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LIPSCHITZ TENSOR PRODUCT

M. G. CABRERA-PADILLA1, J. A. CHÁVEZ-DOMÍNGUEZ2, A. JIMÉNEZ-VARGAS1∗ AND
MOISÉS VILLEGAS-VALLECILLOS3

Communicated by H.R. Ebrahimi Vishki

Abstract. Inspired by ideas of R. Schatten in his celebrated monograph [23] on a
theory of cross-spaces, we introduce the notion of a Lipschitz tensor product X � E
of a pointed metric space X and a Banach space E as a certain linear subspace of the
algebraic dual of Lip0(X, E∗). We prove that X � E is linearly isomorphic to the lin-
ear space of all finite-rank continuous linear operators from (X#, τp) into E, where X#

denotes the space Lip0(X,K) and τp is the topology of pointwise convergence of X#.
The concept of Lipschitz tensor product of elements of X# and E∗ yields the space
X#iE∗ as a certain linear subspace of the algebraic dual of X�E. To ensure the good
behavior of a norm on X � E with respect to the Lipschitz tensor product of Lipschitz
functionals (mappings) and bounded linear functionals (operators), the concept of du-
alizable (respectively, uniform) Lipschitz cross-norm on X � E is defined. We show
that the Lipschitz injective norm ε, the Lipschitz projective norm π and the Lipschitz
p-nuclear norm dp (1 ≤ p ≤ ∞) are uniform dualizable Lipschitz cross-norms on
X�E. In fact, ε is the least dualizable Lipschitz cross-norm and π is the greatest Lips-
chitz cross-norm on X�E. Moreover, dualizable Lipschitz cross-norms α on X�E are
characterized by satisfying the relation ε ≤ α ≤ π. In addition, the Lipschitz injective
(projective) norm on X � E can be identified with the injective (respectively, projec-
tive) tensor norm on the Banach-space tensor product of the Lipschitz-free space over
X and E, but this identification does not hold for the Lipschitz 2-nuclear norm and the
corresponding Banach-space tensor norm. In terms of the space X# i E∗, we describe
the spaces of Lipschitz compact (finite-rank, approximable) operators from X to E∗.

Introduction

The Lipschitz space Lip0(X, E) is the Banach space of all Lipschitz maps f from a
pointed metric space X to a Banach space E that vanish at the base point of X, under
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the Lipschitz norm given by

Lip( f ) = sup
{
‖ f (x) − f (y)‖

d(x, y)
: x, y ∈ X, x , y

}
.

The elements of Lip0(X, E) are referred to as Lipschitz operators. If K is the field of
real or complex numbers, the space Lip0(X,K), denoted by X#, is called the Lipschitz
dual of X. A comprehensive reference for the basic theory of the spaces of Lipschitz
functions is the book [24] by N. Weaver.

The use of techniques of the theory of algebraic tensor product of Banach spaces
to tackle the problem of the duality for Lipschitz operators from X to E goes back to
the seventies with the works [18, 19] of J. A. Johnson. Recently, the second-named
author [4] has adopted this approach to describe the duals of spaces of Lipschitz p-
summing operators from X to E∗ for 1 ≤ p ≤ ∞. The notion of Lipschitz p-summing
operators between metric spaces, a nonlinear generalization of p-summing operators,
was introduced by J. D. Farmer and W. B. Johnson in [11], where a nonlinear version
of the Pietsch factorization-domination theorem was established. The article [11] has
motivated the study of Lipschitz versions of different types of bounded linear operators
in the works [4, 5, 6, 7, 17].

The reading of the paper [4] invites to give a definition for the tensor product of X
and E. In [18], J. A. Johnson proved that the dual of the closed linear subspace of
Lip0(X, E∗)∗ spanned by the functionals δx � e on Lip0(X, E∗) with x ∈ X and e ∈ E,
defined by (δx � e)( f ) = 〈 f (x), e〉, is isometrically isomorphic to Lip0(X, E∗). It is well
known that the dual of the projective tensor product of Banach spaces E and F can be
identified with the space of all bounded linear operators from E to F∗, so the predual of
Lip0(X, E∗) provided by Johnson’s result plays the role of the projective tensor product
in the linear theory and this fact suggests to call Lipschitz tensor product of X and E the
linear subspace of the algebraic dual of Lip0(X, E∗) spanned by the functionals δx � e.
In [4], this space is called the space of E-valued molecules on X, a generalization of
the Arens–Eells space Æ(X) of scalar-valued molecules on X (see [1, 24]).

Our purpose in the present paper is to formalize the notion of a Lipschitz tensor
product between a metric space and a normed space, and to study its basic properties.
We are also motivated by the problem of researching the spaces of Lipschitz compact
(finite-rank, approximable) operators from X to E∗ introduced in [17].

We now describe the contents of this paper. Sections 1 and 2 gather some prelim-
inary results on the Lipschitz tensor product X � E between a metric space X and a
normed space E, whereas Section 3 is devoted to the norms that can be defined on it
that will be useful for our purposes (we have called them Lipschitz cross-norms, in
accordance to the classic terminology). The section 4 is a first approach to the issue of
duality, showing that Lipschitz maps are in duality with one of these Lipschitz cross-
norms. Sections 5, 6 and 7 study important specific examples of Lipschitz cross-norms,
which are Lipschitz versions of the classical injective, projective and Chevet–Saphar
cross-norms. In Section 8, we deal with the space of all Lipschitz finite-rank operators
from X to E∗ and its closure in the Lipschitz norm topology, the space of Lipschitz
approximable operators from X to E∗.

Notation. Given two metric spaces (X, dX) and (Y, dY), let us recall that a map
f : X → Y is said to be Lipschitz if there exists a real constant C ≥ 0 such that
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dY( f (x), f (y)) ≤ CdX(x, y) for all x, y ∈ X. The least constant C for which the preced-
ing inequality holds will be denoted by Lip( f ), that is,

Lip( f ) = sup
{

dY( f (x), f (y))
dX(x, y)

: x, y ∈ X, x , y
}
.

A pointed metric space X is a metric space with a base point in X , that is, a designated
special point, which we will always denote by 0. As usual, K denotes the field of real
or complex numbers. We will consider a normed space E over K as a pointed metric
space with the distance defined by its norm and the zero vector as the base point. As
is customary, BE and S E stand for the closed unit ball of E and the unit sphere of E,
respectively.

Given two pointed metric spaces X and Y , we denote by Lip0(X,Y) the set of all base-
point preserving Lipschitz maps from X to Y . If E is a Banach space, then Lip0(X, E)
is a Banach space under the Lipschitz norm given by

Lip( f ) = sup
{
‖ f (x) − f (y)‖

d(x, y)
: x, y ∈ X, x , y

}
.

For two vector spaces E and F, L(E, F) stands for the vector space of all linear oper-
ators from E into F. In the case that E and F are Banach spaces,L(E, F) represents the
Banach space of all bounded linear operators from E to F endowed with the canonical
norm of operators. In particular, the algebraic dual L(E,K) and the topological dual
L(E,K) are denoted by E′ and E∗, respectively. For each e ∈ E and e∗ ∈ E′, we
frequently will write 〈e∗, e〉 instead of e∗(e).

Throughout this paper, unless otherwise stated, X will denote a pointed metric space
with base point 0 and E a Banach space.

1. Lipschitz tensor products

The Lipschitz tensor product of a pointed metric space X and a Banach space E,
which we will denote from now on by X � E, can be constructed as a space of linear
functionals on Lip0(X, E∗).

Definition 1.1. Let X be a pointed metric space and E a Banach space. For each x ∈ X,
let δ(x,0) : Lip0(X, E∗)→ E∗ be the linear map defined by

δ(x,0)( f ) = f (x)
(
f ∈ Lip0(X, E∗)

)
.

For each (x, y) ∈ X2, let δ(x,y) : Lip0(X, E∗)→ E∗ be the linear map given by

δ(x,y) = δ(x,0) − δ(y,0).

Let ∆(X, E∗) denote the linear subspace of L(Lip0(X, E∗), E∗) spanned by the set{
δ(x,y) : (x, y) ∈ X2

}
.

For any γ ∈ ∆(X, E∗) and e ∈ E, let γ � e : Lip0(X, E∗) → K be the linear functional
given by

(γ � e)( f ) = 〈γ( f ), e〉
(
f ∈ Lip0(X, E∗)

)
.

In particular, for any (x, y) ∈ X2 and e ∈ E, let δ(x,y) � e be the element of Lip0(X, E∗)′

defined, for any f ∈ Lip0(X, E∗), by(
δ(x,y) � e

)
( f ) =

〈
δ(x,y)( f ), e

〉
=

〈
δ(x,0)( f ) − δ(y,0)( f ), e

〉
= 〈 f (x) − f (y), e〉 .
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The Lipschitz tensor product X � E is defined as the vector subspace of Lip0(X, E∗)′

spanned by the set {
δ(x,y) � e : (x, y) ∈ X2, e ∈ E

}
.

The following properties of the Lipschitz tensor product can be checked easily.

Lemma 1.2. Let λ ∈ K, (x, y), (x1, y1), (x2, y2) ∈ X2 and e, e1, e2 ∈ E.

(i) λ
(
δ(x,y) � e

)
= (λδ(x,y)) � e = δ(x,y) � (λe).

(ii)
(
δ(x1,y1) + δ(x2,y2)

)
� e = δ(x1,y1) � e + δ(x2,y2) � e.

(iii) δ(x,y) � (e1 + e2) = δ(x,y) � e1 + δ(x,y) � e2.
(iv) δ(x,x) � e = δ(x,y) � 0 = 0.

We say that δ(x,y) � e is an elementary Lipschitz tensor. Note that each element u in
X � E is of the form u =

∑n
i=1 λi(δ(xi,yi) � ei), where n ∈ N, λi ∈ K, (xi, yi) ∈ X2 and

ei ∈ E. This representation of u is not unique. It is worth noting that each element u of
X � E can be represented as u =

∑n
i=1 δ(xi,yi) � ei since λ(δ(x,y) � e) = δ(x,y) � (λe). This

representation of u admits the following refinement.

Lemma 1.3. Every nonzero Lipschitz tensor u ∈ X � E has a representation in the
form

∑m
i=1 δ(zi,0) � di, where

m = min

k ∈ N : ∃z1, . . . , zk ∈ X, d1, . . . , dk ∈ E | u =

k∑
i=1

δ(zi,0) � di


and the points z1, . . . , zm in X are distinct from the base point 0 of X and pairwise
distinct.

Proof. Let u ∈ X � E and let
∑n

i=1 δ(xi,yi) � ei be a representation of u. We have

u =

n∑
i=1

δ(xi,yi) � ei =

n∑
i=1

(
δ(xi,0) − δ(yi,0)

)
� ei =

n∑
i=1

δ(xi,0) � ei +

n∑
i=1

δ(yi,0) � (−ei)

=

n∑
i=1

δ(xi,0) � ei +

2n∑
i=n+1

δ(yi−n,0) � (−ei−n) =

2n∑
i=1

δ(zi,0) � di,

where

δ(zi,0) � di =

{
δ(xi,0) � ei if i = 1, . . . , n,
δ(yi−n,0) � (−ei−n) if i = n + 1, . . . , 2n.

Then, by the well-ordering principle of N, there exists a smallest natural number m for
which there is a representation of u in the form

∑m
i=1 δ(zi,0) � di. Since u , 0, it is clear

that zi , 0 for some i ∈ {1, . . . ,m}. This implies that z j , 0 for all j ∈ {1, . . . ,m}.
Otherwise, observe that

∑m
i=1,i, j δ(zi,0) � di would be a representation of u containing

m − 1 terms and this contradicts the definition of m. Moreover, if z j = zk for some
j, k ∈ {1, . . . ,m} with j , k, we would have

u =

m∑
i=1, j,i,k

δ(zi,0) � di +
(
δ(z j,0) � (d j + dk)

)
,

and this is impossible. Hence the points zi are pairwise distinct. �
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We can concatenate the representations of two elements of X � E to get a represen-
tation of their sum.

Lemma 1.4. Let u, v ∈ X � E and let
∑n

i=1 δ(xi,yi) � ei and
∑m

i=1 δ(x′i ,y
′
i ) � e′i be represen-

tations of u and v, respectively. Then
∑n+m

i=1 δ(x′′i ,y
′′
i ) � e′′i , where

(x′′i , y
′′
i ) =

{
(xi, yi) if i = 1, . . . , n,
(x′i−n, y

′
i−n) if i = n + 1, . . . , n + m,

e′′i =

{
ei if i = 1, . . . , n,
e′i−n if i = n + 1, . . . , n + m,

is a representation of u + v.

We now describe the action of a Lipschitz tensor u in X � E on a function f in
Lip0(X, E∗).

Lemma 1.5. Let u =
∑n

i=1 δ(xi,yi) � ei ∈ X � E and f ∈ Lip0(X, E∗). Then

u( f ) =

n∑
i=1

〈 f (xi) − f (yi), ei〉 .

