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Abstract. We use Lyapunov functionals and obtain sufficient conditions that
guarantee exponential stability of the zero solution of the difference equation
with multiple delays

x(t+ 1) = a(t)x(t) +

k∑
j=1

bj(t)x(t− hj).

The novelty of our work is the relaxation of the condition |a(t)| < 1, in spite of
the presence of multiple delays. Using a slightly modified Lyapunov functional,
we obtain necessary conditions for the unboundedness of all solutions and for
the instability of the zero solution. We provide an example as an application
to our obtained results.

1. Introduction

In this paper we consider the scalar linear difference equation with multiple
delays

x(t+ 1) = a(t)x(t) +
k∑
j=1

bj(t)x(t− hj) (1.1)

where for j = 1, ..., k, 0 < hj ≤ h∗ for some positive constant h∗ and a, bj : Z+ →
R. Throughout the paper R and Z+ denote the set of real numbers and the set of
positive integers, respectively. We will use Lyapunov functionals and obtain some
inequalities regarding the solutions of (1.1) from which we can deduce exponential
asymptotic stability of the zero solution. Also, we will provide a criteria for the
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instability of the zero solution of (1.1) by means of Lyapunov functional.
In [8], Raffoul used a similar notion and obtained results regarding exponential
stability and instability for the zero solution of Volterra difference system

x(t+ 1) = a(t)x(t) +
t−1∑
s=t−r

b(t, s)x(s).

Also, in [9] Raffoul considered the single delay difference equation

x(t+ 1) = a(t)x(t) + b(t)x(t− h).

It is clear that our considered system is different from the one in [8] and of more
general nature of the system that was considered in [9], and as a consequence
more suitable Lyapunov functional will have to be constructed and dealt carefully
with. In [2] the author make use of the sign of eigenvalues and obtained results
concerning stability of the the zero solution of an equation that is similar to (1.1).
Our approach is totally different and in addition we obtain stronger stability.
For more recent results on boundedness, stability and periodicity in difference
systems, we refer to [10]-[12] and the results therein.

The novelty of this research is that the constructed Lyapunov functional will
allow us to offset the size of a(t) by the coefficients

∑k
j=1 bj(t + hj). As a direct

consequence, we are able to allow |a(t)| ≥ 1.

Let ψ : [−h∗, 0]→ (−∞,∞) be a given bounded initial function with

||ψ|| = max
−h≤s≤0

|ψ(s)|.

It should cause no confusion to denote the norm of a function ϕ : [−h∗,∞) →
(−∞,∞) with

||ϕ|| = sup
−h≤s<∞

|ϕ(s)|.

The notation xt means that xt(τ) = x(t + τ), τ ∈ [−h∗, 0] as long as x(t + τ)
is defined. Thus, xt is a function mapping an interval [−h∗, 0] into R. We say
x(t) ≡ x(t, t0, ψ) is a solution of (1.1) if x(t) satisfies (1.1) for t ≥ t0 and xt0 =
x(t0 + s) = ψ(s), s ∈ [−h∗, 0].
In preparation for our main results, we notice that (1.1) is equivalent to

4x(t) = [a(t)− 1 +
k∑
j=1

bj(t)(t+ hj)]x(t)−
k∑
j=1

4t

t−1∑
s=t−hj

bj(s+ hj)x(s). (1.2)

We have the following definition.

Definition 1.1. The zero solution of (1.1) is said to be exponentially stable if
any solution x(t, t0, ψ) of (1.1) satisfies

|x(t, t0, ψ)| ≤ C
(
||ψ||, t0

)
ζγ(t−t0), for all t ≥ t0,

where ζ is constant with 0 < ζ < 1, C : R+ × Z+ → R+, and γ is a positive
constant. The zero solution of (1.1) is said to be uniformly exponentially stable
if C is independent of t0.
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2. Exponential Stability

Now we turn our attention to the exponential stability of the zero solution of
equation (1.1). For simplicity, we let

Q(t) = a(t)− 1 +
k∑
j=1

bj(t+ hj).

