Khayyam Journal of Mathematics

URL: www.emis.de/journals/KJM/

n-DUAL SPACES ASSOCIATED TO A NORMED SPACE

YOSAFAT E. P. PANGALELA
Communicated by M. Filali

Abstract

For a real normed space X, we study the n-dual space of $(X,\|\cdot\|)$ and show that the space is a Banach space. Meanwhile, for a real normed space X of dimension $d \geq n$ which satisfies property (G), we discuss the n-dual space of $\left(X,\|\cdot, \ldots, \cdot\|_{G}\right)$, where $\|\cdot, \ldots, \cdot\|_{G}$ is the Gähler n-norm. We then investigate the relationship between the n-dual space of $(X,\|\cdot\|)$ and the n-dual space of $\left(X,\|\cdot, \ldots, \cdot\|_{G}\right)$. We use this relationship to determine the n-dual space of $\left(X,\|\cdot, \ldots, \cdot\|_{G}\right)$ and show that the space is also a Banach space.

1. Introduction

In the 1960's, the notion of n-normed spaces was introduced by Gähler [2, 3, 4, 5] as a generalisation of normed spaces. For every real normed space X of dimension $d \geq n$, Gähler showed that X can be viewed as an n-normed space by using the Gähler n-norm, which is denoted by $\|\cdot, \ldots, \cdot\|_{G}$. This n-norm is defined by using the set of bounded linear functionals on X. Since then, many researchers have studied operators and functionals on n-normed space X (see $[1,6,9,10,11,13,14,15])$.
In [13], the author and Gunawan introduced the concept of n-dual spaces. For every real normed space X of dimension $d \geq n$, there are two n-dual spaces associated to X. The first is the n-dual space of $(X,\|\cdot\|)$, and the other is the n-dual space of $\left(X,\|\cdot, \ldots, \cdot\|_{G}\right)$. In case X is the l^{p} space for some $1 \leq p<\infty$, the author and Gunawan have investigated and given the relationship between both n-dual spaces [13]. Here we provide an analogues result on more general normed spaces.

For a real normed space X, we investigate the n-dual space of $(X,\|\cdot\|)$ by using the $(n-1)$-dual space of $(X,\|\cdot\|)$ (Theorem 3.2). We then focus on a real normed

[^0]space X of dimension $d \geq n$ which satisfies property (G) and discuss the relationship between the n-dual space of $(X,\|\cdot\|)$ and the n-dual space of $\left(X,\|\cdot, \ldots, \cdot\|_{G}\right)$ (Theorem 4.5). It is interesting to observe that both the n-dual space of $(X,\|\cdot\|)$ and the n-dual space of $\left(X,\|\cdot, \ldots, \cdot\|_{G}\right)$ are Banach spaces (Theorem 3.3 and Theorem 4.7).

2. Preliminaries

Let n be a nonnegative integer and X a real vector space of dimension $d \geq$ n. We call a real-valued function $\|\cdot, \ldots, \cdot\|$ on X^{n} an n-norm on X if for all $x_{1}, \ldots, x_{n}, x^{\prime} \in X$, we have
(1) $\left\|x_{1}, \ldots, x_{n}\right\|=0$ if and only if x_{1}, \ldots, x_{n} are linearly dependent;
(2) $\left\|x_{1}, \ldots, x_{n}\right\|$ is invariant under permutation;
(3) $\left\|\alpha x_{1}, x_{2}, \ldots, x_{n}\right\|=|\alpha|\left\|x_{1}, x_{2}, \ldots, x_{n}\right\|$ for all $\alpha \in \mathbb{R}$; and
(4) $\left\|x_{1}+x^{\prime}, \ldots, x_{n}\right\| \leq\left\|x_{1}, \ldots, x_{n}\right\|+\left\|x^{\prime}, \ldots, x_{n}\right\|$.

We then call the pair $(X,\|\cdot, \ldots, \cdot\|)$ an n-normed space.
An example of an n-normed space is the l^{p} space, where $1 \leq p<\infty$, equipped with

$$
\left\|x_{1}, \ldots, x_{n}\right\|_{p}:=\left(\frac{1}{n!} \sum_{j_{1}} \cdots \sum_{j_{n}}\left|\operatorname{det}\left(x_{i j_{k}}\right)\right|^{p}\right)^{\frac{1}{p}}
$$

for $x_{1}, \ldots, x_{n} \in l^{p}$ (see [7, Section 3]).
Another interesting example of n-normed spaces is the Gähler n-norm which was introduced in $[3,4,5]$. Let X be a real normed space of dimension $d \geq n$, and $X^{(1)}$ the dual space of X. Gähler showed that the function $\|\cdot, \ldots, \cdot\|_{G}$ which is given by

$$
\left\|x_{1}, \ldots, x_{n}\right\|_{G}:=\sup _{\substack{f_{i} \in X^{(1)},\left\|f_{i}\right\| \leq 1 \\ 1 \leq i \leq n}}\left|\operatorname{det}\left[f_{j}\left(x_{i}\right)\right]_{i, j}\right|
$$

for all $x_{1}, \ldots, x_{n} \in X$, is an n-norm on X. Hence every real normed space X can be viewed as an n-normed space $\left(X,\|\cdot, \ldots, \cdot\|_{G}\right)$.