Our next aim is to characterize the zero Lipschitz tensor. For it we need the following
Lipschitz operators.

Lemma 1.6. Let g ∈ X# and φ ∈ E∗. The map g·φ : X → E∗, given by (g·φ)(x) = g(x)φ,
belongs to Lip0(X, E∗) and Lip(g · φ) = Lip(g) ‖φ‖.

Proof. Clearly, g · φ is well defined. Let x, y ∈ X. For any e ∈ E, we obtain

|〈(g · φ)(x) − (g · φ)(y), e〉| = |〈(g(x) − g(y)) φ, e〉|
= |g(x) − g(y)| |〈φ, e〉|
≤ Lip(g)d(x, y) ‖φ‖ ‖e‖ ,

and so ‖(g · φ)(x) − (g · φ)(y)‖ ≤ Lip(g) ‖φ‖ d(x, y). Then we have g · φ ∈ Lip0(X, E∗)
and Lip(g · φ) ≤ Lip(g) ‖φ‖. For the converse inequality, note that

|g(x) − g(y)| ‖φ‖ = ‖(g · φ)(x) − (g · φ)(y)‖ ≤ Lip(g · φ)d(x, y)

for all x, y ∈ X, and therefore Lip(g) ‖φ‖ ≤ Lip(g · φ). �

Proposition 1.7. If u =
∑n

i=1 δ(xi,yi) � ei ∈ X � E, then the following assertions are
equivalent:

(i) u = 0.
(ii)

∑n
i=1 (g(xi) − g(yi)) 〈φ, ei〉 = 0 for every g ∈ BX# and φ ∈ BE∗ .

(iii)
∑n

i=1 (g(xi) − g(yi)) ei = 0 for every g ∈ BX# .

Proof. (i) implies (ii): If u = 0, then u( f ) = 0 for all f ∈ Lip0(X, E∗). Since u =∑n
i=1 δ(xi,yi) � ei, it follows that

∑n
i=1〈 f (xi) − f (yi), ei〉 = 0 for all f ∈ Lip0(X, E∗) by

Lemma 1.5. For any g ∈ BX# and φ ∈ BE∗ , the function g ·φ is in Lip0(X, E∗) by Lemma
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1.6, and therefore we have
n∑

i=1

(g(xi) − g(yi)) 〈φ, ei〉 =

n∑
i=1

〈(g(xi) − g(yi)) φ, ei〉

=

n∑
i=1

〈(g · φ)(xi) − (g · φ)(yi), ei〉 = 0.

(ii) implies (iii): If (ii) holds, then 〈φ,
∑n

i=1(g(xi)−g(yi))ei〉 = 0 for every g ∈ BX# and
φ ∈ BE∗ . Since BE∗ separates the points of E, it follows that

∑n
i=1(g(xi) − g(yi))ei = 0

for all g ∈ BX# .
(iii) implies (i): By Lemma 1.3, we can write u =

∑m
i=1 δ(zi,0) � di, where the points zi

in X are pairwise distinct and different from the base point 0. It follows that
n∑

i=1

δ(xi,yi) � ei +

m∑
i=1

δ(zi,0) � (−di) = u − u = 0,

and by using the fact proved above that (i) implies (iii), we have
n∑

i=1

(g(xi) − g(yi)) ei +

m∑
i=1

(g(zi) − g(0)) (−di) = 0

for all g ∈ BX# . If (iii) holds, we get that
m∑

i=1

g(zi)di =

n∑
i=1

(g(xi) − g(yi)) ei = 0

for all g ∈ BX# . Set

r = min
({

d(zi, z j) : i, j ∈ {1, . . . ,m}, i , j
}
∪

{
d(zi, 0) : i ∈ {1, . . . ,m}

})
.

Clearly, r > 0. Given j ∈ {1, . . . ,m}, define g j : X → R by

g j(x) = max
{
0, r − d(x, z j)

}
.

It is easy to check that g j ∈ BX# , g j(z j) = r and g j(zi) = 0 for all i ∈ {1, . . . ,m} \ { j}.
Hence 0 =

∑m
i=1 g j(zi)di = rd j, therefore d1 = d2 = · · · = dm = 0 and thus u = 0. �

According to Definition 1.1, X�E is a linear subspace of Lip0(X, E∗)′. Furthermore,
we have the next fact.

Theorem 1.8.
〈
X � E,Lip0(X, E∗)

〉
forms a dual pair, where the bilinear form 〈·, ·〉

associated to the dual pair is given, for u =
∑n

i=1 δ(xi,yi)�ei ∈ X�E and f ∈ Lip0(X, E∗),
by

〈u, f 〉 =

n∑
i=1

〈 f (xi) − f (yi), ei〉 .

Proof. Note that 〈u, f 〉 = u( f ) by Lemma 1.5. It is plain that 〈·, ·〉 is a well-defined
bilinear map from (X � E) × Lip0(X, E∗) to K, and that Lip0(X, E∗) separates points
of X � E. Moreover, if f ∈ Lip0(X, E∗) and 〈u, f 〉 = 0 for all u ∈ X � E, then
〈 f (x), e〉 =

〈
δ(x,0) � e, f

〉
= 0 for all x ∈ X and e ∈ E. This implies that f = 0 and thus

X � E separates points of Lip0(X, E∗). This completes the proof of the theorem. �
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Since
〈
X � E,Lip0(X, E∗)

〉
is a dual pair, Lip0(X, E∗) can be identified with a linear

subspace of (X � E)′ as follows.

Corollary 1.9. For every map f ∈ Lip0(X, E∗), the functional Λ( f ) : X�E → K, given
by

Λ( f )(u) =

n∑
i=1

〈 f (xi) − f (yi), ei〉

for u =
∑n

i=1 δ(xi,yi) � ei ∈ X � E, is linear. We say that Λ( f ) is the linear functional on
X �E associated to f . The map f 7→ Λ( f ) is a linear monomorphism from Lip0(X, E∗)
into (X � E)′.

Proof. Let f ∈ Lip0(X, E∗). By Theorem 1.8, note that Λ( f )(u) = 〈u, f 〉 for all u in
X � E. It is immediate that Λ( f ) is a well-defined linear functional on X � E and that
f 7→ Λ( f ) from Lip0(X, E∗) into (X � E)′ is a well-defined linear map. Finally, let
f ∈ Lip0(X, E∗) and assume that Λ( f ) = 0. Then 〈u, f 〉 = 0 for all u ∈ X � E. Since
X�E separates points of Lip0(X, E∗), it follows that f = 0 and this proves that the map
Λ is one-to-one. �

We next show that X � E is linearly isomorphic to the linear space F ((X#, τp); E) of
all finite-rank linear operators from X# into E which are continuous from the topology
of pointwise convergence τp of X# to the norm topology of E.

Definition 1.10. Let X be a pointed metric space. For f ∈ X#, x ∈ X and ε ∈ R+, we
put

B( f , x, ε) =
{
g ∈ X# : |g(x) − f (x)| < ε

}
.

Let S be the family of sets
{
B( f , x, ε) : f ∈ X#, x ∈ X, ε ∈ R+

}
. Then the topology of

pointwise convergence τp on X# is the topology generated by S.

We can check that (X#, τp) is a locally convex space. Next we describe its dual space.

Lemma 1.11. Let X be a pointed metric space. Then

(X#, τp)∗ = lin({δx : x ∈ X})(⊂ (X#)′),

where δx is the functional on X# defined by δx(g) = g(x).

Proof. Define the linear functional T : X# → K by T (g) =
∑n

i=1 λig(xi) for all g ∈ X#,
where n ∈ N, λ1, . . . λn ∈ K and x1, . . . , xn ∈ X. Put r = 1 +

∑n
i=1 |λi| and let ε > 0 be

arbitrary. If g ∈
⋂n

i=1 B(0, xi, ε/r), then |T (g)| ≤
∑n

i=1 |λi| |g(xi)| < ε. This proves that
T is continuous on X# when it is equipped with the topology τp. Conversely, we need
to show that every element S in (X#, τp)∗ is of that form. Since S is continuous in the
τp-topology, there is an open neighborhood V of 0 such that |S (g)| < 1 for all g ∈ V .
We can suppose that V =

⋂n
i=1 B(0, xi, ε) for suitable n ∈ N, x1, . . . , xn ∈ X and ε > 0.

Take f ∈
⋂n

i=1 ker δxi . Then m f ∈ V for each m ∈ N. By the linearity of S , it follows
that |S ( f )| < 1/m for all m ∈ N and so S ( f ) = 0. This shows that

⋂n
i=1 ker δxi ⊂ ker S

and the lemma follows from a known fact of linear algebra. �

Theorem 1.12. The map J : X � E → F ((X#, τp); E), given by

J(u)(g) =

n∑
i=1

(g(xi) − g(yi)) ei
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for u =
∑n

i=1 δ(xi,yi) � ei ∈ X � E and g ∈ X#, is a linear isomorphism.

Proof. Let u =
∑n

i=1 δ(xi,yi) � ei ∈ X � E. It is immediate that J(u) : X# → E is well
defined and linear. Note that J(u)(X#) ⊂ lin{e1, . . . , en} and hence J(u) has finite-
dimensional range. In order to prove that J(u) is continuous from (X#, τp) to E, it is
sufficient to see that J(u) is continuous at 0. Let ε > 0. Denote r = 2(1 +

∑n
i=1 ||ei||) and

put zi = xi for i = 1, . . . , n and zi = yi−n for i = n+1, . . . , 2n. Take U = ∩2n
i=1B(0, zi, ε/r).

For any g ∈ U, we have

‖J(u)(g)‖ ≤
n∑

i=1

(|g(xi)| + |g(yi)|) ‖ei‖ ≤

n∑
i=1

2
ε

r
‖ei‖ < ε,

as required. By Proposition 1.7, the map u 7→ J(u) from X�E to F ((X#, τp); E) is well
defined. We now show that J is linear. If λ ∈ K, then λu =

∑n
i=1 δ(xi,yi) � (λei) and so

J(λu)(g) =

n∑
i=1

(g(xi) − g(yi)) (λei) = λ

n∑
i=1

(g(xi) − g(yi)) ei = λJ(u)(g)

for all g ∈ X#. Now, let v =
∑m

i=1 δ(x′i ,y
′
i ) � e′i ∈ X � E and take the representation∑n+m

i=1 δ(x′′i ,y
′′
i ) � e′′i of u + v given in Lemma 1.4. Then we have

J(u + v)(g) =

n+m∑
i=1

(
g(x′′i ) − g(y′′i )

)
e′′i

=

n∑
i=1

(
g(x′′i ) − g(y′′i )

)
e′′i +

n+m∑
i=n+1

(
g(x′′i ) − g(y′′i )

)
e′′i

=

n∑
i=1

(g(xi) − g(yi)) ei +

n+m∑
i=n+1

(
g(x′i−n) − g(y′i−n)

)
e′i−n

=

n∑
i=1

(g(xi) − g(yi)) ei +

m∑
i=1

(
g(x′i) − g(y′i)

)
e′i

= J(u)(g) + J(v)(g)

for all g ∈ X#. It remains to show that J is bijective. On one hand, assume that
J(u) = 0. Then J(u)(g) =

∑n
i=1(g(xi)−g(yi))ei = 0 for all g ∈ X#, this implies that u = 0

by Proposition 1.7 and so J is one-to-one. On the other hand, if T ∈ F ((X#, τp); E),
take a basis {e1, . . . , en} of T (X#). For each g ∈ X#, there are unique λ(g)

1 , . . . , λ
(g)
n ∈ K

such that T (g) =
∑n

i=1 λ
(g)
i ei. For each i ∈ {1, . . . , n}, let yi : T (X#) → K be given by

yi(T (g)) = λ
(g)
i for all g ∈ X#. The uniqueness of the representation of each element

of T (X#) implies that each yi is linear. Hence yi is continuous on T (X#) since the
linear space T (X#) is finite-dimensional. Then each Ti = yi ◦ T belongs to (X#, τp)∗

and T (g) =
∑n

i=1 Ti(g)ei for all g ∈ X#. Since (X#, τp)∗ = lin({δx : x ∈ X})(⊂ (X#)′)
by Lemma 1.11, for each i ∈ {1, . . . , n} there are m(i) ∈ N, λ(i)

1 , . . . , λ
(i)
m(i) ∈ K and

x(i)
1 , . . . , x

(i)
m(i) ∈ X such that Ti =

∑m(i)
j=1 λ

(i)
j δx(i)

j
. Then, for each g ∈ X#, we may write

T (g) =

n∑
i=1

Ti(g)ei =

m∑
j=1

g(x j)u j = J

 m∑
j=1

δ(x j,0) � u j

 (g)
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for certain m ∈ N, x1, . . . , xm ∈ X and u1, . . . , um ∈ E. This proves that J is onto. �

Corollary 1.13. Let X be a pointed metric space. If E is a finite-dimensional Banach
space, then X � E is linearly isomorphic to L((X#, τp); E). In particular, X � K is
linearly isomorphic to (X#, τp)∗ = lin({δx : x ∈ X}).