We begin with the following proposition.

Proposition 2.1. Suppose x is a solution of (1.2), then

4
[
x(t) +

k∑
j=1

t−1∑
s=t−hj

bj(s+ hj)x(s)
]2

=
[
Q2(t) +Q(t)]x2(t)

+ Q(t)[x2(t) + 2x(t)

k∑
j=1

t−1∑
s=t−hj

bj(s+ hj)x(s)]
]
.

Proof. We use that fact that if u(t) is a sequence, then 4u2(t) = u(t+ 1)4u(t) +
u(t)4u(t). For more on the calculus of difference equations we refer the reader
to [4] and [7]. Let x(t) = x(t, t0, ψ) be a solution of (1.2), then

4
[
x(t) +

k∑
j=1

t−1∑
s=t−hj

bj(s+ hj)x(s)
]2

=
[
x(t+ 1) +

k∑
j=1

t∑
s=t−hj+1

bj(s+ hj)x(s)
]
4
[
x(t) +

k∑
j=1

t−1∑
s=t−hj

bj(s+ hj)x(s)
]

+
[
x(t) +

k∑
j=1

t−1∑
s=t−hj

bj(s+ hj)x(s)
]
4
[
x(t) +

k∑
j=1

t−1∑
s=t−hj

bj(s+ hj)x(s)
]
.

Now using (1.1), we have

x(t+ 1) +
k∑
j=1

t∑
s=t−hj+1

bj(s+ hj)x(s) = a(t)x(t) +
k∑
j=1

bj(t)x(t− hj)

−
k∑
j=1

bj(t)x(t− hj) +
k∑
j=1

t∑
s=t−hj

bj(s+ hj)x(s)

= a(t)x(t) +
k∑
j=1

t−1∑
s=t−hj

bj(s+ hj)x(s) +
k∑
j=1

bj(t+ hj)x(t)

=
(
Q(t) + 1

)
x(t) +

k∑
j=1

t−1∑
s=t−hj

bj(s+ hj)x(s).

Thus,



EXPONENTIAL STABILITY 177

4
[
x(t) +

k∑
j=1

t−1∑
s=t−hj

bj(s+ hj)x(s)
]2

=
[(
Q(t) + 1

)
x(t)

+
k∑
j=1

t−1∑
s=t−hj

bj(s+ hj)x(s)
]
Q(t)x(t)

+
[
x(t) +

k∑
j=1

t−1∑
s=t−hj

bj(s+ hj)x(s)
]
Q(t)x(t),

and hence the result follows. �

Lemma 2.2. Assume for δ > 0,

− δ

(1 + δ)h∗
≤ Q(t) ≤ −δh∗

k∑
j=1

b2j(t+ hj)−Q2(t), (2.1)

holds. If

V (t) =
[
x(t) +

k∑
j=1

t−1∑
s=t−hj

bj(s+ hj)x(s)
]2

+ δ
k∑
j=1

−1∑
s=−hj

t−1∑
z=t+s

b2j(z + hj)x
2(z) (2.2)

then, along the solutions of (1.2) we have 4V (t) ≤ Q(t)V (t).

Proof. First we note that due to condition (2.1), Q(t) < 0 for all t ≥ 0. Define
V (t) by (2.2). Then along solutions of (1.2) we have by using Proposition 2.1
that

4V (t) = 4
[
x(t) +

k∑
j=1

t−1∑
s=t−hj

bj(s+ hj)x(s)
]2

+ δ
k∑
j=1

−1∑
s=−hj

4t

( t−1∑
z=t+s

b2j(z + hj)x
2(z)

)
=

[
Q(t)x(t) + 2x(t) + 2

k∑
j=1

t−1∑
s=t−hj

bj(s+ hj)x(s)
]
Q(t)x(t)

+ δ[
k∑
j=1

hjb
2
j(t+ hj)x

2(t)−
k∑
j=1

−1∑
s=−hj

b2j(t+ s+ hj)x
2(t+ s)]