Let X be a real normed space of dimension $d \geq n$. Any real-valued function f on X^{n} is called an n-functional on X. An n-functional f is multilinear if it satisfies two following properties:
(1) $f\left(x_{1}+y_{1}, \ldots, x_{n}+y_{n}\right)=\sum_{z_{i} \in\left\{x_{i}, y_{i}\right\}, 1 \leq i \leq n} f\left(z_{1}, \ldots, z_{n}\right)$ and
(2) $f\left(\alpha_{1} x_{1}, \ldots, \alpha_{n} x_{n}\right)=\alpha_{1} \cdots \alpha_{n-1} f\left(x_{1}, \ldots, x_{n}\right)$
for all $x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n} \in X$ and $\alpha_{1}, \ldots, \alpha_{n} \in \mathbb{R}$.
For multilinear n-functionals f, h on X, we define an n-functional $f+h$ by

$$
(f+h)\left(x_{1}, \ldots, x_{n}\right):=f\left(x_{1}, \ldots, x_{n}\right)+h\left(x_{1}, \ldots, x_{n}\right)
$$

for $x_{1}, \ldots, x_{n} \in X$. Then $f+h$ is also multilinear. On the other hand, we say $f=h$ if

$$
f\left(x_{1}, \ldots, x_{n}\right)=h\left(x_{1}, \ldots, x_{n}\right)
$$

for $x_{1}, \ldots, x_{n} \in X$.
We call an n-functional f bounded on a real normed space $(X,\|\cdot\|)$ (respectively, an n-normed space $(X,\|\cdot, \ldots, \cdot\|))$ if there exists a constant $K>0$ such that

$$
\left|f\left(x_{1}, \ldots, x_{n}\right)\right| \leq K\left\|x_{1}\right\| \cdots\left\|x_{n}\right\|\left(\text { respectively, }\left|f\left(x_{1}, \ldots, x_{n}\right)\right| \leq K\left\|x_{1}, \ldots, x_{n}\right\|\right)
$$

for all $x_{1}, \ldots, x_{n} \in X$.
Let S_{n} denote the group of permutations of $(1, \ldots, n)$. Recall from [13] that every bounded multilinear n-functional f on $(X,\|\cdot, \ldots, \cdot\|)$ is antisymmetric in the sense that

$$
f\left(x_{1}, \ldots, x_{n}\right)=\operatorname{sgn}(\sigma) f\left(x_{\sigma(1)}, \ldots, x_{\sigma(n)}\right)
$$

for $x_{1}, \ldots, x_{n} \in X$ and $\sigma \in S_{n}$. Here $\operatorname{sgn}(\sigma)=1$ if σ is an even permutation, and $\operatorname{sgn}(\sigma)=-1$ if σ is an odd permutation. Note that if f is antisymmetric then for any linearly dependent $x_{1}, \ldots, x_{n} \in X$, we have $f\left(x_{1}, \ldots, x_{n}\right)=0$.

Remark 2.1. In general, we do not have the antisymmetric property for bounded multilinear n-functionals on $(X,\|\cdot\|)$.

The space of bounded multilinear n-functionals on $(X,\|\cdot\|)$ is called the n-dual space of $(X,\|\cdot\|)$ and denoted by $X^{(n)}$. For $n=0$, we define $X^{(0)}$ as \mathbb{R}. The function $\|\cdot\|_{n, 1}$ on $X^{(n)}$ where

$$
\|f\|_{n, 1}:=\sup _{x_{1}, \ldots, x_{n} \neq 0} \frac{\left|f\left(x_{1}, \ldots, x_{n}\right)\right|}{\left\|x_{1}\right\| \cdots\left\|x_{n}\right\|}
$$

for $f \in X^{(n)}$, defines a norm on $X^{(n)}$ and then $X^{(n)}$ is a normed space.
Meanwhile, the n-dual space of $(X,\|\cdot, \ldots, \cdot\|)$ is the space of all bounded multilinear n-functionals on $(X,\|\cdot, \ldots, \cdot\|)$. This space is also a normed space with the following norm

$$
\|f\|_{n, n}:=\sup _{\left\|x_{1}, \ldots, x_{n}\right\| \neq 0} \frac{\left|f\left(x_{1}, \ldots, x_{n}\right)\right|}{\left\|x_{1}, \ldots, x_{n}\right\|} .
$$

Now let X, Y be real normed spaces. We write $B(X, Y)$ to denote the set of bounded linear operators from X into Y. The function $\|\cdot\|_{\text {op }}$ where

$$
\|u\|_{\mathrm{op}}:=\sup _{x \neq 0} \frac{\|u(x)\|}{\|x\|}
$$

for every $u \in B(X, Y)$, is a norm on $B(X, Y)$. For simplification, we write $B(X, Y)$ to denote the normed space $B(X, Y)$ equipped with $\|\cdot\|_{\mathrm{op}}$. Otherwise, if $\|\cdot\|^{*}$ is a norm function on $B(X, Y)$, we write $\left(B(X, Y),\|\cdot\|^{*}\right)$ to denote the normed space $B(X, Y)$ equipped by the norm $\|\cdot\|^{*}$.

3. The n-dual space of $(X,\|\cdot\|)$

In this section, we first identify the bounded multilinear n-functionals on $(X,\|\cdot\|)$ (Proposition 3.1). We then identify the n-dual space of ($X,\|\cdot\|$) by using the ($n-1$)dual space of $(X,\|\cdot\|)$ (Theorem 3.2). Finally we show that the n-dual space of $(X,\|\cdot\|)$ is a Banach space (Theorem 3.3).

Proposition 3.1. Let X be a real normed space of dimension $d \geq n$ and f a bounded multilinear n-functional on $(X,\|\cdot\|)$. Then there exists $u_{f} \in B\left(X, X^{(n-1)}\right)$ such that for $x_{1}, \ldots, x_{n-1}, z \in X$,

$$
f\left(x_{1}, \ldots, x_{n-1}, z\right)=\left(u_{f}(z)\right)\left(x_{1}, \ldots, x_{n-1}\right) .
$$