2. Lipschitz tensor product functionals and operators

We first introduce the concept of Lipschitz tensor product functional of a Lipschitz
functional and a bounded linear functional.

Definition 2.1. Let X be a pointed metric space and E a Banach space. Let g ∈ X# and
φ ∈ E∗. The map g � φ : X � E → K, given by

(g � φ)(u) =

n∑
i=1

(g(xi) − g(yi)) 〈φ, ei〉

for u =
∑n

i=1 δ(xi,yi) � ei ∈ X � E, is called the Lipschitz tensor product functional of g
and φ.

By Lemma 1.5, note that

(g � φ)(u) =

n∑
i=1

〈(g · φ)(xi) − (g · φ)(yi), ei〉 = u(g · φ).

The following result which follows easily from this formula gathers some properties
of these functionals.

Lemma 2.2. Let g ∈ X# and φ ∈ E∗. The functional g � φ : X � E → K is a well-
defined linear map satisfying λ(g � φ) = (λg) � φ = g � (λφ) for any λ ∈ K. Moreover,
(g1 + g2) � φ = g1 � φ + g2 � φ for all g1, g2 ∈ X# and g � (φ1 + φ2) = g � φ1 + g � φ2

for all φ1, φ2 ∈ E∗.

Definition 2.3. Let X be a pointed metric space and E a Banach space. The space
X# i E∗ is defined as the linear subspace of (X � E)′ spanned by the set{

g � φ : g ∈ X#, φ ∈ E∗
}
.

This space is called the associated Lipschitz tensor product of X � E.

From the aforementioned formula we also derive easily the following fact.

Lemma 2.4. For any
∑m

j=1 g j � φ j ∈ X# i E∗ and
∑n

i=1 δ(xi,yi) � ei ∈ X � E, we have m∑
j=1

g j � φ j


 n∑

i=1

δ(xi,yi) � ei

 =

 n∑
i=1

δ(xi,yi) � ei


 m∑

j=1

g j · φ j

 .
Each element u∗ in X#iE∗ has the form u∗ =

∑m
j=1 λ j(g j�φ j), where m ∈ N, λ j ∈ K,

g j ∈ X# and φ j ∈ E∗, but this representation is not unique. Since λ(g � φ) = (λg) � φ =

g� (λφ), each element of X#iE∗ can be expressed as
∑m

j=1 g j�φ j. This representation
can be improved as follows.
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Lemma 2.5. Every nonzero element u∗ in X# i E∗ has a representation
∑m

j=1 g j � φ j

such that the functions g1, . . . , gm in X# are nonzero and the functionals φ1, . . . , φm in
E∗ are linearly independent.

Proof. Let u∗ ∈ X# i E∗, u∗ , 0. Since 0 � φ = 0, we can take a representation for
u∗,

∑n
i=1 hi � φi, where h1, . . . , hn are nonzero. If the vectors φ1, . . . , φn are linearly

independent, we have finished. Otherwise, take F = lin({φ1, . . . , φn}) and choose a
subset of {φ1, . . . , φn}, which is a basis for F, φ1, . . . , φp (after reordering) for some
p < n. For each i ∈ {p + 1, . . . , n} we can express the vector φi as a unique linear
combination in the form φi =

∑p
k=1 λ

(i)
k φk, where λ(i)

1 , . . . , λ
(i)
p ∈ K. Using Lemma 2.2,

we can write

u∗ =

p∑
i=1

hi � φi +

n∑
i=p+1

hi � φi =

p∑
i=1

hi � φi +

n∑
i=p+1

hi �

 p∑
k=1

λ(i)
k φk


=

p∑
i=1

hi � φi +

n∑
i=p+1

 p∑
k=1

λ(i)
k (hi � φk)

 =

p∑
i=1

hi � φi +

p∑
k=1

 n∑
i=p+1

λ(i)
k (hi � φk)


=

p∑
i=1

hi � φi +

p∑
k=1

 n∑
i=p+1

λ(i)
k hi

 � φk =

p∑
j=1

h j +

n∑
i=p+1

λ(i)
j hi

 � φ j.

Denote g j = h j +
∑n

i=p+1 λ
(i)
j hi for each j ∈ {1, . . . , p}. Since u∗ , 0, after reordering,

we can take m ≤ p for which g j , 0 for all j ≤ m and g j = 0 for all j > m + 1. Then∑m
j=1 g j � φ j is a representation of u∗ satisfying the required conditions. �

Our next aim is to show that the associated Lipschitz tensor product X# i E∗ is
linearly isomorphic to the space of Lipschitz finite-rank operators from X to E∗. This
class of Lipschitz operators appears in [18, 17].

Let us recall that if X is a set and E is a vector space, then a map f : X → E is said
to have finite-dimensional rank if the subspace of E generated by f (X), lin( f (X)), is
finite-dimensional in which case the rank of f , denoted by rank( f ), is defined as the
dimension of lin( f (X)).

For a pointed metric space X and a Banach space E, we denote by Lip0F(X, E∗) the
set of all Lipschitz finite-rank operators from X to E∗. Clearly, Lip0F(X, E∗) is a linear
subspace of Lip0(X, E∗). For any g ∈ X# and φ ∈ E∗, we consider in Lemma 1.6 the
elements g · φ of Lip0F(X, E∗) defined by (g · φ)(x) = g(x)φ for all x ∈ X. Note that
rank(g · φ) = 1 if g , 0 and φ , 0. Now we prove that these elements generate linearly
the space Lip0F(X, E∗).

Lemma 2.6. Every element f ∈ Lip0F(X, E∗) has a representation in the form f =∑m
j=1 g j · φ j, where m = rank( f ), g1, . . . , gm ∈ X# and φ1, . . . , φm ∈ E∗.

Proof. Suppose lin( f (X)) is m-dimensional and let {φ1, . . . , φm} be a basis of lin( f (X)).
Then, for each x ∈ X, the element f (x) ∈ f (X) is expressible in a unique form as
f (x) =

∑m
j=1 λ

(x)
j φ j with λ(x)

1 , . . . , λ(x)
m ∈ K. For each j ∈ {1, . . . ,m}, define the linear map

y j : lin( f (X))→ K by y j( f (x)) = λ(x)
j for all x ∈ X. Let g j = y j◦ f . Clearly, g j ∈ X# and,

given x ∈ X, we have f (x) =
∑m

j=1 λ
(x)
j φ j =

∑m
j=1 g j(x)φ j. Hence f =

∑m
j=1 g j · φ j. �
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Theorem 2.7. The map K : X# i E∗ → Lip0F(X, E∗), defined by

K

 m∑
j=1

g j � φ j

 =

m∑
j=1

g j · φ j,

is a linear isomorphism.

Proof. The map K is well defined by applying Lemma 2.4 and Theorem 1.8. Clearly,
K is linear. Moreover, it is surjective by Lemma 2.6 and injective by Lemma 2.4. �

We next introduce the concept of Lipschitz tensor product operator of a Lipschitz
operator and a bounded linear operator.

Definition 2.8. Let X,Y be pointed metric spaces and let E, F be Banach spaces. Let
h ∈ Lip0(X,Y) and T ∈ L(E, F). The map h � T : X � E → Y � F, given by

(h � T )(u) =

n∑
i=1

δ(h(xi),h(yi)) � T (ei)

for u =
∑n

i=1 δ(xi,yi) � ei ∈ X � E, is called the Lipschitz tensor product operator of h and
T .

Lemma 2.9. Let h ∈ Lip0(X,Y) and T ∈ L(E, F). Then h � T : X � E → Y � F is a
well-defined linear operator.

Proof. Let u =
∑n

i=1 δ(xi,yi)�ei and v =
∑m

i=1 δ(x′i ,y
′
i )�e′i be in X�E. If u = v, then Propo-

sition 1.7 says us that
∑n

i=1(g(xi)−g(yi))ei =
∑m

i=1(g(x′i)−g(y′i))e
′
i for all g ∈ BX# . In par-

ticular, this holds for all functions in BX# of the form ( f ◦h)/(1+Lip(h)) with f varying
in BY# . It follows that

∑n
i=1 ( f (h(xi)) − f (h(yi))) T (ei) =

∑m
i=1

(
f (h(x′i)) − f (h(y′i))

)
T (e′i)

for all f ∈ BY# , and this implies that
∑n

i=1 δ(h(xi),h(yi)) � T (ei) =
∑m

i=1 δ(h(x′i ),h(y′i )) � T (e′i)
again by Proposition 1.7. Hence the map h � T is well defined.

We see that h � T is linear. Let λ ∈ K. Then λu =
∑n

i=1 δ(xi,yi) � (λei), and Definition
2.8 and Lemma 1.2 give

(h � T )(λu) =

n∑
i=1

δ(h(xi),h(yi)) � T (λei) =

n∑
i=1

δ(h(xi),h(yi)) � λT (ei)

= λ

n∑
i=1

δ(h(xi),h(yi)) � T (ei) = λ(h � T )(u).
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Take u + v =
∑n+m

i=1 δ(x′′i ,y
′′
i ) � e′′i as in Lemma 1.4. Then we have

(h � T )(u + v) =

n+m∑
i=1

δ(h(x′′i ),h(y′′i )) � T (e′′i )

=

n∑
i=1

δ(h(x′′i ),h(y′′i )) � T (e′′i ) +

n+m∑
i=n+1

δ(h(x′′i ),h(y′′i )) � T (e′′i )

=

n∑
i=1

δ(h(xi),h(yi)) � T (ei) +

n+m∑
i=n+1

δ(h(x′i−n),h(y′i−n)) � T (e′i−n)

=

n∑
i=1

δ(h(xi),h(yi)) � T (ei) +

m∑
i=1

δ(h(x′i ),h(y′i )) � T (e′i)

= (h � T )(u) + (h � T )(v).

�

3. Lipschitz cross-norms

We denote the linear space X � E endowed with a norm α by X �α E, and its com-
pletion by X�̂αE. We are looking for a norm on the linear space X � E, and for our
purposes it is convenient to work with norms that satisfy the following conditions.

Definition 3.1. Let X be a pointed metric space and E a Banach space. We say that a
norm α on X � E is a Lipschitz cross-norm if

α
(
δ(x,y) � e

)
= d(x, y) ‖e‖

for all (x, y) ∈ X2 and e ∈ E.
A Lipschitz cross-norm α on X � E is said to be dualizable if given g ∈ X# and

φ ∈ E∗, we have∣∣∣∣∣∣∣
n∑

i=1

(g(xi) − g(yi)) 〈φ, ei〉

∣∣∣∣∣∣∣ ≤ Lip(g) ‖φ‖α

 n∑
i=1

δ(xi,yi) � ei


for all

∑n
i=1 δ(xi,yi) � ei ∈ X � E.

A Lipschitz cross-norm α on X � E is called uniform if given h ∈ Lip0(X, X) and
T ∈ L(E, E), we have

α

 n∑
i=1

δ(h(xi),h(yi)) � T (ei)

 ≤ Lip(h) ‖T‖α

 n∑
i=1

δ(xi,yi) � ei


for all

∑n
i=1 δ(xi,yi) � ei ∈ X � E.

The dualizable Lipschitz cross-norms on X � E may be characterized by the bound-
edness of the Lipschitz tensor product functionals.

Proposition 3.2. A Lipschitz cross-norm α on X � E is dualizable if and only if, for
each g ∈ X# and φ ∈ E∗, the linear functional g � φ : X �α E → K is bounded and
‖g � φ‖ = Lip(g) ‖φ‖.
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Proof. Let α be a Lipschitz cross-norm on X � E. Given g ∈ X# and φ ∈ E∗, if α is
dualizable, we have∣∣∣∣∣∣∣(g � φ)

 n∑
i=1

δ(xi,yi) � ei


∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣
n∑

i=1

(g(xi) − g(yi)) 〈φ, ei〉

∣∣∣∣∣∣∣ ≤ Lip(g) ‖φ‖α

 n∑
i=1

δ(xi,yi) � ei


for all

∑n
i=1 δ(xi,yi) � ei ∈ X � E. Hence the linear functional g� φ is bounded on X �α E

and ‖g � φ‖ ≤ Lip(g) ‖φ‖. The opposite inequality Lip(g) ‖φ‖ ≤ ‖g � φ‖ is deduced
from the fact that

|g(x) − g(y)| |〈φ, e〉| =
∣∣∣(g � φ)(δ(x,y) � e)

∣∣∣ ≤ ‖g � φ‖α (
δ(x,y) � e

)
= ‖g � φ‖ d(x, y) ‖e‖

for all x, y ∈ X and e ∈ E.
Conversely, if for any g ∈ X# and φ ∈ E∗, the linear functional g � φ : X �α E → K

is bounded and ‖g � φ‖ = Lip(g) ‖φ‖, then∣∣∣∣∣∣∣
n∑

i=1

(g(xi) − g(yi)) 〈φ, ei〉

∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣(g � φ)

 n∑
i=1

δ(xi,yi) � ei


∣∣∣∣∣∣∣

≤ ‖g � φ‖α

 n∑
i=1

δ(xi,yi) � ei

 = Lip(g) ‖φ‖α

 n∑
i=1

δ(xi,yi) � ei


for all

∑n
i=1 δ(xi,yi) � ei ∈ X � E, and so α is dualizable. �

Similarly, the boundedness of the Lipschitz tensor product operators characterizes
the uniform Lipschitz cross-norms on X � E.