=
[
Q2(t) +Q(t)]x2(t) +Q(t)[x2(t) + 2x(t)

k∑
j=1

t−1∑
s=t−hj

bj(s+ hj)x(s)]

+ δ[
k∑
j=1

hjb
2
j(t+ hj)x

2(t)−
k∑
j=1

−1∑
s=−hj

b2j(t+ s+ hj)x
2(t+ s)].
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Or,

4V (t) = [Q2(t) +Q(t)]x2(t) +Q(t)V (t)−Q(t)
[ k∑
j=1

t−1∑
s=t−hj

bj(s+ hj)x(s)
]2

+ δ
[ k∑
j=1

hjb
2
j(t+ hj)x

2(t)−
k∑
j=1

−1∑
s=−hj

b2j(t+ s+ hj)x
2(t+ s)

]

− Q(t)δ
k∑
j=1

−1∑
s=−hj

t−1∑
z=t+s

b2j(z + hj)x
2(z) (2.3)

In what to follow we perform some calculations to simplify (2.3). First, if we let
u = s+ t, then

−δ
k∑
j=1

−1∑
s=−hj

b2j(t+ s+ hj)x
2(t+ s) = −δ

k∑
j=1

t−1∑
u=t−hj

[b2j(u+ hj)x
2(u)]

= −δ
k∑
j=1

t−1∑
s=t−hj

[b2j(s+ hj)x
2(s)].

Using Holder’s inequality, we have

−Q(t)
[ k∑
j=1

t−1∑
s=t−hj

bj(s+ hj)x(s)
]2 ≤ −Q(t)

k∑
j=1

12[
t−1∑

s=t−hj

bj(s+ hj)x(s)]2

≤ −Q(t)
k∑
j=1

12

t−1∑
s=t−hj

12

t−1∑
s=t−hj

b2j(s+ hj)x
2(s)

= −Q(t)
k∑
j=1

hj

t−1∑
s=t−hj

b2j(s+ hj)x
2(s)

≤ −Q(t)h∗
k∑
j=1

t−1∑
s=t−hj

b2j(s+ hj)x
2(s). (2.4)

One more term to reduce.

−Q(t)δ
k∑
j=1

−1∑
s=−hj

t−1∑
z=t+s

b2j(z + hj)x
2(z) ≤ −Q(t)δ

k∑
j=1

−1∑
s=−hj

t−1∑
z=t−hj

b2j(z + hj)x
2(z)

= −Q(t)δ
k∑
j=1

−1∑
l=−hj

t−1∑
s=t−hj

b2j(s+ hj)x
2(s)

≤ −Q(t)δh∗
k∑
j=1

t−1∑
s=t−hj

b2j(s+ hj)x
2(s).

Substituting the above three inequalities into (2.3) and by invoking (2.1) we
arrive at
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4V (t) ≤ Q(t)V (t) +
[
Q2(t) +Q(t) + δh∗

k∑
j=1

b2j(t+ hj)
]
x2(t)

−
[
Q(t)h∗ +Q(t)h∗δ + δ

] k∑
j=1

t−1∑
s=t−hj

b2j(s+ hj)x
2(s)

≤ Q(t)V (t). (2.5)

�

Theorem 2.3. Assume the hypothesis of Lemma 1. Then any solution x(t) =
x(t, t0, ψ) of (1.1) satisfies the inequality

|x(t)| ≤

√√√√δ + h∗

δ
V (t0)

t−1∏
s=t0

(
a(s) +

k∑
j=1

bj(s+ hj)
)

(2.6)

for t ≥ t0.

