6= ∅}.
Under the identification of every element of MU(X,R) and MC(X,R) with its

graph, we can consider MU(X,R) and MC(X,R) as subsets of CL(X ×R). We
will consider the induced Vietoris topology V on MU(X,R) and on MC(X,R).

Theorem 8.7. Let X be a locally connected space. The map ϕ from (MU(X,R), V )
onto (MC(X,R), V ) is continuous.

Proof. Let F ∈ MU(X,R) and W+ ∩ W−
1 ∩ ... ∩ W−

n be a basic open set in
(MC(X,R), V ) such that ϕ(F ) ∈ W+ ∩W−

1 ∩ ... ∩W−
n .

Let G = ϕ(F ). By Lemma 4.1 in [24] there is an open set H ⊂ X×R such that
G ⊂ H ⊂ W and H(x) is connected for every x ∈ X. Without loss of generality
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we can also suppose that for every i = 1, 2, ...n, Wi ⊂ H and Wi = Ui × Vi, Ui
open in X, Vi an open interval in R.

For every i ∈ {1, 2, ...n} we will define an open set Hi as follows. Let i ∈
{1, 2, ...n}. Let (xi, yi) ∈ G ∩Wi. If yi = inf F (xi) or yi = supF (xi), we will put
Hi = W−

i . Otherwise, let Ci be a connected set in X such that xi ∈ IntCi ⊂
Ci ⊂ Ui and ε > 0 be such that inf F (xi) + ε < yi < supF (xi) − ε. Put Hi =
(IntCi× (inf F (xi)− ε, inf F (xi)+ ε))−∩ (IntCi× (supF (xi)− ε, supF (xi)+ ε))−.

It is easy to verify that L ∈MU(X,R)∩Hi implies that ϕ(L) ∈ Hi. Since ϕ(L)
is upper semi-continuous set-valued map with connected values, ϕ(L)(IntCi)
must be a connected set ([3], Proposition 6.2.12); i.e. yi ∈ ϕ(L)(IntCi). Thus
ϕ(L) ∈ ∩W−

i .
Put G = H+ ∩H1 ∩ ...∩Hn. Then F ∈ G and ϕ(S) ∈ W+ ∩W−

1 ∩ ...∩W−
n for

every S ∈ G. �

The following Example shows that the condition of local connectedness in the
above Theorem is essential.

Example 8.8. Let X = [−1, 1]\{ 1
n

: n ∈ Z+} with the usual Euclidean topology.
Consider the maps F and G from X to R defined by

F (x) =

 1, x ∈ X ∩ [−1, 0);
{−1, 1}, x = 0;
−1, x ∈ X ∩ (0, 1].

G(x) =

 1, x ∈ X ∩ [−1, 0);
[−1, 1], x = 0;
−1, x ∈ X ∩ (0, 1].

Then G = ϕ(F ) and we claim that ϕ is not continuous at F . For every n ∈ Z+

let fn be the function from X to R defined by

fn(x) =

{
1, x ∈ X ∩ [−1, 1

n
);

−1, x ∈ X ∩ ( 1
n
, 1].

We have that fn = ϕ(fn) for every n ∈ Z+. The sequence {fn : n ∈ Z+}
converges in (MU(X,R), V ) to F , but {fn : n ∈ Z+} does not converge to G in
(MC(X,R), V ).

The following example shows that the map ϕ−1 from (MC([−1, 1],R), V ) onto
(MU([−1, 1],R), V ) is not continuous.

Example 8.9. Let X = [−1, 1] with the usual Euclidean topology. Let F , G
be maps from Example 7.3. Then F = ϕ−1(G) and we claim that ϕ−1 is not
continuous at G. For every n ∈ Z+ let gn be the function from [−1, 1] to R
defined by

gn(x) =

 1, x ∈ [−1, 0];
1− 2nx, x ∈ (0, 1

n
);

−1, x ∈ [ 1
n
, 1].

Evidently gn = ϕ−1(gn) for every n ∈ Z+. It is easy to see that the sequence
{gn : n ∈ Z+} converges in (MC([−1, 1],R), V ) to G, but {gn : n ∈ Z+} does
not converges to F in (MU([−1, 1],R), V ).
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In the last part of the paper we will prove further results concerning interesting
bijections and homeomorphisms from the space MU(X,R).