Proposition 3.3. A Lipschitz cross-norm α on X � E is uniform if and only if, for each
h ∈ Lip0(X, X) and T ∈ L(E, E), the linear operator h � T : X �α E → X �α E is
bounded and ‖h � T‖ = Lip(h) ‖T‖.

Proof. Let α be a Lipschitz cross-norm on X �E. If α is uniform, given h ∈ Lip0(X, X)
and T ∈ L(E, E), we have

α

(h � T )

 n∑
i=1

δ(xi,yi) � ei

 = α

 n∑
i=1

δ(h(xi),h(yi)) � T (ei)


≤ Lip(h) ‖T‖α

 n∑
i=1

δ(xi,yi) � ei


for all

∑n
i=1 δ(xi,yi) � ei ∈ X � E. It follows that the linear operator h � T is bounded on

X �α E and ‖h � T‖ ≤ Lip(h) ‖T‖. For the reverse inequality, notice that

d(h(x), h(y)) ‖T (e)‖ = α
(
δ(h(x),h(y)) � T (e)

)
= α

(
(h � T )

(
δ(x,y) � e

))
≤ ‖h � T‖α

(
δ(x,y) � e

)
= ‖h � T‖ d(x, y) ‖e‖

for all x, y ∈ X and e ∈ E, and therefore Lip(h) ‖T‖ ≤ ‖h � T‖.
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Conversely, if for each h ∈ Lip0(X, X) and T ∈ L(E, E), the linear map h � T from
X �α E to X �α E is bounded and ‖h � T‖ = Lip(h) ‖T‖, then

α

 n∑
i=1

δ(h(xi),h(yi)) � T (ei)

 = α

(h � T )

 n∑
i=1

δ(xi,yi) � ei


≤ ‖h � T‖α

 n∑
i=1

δ(xi,yi) � ei

 = Lip(h) ‖T‖α

 n∑
i=1

δ(xi,yi) � ei


for all

∑n
i=1 δ(xi,yi) � ei ∈ X � E, and so α is uniform. �

Remark 3.4. A reading of the proofs of the two preceding propositions shows that a
Lipschitz cross-norm α on X�E is dualizable (uniform) if for each g ∈ X# and φ ∈ E∗,
then g�φ ∈ (X�αE)∗ and ‖g � φ‖ ≤ Lip(g) ‖φ‖ (respectively, if for each h ∈ Lip0(X, X)
and T ∈ L(E, E), then h � T ∈ L(X �α E, X �α E) and ‖h � T‖ ≤ Lip(h) ‖T‖).

As a consequence of this remark, note that if α is a dualizable Lipschitz cross-norm
on X�E, then X#iE∗ is a linear subspace of (X�α E)∗. Next we introduce the concept
of Lipschitz cross-norm on X# i E∗.

Definition 3.5. Let X be a pointed metric space and E a Banach space. We say that a
norm β on X# i E∗ is a Lipschitz cross-norm if β(g�φ) = Lip(g) ‖φ‖ for all g ∈ X# and
φ ∈ E∗.

As a consequence of Proposition 3.2, we have the following Lipschitz cross-norm
on X# i E∗.

Corollary 3.6. Let α be a dualizable Lipschitz cross-norm on X � E. The restriction
to X# i E∗ of the canonical norm of (X �α E)∗, that is, the map α′ : X# i E∗ → R, given
by

α′(u∗) = sup


∣∣∣∣∣∣∣
 m∑

j=1

g j � φ j


 n∑

i=1

δ(xi,yi) � ei


∣∣∣∣∣∣∣ : α

 n∑
i=1

δ(xi,yi) � ei

 ≤ 1


for u∗ =

∑m
j=1 g j � φ j ∈ X# i E∗, is a Lipschitz cross-norm on X# i E∗.

Definition 3.7. Let X be a pointed metric space and E a Banach space. Let α be
a dualizable Lipschitz cross-norm on X � E. The norm α′ on X# i E∗ is called the
associated Lipschitz norm of α. The vector space X# i E∗ with the norm α′ will be
denoted by X# iα′ E∗ and its completion by X#îα′E∗.

4. The induced Lipschitz dual norm

Definition 4.1. For each u =
∑n

i=1 δ(xi,yi) � ei ∈ X � E, define:

L(u) = sup


∣∣∣∣∣∣∣

n∑
i=1

〈 f (xi) − f (yi), ei〉

∣∣∣∣∣∣∣ : f ∈ Lip0(X, E∗), Lip( f ) ≤ 1

 .
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Note that the supremum on the right side above exists and L(u) ≤
∑n

i=1 d(xi, yi) ‖ei‖

because∣∣∣∣∣∣∣
n∑

i=1

〈 f (xi) − f (yi), ei〉

∣∣∣∣∣∣∣ ≤
n∑

i=1

|〈 f (xi) − f (yi), ei〉|

≤

n∑
i=1

‖ f (xi) − f (yi)‖ ‖ei‖ ≤ Lip( f )
n∑

i=1

d(xi, yi) ‖ei‖

for all f ∈ Lip0(X, E∗). Moreover, L defines a map from X � E to R by Lemma 1.5.

Theorem 4.2. The linear space X � E is contained in Lip0(X, E∗)∗ and L is the dual
norm of the norm Lip of Lip0(X, E∗) induced on X � E. Moreover, L is a Lipschitz
cross-norm on X � E.

Proof. Let x, y ∈ X and e ∈ E. Since δ(x,y) � e is a linear map on Lip0(X, E∗) and∣∣∣(δ(x,y) � e)( f )
∣∣∣ = |〈 f (x) − f (y), e〉| ≤ ‖ f (x) − f (y)‖ ‖e‖ ≤ Lip( f )d(x, y) ‖e‖

for all f ∈ Lip0(X, E∗), then δ(x,y)� e ∈ Lip0(X, E∗)∗ and thus X�E ⊂ Lip0(X, E∗)∗. For
every u =

∑n
i=1 δ(xi,yi) � ei ∈ X � E, we have

L(u) = sup
{
|u( f )| : f ∈ Lip0(X, E∗), Lip( f ) ≤ 1

}
by Lemma 1.5, and therefore L is the dual norm of the norm Lip of Lip0(X, E∗) induced
on X � E. Finally, we prove that L is a Lipschitz cross-norm. By above-proved, we
have

∣∣∣(δ(x,y) � e)( f )
∣∣∣ ≤ d(x, y) ‖e‖ for all f ∈ Lip0(X, E∗) with Lip( f ) ≤ 1, and hence

L(δ(x,y) � e) ≤ d(x, y) ‖e‖. For the reverse estimate, take φ ∈ E∗ with ‖φ‖ = 1 satisfying
|〈φ, e〉| = ‖e‖, and consider the map f : X → E∗ given by

f (z) = (d(0, x) − d(z, x))φ (z ∈ X).

An easy verification shows that f is in Lip0(X, E∗) with Lip( f ) ≤ 1 and∣∣∣(δ(x,y) � e)( f )
∣∣∣ = |〈 f (x) − f (y), e〉| = |〈d(x, y)φ, e〉| = d(x, y) |〈φ, e〉| = d(x, y) ‖e‖ ,

and therefore d(x, y) ‖e‖ =
∣∣∣(δ(x,y) � e)( f )

∣∣∣ ≤ L(δ(x,y) � e). �

The following result is essentially known. For completeness we include it here with
an alternate proof.

Theorem 4.3. [18, Theorem 4.1] Let X be a pointed metric space and let E be a
Banach space. Then Lip0(X, E∗) is isometrically isomorphic to (X�̂LE)∗, via the map
Λ0 : Lip0(X, E∗)→ (X�̂LE)∗ given by

Λ0( f )(u) =

n∑
i=1

〈 f (xi) − f (yi), ei〉

for f ∈ Lip0(X, E∗) and u =
∑n

i=1 δ(xi,yi) � ei ∈ X �L E. Its inverse is the mapping
Λ−1

0 : (X�̂LE)∗ → Lip0(X, E∗) defined by〈
Λ−1

0 (ϕ)(x), e
〉

=
〈
ϕ, δ(x,0) � e

〉
for ϕ ∈ (X�̂LE)∗, x ∈ X and e ∈ E.
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Proof. Let f ∈ Lip0(X, E∗) and let Λ( f ) be the linear functional on X � E defined in
Corollary 1.9. Notice that Λ( f ) ∈ (X �L E)∗ and ‖Λ( f )‖ ≤ Lip( f ) since

|Λ( f )(u)| =

∣∣∣∣∣∣∣
n∑

i=1

〈 f (xi) − f (yi), ei〉

∣∣∣∣∣∣∣ ≤ Lip( f )L(u)

for all u =
∑n

i=1 δ(xi,yi) � ei ∈ X � E. By the denseness of X �L E in X�̂LE, there is a
unique continuous extension Λ0( f ) of Λ( f ) to X�̂LE. Let Λ0 : Lip0(X, E∗)→ (X�̂LE)∗

be the map so defined. Since Λ : Lip0(X, E∗)→ (X � E)′ is a linear monomorphism by
Corollary 1.9, it follows easily that so is Λ0.

In order to see that Λ0 is a surjective isometry, let ϕ be an element of (X�̂LE)∗.
Define f : X → E∗ by

〈 f (x), e〉 = ϕ(δ(x,0) � e) (x ∈ X, e ∈ E) .

It is plain that f (x) is a well-defined bounded linear functional on E and that f is well
defined. Observe that 〈 f (x) − f (y), e〉 = ϕ(δ(x,y) � e) for all x, y ∈ X and e ∈ E. Fix
x, y ∈ X. It follows that

|〈 f (x) − f (y), e〉| =
∣∣∣ϕ(δ(x,y) � e)

∣∣∣ ≤ ‖ϕ‖ L(δ(x,y) � e) = ‖ϕ‖ d(x, y) ‖e‖

for all e ∈ E, and so ‖ f (x) − f (y)‖ ≤ ‖ϕ‖ d(x, y). Hence f ∈ Lip0(X, E∗) and Lip( f ) ≤
‖ϕ‖. For any u =

∑n
i=1 δ(xi,yi) � ei ∈ X �L E, we get

Λ0( f )(u) =

n∑
i=1

〈 f (xi) − f (yi), ei〉 =

n∑
i=1

ϕ(δ(xi,yi) � ei) = ϕ

 n∑
i=1

δ(xi,yi) � ei

 = ϕ(u).

Hence Λ0( f ) = ϕ on a dense subspace of X�̂LE and, consequently, Λ0( f ) = ϕ. More-
over, Lip( f ) ≤ ‖ϕ‖ = ‖Λ0( f )‖. This completes the proof of the theorem. �

5. The Lipschitz injective norm

We introduce the Lipschitz injective norm on X � E, which bears this name because
– as we will see later – it respects injections.

Definition 5.1. For each u =
∑n

i=1 δ(xi,yi) � ei ∈ X � E, let

ε(u) = sup


∣∣∣∣∣∣∣

n∑
i=1

(g(xi) − g(yi)) 〈φ, ei〉

∣∣∣∣∣∣∣ : g ∈ BX# , φ ∈ BE∗

 .
Notice that the supremum on the right side in the previous definition exists since∣∣∣∣∣∣∣

n∑
i=1

(g(xi) − g(yi)) 〈φ, ei〉

∣∣∣∣∣∣∣ ≤
n∑

i=1

|(g(xi) − g(yi)) 〈φ, ei〉|

≤

n∑
i=1

Lip(g)d(xi, yi) ‖φ‖ ‖ei‖ ≤

n∑
i=1

d(xi, yi) ‖ei‖

for all g ∈ BX# and φ ∈ BE∗ . Note that
n∑

i=1

(g(xi) − g(yi)) 〈φ, ei〉 = (g � φ)

 n∑
i=1

δ(xi,yi) � ei

 = (g � φ)(u),
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and, consequently, ε(u) does not depend on the representation of u by Lemma 2.2, so
ε defines a map from X � E to R .