Furthermore, $\|f\|_{n, 1}=\left\|u_{f}\right\|_{\text {op }}$.
Proof. Take $z \in X$ and define an $(n-1)$-functional f_{z} on X with

$$
f_{z}\left(x_{1}, \ldots, x_{n-1}\right):=f\left(x_{1}, \ldots, x_{n-1}, z\right)
$$

for $x_{1}, \ldots, x_{n-1} \in X$. We show $f_{z} \in X^{(n-1)}$. Note that for $x_{1}, \ldots, x_{n-1}, y_{1}, \ldots, y_{n-1}$ $\in X$ and $\alpha_{1}, \ldots, \alpha_{n-1} \in \mathbb{R}$, we have

$$
\begin{aligned}
f_{z}\left(x_{1}+y_{1}, \ldots, x_{n-1}+y_{n-1}\right) & =f\left(x_{1}+y_{1}, \ldots, x_{n-1}+y_{n-1}, z\right) \\
& =\sum_{z_{i} \in\left\{x_{i}, y_{i}\right\}, 1 \leq i \leq n-1} f\left(z_{1}, \ldots, z_{n-1}, z\right) \\
& =\sum_{z_{i} \in\left\{x_{i}, y_{i}\right\}, 1 \leq i \leq n-1} f_{z}\left(z_{1}, \ldots, z_{n-1}\right), \\
f_{z}\left(\alpha_{1} x_{1}, \ldots, \alpha_{n-1} x_{n-1}\right) & =f\left(\alpha_{1} x_{1}, \ldots, \alpha_{n-1} x_{n-1}, z\right) \\
& =\alpha_{1} \cdots \alpha_{n-1} f\left(x_{1}, \ldots, x_{n-1}, z\right) \\
& =\alpha_{1} \cdots \alpha_{n-1} f_{z}\left(x_{1}, \ldots, x_{n-1}\right),
\end{aligned}
$$

and

$$
\left|f_{z}\left(x_{1}, \ldots, x_{n-1}\right)\right|=\left|f\left(x_{1}, \ldots, x_{n-1}, z\right)\right| \leq\|f\|_{n, 1}\|z\|\left(\left\|x_{1}\right\| \cdots\left\|x_{n-1}\right\|\right)
$$

since f is bounded on $(X,\|\cdot\|)$. Hence $f_{z}: X^{n-1} \rightarrow \mathbb{R}$ is multilinear and bounded; and then $f_{z} \in X^{(n-1)}$.

Now define $u_{f}: X \rightarrow X^{(n-1)}$ with $u_{f}(z):=f_{z}$ for $z \in X$. We have to show $u_{f} \in B\left(X, X^{(n-1)}\right)$. First we show that u_{f} is linear. Take $z_{1}, z_{2} \in X$ and $\alpha, \beta \in \mathbb{R}$. For every $x_{1}, \ldots, x_{n-1} \in X$, we have

$$
\begin{aligned}
\left(u_{f}\left(\alpha z_{1}+\beta z_{2}\right)\right)\left(x_{1}, \ldots, x_{n-1}\right) & =f_{\alpha z_{1}+\beta z_{2}}\left(x_{1}, \ldots, x_{n-1}\right) \\
& =f\left(x_{1}, \ldots, x_{n-1}, \alpha z_{1}+\beta z_{2}\right) \\
& =f\left(x_{1}, \ldots, x_{n-1}, \alpha z_{1}\right)+f\left(x_{1}, \ldots, x_{n-1}, \beta z_{2}\right) \\
& =\alpha f\left(x_{1}, \ldots, x_{n-1}, z_{1}\right)+\beta f\left(x_{1}, \ldots, x_{n-1}, z_{2}\right) \\
& =\alpha f_{z_{1}}\left(x_{1}, \ldots, x_{n-1}\right)+\beta f_{z_{2}}\left(x_{1}, \ldots, x_{n-1}\right) \\
& =\left(\alpha u_{f}\left(z_{1}\right)\right)\left(x_{1}, \ldots, x_{n-1}\right)+\left(\beta u_{f}\left(z_{2}\right)\right)\left(x_{1}, \ldots, x_{n-1}\right) \\
& =\left(\alpha u_{f}\left(z_{1}\right)+\beta u_{f}\left(z_{2}\right)\right)\left(x_{1}, \ldots, x_{n-1}\right)
\end{aligned}
$$

and

$$
u_{f}\left(\alpha z_{1}+\beta z_{2}\right)=\alpha u_{f}\left(z_{1}\right)+\beta u_{f}\left(z_{2}\right) .
$$

Hence u_{f} is linear.
Next we show the boundedness of u_{f}. Take $z \in X$. Then for $x_{1}, \ldots, x_{n-1} \in X$, we have

$$
\begin{aligned}
\left|\left(u_{f}(z)\right)\left(x_{1}, \ldots, x_{n-1}\right)\right| & =\left|f_{z}\left(x_{1}, \ldots, x_{n-1}\right)\right|=\left|f\left(x_{1}, \ldots, x_{n-1}, z\right)\right| \\
& \leq\|f\|_{n, 1}\left\|x_{1}\right\| \cdots\left\|x_{n-1}\right\|\|z\|(f \text { is bounded on }(X,\|\cdot\|))
\end{aligned}
$$

and then

$$
\left\|u_{f}(z)\right\|=\sup _{x_{1}, \ldots, x_{n-1} \neq 0} \frac{\left|\left(u_{f}(z)\right)\left(x_{1}, \ldots, x_{n-1}\right)\right|}{\left\|x_{1}\right\| \cdots\left\|x_{n-1}\right\|} \leq\|f\|_{n, 1}\|z\|
$$

which is finite. This implies

$$
\sup _{z \neq 0} \frac{\left\|u_{f}(z)\right\|}{\|z\|} \leq\|f\|_{n, 1}
$$

which is finite. Therefore u_{f} is bounded and $\left\|u_{f}\right\|_{\mathrm{op}} \leq\|f\|_{n, 1}$.