Proof. We changing the order of summation to get

δ
k∑
j=1

−1∑
s=−hj

t−1∑
z=t+s

b2j(z + hj)x
2(z) = δ

k∑
j=1

t−1∑
z=t−hj

z−t∑
s=−hj

b2j(z + hj)x
2(z)

= δ
k∑
j=1

t−1∑
z=t−hj

b2j(z + hj)x
2(z)(z − t+ hj + 1)

≥ δ
k∑
j=1

t−1∑
z=t−hj

b2j(z + hj)x
2(z),

where we have used the fact that when t−hj ≤ z ≤ t−1 then 1 ≤ z−t+h+1 ≤ h.
By a similar argument as in (2.4) we have

( k∑
j=1

t−1∑
z=t−hj

bj(z + hj)x(z)
)2 ≤ h∗

k∑
j=1

t−1∑
z=t−hj

b2j(z + hj)x
2(z).

Thus, the above two inequalities imply that In a similar fashion as in (2.4) we
arrive at

δ

k∑
j=1

−1∑
s=−hj

t−1∑
z=t+s

b2j(z + hj)x
2(z) ≥ δ

h∗
( k∑
j=1

t−1∑
z=t−hj

bj(z + hj)x(z)
)2
.
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Let V (t) be given by (2.2). Then

V (t) =
[
x(t) +

k∑
j=1

t−1∑
z=t−hj

bj(z + hj)x(z)
]2

+ δ
[ k∑
j=1

−1∑
s=−hj

t−1∑
z=t+s

b2j (z + hj)x
2(z)

]
≥

[
x(t) +

k∑
j=1

t−1∑
z=t−hj

bj(z + hj)x(z)
]2

+
δ

h∗

k∑
j=1

( t−1∑
z=t−hj

bj(z + hj)x(z)
)2

=
δ

h∗ + δ
x2(t) +

[√ h∗

h∗ + δ
x(t) +

√
h∗ + δ

h∗

k∑
j=1

t−1∑
z=t−hj

b(z + hj)x(z)
]2

≥ δ

h∗ + δ
x2(t)

Consequently,

δ

h∗ + δ
x2(t) ≤ V (t).

From (2.5) we get

V (t) ≤ V (t0)
t−1∏
s=t0

(
a(s) +

k∑
j=1

bj(s+ hj)
)
.

Substituting the above V (t) into the inequality

x2(t) ≤ h∗ + δ

δ
V (t).

�

For the next corollary, we observe that due to condition (2.1) there exists a

positive constant 0 < α < 1 such that |
k∑
j=1

bj(t+ hj) + a(t)| < α < 1.

Corollary 2.4. Assume the hypothesis of Theorem 2.1. Then the zero solution
of (1.1) is exponentially stable.

Proof. From inequality (2.6) we have that

|x(t)| ≤

√√√√δ + h∗

δ
V (t0)

t−1∏
s=t0

(
a(s) +

k∑
j=1

bj(s+ hj)
)

≤
√
δ + h∗

δ
V (t0)αt−t0 (2.7)

for t ≥ t0. The proof is complete since α ∈ (0, 1). �

Next we give a simple example to show that condition (2.1) can be easily
verified and moreover, we take |a(t)| > 1.
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Example 1. Let a = 1.2, b1 = −0.2, b2 = −0.088, h∗ = 2, and δ = 0.5. Then one
can easily verify that (2.1) is satisfied. Hence the zero solution of the difference
equation with multiple delays

x(t+ 1) = 1.2 x(t)− 0.2 x(t− 1)− 0.088 x(t− 2).

is exponentially stable.
It is worth mentioning that in both papers [6] and [10] it was assumed that

t−1∏
s=0

a(s)→ 0, as t→∞

for the asymptotic stability. Of course our a = 1.2 does not satisfy such a
condition, and yet we concluded exponential stability.

Remark 2.5. If for a positive constant M we have

V (t0) ≤M, for all t0 ≥ 0,

then the zero solution of (1.1) is uniformly exponentially stable. This follows
from the exponential inequality (2.7).

So we end this paper by giving a criteria for instability via Lyapunov functional.

3. Unbounded Solutions and Criteria For Instability

In this section, we use a non-negative definite Lyapunov functional and obtain
criteria that can be easily applied to test for unboundedness of solutions and
instability of the zero solution of (1.1).