We start by showing that there is a close relationship between the Lipschitz injective
norm and the Banach-space injective norm. Before proceeding, we will need to intro-
duce some terminology. We denote by F (X) the Lipschitz-free Banach space over a
pointed metric space X, which is the closed linear subspace of (X#)∗ spanned by the set
{δx : x ∈ X}, where for each x ∈ X, δx is the evaluation functional at the point x defined
on X#. We show below that the space X�̂εE can in fact be identified with the injective
Banach-space tensor product F (X)⊗̂εE. Let us recall some fundamental properties of
the space F (X).

Theorem 5.2. [1], [24, pp. 39–41] Let X, Y be pointed metric spaces, and E a Banach
space.

(i) The dual of F (X) is (canonically) isometrically isomorphic to X#, with the
duality pairing given by 〈g, δx〉 = g(x) for all g ∈ X# and x ∈ X. Moreover,
on bounded subsets of X#, the weak* topology coincides with the topology of
pointwise convergence.

(ii) The map ιX : x 7→ δx is an isometric embedding of X into F (X).
(iii) For any Lipschitz map f : X → Y with f (0) = 0, there is a unique linear map

f̃ : F (X)→ F (Y) such that f̃ ◦ ιX = ιy ◦ f . Furthermore,
∥∥∥ f̃

∥∥∥ = Lip( f ).
(iv) For any Lipschitz map f : X → E with f (0) = 0, there is a unique linear map

f̂ : F (X)→ E such that f̂ ◦ ιX = f . Furthermore,
∥∥∥ f̂

∥∥∥ = Lip( f ).

It is because of the universal properties above that the space F (X) is called the
Lipschitz-free space over X, or simply the free space over X. These spaces have been
recently used as tools in nonlinear Banach space theory, see [14, 20] and the survey
[15].

Proposition 5.3. The map I : X �ε E → F (X) ⊗ε E, defined by

I(u) =

n∑
i=1

(δxi − δyi) ⊗ ei

for u =
∑n

i=1 δ(xi,yi) � ei ∈ X � E, is a linear isometry. As a consequence, X�̂εE is
isometrically isomorphic to F (X)⊗̂εE.

Proof. Let u =
∑n

i=1 δ(xi,yi) � ei ∈ X � E. Since F (X)∗ ≡ X#, note that the norm of∑n
i=1(δxi − δyi) ⊗ ei in F (X) ⊗ε E is given by

sup


∣∣∣∣∣∣∣

n∑
i=1

〈
g, δxi − δyi

〉
〈φ, ei〉

∣∣∣∣∣∣∣ : g ∈ BX# , φ ∈ BE∗

 .
Since

〈
g, δxi − δyi

〉
is precisely g(xi)−g(yi), Proposition 1.7 shows that I is well defined

(and thus linear) and moreover a quick glance at Definition 5.1 shows that I is an
isometry.

Recall that the linear span of {δx}x∈X is dense in F (X), hence the tensors of the form∑n
i=1(δxi−δyi)⊗ei, with xi, yi ∈ X and ei ∈ E, are dense in F (X)⊗̂εE. This shows that the

map I has dense range, and thus X�̂εE is isometrically isomorphic to F (X)⊗̂εE. �
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From the identification in Proposition 5.3 and the properties of the injective tensor
product of Banach spaces, we immediately obtain the following.

Theorem 5.4. ε is a uniform and dualizable Lipschitz cross-norm on X � E.

Just as in the Banach space case, the injective norm is the least of the cross-norms
with nice properties.

Theorem 5.5. ε is the least dualizable Lipschitz cross-norm on X � E.

Proof. According to Theorem 5.4, ε is a dualizable Lipschitz cross-norm on X�E. Let
α be a dualizable Lipschitz cross-norm on X � E and assume, for contradiction, that

α

 n∑
i=1

δ(xi,yi) � ei

 < ε  n∑
i=1

δ(xi,yi) � ei


for some

∑n
i=1 δ(xi,yi)�ei ∈ X�E. By the definition of ε, there exist g ∈ BX# and φ ∈ BE∗

such that

α

 n∑
i=1

δ(xi,yi) � ei

 <
∣∣∣∣∣∣∣

n∑
i=1

(g(xi) − g(yi)) 〈φ, ei〉

∣∣∣∣∣∣∣ .
By Corollary 3.6, α′ is a Lipschitz cross-norm on X# i E∗, and we have∣∣∣∣∣∣∣

n∑
i=1

(g(xi) − g(yi)) 〈φ, ei〉

∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣(g � φ)

 n∑
i=1

δ(xi,yi) � ei


∣∣∣∣∣∣∣ ≤ α′(g � φ)α

 n∑
i=1

δ(xi,yi) � ei

 .
Hence α′(g � φ) > 1 and thus Lip(g) ‖φ‖ < α′(g � φ). This contradicts that α′ is a
Lipschitz cross-norm. Therefore α ≥ ε and this proves the theorem. �

The completion X�̂εE of X�ε E will be called the injective Lipschitz tensor product
of X and E. We now justify this terminology in the case K = R.

Theorem 5.6. Let X be a pointed metric space and let E be a Banach space over R.
Let X0 ⊂ X be a subset of X containing 0, and let E0 be a closed linear subspace of E.
Then X0�̂εE0 is (isometrically) a linear subspace of X�̂εE.

Proof. The identification from Proposition 5.3 allows us to reduce this to the corre-
sponding property for the injective tensor product of Banach spaces. Since in the case
of real scalars we have that F (X0) is (isometrically) a subspace of F (X) [24, Proposi-
tion 2.2.5 (b)], the result follows. �

We can identify X�̂εE with the space of all approximable bounded linear operators
of (X#, τp) to E.

Proposition 5.7. The map J : X �ε E → F ((X#, τp); E), defined by

J(u)(g) =

n∑
i=1

(g(xi) − g(yi)) ei

for u =
∑n

i=1 δ(xi,yi) � ei ∈ X � E and g ∈ X#, is an isometric isomorphism. As a
consequence, X�̂εE is isometrically isomorphic to the closure in the operator norm
topology of F ((X#, τp); E).
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Proof. By Theorem 1.12, J is a linear bijection. If u =
∑n

i=1 δ(xi,yi) � ei ∈ X � E, we
have

‖J(u)‖ = sup {‖J(u)(g)‖ : g ∈ BX#}

= sup


∣∣∣∣∣∣∣φ

 n∑
i=1

(g(xi) − g(yi)) ei


∣∣∣∣∣∣∣ : g ∈ BX# , φ ∈ BE∗


= sup


∣∣∣∣∣∣∣

n∑
i=1

(g(xi) − g(yi)) 〈φ, ei〉

∣∣∣∣∣∣∣ : g ∈ BX# , φ ∈ BE∗

 = ε(u).

The consequence is immediate. �

6. The Lipschitz projective norm

We now introduce the Lipschitz projective norm on X � E, which (as the name
suggests) respects projections.

Definition 6.1. For each u ∈ X � E, define

π(u) = inf

 n∑
i=1

d(xi, yi) ‖ei‖ : u =

n∑
i=1

δ(xi,yi) � ei

 ,
the infimum being taken over all representations of u.

First we show that π is a Lipschitz cross-norm with good properties.

Theorem 6.2. π is a uniform and dualizable Lipschitz cross-norm on X � E such that
L ≤ π.

Proof. Let u ∈ X � E and let
∑n

i=1 δ(xi,yi) � ei be a representation of u. Using Definition
4.1, we have seen that L(u) ≤

∑n
i=1 d(xi, yi) ‖ei‖. Since this holds for every representa-

tion of u, it follows that L(u) ≤ π(u). Suppose that π(u) = 0. Since L(u) ≤ π(u) and L
is a norm on X � E, then u = 0.

We check that π(λu) = |λ| π(u). If λ ∈ K, then λu =
∑n

i=1 δ(xi,yi) � (λei) and so

π(λu) ≤
n∑

i=1

d(xi, yi) ‖λei‖ = |λ|

n∑
i=1

d(xi, yi) ‖ei‖ .

Since the representation of u is arbitrary, this implies that π(λu) ≤ |λ| π(u). If λ = 0,
we have π(λu) = 0 = |λ| π(u) since π(u) ≥ 0 for all u ∈ X � E. Assume that λ , 0.
Similarly, we have π(u) = π(λ−1(λu)) ≤

∣∣∣λ−1
∣∣∣ π(λu), thus |λ| π(u) ≤ π(λu) and hence

π(λu) = |λ| π(u).
We show that π(u + v) ≤ π(u) + π(v) for all u, v ∈ X � E. Let ε > 0. Then there are

representations u =
∑n

i=1 δ(xi,yi)�ei and v =
∑m

i=1 δ(x′i ,y
′
i )�e′i such that

∑n
i=1 d(xi, yi) ‖ei‖ <

π(u)+ε/2 and
∑m

i=1 d(x′i , y
′
i)

∥∥∥e′i
∥∥∥ < π(v)+ε/2. We can concatenate these representations

to get a representation
∑n+m

i=1 δ(x′′i ,y
′′
i ) � e′′i for u + v as in Lemma 1.4. By Definition 6.1,
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it follows that

π(u + v) ≤
n+m∑
i=1

d(x′′i , y
′′
i )

∥∥∥e′′i
∥∥∥ =

n∑
i=1

d(x′′i , y
′′
i )

∥∥∥e′′i
∥∥∥ +

n+m∑
i=n+1

d(x′′i , y
′′
i )

∥∥∥e′′i
∥∥∥

=

n∑
i=1

d(xi, yi) ‖ei‖ +

n+m∑
i=n+1

d(x′i−n, y
′
i−n)

∥∥∥e′i−n

∥∥∥
=

n∑
i=1

d(xi, yi) ‖ei‖ +

m∑
i=1

d(x′i , y
′
i)

∥∥∥e′i
∥∥∥

< π(u) + π(v) + ε.

By the arbitrariness of ε, we deduce that π(u + v) ≤ π(u) + π(v). Hence π is a norm on
X � E.

We now prove that π is a Lipschitz cross-norm. Let (x, y) ∈ X2 and e ∈ E. It is
immediate that π(δ(x,y) � e) ≤ d(x, y) ‖e‖. Conversely, since L is a Lipschitz cross-norm
on X � E and L ≤ π, it follows that d(x, y) ‖e‖ = L(δ(x,y) � e) ≤ π(δ(x,y) � e).

Let g ∈ X# and φ ∈ E∗. For any
∑n

i=1 δ(xi,yi) � ei ∈ X � E, we have∣∣∣∣∣∣∣(g � φ)

 n∑
i=1

δ(xi,yi) � ei


∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣
n∑

i=1

(g(xi) − g(yi)) 〈φ, ei〉

∣∣∣∣∣∣∣ ≤ Lip(g) ‖φ‖
n∑

i=1

d(xi, yi) ‖ei‖ .

Since the value of (g � φ)
(∑n

i=1 δ(xi,yi) � ei

)
does not depend on the representation of∑n

i=1 δ(xi,yi) � ei by Lemma 2.2, it follows that∣∣∣∣∣∣∣(g � φ)

 n∑
i=1

δ(xi,yi) � ei


∣∣∣∣∣∣∣ ≤ Lip(g) ‖φ‖ π

 n∑
i=1

δ(xi,yi) � ei

 .
Therefore the Lipschitz cross-norm π is dualizable by Proposition 3.2 and Remark 3.4.

Similarly, by applying Proposition 3.3 and Remark 3.4, we see that the Lipschitz
cross-norm π is uniform. Let

∑n
i=1 δ(xi,yi) � ei ∈ X � E. For every h ∈ Lip0(X, X) and

T ∈ L(E, E), we have

π

(h � T )

 n∑
i=1

δ(xi,yi) � ei

 = π

 n∑
i=1

δ(h(xi),h(yi)) � T (ei)

 ≤ n∑
i=1

d(h(xi), h(yi)) ‖T (ei)‖

≤

n∑
i=1

Lip(h)d(xi, yi) ‖T‖ ‖ei‖ = Lip(h) ‖T‖
n∑

i=1

d(xi, yi) ‖ei‖ .

The value of the image (h�T )
(∑n

i=1 δ(xi,yi) � ei

)
is independent of the chosen represen-

tation for
∑n

i=1 δ(xi,yi) � ei by Lemma 2.9, and therefore we conclude that

π

(h � T )

 n∑
i=1

δ(xi,yi) � ei

 ≤ Lip(h) ‖T‖ π

 n∑
i=1

δ(xi,yi) � ei

 .
�

The Lipschitz projective norm on X � E and the dual norm of the norm Lip of
Lip0(X, E∗) induced on X � E coincide as we see next.
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Corollary 6.3. Let X be a pointed metric space and E a Banach space. Then π = L on
X � E.

Proof. By Theorem 6.2, L ≤ π. To prove that L ≥ π, suppose by contradiction that
L(u0) < 1 < π(u0) for some u0 ∈ X � E. Denote B = {u ∈ X � E : π(u) ≤ 1}. Clearly, B
is a closed and convex set in X �π E. Applying the Hahn–Banach separation theorem
to B and {u0}, we obtain a functional η ∈ (X �π E)∗ such that

1 = ‖η‖ = sup{Re η(u) : u ∈ B} < Re η(u0).