Finally we claim that $\left\|u_{f}\right\|_{\text {op }}=\|f\|_{n, 1}$. Recall that we already have $\left\|u_{f}\right\|_{\text {op }} \leq\|f\|_{n, 1}$. To show the reverse inequality, note that for $z \in X, u_{f}(z)=f_{z}$ is bounded. Then for $x_{1}, \ldots, x_{n-1}, z \in X$,

$$
\begin{aligned}
\left|f\left(x_{1}, \ldots, x_{n-1}, z\right)\right|= & \left|f_{z}\left(x_{1}, \ldots, x_{n-1}\right)\right| \\
\leq & \left\|f_{z}\right\|_{n, 1}\left\|x_{1}\right\| \cdots\left\|x_{n-1}\right\| \\
& (f \text { is bounded on }(X,\|\cdot\|)) \\
= & \left\|u_{f}(z)\right\|\left\|x_{1}\right\| \cdots\left\|x_{n-1}\right\| \\
\leq & \left(\left\|u_{f}\right\|_{\mathrm{op}}\|z\|\right)\left\|x_{1}\right\| \cdots\left\|x_{n-1}\right\|
\end{aligned}
$$

since u_{f} is bounded. Hence

$$
\|f\|_{n, 1}=\sup _{x_{1}, \ldots, x_{n-1}, z \neq 0} \frac{\left|f\left(x_{1}, \ldots, x_{n-1}, z\right)\right|}{\left\|x_{1}\right\| \cdots\left\|x_{n-1}\right\|\|z\|} \leq\left\|u_{f}\right\|_{\mathrm{op}}
$$

and $\|f\|_{n, 1} \leq\left\|u_{f}\right\|_{\mathrm{op}}$. Therefore $\left\|u_{f}\right\|_{\mathrm{op}}=\|f\|_{n, 1}$, as claimed.
Theorem 3.2. Let X be a real normed space of dimension $d \geq n$. Then the n-dual space of $(X,\|\cdot\|)$ is $B\left(X, X^{(n-1)}\right)$.

Proof. For a bounded multilinear n-functional f on $(X,\|\cdot\|)$, let $u_{f} \in B\left(X, X^{(n-1)}\right)$ be as in Proposition 3.1. Define a map θ from the n-dual space of $(X,\|\cdot\|)$ to $B\left(X, X^{(n-1)}\right)$ with

$$
\theta(f):=u_{f}
$$

for $f \in X^{(n)}$. We have to show that θ is isometric and bijective.
The isometricness of θ follows from Proposition 3.1.
Next we show the injectivity of θ. Let f, h be bounded multilinear n-functionals on $(X,\|\cdot\|)$ such that $\theta(f)=\theta(h)$. Then $u_{f}=u_{h}$ and for every $x_{1}, \ldots, x_{n-1}, x_{n} \in X$, we have

$$
\begin{aligned}
f\left(x_{1}, \ldots, x_{n-1}, x_{n}\right) & =\left(u_{f}\left(x_{n}\right)\right)\left(x_{1}, \ldots, x_{n-1}\right) \\
& =\left(u_{h}\left(x_{n}\right)\right)\left(x_{1}, \ldots, x_{n-1}\right) \\
& =h\left(x_{1}, \ldots, x_{n-1}, x_{n}\right) .
\end{aligned}
$$

Hence $f=h$ and θ is injective.
To show that θ is surjective, we take $u \in B\left(X, X^{(n-1)}\right)$ and have to show that there exists a bounded multilinear n-functional f_{u} on $(X,\|\cdot\|)$ such that $\theta\left(f_{u}\right)=u$. Now we define f_{u} an n-functional on X where

$$
f_{u}\left(x_{1}, \ldots, x_{n-1}, x_{n}\right):=\left(u\left(x_{n}\right)\right)\left(x_{1}, \ldots, x_{n-1}\right)
$$

for $x_{1}, \ldots, x_{n-1}, x_{n} \in X$. We claim that f_{u} is multilinear and bounded on $(X,\|\cdot\|)$.

First we show that f_{u} is multilinear. Take $x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n} \in X$ and $\alpha_{1}, \ldots, \alpha_{n} \in$ \mathbb{R}. We have

$$
\begin{aligned}
f_{u}\left(x_{1}+y_{1}, \ldots, x_{n}+y_{n}\right) & =\left(u\left(x_{n}+y_{n}\right)\right)\left(x_{1}+y_{1}, \ldots, x_{n-1}+y_{n-1}\right) \\
& =\sum_{z_{i} \in\left\{x_{i}, y_{i}\right\}, 1 \leq i \leq n-1}\left(u\left(x_{n}+y_{n}\right)\right)\left(z_{1}, \ldots, z_{n-1}\right) \\
& =\sum_{z_{i} \in\left\{x_{i}, y_{i}\right\}, 1 \leq i \leq n-1}\left(u\left(x_{n}\right)+u\left(y_{n}\right)\right)\left(z_{1}, \ldots, z_{n-1}\right) \\
= & \sum_{z_{i} \in\left\{x_{i}, y_{i}\right\}, 1 \leq i \leq n-1}\left(f\left(z_{1}, \ldots, z_{n-1}, x_{n}\right)+f\left(z_{1}, \ldots, z_{n-1}, y_{n}\right)\right) \\
& =\sum_{z_{i} \in\left\{x_{i}, y_{i}\right\}, 1 \leq i \leq n} f\left(z_{1}, \ldots, z_{n-1}, z_{n}\right)
\end{aligned}
$$

and

$$
\begin{aligned}
f_{u}\left(\alpha_{1} x_{1}, \ldots, \alpha_{n} x_{n}\right) & =\left(u\left(\alpha_{n} x_{n}\right)\right)\left(\alpha_{1} x_{1}, \ldots, \alpha_{n-1} x_{n-1}\right) \\
& =\alpha_{1} \cdots \alpha_{n-1}\left(u\left(\alpha_{n} x_{n}\right)\right)\left(x_{1}, \ldots, x_{n-1}\right)\left(u\left(\alpha_{n} x_{n}\right) \text { is multilinear }\right) \\
& =\alpha_{1} \cdots \alpha_{n-1} \alpha_{n}\left(u\left(x_{n}\right)\right)\left(x_{1}, \ldots, x_{n-1}\right)(u \text { is linear }) \\
& =\alpha_{1} \cdots \alpha_{n-1} \alpha_{n} f_{u}\left(x_{1}, \ldots, x_{n-1}, x_{n}\right)
\end{aligned}
$$