Let F be a usco map from a topological space X to R. Define the function fF

as follows:
fF (x) = sup{y : y ∈ F (x)}.

Then of course fF is a selection of F and fF is upper semi-continuous and
locally bounded.

If F is a minimal usco map from a topological space X to R, then by Theorem
3.5 fF is also quasicontinuous.

In what follows denote by Q(X,R) the space of all quasicontinuous real-valued
functions defined on a topological space X and by Q?(X,R) (A?(X,R)) the set
of all locally bounded elements of Q(X,R) (A(X,R)). By USC(X,R) we denote
the set of all upper semi-continuous functions.

Define a mapping Ω : MU(X,R)→ Q?(X,R) ∩ USC(X,R) by Ω(F ) = fF .

Proposition 8.10. The mapping Ω : MU(X,R)→ Q?(X,R) ∩ USC(X,R) is a
bijection and Ω(D?(X,R)) = A?(X,R) ∩ USC(X,R).

Proof. To show that Ω is one-to-one, let F,G ∈ MU(X,R) be such that F 6= G

i.e., fF 6= fG. Without loss of generality, we can suppose that there is a point
(u, v) ∈ fF such that (u, v) /∈ fG. Then there exists an open neighborhood U

of (u, v) such that U ∩ fG = ∅. There must exists a point w ∈ X such that

(w, fF (w)) ∈ U and so (w, fF (w)) /∈ fG. Since fG is a selection of G, we have
that fF 6= fG.

To show that the mapping Ω is onto, let f ∈ Q?(X,R) ∩ USC(X,R). By
Theorem 3.5, f is a minimal usco map. The upper semi-continuity of f guarantees
the equality f(x) = sup{y : (x, y) ∈ f} for every x ∈ X; i.e., Ω(f) = f . Thus Ω
is onto.

If F ∈ D?(X,R), then by Proposition 4.2, fF ∈ A(X,R). Of course, fF

is upper semi-continuous and locally bounded; i.e., Ω(D?(X,R)) ⊂ A?(X,R) ∩
USC(X,R). Now we prove the equality. Let f ∈ A?(X,R) ∩ USC(X,R). By
Proposition 4.2, f ∈ D(X,R) and since f is locally bounded f ∈ D?(X,R). The
upper semi-continuity of f guarantees the equality f(x) = sup{y : (x, y) ∈ f} for
every x ∈ X. Thus Ω(f) = f . �

Of course, for a usco map F : X  R we can define also

fF (x) = inf{y : y ∈ F (x)}.
It is easy to see that fF is lower semi-continuous selection of F , which is

locally bounded. We can give a similar result for lower semi-continuous functions
as we gave above for upper semi-continuous functions. The result for lower semi-
continuous functions is dual.

Denote by LSC(X,R) the set of all lower semi-continuous functions, and define
the mapping S : MU(X,R)→ Q?(X,R) ∩ LSC(X,R) by S(F ) = fF .

Proposition 8.11. The mapping S : MU(X,R) → Q?(X,R) ∩ LSC(X,R) is a
bijection, and S(D?(X,R)) = A?(X,R) ∩ LSC(X,R).
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Remark 8.12. It is easy to see that if A and B are nonempty compact subsets of
R, then d(supA, supB) 5 Hd(A,B).

Proposition 8.13. Let X be a topological space. Then the mapping Ω from
(MU(X,R), Up) onto (Q?(X,R) ∩ USC(X,R),Up) is uniformly continuous.

Proof. The proof follows from Remark 8.12. �

The following example shows that even τUC-convergence inQ?(X,R)∩USC(X,R)
does not imply the convergence in (MU(X,R), τp).

Example 8.14. Let W be the set of all ordinal numbers less than or equal to
the first uncountable ordinal number ω1 with the usual topology. Let L be the
set of all limit ordinal numbers different from ω1. Put X = W \ L and equip X
with the induced topology from W .

If λ is a nonlimit number, there are a unique integer I(λ) ∈ Z+ and a limit
number β such that λ = β + I(λ).