Define f : X → E∗ by 〈 f (x), e〉 = η
(
δ(x,0) � e

)
for all e ∈ E and x ∈ X. It is easy to

prove that f is well defined and f ∈ Lip0(X, E∗) with Lip( f ) ≤ 1. Moreover u( f ) = η(u)
for all u ∈ X � E. Therefore L(u0) ≥ |u0( f )| ≥ Re u0( f ) = Re η(u0), so L(u0) > 1 and
this is a contradiction. �

As is the case with the projective tensor product of Banach spaces, π dominates all
other Lipschitz cross-norms.

Theorem 6.4. π is the greatest Lipschitz cross-norm on X � E.

Proof. We have seen in Theorem 6.2 that π is a Lipschitz cross-norm on X � E. Now,
let α be a Lipschitz cross-norm on X � E and let u ∈ X � E. If

∑n
i=1 δ(xi,yi) � ei is a

representation of u, we have

α(u) = α

 n∑
i=1

δ(xi,yi) � ei

 ≤ n∑
i=1

α
(
δ(xi,yi) � ei

)
=

n∑
i=1

d(xi, yi) ‖ei‖ .

Now the very definition of π gives α(u) ≤ π(u). �

Dualizable Lipschitz cross-norms on X � E are characterized by being between the
Lipschitz injective and Lipschitz projective norms.

Proposition 6.5. A norm α on X � E is a dualizable Lipschitz cross-norm if and only
if ε ≤ α ≤ π.

Proof. If α is a dualizable Lipschitz cross-norm on X�E, then ε ≤ α ≤ π by Theorems
5.5 and 6.4. Conversely, if α is a norm on X � E that lies between ε and π, then
α(δ(x,y) � e) = d(x, y) ‖e‖ follows immediately from the fact that ε and π are Lipschitz
cross-norms. Let g ∈ X# and φ ∈ E∗. Then∣∣∣∣∣∣∣

n∑
i=1

(g(xi) − g(yi)) 〈φ, ei〉

∣∣∣∣∣∣∣ ≤ Lip(g) ‖φ‖ ε

 n∑
i=1

δ(xi,yi) � ei


≤ Lip(g) ‖φ‖α

 n∑
i=1

δ(xi,yi) � ei


for all

∑n
i=1 δ(xi,yi) � ei ∈ X � E, and so the Lipschitz cross-norm α is dualizable. �

Let us recall that a completion of a normed space E is a Banach space Ẽ that includes
a dense linear subspace isometric to E. Every normed space has a completion and the
completion is unique up to isometric isomorphism. By [10, Lemma 3.100], every
element ẽ of the completion Ẽ of E can be written as ẽ =

∑∞
n=1 en, where en ∈ E and∑∞

n=1 ‖en‖ < ∞. Moreover, ‖̃e‖ = inf
{∑∞

n=1 ‖en‖
}
, where the infimum is taken over
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all series in E summing up to ẽ. Combining this with Definition 6.1, we obtain the
following result.

Theorem 6.6. Every element u ∈ X�̂πE admits a representation

u =

∞∑
i=1

δ(xi,yi) � ei

such that
∑∞

i=1 d(xi, yi) ‖ei‖ < ∞. Moreover,

π(u) = inf

 ∞∑
i=1

d(xi, yi) ‖ei‖ : u =

∞∑
i=1

δ(xi,yi) � ei,

∞∑
i=1

d(xi, yi) ‖ei‖ < ∞

 .
The dual pairing satisfies the formula〈 ∞∑

i=1

δ(xi,yi) � ei, f
〉

=

∞∑
i=1

〈 f (xi) − f (yi), ei〉

for all f ∈ Lip0(X, E∗).

Proof. We follow the proof of [10, Lemma 3.100]. Obviously, BX�πE = BX�̂πE. We may
assume, without loss of generality, that u ∈ BX�̂πE. Fix ε > 0. There exists u1 ∈ BX�πE

such that π(u − u1) ≤ ε. Moreover, by Definition 6.1, we can take a representation of
u1,

∑m1
i=1 δ(xi,yi) � ei, such that

m1∑
i=1

d(xi, yi)‖ei‖ < π(u1) + ε.

Since (u − u1)/ε ∈ BX�̂πE, there is u2 ∈ εBX�πE such that π((u − u1)/ε − u2/ε) ≤ 1/2,
that is, π(u− u1 − u2) ≤ ε/2. As before, by Definition 6.1, we can take a representation
of u2,

∑m2
i=m1+1 δ(xi,yi) � ei, such that

m2∑
i=m1+1

d(xi, yi)‖ei‖ < π(u2) +
ε

2
.

Find u3 ∈ (ε/2)BX�πE such that π((2/ε)(u − u1 − u2) − (2/ε)u3) ≤ 1/2, which yields
π(u− u1 − u2 − u3) ≤ ε/22, and take a representation of u3,

∑m3
i=m2+1 δ(xi,yi) � ei, such that

m3∑
i=m2+1

d(xi, yi)‖ei‖ < π(u3) +
ε

22 .

Proceed recursively to obtain sequences {un} in X �π E, {mn} in N, {xn}, {yn} in X and
{en} in E verifying that un ∈

(
ε/2n−2

)
BX�πE, un =

∑mn
i=mn−1+1 δ(xi,yi) � ei and

π

u − n∑
j=1

u j

 ≤ ε

2n−1 ,

mn∑
i=mn−1+1

d(xi, yi)‖ei‖ < π(un) +
ε

2n−1

for all n ∈ N, n ≥ 2. Clearly, u =
∑∞

n=1 un. Furthermore, from π(u1) − π(u) ≤ ε, it
follows that

∞∑
n=1

π(un) ≤ π(u) + ε + ε

∞∑
n=2

1
2n−2 = π(u) + 3ε.
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Note that the sequence {mn} is strictly increasing and
n∑

i=1

d(xi, yi)‖ei‖ ≤

mn∑
i=1

d(xi, yi)‖ei‖ <

n∑
j=1

π(u j) +

n∑
j=1

ε

2 j−1 ≤ π(u) + 3ε + 2ε = π(u) + 5ε

for all n ∈ N. Then the series
∑

i≥1 δ(xi,yi) � ei is absolutely convergent. We calculate
its sum. Denote, for each n ∈ N, S n =

∑n
i=1 δ(xi,yi) � ei. We have that {S mn} is a

partial sequence of {S n} with S mn =
∑n

j=1 u j for all n ∈ N. Since {S mn} converges to∑∞
n=1 un = u, then {S n} converges to u, that is,

∑∞
i=1 δ(xi,yi) � ei = u. Finally, from the

inequality
∞∑

i=1

d(xi, yi)‖ei‖ ≤ π(u) + 5ε

and the arbitrariness of ε, we obtain that

inf

 ∞∑
i=1

d(xi, yi) ‖ei‖ : u =

∞∑
i=1

δ(xi,yi) � ei,

∞∑
i=1

d(xi, yi) ‖ei‖ < ∞

 ≤ π(u).

The opposite inequality is obvious.
To check the dual pairing formula, consider a representation of u,

∑∞
i=1 δ(xi,yi) � ei.

Given f ∈ Lip0(X, E∗), we must see that the series
∑

i≥1〈 f (xi) − f (yi), ei〉 converges to
u( f ). Denote, for each i ∈ N, ui =

∑i
j=1 δ(x j,y j) � e j ∈ X �π E. Taking into account that∑i

j=1〈 f (x j) − f (y j), e j〉 = ui( f ), we have∣∣∣∣∣∣∣u( f ) −
i∑

j=1

〈 f (x j) − f (y j), e j〉

∣∣∣∣∣∣∣ = |u( f ) − ui( f )| ≤ L(u − ui)Lip( f ) = π(u − ui)Lip( f ).

Since {π(u − ui)} converges to 0, we obtain
∑∞

i=1〈 f (xi) − f (yi), ei〉 = u( f ). �

As in the injective case (Proposition 5.3), the Lipschitz projective norm is closely
related to the projective tensor product of Banach spaces through the Lipschitz-free
space: the Lipschitz projective norm on X � E can be identified with the projective
norm on the tensor product of F (X) and E. The authors wish to thank Richard Haydon
for suggesting that this might be true.

Proposition 6.7. The map I : X �π E → F (X) ⊗π E, defined by

I(u) =

n∑
i=1

(δxi − δyi) ⊗ ei

for u =
∑n

i=1 δ(xi,yi) � ei ∈ X � E, is a linear isometry. Moreover, X�̂πE is isometrically
isomorphic to F (X)⊗̂πE.

Proof. As in the proof of Proposition 5.3, Proposition 1.7 guarantees that the map I is
well defined (and it is clearly linear). Letting u =

∑n
i=1 δ(xi,yi) � ei ∈ X � E, note that

using the fact that the map x 7→ δx is an isometry from X into F (X),∥∥∥∥∥∥∥
n∑

i=1

(δxi − δyi) ⊗ ei

∥∥∥∥∥∥∥
F (X)⊗πE

≤

n∑
i=1

∥∥∥δxi − δyi

∥∥∥
F (X) ‖ei‖ =

n∑
i=1

d(xi, yi) ‖ei‖ .
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Taking the infimum over all representations of u, we conclude that ‖I(u)‖ ≤ π(u). Let
η > 0 be given. From Corollary 6.3 there exists f ∈ Lip0(X, E∗) with Lip( f ) ≤ 1
such that |〈u, f 〉| > π(u) − η, where the pairing is the one given in Theorem 6.6. By
Theorem 5.2, the linear extension f̂ : F (X) → E∗ of f has norm at most one. From
the properties of the projective tensor product of Banach spaces, the dual of F (X)⊗̂πE
can be identified with L(F (X), E∗), where the pairing is given by〈 n∑

i=1

γi ⊗ ei,T
〉

=

n∑
i=1

〈Tγi, ei〉 (γi ∈ F (X), ei ∈ E, T ∈ L(F (X), E∗)) .

In particular,

‖I(u)‖ ≥
∣∣∣∣〈u, f̂

〉∣∣∣∣ =

∣∣∣∣∣∣∣
n∑

i=1

〈
f̂ (δxi − δyi), ei

〉∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣
n∑

i=1

〈 f (xi) − f (yi), ei〉

∣∣∣∣∣∣∣ = |〈u, f 〉| > π(u) − η.

Letting η go to 0, we obtain that ‖I(u)‖ ≥ π(u), and thus I is a linear isometry. Since
the sums of the form

∑n
i=1 δ(xi,yi) � ei and

∑n
i=1(δxi − δyi) ⊗ ei are dense respectively

in X�̂πE and F (X)⊗̂πE, I extends to an isometric isomorphism between X�̂πE and
F (X)⊗̂πE. �

Remark 6.8. Propositions 5.3 and 6.7 could give the impression that Lipschitz cross-
norms on X � E always reduce to the corresponding Banach-space tensor norm on
F (X) � E. That is indeed the case for the injective and projective norms because of
their extreme positions among Lipschitz cross-norms, but it does not always happen.
See Remark 7.4 for an example.

Proposition 6.7 implies in particular that given a pointed metric space X, there is
a Banach space A such that X�̂πE is isometric to A⊗̂πE for every Banach space E.
The authors would like to thank Jesús Castillo for pointing out a result in categorical
Banach space theory that shows this was to be expected. Without going into all the
details, let us outline the argument. First, a theorem of Fuks [12, Section 6] (a nice
presentation can be found in [3, Proposition 5.6], where the reader can also find the
definitions of the categorical terms we use below) states the following: if F, G are
two covariant Banach functors such that for any Banach spaces E and F, we have
that L(F(E), F) is linearly isometric to L(E,G(F)), then there exists a Banach space
A such that for every Banach space E, F(E) is linearly isometric to A⊗̂πE and G(F)
is linearly isometric to L(A, F). Now consider a fixed pointed metric space X. Note
that it induces two covariant Banach functors X�̂π(·) and Lip0(X, ·). Arguments closely
related to those that led us to prove Corollary 6.3 show that, for any Banach spaces E
and F, we have L(X�̂πE, F) is linearly isometric to L(E,Lip0(X, F)), so Fuks’ result
applies.

The identification in Proposition 6.7 will allow us to transfer several properties from
the Banach space case to the Lipschitz one. First we consider the boundedness of the
linear operator h � T : X � E → Y � F for the Lipschitz projective norms.

Proposition 6.9. Let X,Y be pointed metric spaces and E, F Banach spaces. Let h ∈
Lip0(X,Y) and T ∈ L(E, F). Then there exists a unique bounded linear operator
h�πT : X�̂πE → Y�̂πF such that (h�πT )(u) = (h�T )(u) for all u ∈ X�E. Furthermore,
‖h �π T‖ = Lip(h) ‖T‖.
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Proof. The uniqueness part is clear, so we only need to show the boundedness. Let
h̃ : F (X)→ F (Y) be the induced map given in Theorem 5.2. By the properties of the
projective tensor product of Banach spaces,∥∥∥∥̃h ⊗ T : F (X)⊗̂πE → F (Y)⊗̂πF

∥∥∥∥ =
∥∥∥∥̃h

∥∥∥∥ ‖T‖ = Lip(h) ‖T‖ .