Hence f_{u} is multilinear.
Next we show that f_{u} is bounded on $(X,\|\cdot\|)$. Take $x_{1}, \ldots, x_{n} \in X$. Then

$$
\begin{aligned}
\left|f_{u}\left(x_{1}, \ldots, x_{n-1}, x_{n}\right)\right| & =\left|\left(u\left(x_{n}\right)\right)\left(x_{1}, \ldots, x_{n-1}\right)\right| \\
& \leq\left\|u\left(x_{n}\right)\right\|\left\|x_{1}\right\| \cdots\left\|x_{n-1}\right\| \quad\left(u\left(x_{n}\right) \text { is bounded }\right) \\
& \leq\left(\|u\|_{\mathrm{op}}\left\|x_{n}\right\|\right)\left\|x_{1}\right\| \cdots\left\|x_{n-1}\right\| \quad(u \text { is bounded })
\end{aligned}
$$

and f_{u} is bounded.
Hence f_{u} is multilinear and bounded on $(X,\|\cdot\|)$, as claimed. Note that $\theta\left(f_{u}\right)=u_{f_{u}}$. Take $x_{1}, \ldots, x_{n} \in X$ and we have

$$
\left(u\left(x_{n}\right)\right)\left(x_{1}, \ldots, x_{n-1}\right)=f_{u}\left(x_{1}, \ldots, x_{n-1}, x_{n}\right)=\left(\left(u_{f_{u}}\right)\left(x_{n}\right)\right)\left(x_{1}, \ldots, x_{n-1}\right)
$$

Then $u\left(x_{n}\right)=u_{f_{u}}\left(x_{n}\right)$ for $x_{n} \in X$, and

$$
u=u_{f_{u}}=\theta\left(f_{u}\right)
$$

Therefore, θ is surjective and a bijection, as required.
Recall from [8, Theorem 2.10-2] that for normed spaces X, Y, the normed space $B(X, Y)$ is a Banach space if Y is a Banach space. Since \mathbb{R} is a Banach space, then for every normed space $X, X^{(1)}$ is also a Banach space. Hence Theorem 3.2 with $n=2$ implies that $X^{(2)}$ is also a Banach space. Therefore, by induction and Theorem 3.2, we get the following theorem.

Theorem 3.3. Let X be a real normed space of dimension $d \geq n$. Then the n-dual space of $(X,\|\cdot\|)$ is a Banach space.

4. The n-dual space of $\left(X,\|\cdot, \cdots, \cdot\|_{G}\right)$

In this section, we focus on normed spaces of dimension $d \geq n$ which satisfy property (G). On this space, we investigate the relationship between bounded multilinear n-functionals on $\left(X,\|\cdot, \cdots, \cdot\|_{G}\right)$ and bounded multilinear n-functionals on $(X,\|\cdot\|)$
(Lemma 4.3). We then use it to determine the n-dual space of $\left(X,\|\cdot, \cdots, \cdot\|_{G}\right)$ (Theorem 4.5) and show that the space is a Banach space (Theorem 4.7).

First we recall the functional g and property (G) introduced by Miličić in [12]. The functional $g: X^{2} \rightarrow \mathbb{R}$ is defined by

$$
g(x, y):=\frac{\|x\|}{2}\left(\tau_{-}(x, y)+\tau_{+}(x, y)\right)
$$

where

$$
\tau_{ \pm}(x, y):=\lim _{t \rightarrow \pm 0} t^{-1}(\|x+t y\|-\|x\|) .
$$

The functional g satisfies the following properties: for all $x, y \in X$ and $\alpha, \beta \in \mathbb{R}$
(G1) $g(x, x)=\|x\|^{2}$;
(G2) $g(\alpha x, \beta y)=\alpha \beta g(x, y)$;
(G3) $g(x, x+y)=\|x\|^{2}+g(x, y)$; and
(G4) $|g(x, y)| \leq\|x\|\|y\|$.
We say that a real normed space X satisfies property (G) if the functional $g(x, y)$ is linear with respect to $y \in X$. In that case, we then call g a semi-inner product on X. For example, for $1 \leq p<\infty$, the l^{p} space satisifes property (G) (see [16]).

By using the semi-inner product g, we define an orthogonal relation on X as follows:

$$
x \perp_{g} y \Leftrightarrow g(x, y)=0 .
$$

Let $x \in X$ and $Y=\left\{y_{1}, \ldots, y_{n}\right\} \subseteq X$. We write $\Gamma\left(y_{1}, \ldots, y_{n}\right)$ to denote the Gram determinant $\operatorname{det}\left[g\left(y_{i}, y_{j}\right)\right]_{i, j}$. If $\Gamma\left(y_{1}, \ldots, y_{n}\right) \neq 0$, then the vector

$$
x_{Y}:=-\frac{1}{\Gamma\left(y_{1}, \ldots, y_{n}\right)} \operatorname{det}\left[\begin{array}{cccc}
0 & y_{1} & \cdots & y_{n} \\
g\left(y_{1}, x\right) & g\left(y_{1}, y_{1}\right) & \cdots & g\left(y_{1}, y_{n}\right) \\
\vdots & \vdots & & \vdots \\
g\left(y_{n}, x\right) & g\left(y_{n}, y_{1}\right) & \cdots & g\left(y_{n}, y_{n}\right)
\end{array}\right]
$$

is called the Gram-Schimdt projection of the vector x on Y.
Next let $\left\{x_{1}, \ldots, x_{n}\right\}$ be a linearly independent set of vectors in X. As in [12], we call $x_{1}^{\circ}, \ldots, x_{n}^{\circ}$ the left g-orthogonal sequence where $x_{1}^{\circ}:=x_{1}$ and for $i=2, \ldots, n$,

$$
x_{i}^{\circ}:=x_{i}-\left(x_{i}\right)_{S_{i-1}},
$$

where $S_{i-1}:=\operatorname{span}\left\{x_{1}, \ldots, x_{i-1}\right\}$. Note that if $i<j$, then $x_{i}^{\circ} \perp_{g} x_{j}^{\circ}$ and $g\left(x_{i}^{\circ}, x_{j}^{\circ}\right)=0$.
Proposition 4.1. Let X be a real normed space of dimension $d \geq n$ which satisfies property (G). Let $\left\{x_{1}, \ldots, x_{n}\right\}$ be a linearly independent set of vectors in X. Then

$$
\left\|x_{1}^{\circ}\right\| \cdots\left\|x_{n}^{\circ}\right\| \leq\left\|x_{1}, \ldots, x_{n}\right\|_{G} \leq n!\left\|x_{1}\right\| \cdots\left\|x_{n}\right\|
$$