For every n ∈ Z+ put Cn = {λ ∈ X \ ω1 : I(λ) = n}. Then ω1 ∈ Cn for every
n ∈ Z+. Further, for every n ∈ Z+, let fn ∈ Q?(X,R) ∩ USC(X,R) be defined
as follows: fn(x) = 0 if x ∈ Cn and fn(x) = 1 otherwise. It is easy to verify that
{fn} τUC-converges to the function f identically equal to 1. However, the sequence
{Ω−1(fn)} fails to converge to Ω−1(f) in (MU(X,R), τp) since Ω−1(fn) = fn takes
the value {0, 1} at ω1 for every n ∈ Z+ and Ω−1(f)(ω1) = {1}.

Theorem 8.15. Let X be a topological space. Then the spaces (MU(X,R), %) and
(Q?(X,R)∩USC(X,R), %) are uniformly isomorphic. Also the spaces (D?(X,R), %)
and (A?(X,R) ∩ USC(X,R), %) are uniformly isomorphic.

Proof. As we proved above, the mapping Ω fromMU(X,R) toQ?(X,R)∩USC(X,R)
is a bijection. By Remark 8.12 we have that Ω : (MU(X,R), %) → (Q?(X,R) ∩
USC(X,R), %) is uniformly continuous. To prove that also Ω−1 is uniformly
continuous, it is sufficient to show that if for f, g ∈ Q?(X,R) ∩ USC(X,R),
d(f(x), g(x)) < ε for every x ∈ X, then Hd(f(x), g(x)) ≤ ε for every x ∈ X.

Suppose that this is not true. Then there exists an x0 ∈ X such that Hd(f(x0),
g(x0)) > ε. There is an r ∈ f(x0) such that d(r, g(x0)) > ε, or there is an
s ∈ g(x0) such that d(s, f(x0)) > ε. Suppose the first case occurs; the proof
of the second one is analogous. Put β = d(r, g(x0)) − ε. Let {xσ : σ ∈ Σ} be
a net in X converging to x0, such that the net {f(xσ) : σ ∈ Σ} converges to
r. Then for β

4
there is σ0 ∈ Σ such that f(xσ) ∈ Sβ

4
(r) for all σ > σ0. The

upper semi-continuity of g at x0 implies that there is a U ∈ U(x0) such that
g(x) ⊂ Sβ

4
(g(x0)) for all x ∈ U . Let σ ∈ Σ be such that σ > σ0 and xσ ∈ U .

Then of course d(f(xσ), g(xσ)) > ε, a contradiction.
Concerning the proof of the second statement of the theorem, by Proposition

8.10 we have that Ω(D?(X,R)) = A?(X,R) ∩ USC(X,R) and by the above
we know that Ω : (MU(X,R), %) → (Q?(X,R) ∩ USC(X,R), %) is uniformly
isomorphic. Thus, also the restriction of Ω on D?(X,R) to A?(X,R)∩USC(X,R)
is uniformly isomorphic. �
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Theorem 8.16. Let X be a locally compact topological space. The spaces (MU(X,R),
UUC) and (Q?(X,R) ∩USC(X,R),UUC) are uniformly isomorphic. Also the
spaces (D?(X,R), UUC) and (A?(X,R) ∩ USC(X,R),UUC) are uniformly iso-
morphic.

Proof. As we proved above, the mapping Ω fromMU(X,R) toQ?(X,R)∩USC(X,R)
is a bijection. By Remark 8.12 we have that Ω : (MU(X,R),UUC)→ (O?(X,R)∩
USC(X,R),UUC) is uniformly continuous. To prove that also Ω−1 is uniformly
continuous let K ∈ K(X) and ε > 0. The local compactness of X implies
that there is an open set G in X such that K ⊂ G and G is compact. Let
f, g ∈ Q?(X,R) ∩ USC(X,R) be such that d(f(x), g(x)) < ε for every x ∈ G.
To prove that Hd(f, g) ≤ ε for every x ∈ K, we can use a similar idea as in the
proof of Theorem 8.15. �

Topological properties and the cardinal function properties of character, pseudo
character, density, weight, net weight and cellularity on (D?(X,R), τp),
(D?(X,R), τUC) and (D?(X,R), τU) were studied in papers [22, 23, 25, 30, 31, 36].
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28. Ľ. Holá, D. Holý, Relation betwen minimal USCO and minimal CUSCO maps, Port. Math.

70 (2013), Fracs 3, 211–224.
29. S.T. Hammer, R.A. McCoy, Spaces of densely continuous forms, Set-Valued Analysis 5

(1997), 247–266.
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