The identification from Proposition 6.7 finishes the proof. �

In fact, we have the following relationship between Lipschitz tensor product opera-
tors and usual tensor product operators.

Remark 6.10. Let X,Y be pointed metric spaces and E, F be Banach spaces. Let h ∈
Lip0(X,Y), T ∈ L(E, F) and h̃ : F (X)→ F (Y) be the induced map given in Theorem
5.2. Then the diagram

X�̂πE Y�̂πF

F (X)⊗̂πE F (Y)⊗̂πF

h �π T

IX�̂πE IY�̂πF

h̃ ⊗π T

commutes, that is, IY�̂πF ◦ (h �π T ) =
(̃
h ⊗π T

)
◦ IX�̂πE.

The space X�̂πE is called the projective Lipschitz tensor product of X and E. This
term derives from the following result. Before stating it, recall that a Lipschitz map
f : X → Z is called C-co-Lipschitz if for every x ∈ X and r > 0, f (B(x, r)) ⊃
B( f (x), r/C). Moreover, it is called a Lipschitz quotient if it is surjective, Lipschitz
and co-Lipschitz [2].

Theorem 6.11. Let X,Z be pointed metric spaces and q : X → Z a Lipschitz quotient
that is 1-Lipschitz and C-co-Lipschitz for every C > 1. Let E, F be Banach spaces and
Q : E → F a quotient operator. Then q �π Q : X�̂πE → Z�̂πF is a quotient operator.

Proof. Thanks to Proposition 6.7, Remark 6.10 and the behavior of the projective ten-
sor norm with respect to quotients [21, Proposition 2.5], it suffices to prove that if
q : X → Z is such a Lipschitz quotient then the induced map q̃ : F (X) → F (Z) is
a linear quotient operator. Notice that from Theorem 5.2, ‖q̃‖ = Lip(q) = 1. Now
let u ∈ F (Z), and let ε > 0. From Proposition 6.7, F (X) ≡ F (X)⊗̂πK ≡ X�̂πK.
Thus from Theorem 6.6, there exists a representation u =

∑∞
j=1 δ(z j,z′j) � a j such that

(1 + ε)π(u) ≥
∑∞

j=1 |a j|d(z j, z′j). For each j, choose x j, x′j ∈ X such that q(x j) = z j,
q(x′j) = z′j and d(x j, x′j) ≤ (1+ε)d(z j, z′j). Setting u′ =

∑∞
j=1 δ(x j,x′j)�a j, clearly q̃(u′) = u

(so it follows that q̃ is surjective) and

π(u′) ≤
∞∑
j=1

|a j|d(x j, x′j) ≤ (1 + ε)
∞∑
j=1

|a j|d(z j, z′j) ≤ (1 + ε)2π(u).

Since this holds for all ε > 0, it follows that π(u) = inf {π(u′) : q̃(u′) = u}. �
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In a similar manner, the projective norm respects complemented subspaces. We
say that a subset Z ⊂ X that contains the point 0 is a Lipschitz retract of X, or that
it is Lipschitz complemented in X, if there exists a Lipschitz map (called a Lipschitz
retraction) r : X → Z such that r(z) = z for all z ∈ Z.

Proposition 6.12. Let Z be a Lipschitz retract of X, and let F be a complemented sub-
space of E. Then Z�̂πF is complemented in X�̂πE and the norm on Z�̂πF induced by
the Lipschitz projective norm of X�̂πE is equivalent to the Lipschitz projective norm
on Z�̂πF. If Z is Lipschitz complemented with a Lipschitz retraction of Lipschitz con-
stant one and F is complemented by a linear projection of norm one, then Z�̂πF is a
subspace of X�̂πE and is also complemented by a projection of norm one.

Proof. This follows from the corresponding result for the projective tensor product
(see [21, Proposition 2.4]), after noting that a Lipschitz retraction r : X → Z (that in
particular sends 0 to 0) extends to a linear projection r̃ : F (X) → F (Z) ⊂ F (X) with
‖r̃‖ = Lip(r). �

Calculating the projective norm of an element in a tensor product of Banach spaces
is generally difficult, but there is a particular case where the calculation is relatively
easy: for any Banach space E, `1⊗̂πE is isometrically isomorphic to `1(E) (see [21,
Example 2.6]). In the nonlinear setting, trees play a role analogous to that of `1 in the
linear theory, so the following result is not surprising.

Proposition 6.13. Let (X,E) be a graph with finite vertex set X and edge set E which is
a tree, that is, it is connected and contains no cycles. Consider X as a pointed metric
space, with distance function given by the shortest-path distance and a distinguished
fixed point 0 ∈ X. Let E be a Banach space. Then X �π E is isometrically isomorphic
to `1(E; E).

Proof. We say that a vertex x ∈ X is positive (negative) if it is at an even (respectively,
odd) distance from 0 ∈ X. Note that, since (X,E) is a tree, the endpoints of every edge
in E have different parities. Therefore every edge {x, y} in E will be written as (x, y)
with x negative and y positive.

Consider x, y ∈ X. Let n = d(x, y) and {x = z0, z1, . . . , zn = y} be the unique
minimal-length path in (X,E) joining x and y. Since, for each v ∈ E, ‖v‖ d(x, y) =∑n

i=1 ‖v‖ d(zi, zi−1), in order to calculate π(u) for u ∈ X � E, it suffices to consider
only representations involving δ(xi,yi) with (xi, yi) ∈ E. By the triangle inequality, in the
representation we can consolidate all terms corresponding to the same edge (xi, yi) ∈ E,
so we can consider only representations of the form u =

∑
(x,y)∈E δ(x,y) � v(x,y). But, for

each u ∈ X � E, there is only one such representation. To see that we use the following
claim, which can be proved by induction on the size of the tree: given (x0, y0) ∈ E,
there exists a function g ∈ X# such that g(x0) − g(y0) , 0 and g(x) − g(y) = 0 for all
(x, y) ∈ E with (x, y) , (x0, y0).

Now let
∑

(x,y)∈E δ(x,y) � e(x,y) and
∑

(x,y)∈E δ(x,y) � v(x,y) be two representations of u ∈
X � E. Given (x0, y0) ∈ E, take the function g ∈ X# of the previous claim. Then, by
Proposition 1.7, we have that

0 =
∑

(x,y)∈E

(g(x) − g(y))(e(x,y) − v(x,y)) = (g(x0) − g(y0))(e(x0,y0) − v(x0,y0)),
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and thus e(x0,y0) = v(x0,y0). The arbitrariness of (x0, y0) shows that the representation of u
is unique. If we define J : X �π E → `1(E; E) by u 7→ (v(x,y))(x,y)∈E, J is then clearly an
isometric isomorphism between X �π E and `1(E; E). �

More generally, in the linear case we have that L1(µ)⊗̂πE is isometrically isomorphic
to L1(µ; E) for any measure µ (see [21, Example 2.19]). In our nonlinear setting, a pos-
sible analogue will be given by a generalization of Proposition 6.13 to a more general
class of metric trees. This will depend heavily on the identification of the Lipschitz-
free space over such trees carried out in [13]. Before stating the result, let us recall
a definition. An R-tree is a metric space X satisfying the following two conditions:
(1) For any points a and b in X, there exists a unique isometry φ of the closed interval
[0, d(a, b)] into X such that φ(0) = a and φ(d(a, b)) = b; (2) Any one-to-one continuous
mapping ϕ : [0, 1] → X has the same range as the isometry φ associated to the points
a = ϕ(0) and b = ϕ(1).

Corollary 6.14. Let X be an R-tree and E a Banach space. Then there exists a measure
µ such that X�̂πE is isometric to L1(µ; E).

Proof. By [13, Corollary 3.3], there exists a measure µ such that F (X) is isometri-
cally isomorphic to L1(µ). From Proposition 6.7, X�̂πE is isometrically isomorphic to
F (X)⊗̂πE. Finally, from [21, Example 2.19], L1(µ)⊗̂πE is isometric to L1(µ; E). �

We finish this section noting a universal property for X �π E which follows from the
universal property of the projective tensor product of Banach spaces, using Proposition
6.7.

Proposition 6.15. Let X be a pointed metric space and E a Banach space. Then the
map (x, e) 7→ δ(x,0) � e, from X × E into X �π E, satisfies:

(i) For each e ∈ E, the function x 7→ δ(x,0) � e, from X into X �π E, belongs to
Lip0(X, X �π E).

(ii) Given x ∈ X, the map e 7→ δ(x,0) � e, from E into X �π E, is a bounded linear
operator.

Moreover, for each normed space F and for each map ψ : X × E → F verifying (i)
and (ii) (that is, ψ is a Lipschitz operator in the first variable and a bounded linear
operator in the second one), there is a unique bounded linear map ψ̃ : X �π E → F
such that ψ̃

(
δ(x,0) � e

)
= ψ(x, e) for all x ∈ X and e ∈ E.

7. The Lipschitz p-nuclear norms

We now recall the Lipschitz p-nuclear norms dp on X � E for 1 ≤ p ≤ ∞. They
are Lipschitz versions of the known tensor norms of Chevet [8] and Saphar [22]. The
Lipschitz versions were introduced in [4] under a slightly different notation, where
they were shown to be in duality with spaces of Lipschitz p′-summing maps.

Definition 7.1. Let 1 ≤ p ≤ ∞. Let E be a Banach space and let e1, . . . , en ∈ E. Define:

‖(e1, . . . , en)‖p =


 n∑

i=1

‖ei‖
p


1
p

if 1 ≤ p < ∞,

max1≤i≤n ‖ei‖ if p = ∞.
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Let X be a pointed metric space, x1, . . . , xn, y1, . . . , yn ∈ X and λ1, . . . , λn ∈ R
+. Define:

∥∥∥(λ1δ(x1,y1), . . . , λnδ(xn,yn))
∥∥∥Lw

p
=


supg∈BX#

 n∑
i=1

λ
p
i |g(xi) − g(yi)|p


1
p

if 1 ≤ p < ∞,

supg∈BX#

(
max
1≤i≤n

λi |g(xi) − g(yi)|
)

if p = ∞.

Let p′ be the conjugate index of p defined by p′ = p/(p − 1) if p , 1, p′ = ∞ if p = 1,
and p′ = 1 if p = ∞.

For each u ∈ X � E, define:

dp(u) = inf

∥∥∥(λ1δ(x1,y1), . . . , λnδ(xn,yn))
∥∥∥Lw

p′
‖(e1, . . . , en)‖p : u =

n∑
i=1

λiδ(xi,yi) � ei

 ,
the infimum being taken over all representations of u.

Theorem 7.2. For 1 ≤ p ≤ ∞, dp is a uniform and dualizable Lipschitz cross-norm on
X � E.

Proof. It follows from the calculations in [4, Theorem 4.1] that dp is a norm on X � E.
Now, we claim that ε(u) ≤ dp(u) ≤ π(u). Indeed, we have∣∣∣∣∣∣∣

n∑
i=1

λi (g(xi) − g(yi)) 〈φ, ei〉

∣∣∣∣∣∣∣ ≤
n∑

i=1

λi |g(xi) − g(yi)| ‖ei‖

≤
∥∥∥(λ1δ(x1,y1), . . . , λnδ(xn,yn))

∥∥∥Lw

p′
‖(e1, . . . , en)‖p

for every g ∈ BX# and φ ∈ BE∗ , where we have used Hölder’s inequality in the case
1 < p < ∞. Therefore ε(u) ≤

∥∥∥(λ1δ(x1,y1), . . . , λnδ(xn,yn))
∥∥∥Lw

p′
‖(e1, . . . , en)‖p, and since it

holds for each representation of u, we deduce that ε(u) ≤ dp(u). Since ε is a Lipschitz
cross-norm,

‖e‖ d(x, y) = ε(δ(x,y) � e) ≤ dp(δ(x,y) � e)
for all x, y ∈ X and e ∈ E. Moreover, Definition 7.1 gives

dp(δ(x,y) � e) ≤ ‖e‖ sup
g∈BX#

|g(x) − g(y)| = ‖e‖ d(x, y).

Hence dp is a Lipschitz cross-norm. Then dp ≤ π by Theorem 6.4 as we wanted. Now
our claim implies that dp is dualizable by Proposition 6.5.