Proof. First we show the right inequality. Note that

$$
\begin{aligned}
\left\|x_{1}, \ldots, x_{n}\right\|_{G} & =\sup _{\substack{f_{i} \in X^{(1)},\left\|f_{i}\right\| \leq 1 \\
1 \leq i \leq n}}\left|\operatorname{det}\left[f_{j}\left(x_{i}\right)\right]_{i, j}\right| \\
& =\sup _{\substack{f_{i} \in X^{(1), \| f i n} \\
1 \leq i \leq n}}\left|\sum_{\sigma \in S_{n}} \operatorname{sgn}(\sigma) \prod_{i=1}^{n} f_{\sigma(i)}\left(x_{i}\right)\right| \text { (by the Leibniz formula) } \\
& \leq \sup _{\substack{f_{i} \in X^{(1)},\left\|f_{i}\right\| \leq 1 \\
1 \leq i \leq n}} \sum_{\sigma \in S_{n}}\left|\prod_{i=1}^{n} f_{\sigma(i)}\left(x_{i}\right)\right| \text { (by the triangle inequality) } \\
& \leq \sup _{\substack{f_{i} \in X^{(1)},\left\|f_{i}\right\| \leq 1 \\
1 \leq i \leq n}} \sum_{\sigma \in S_{n}}\left(\prod_{i=1}^{n}\left\|f_{\sigma(i)}\right\|\left\|x_{i}\right\|\right) \text { (each } f_{i} \text { is bounded) } \\
& \leq \sum_{\sigma \in S_{n}}\left(\prod_{i=1}^{n}\left\|x_{i}\right\|\right) \\
& =n!\left\|x_{1}\right\| \cdots\left\|x_{n}\right\|
\end{aligned}
$$

as required.
To show the left inequality, we first show that for a fixed $x \in X$, the functional g_{x} on X defined by

$$
g_{x}(y):=\frac{g(x, y)}{\|x\|}
$$

for $y \in X$, is bounded and linear. The linearity follows since X satisfies property (G). Now take $y \in X$, by (G4), we have

$$
\left|g_{x}(y)\right|=\left|\frac{g(x, y)}{\|x\|}\right| \leq\|y\|
$$

and g_{x} is bounded, as required. Hence for $x \in X, g_{x} \in X^{(1)}$. Furthermore, $\left\|g_{x}\right\| \leq 1$.
Now note that $\left\|x_{1}, \ldots, x_{n}\right\|_{G}=\left\|x_{1}^{\circ}, \ldots, x_{n}^{\circ}\right\|_{G}$. This implies

$$
\begin{align*}
\left\|x_{1}, \ldots, x_{n}\right\|_{G} & =\left\|x_{1}^{\circ}, \ldots, x_{n}^{\circ}\right\|_{G}=\sup _{\substack{f_{i} \in X^{(1),\left\|f_{i}\right\| \leq 1} \\
1 \leq i \leq n}}\left|\operatorname{det}\left[f_{j}\left(x_{i}^{\circ}\right)\right]_{i, j}\right| \tag{4.1}\\
& \geq\left|\operatorname{det}\left[g_{x_{j}^{\circ}}\left(x_{i}^{\circ}\right)\right]_{i, j}\right|=\frac{1}{\left\|x_{1}^{\circ}\right\| \cdots\left\|x_{n}^{\circ}\right\|}\left|\operatorname{det}\left[g\left(x_{j}^{\circ}, x_{i}^{\circ}\right)\right]_{i, j}\right| .
\end{align*}
$$

Since $x_{1}^{\circ}, \ldots, x_{n}^{\circ}$ is the left g-orhogonal sequence, then $g\left(x_{i}^{\circ}, x_{j}^{\circ}\right)=0$ if $i<j$. By (G1), we get $g\left(x_{i}^{\circ}, x_{i}^{\circ}\right)=\left\|x_{i}^{\circ}\right\|^{2}$ for $i=1, \ldots, n$. This implies

$$
\left|\operatorname{det}\left[g\left(x_{j}^{\circ}, x_{i}^{\circ}\right)\right]_{i, j}\right|=\left\|x_{1}^{\circ}\right\|^{2} \cdots\left\|x_{n}^{\circ}\right\|^{2}
$$

and (4.1) become

$$
\left\|x_{1}, \ldots, x_{n}\right\|_{G} \geq\left\|x_{1}^{\circ}\right\| \cdots\left\|x_{n}^{\circ}\right\|
$$

as required.
Remark 4.2. Proposition 4.1 is a generalisation of Theorem 2.2 in [16]. In [16, Theorem 2.2], Wibawa-Kusumah and Gunawan only proved Proposition 4.1 for l^{p} spaces where $1 \leq p<\infty$.