Theorem 3.1. Let H > h∗ be a constant. Assume Q(t) > 0 such that

Q2(t) +Q(t)−H
k∑
j=1

b2j(t+ hj) ≥ 0. (3.1)

If

V (t) =
[
x(t) +

k∑
j=1

t−1∑
s=t−h

bj(s+ hj)x(s)
]2

− H
k∑
j=1

t−1∑
s=t−hj

b2j(s+ hj)x
2(s) (3.2)

then, along the solutions of (1.1) we have

4V (t) ≥ Q(t)V (t).
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Proof. Let x(t) = x(t, t0, ψ) be a solution of (1.1) and define V (t) by (3.2). Since
the calculation is similar to the one in lemma 1, we arrive at

4V (t) = Q(t)V (t) +
(
Q2(t) +Q(t)−H

k∑
j=1

b2j(t+ hj)
)
x2(t)

+ H

k∑
j=1

b2j(t)x
2(t− hj)−Q(t)

( k∑
j=1

t−1∑
s=t−hj

bj(s+ hj)x(s)
)2

+ HQ(t)
k∑
j=1

t−1∑
s=t−hj

b2j(s+ hj)x
2(s)

≥ Q(t)V (t) (3.3)

where we have used (3.1) and

( k∑
j=1

t−1∑
s=t−hj

bj(s+ hj)x(s)
)2 ≤ h∗

k∑
j=1

t−1∑
s=t−hj

b2j(s+ hj)x
2(s) (3.4)

≤ H
k∑
j=1

t−1∑
s=t−hj

b2j(s+ hj)x
2(s)

and (3.1). This completes the proof. �

Theorem 3.2. Suppose hypothesis of Theorem 3.1 hold. Then all solutions of
(1.1) are unbounded and its zero solution is unstable

Proof. From (3.3) we have

V (t) ≥ V (t0)
t−1∏
s=t0

(
a(s) +

k∑
j=1

bj(s+ hj)
)
. (3.5)

Let V (t) be given by (3.2). Then

V (t) = x2(t) + 2[x(t)
k∑
j=1

t−1∑
s=t−hj

bj(s+ hj)x(s)] +
[ k∑
j=1

t−1∑
s=t−hj

bj(s+ hj)x(s)
]2

− H

k∑
j=1

t−1∑
s=t−hj

b2j(s+ hj)x
2(s). (3.6)

Let β = H − h∗. Then from

(

√
h∗√
β
a−

√
β√
h∗
b)2 ≥ 0,

we have

2ab ≤ h∗

β
a2 +

β

h∗
b2.
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With this in mind we arrive at,

2[x(t)
k∑
j=1

t−1∑
s=t−hj

bj(s+ hj)x(s)] ≤ 2|x(t)||
t−1∑

s=t−hj

bj(s+ hj)x(s)|

≤ h∗

β
x2(t) +

β

h∗

[ k∑
j=1

t−1∑
s=t−hj

bj(s+ hj)x(s)
]2

≤ h∗

β
x2(t) +

β

h∗
h∗

k∑
j=1

t−1∑
s=t−hj

b2j(s+ hj)x
2(s).

A substitution of the above inequality and (3.4) into (3.6) yields,

V (t) ≤ x2(t) +
h∗

β
x2(t) + (β + h∗ −H)

k∑
j=1

t−1∑
s=t−hj

b2j(s+ hj)x
2(s)

=
β + h∗

β
x2(t)

=
H

H − h∗
x2(t)

Using inequality (3.5), we get

|x(t)| ≥
√
H − h∗
H

V 1/2(t)

=

√
H − h∗
H

V 1/2(t0)
( t−1∏
s=t0

(
a(s) +

k∑
j=1

(bj(s+ hj)
)) 1

2
.

Since Q(t) > 0, there exists a positive constant α > 1 such that bj(t+ s) + a(t) >
α > 1. Thus we have from the above inequality that

|x(t)| ≥
√
H − h∗
H

V 1/2(t0)α
t−t0
2 →∞, as t→∞.

This completes the proof. �
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