Finally, to prove that dp is uniform, take h ∈ Lip0(X, X) and T ∈ L(E, E). Let
u ∈ X � E and pick a representation

∑n
i=1 λiδ(xi,yi) � ei for u. We have∥∥∥(λ1δ(h(x1),h(y1)), . . . , λnδ(h(xn),h(yn)))

∥∥∥Lw

p′
‖(T (e1), . . . ,T (en))‖p

≤ Lip(h)
∥∥∥(λ1δ(x1,y1), . . . , λnδ(xn,yn))

∥∥∥Lw

p′
‖T‖ ‖(e1, . . . , en)‖p .

Taking infimum over all the representations of u, it follows that dp((h � T )(u)) ≤
Lip(h) ‖T‖ dp(u). �

Let us record the fact that the Lipschitz 1-nuclear norm d1 is just the Lipschitz pro-
jective norm π, as shown in [4, Proposition 4.2].
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Proposition 7.3. For every u ∈ X � E,

d1(u) = inf

 n∑
i=1

d(xi, yi) ‖ei‖ : u =

n∑
i=1

δ(xi,yi) � ei


taking the infimum over all representations of u.

Remark 7.4. We are now in a position to show that in the case of the Lipschitz p-
nuclear norms dp and assuming that X is a finite pointed metric space, the norm on X�E
is not the one induced from F (X)⊗E endowed with the Banach-space version of dp. If
that were the case, then by duality (see [4, Theorem 4.3] and [21, Proposition 6.11]) the
Lipschitz p′-summing norm of a map f : X → E∗ would coincide with the p′-summing
norm of the induced linear map f̃ : F (X) → E∗. In particular, consider the case of
X = Dn, the discrete metric space with n points so that the distance between any two
distinct points is one, E∗ = F (Dn) and f : Dn → F (Dn) the canonical injection. From
[11], the Lipschitz 2-summing norm of f is (2−2/n)1/2. However, f̃ is the identity map
on the (n − 1)-dimensional Banach space F (Dn) and therefore its 2-summing norm is√

n − 1 (see [9, Theorem 4.17]).

8. Lipschitz approximable operators

The notions of Lipschitz compact operators and Lipschitz approximable operators
from X to E were introduced in [17]. Let us recall that a mapping f ∈ Lip0(X, E) is
said to be Lipschitz compact if its Lipschitz image

{
f (x) − f (y)

d(x, y)
: x, y ∈ X, x , y

}

is relatively compact in E, and f is said to be Lipschitz approximable if it is the limit
in the Lipschitz norm Lip of a sequence of Lipschitz finite-rank operators from X to E.

We show that the spaces of Lipschitz finite-rank operators and Lipschitz approx-
imable operators can be identified as spaces of continuous linear functionals.

Theorem 8.1. The map K : X# iπ′ E∗ → Lip0F(X, E∗), defined by

K

 m∑
j=1

g j � φ j

 =

m∑
j=1

g j · φ j,

is an isometric isomorphism. As a consequence, the space of all Lipschitz approx-
imable operators from X to E∗ is isometrically isomorphic to X#îπ′E∗.
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Proof. By Theorem 2.7, K is a linear bijection. For any
∑m

j=1 g j � φ j ∈ X# i E∗, we
have

π′

 m∑
j=1

g j � φ j

 = sup


∣∣∣∣∣∣∣
 m∑

j=1

g j � φ j


 n∑

i=1

δ(xi,yi) � ei


∣∣∣∣∣∣∣ : π

 n∑
i=1

δ(xi,yi) � ei

 ≤ 1


= sup


∣∣∣∣∣∣∣

n∑
i=1

〈 m∑
j=1

g j · φ j

 (xi) −

 m∑
j=1

g j · φ j

 (yi), ei

〉∣∣∣∣∣∣∣ : π

 n∑
i=1

δ(xi,yi) � ei

 ≤ 1


= sup


∣∣∣∣∣∣∣Λ0

 m∑
j=1

g j · φ j


 n∑

i=1

δ(xi,yi) � ei


∣∣∣∣∣∣∣ : L

 n∑
i=1

δ(xi,yi) � ei

 ≤ 1


=

∥∥∥∥∥∥∥Λ0

 m∑
j=1

g j · φ j


∥∥∥∥∥∥∥

= Lip

 m∑
j=1

g j · φ j

 .
by using Corollary 3.6, Lemmas 2.4 and 1.5, Corollary 6.3 and Theorem 4.3. Hence K
is an isometry. The consequence follows from a known result of Functional Analysis.

�

From Theorems 4.3 and 8.1 and Corollary 6.3, we infer the next consequence.

Corollary 8.2. The space X#îπ′E∗ is isometrically isomorphic to (X�̂πE)∗ if and only
if Lip0(X, E∗) is isometrically isomorphic to the space of Lipschitz approximable oper-
ators from X to E∗.

We recall that a Banach space E is said to have the approximation property if given a
compact set K ⊂ E and ε > 0, there is a finite-rank bounded linear operator T : E → E
such that ‖T x − x‖ < ε for every x ∈ K. The approximation property was thoroughly
studied by Grothendieck in [16]. In [17, Corollary 2.5], it was shown that X# has the
approximation property if and only if the space of all Lipschitz approximable operators
from X to E is the space of all Lipschitz compact operators from X to E. Using this
fact and Theorem 8.1, we derive the following result.

Corollary 8.3. Let X be a pointed metric space such that X# has the approximation
property. Then, for any Banach space E, the space of all Lipschitz compact operators
from X to E∗ is isometrically isomorphic to X#îπ′E∗.

By Theorem 4.3 and Corollary 8.3, we have the following.

Corollary 8.4. Let X be a pointed metric space such that X# has the approximation
property and let E be a Banach space. Then X#îπ′E∗ is isometrically isomorphic to
(X�̂πE)∗ if and only if Lip0(X, E∗) is isometrically isomorphic to the space of Lipschitz
compact operators from X to E∗.

We close this section with a new formula for the norm π′. By [17, Lemma 1.1], the
closed unit ball of the Lipschitz-free Banach space F (X) coincides with the closure of
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the convex balanced hull of the set {(δx − δy)/d(x, y) : x, y ∈ X, x , y} in (X#)∗. It is
well known that every element in the convex balanced hull of that set is of the form

n∑
i=1

λi
δxi − δyi

d(xi, yi)

for some n ∈ N, λ1, . . . , λn ∈ K,
∑n

i=1 |λi| ≤ 1 and (x1, y1), . . . , (xn, yn) ∈ X2 with xi , yi

for i ∈ {1, . . . , n}.

Definition 8.5. For each
∑m

j=1 g j � φ j ∈ X# i E∗, define:

ε

 m∑
j=1

g j � φ j

 = sup


∣∣∣∣∣∣∣

m∑
j=1

γ(g j)
〈
φ j, e

〉∣∣∣∣∣∣∣ : γ ∈ BF (X), e ∈ BE

 .
Note that this supremum exists since, for all γ ∈ BF (X) and e ∈ BE,

∣∣∣∣∣∣∣
m∑

j=1

γ(g j)
〈
φ j, e

〉∣∣∣∣∣∣∣ ≤
m∑

j=1

∣∣∣∣γ(g j)
〈
φ j, e

〉∣∣∣∣ ≤ m∑
j=1

‖γ‖Lip(g j)
∥∥∥φ j

∥∥∥ ‖e‖ ≤ m∑
j=1

Lip(g j)
∥∥∥φ j

∥∥∥ .
Theorem 8.6. The associated Lipschitz norm π′ of π on X � E is ε on X# i E∗.

Proof. Let
∑m

j=1 g j � φ j ∈ X# i E∗. We have

π′

 m∑
j=1

g j � φ j

 = sup


∣∣∣∣∣∣∣
 m∑

j=1

g j � φ j


 n∑

i=1

δ(xi,yi) � ei


∣∣∣∣∣∣∣ : π

 n∑
i=1

δ(xi,yi) � ei

 ≤ 1


= sup


∣∣∣∣∣∣∣
 m∑

j=1

g j � φ j

 (δ(x,y) � e
)∣∣∣∣∣∣∣ : π

(
δ(x,y) � e

)
≤ 1


= ε

 m∑
j=1

g j � φ j

 .
In order to justify these equalities, denote by α(

∑m
j=1 g j � φ j) and β(

∑m
j=1 g j � φ j) the

first and the second supremum which appear above. The first equality follows from
Corollary 3.6. To see that α(

∑m
j=1 g j � φ j) ≤ β(

∑m
j=1 g j � φ j), we will use the easy fact

that if n ∈ N, a1, . . . , an ∈ R
+
0 and b1, . . . , bn ∈ R

+, then

a1 + · · · + an

b1 + · · · + bn
≤ max

{
a1

b1
, · · · ,

an

bn

}
.
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Fix
∑n

i=1 δ(xi,yi) � ei ∈ X � E, nonzero. If
∑p

i=1 δ(x′i ,y
′
i ) � e′i =

∑n
i=1 δ(xi,yi) � ei, we have

∣∣∣∣(∑m
j=1 g j � φ j

) (∑n
i=1 δ(xi,yi) � ei

)∣∣∣∣∑p
i=1 d(x′i , y

′
i)

∥∥∥e′i
∥∥∥ =

∣∣∣∣(∑m
j=1 g j � φ j

) (∑p
i=1 δ(x′i ,y

′
i ) � e′i

)∣∣∣∣∑p
i=1 d(x′i , y

′
i)

∥∥∥e′i
∥∥∥

≤

∑p
i=1

∣∣∣∣(∑m
j=1 g j � φ j

)
(δ(x′i ,y

′
i ) � e′i)

∣∣∣∣∑p
i=1 d(x′i , y

′
i)

∥∥∥e′i
∥∥∥

≤ max


∣∣∣∣(∑m

j=1 g j � φ j

)
(δ(x′i ,y

′
i ) � e′i)

∣∣∣∣
d(x′i , y

′
i)

∥∥∥e′i
∥∥∥ : 1 ≤ i ≤ p


≤ β

 m∑
j=1

g j � φ j

 .

By the definition of π, it follows that

∣∣∣∣∣∣∣
 m∑

j=1

g j � φ j


 n∑

i=1

δ(xi,yi) � ei


∣∣∣∣∣∣∣ ≤ β

 m∑
j=1

g j � φ j

 π
 n∑

i=1

δ(xi,yi) � ei

 .

This ensures that α(
∑m

j=1 g j � φ j) ≤ β(
∑m

j=1 g j � φ j). The converse inequality is clearly
certain.

Now, given any δ(x,y) � e ∈ X � E with 0 < π(δ(x,y) � e) ≤ 1, we obtain

∣∣∣∣∣∣∣
 m∑

j=1

g j � φ j

 (δ(x,y) � e
)∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣
m∑

j=1

(g j(x) − g j(y))
〈
φ j, e

〉∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣
m∑

j=1

(
δx − δy

d(x, y)

)
(g j)

〈
φ j, d(x, y)e

〉∣∣∣∣∣∣∣
≤ ε

 m∑
j=1

g j � φ j



since (δx − δy)/d(x, y) ∈ S F (X) and d(x, y)e ∈ BE. Passing to the supremum we arrive
at β(

∑m
j=1 g j � φ j) ≤ ε(

∑m
j=1 g j � φ j).
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Finally, we show that ε(
∑m

j=1 g j � φ j) ≤ π′(
∑m

j=1 g j � φ j). For any n ∈ N, λ1, . . . , λn ∈

K,
∑n

i=1 |λi| ≤ 1, (xi, yi) ∈ X2 and xi , yi for each i ∈ {1, . . . , n}, and e ∈ BE, we have∣∣∣∣∣∣∣
m∑

j=1

 n∑
i=1

λi
δxi − δyi

d(xi, yi)

 (g j)
〈
φ j, e

〉∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣
m∑

j=1

 n∑
i=1

λi
g j(xi) − g j(yi)

d(xi, yi)

〈
φ j, e

〉
∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣
m∑

j=1

 n∑
i=1

λi

d(xi, yi)
(g j � φ j)(δ(xi,yi) � e)


∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣
 m∑

j=1

g j � φ j


 n∑

i=1

δ(xi,yi) �
λie

d(xi, yi)


∣∣∣∣∣∣∣

≤ π′

 m∑
j=1

g j � φ j


since

π

 n∑
i=1

δ(xi,yi) �
λie

d(xi, yi)

 ≤ n∑
i=1

π

(
δ(xi,yi) �

λie
d(xi, yi)

)
=

n∑
i=1

d(xi, yi)
|λi| ‖e‖
d(xi, yi)

= ‖e‖
n∑

i=1

|λi| ≤ 1.

By the density of the elements
∑n

i=1 λi(δxi − δyi)/d(xi, yi) in BF (X), we infer that∣∣∣∣∣∣∣
m∑

j=1

γ(g j)
〈
φ j, e

〉∣∣∣∣∣∣∣ ≤ π′
 m∑

j=1

g j � φ j


for all γ ∈ BF (X) and e ∈ BE. Taking supremum over all such γ and e, we conclude
that ε(

∑m
j=1 g j � φ j) ≤ π′(

∑m
j=1 g j � φ j) and this completes the proof. �
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