Lemma 4.3. Let X be a real normed space of dimension $d \geq n$ which satisfies property (G). Let f be a multilinear n-functional on X. Then f is antisymmetric and bounded on $(X,\|\cdot\|)$ if and only if f is bounded on $\left(X,\|\cdot, \cdots, \cdot\|_{G}\right)$. Furthermore

$$
\|f\|_{n, n} \leq\|f\|_{n, 1} \leq n!\|f\|_{n, n}
$$

Proof. First suppose that f is antisymmetric bounded on $(X,\|\cdot\|)$. Take linearly independent $x_{1}, \ldots, x_{n} \in X$. Then

$$
f\left(x_{1}, \ldots, x_{n}\right)=f\left(x_{1}^{\circ}, \ldots, x_{n}^{\circ}\right)
$$

and by the left inequality in Proposition 4.1,

$$
\begin{aligned}
\frac{\left|f\left(x_{1}, \ldots, x_{n}\right)\right|}{\left\|x_{1}, \ldots, x_{n}\right\|_{G}} & \leq \frac{\left|f\left(x_{1}, \ldots, x_{n}\right)\right|}{\left\|x_{1}^{\circ}\right\| \cdots\left\|x_{n}^{\circ}\right\|}=\frac{\left|f\left(x_{1}^{\circ}, \ldots, x_{n}^{\circ}\right)\right|}{\left\|x_{1}^{\circ}\right\| \cdots\left\|x_{n}^{\circ}\right\|} \\
& \leq\|f\|_{n, 1}(f \text { is bounded on }(X,\|\cdot\|))
\end{aligned}
$$

which is finite. Hence f is bounded on $\left(X,\|\cdot, \cdots, \cdot\|_{G}\right)$ and

$$
\begin{equation*}
\|f\|_{n, n} \leq\|f\|_{n, 1} . \tag{4.2}
\end{equation*}
$$

Next suppose that f is bounded on $\left(X,\|\cdot, \cdots, \cdot\|_{G}\right)$. Then f is antisymmetric. To show the boundedness of f on $(X,\|\cdot\|)$, we take linearly independent $x_{1}, \ldots, x_{n} \in X$. Then by the right inequality in Proposition 4.1,

$$
\begin{aligned}
\frac{\left|f\left(x_{1}, \ldots, x_{n}\right)\right|}{\left\|x_{1}\right\| \cdots\left\|x_{n}\right\|} & \leq n!\frac{\left|f\left(x_{1}, \ldots, x_{n}\right)\right|}{\left\|x_{1}, \ldots, x_{n}\right\|_{G}} \\
& \leq n!\|f\|_{n, n}\left(f \text { is bounded on }\left(X,\|\cdot, \cdots, \cdot\|_{G}\right)\right)
\end{aligned}
$$

which is finite. Hence f is bounded on $(X,\|\cdot\|)$ and

$$
\begin{equation*}
\|f\|_{n, 1} \leq n!\|f\|_{n, n} \tag{4.3}
\end{equation*}
$$

Finally, by (4.2) and (4.3), we get

$$
\|f\|_{n, n} \leq\|f\|_{n, 1} \leq n!\|f\|_{n, n}
$$

as required.
Now we say $u \in B\left(X, X^{(n-1)}\right)$ antisymmetric if for $x_{1}, \ldots, x_{n} \in X$ and $\sigma \in S_{n}$,

$$
\left(u\left(x_{n}\right)\right)\left(x_{1}, \ldots, x_{n-1}\right)=\operatorname{sgn}(\sigma)\left(u\left(x_{\sigma(n)}\right)\right)\left(x_{\sigma(1)}, \ldots, x_{\sigma(n-1)}\right)
$$

and then define $B_{\text {as }}\left(X, X^{(n-1)}\right)$ as the collection of antisymmetric elements of $B\left(X, X^{(n-1)}\right)$. Note that $B_{\text {as }}\left(X, X^{(n-1)}\right)$ is also a normed space with the norm inherited from $B\left(X, X^{(n-1)}\right)$ which is $\|\cdot\|_{\text {op }}$.

Note that Theorem 3.2 and Lemma 4.3 imply that every bounded multilinear n functional on $\left(X,\|\cdot, \cdots, \cdot\|_{G}\right)$ can be identified as an element of $B_{\text {as }}\left(X, X^{(n-1)}\right)$ and vice versa. Therefore Lemma 4.3 implies the following corollary and theorem.

Corollary 4.4. Let X be a real normed space of dimension $d \geq n$ which satisfies property (G). The function $\|\cdot\|_{G}$ on $B_{\text {as }}\left(X, X^{(n-1)}\right)$ where

$$
\|u\|_{G}:=\sup _{\left\|x_{1}, \ldots, x_{n}\right\|_{G} \neq 0} \frac{\left|\left(u\left(x_{n}\right)\right)\left(x_{1}, \ldots, x_{n-1}\right)\right|}{\left\|x_{1}, \ldots, x_{n}\right\|_{G}}
$$

for $u \in B\left(X, X^{(n-1)}\right)$, defines a norm on $B_{\mathrm{as}}\left(X, X^{(n-1)}\right)$. Furthermore, $\|\cdot\|_{G}$ and $\|\cdot\|_{\mathrm{op}}$ are equivalent norms on $B_{\mathrm{as}}\left(X, X^{(n-1)}\right)$ with

$$
\|u\|_{G} \leq\|u\|_{\mathrm{op}} \leq n!\|u\|_{G}
$$

for $u \in B\left(X, X^{(n-1)}\right)$.
Theorem 4.5. Let X be a real normed space of dimension $d \geq n$ which satisfies property (G). Then the n-dual space of $\left(X,\|\cdot, \cdots, \cdot\|_{G}\right)$ is $\left(B_{\text {as }}\left(X, X^{(n-1)}\right),\|\cdot\|_{G}\right)$.

The rest of this section is devoted to show that for $n \in \mathbb{N}$, the n-dual space of $\left(X,\|\cdot, \cdots, \cdot\|_{G}\right)$ is a Banach space.
Theorem 4.6. Let X be a real normed space of dimension $d \geq n$ which satisfies property (G). Then $B_{\mathrm{as}}\left(X, X^{(n-1)}\right)$ is a Banach space.

Proof. Since every closed subspace of a Banach space is also a Banach space, then by Theorem 3.3, it suffices to show that $B_{\text {as }}\left(X, X^{(n-1)}\right)$ is a closed subspace of $B\left(X, X^{(n-1)}\right)$.

Take a sequence $\left\{u_{m}\right\} \subseteq B_{\text {as }}\left(X, X^{(n-1)}\right)$ such that $u_{m} \rightarrow u$. We have to show $u \in B_{\text {as }}\left(X, X^{(n-1)}\right)$. In other words, for $x_{1}, \ldots, x_{n} \in X$ and $\sigma \in S_{n}$, we have to show

$$
\left(u\left(x_{n}\right)\right)\left(x_{1}, \ldots, x_{n-1}\right)=\operatorname{sgn}(\sigma)\left(u\left(x_{\sigma(n)}\right)\right)\left(x_{\sigma(1)}, \ldots, x_{\sigma(n-1)}\right) .
$$

Take $x_{1}, \ldots, x_{n} \in X$ and $\sigma \in S_{n}$. First note that for $m \in \mathbb{N}$, we have

$$
\begin{equation*}
\left\|u\left(x_{n}\right)-u_{m}\left(x_{n}\right)\right\|=\left\|\left(u-u_{m}\right)\left(x_{n}\right)\right\| \leq\left\|u-u_{m}\right\|_{\mathrm{op}}\left\|x_{n}\right\| \tag{4.4}
\end{equation*}
$$

since $u-u_{m}$ is bounded. Since $u\left(x_{n}\right), u_{m}\left(x_{n}\right) \in X^{(n-1)}$, then $\left(u-u_{m}\right)\left(x_{n}\right)$ is bounded and for $y_{1}, \ldots, y_{n-1} \in X$, we have

$$
\begin{equation*}
\left\|\left(\left(u-u_{m}\right)\left(x_{n}\right)\right)\left(y_{1}, \ldots, y_{n-1}\right)\right\| \leq\left\|u\left(x_{n}\right)-u_{m}\left(x_{n}\right)\right\|\left\|y_{1}\right\| \cdots\left\|y_{n-1}\right\| . \tag{4.5}
\end{equation*}
$$

Since $u_{m} \rightarrow u$, then by (4.4) and (4.5), we get

$$
\begin{equation*}
\left(u_{m}\left(x_{n}\right)\right)\left(y_{1}, \ldots, y_{n-1}\right) \rightarrow\left(u\left(x_{n}\right)\right)\left(y_{1}, \ldots, y_{n-1}\right) \tag{4.6}
\end{equation*}
$$

for $y_{1}, \ldots, y_{n-1} \in X$. Since u_{m} is antisymmetric for every $m \in \mathbb{N}$, then (4.6) implies

$$
\left(u\left(x_{n}\right)\right)\left(x_{1}, \ldots, x_{n-1}\right)=\operatorname{sgn}(\sigma)\left(u\left(x_{\sigma(n)}\right)\right)\left(x_{\sigma(1)}, \ldots, x_{\sigma(n-1)}\right),
$$

as required. Thus $B_{\mathrm{as}}\left(X, X^{(n-1)}\right)$ is closed and then a Banach space.
Furthermore, since $\|\cdot\|_{G}$ and $\|\cdot\|_{\text {op }}$ are equivalent norms on $B_{\text {as }}\left(X, X^{(n-1)}\right)$, then by Theorem 4.5 and Theorem 4.6, we get the following theorem.
Theorem 4.7. Let X be a real normed space of dimension $d \geq n$ which satisfies property (G). Then the n-dual space of $\left(X,\|\cdot, \cdots, \cdot\|_{G}\right)$ is a Banach space.

References

1. H. Batkunde, H. Gunawan, and Y.E.P. Pangalela, Bounded linear functionals on the nnormed space of p-summable sequences, Acta Univ. M. Belii Ser. Math. 21 (2013), 66-75.
2. S. Gähler, Lineare 2-normierte räume, Math. Nachr. 28 (1964), 1-43.
3. S. Gähler, Untersuchungen über verallgemeinerte m-metrische räume I, Math. Nachr. 40 (1969), 165-189.
4. S. Gähler, Untersuchungen über verallgemeinerte m-metrische räume II, Math. Nachr. 40 (1969), 229-264.
5. S. Gähler, Untersuchungen über verallgemeinerte m-metrische räume III, Math. Nachr. 41 (1969), 23-36.
6. S.M. Gozali, H. Gunawan and O. Neswan, On n-norms and n-bounded linear functionals in a Hilbert space, Ann. Funct. Anal. 1 (2010), 72-79.
7. H. Gunawan, The space of p-summable sequences and its natural n-norm, Bull. Aust. Math. Soc. 64 (2001), 137-147.
8. E. Kreyszig, Introductory Functional Analysis with Applications, John Wiley and Sons, Inc. 1978.
9. S.N. Lal and M. Das, 2-functionals and some extension theorems in linear spaces, Indian J. Pure Appl. Math. 13 (1982), 912-919.
10. Z. Lewandowska, Bounded 2-linear operators on 2-normed sets, Glas. Mat. Ser. III 39 (2004), 301-312.
11. R. Malcheski and Z. Cvetkovski, Dual space of the space of bounded linear n-functionals, Mat. Bilten 36 (2012), 47-53.
12. P.M. Miličić, On the Gram-Schmidt projection in normed spaces, Univ. Beograd Publ. Elektrotehn. Fak. Ser. Mat. 4 (1993), 85-92.
13. Y.E.P. Pangalela and H. Gunawan, The n-dual space of the space of p-summable sequences, Math. Bohem. 138 (2013), 439-448.
14. A.L. Soenjaya, On n-bounded and n-continuous operator in n-normed space, J. Indones. Math. Soc. 18 (2012), 45-56.
15. A. White, 2-Banach spaces, Math. Nachr. 42 (1969), 43-60.
16. R.A. Wibawa-Kusumah and H. Gunawan, Two equivalent n-norms on the space of p summable sequences, Period. Math. Hungar. 67 (2013), 63-69.

Department of Mathematics and Statistics, University of Otago, PO Box 56, Dunedin 9054, New Zealand

E-mail address: yosafat.pangalela@maths.otago.ac.nz

[^0]: Date: Received: 16 August 2015, Accepted: 04 December 2015.
 2010 Mathematics Subject Classification. Primary 46B20; Secondary 46C05, 46C15, 46B99, 46C99.

 Key words and phrases. n-dual spaces, n-normed spaces, bounded linear functionals.

