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ON SOME GENERALIZED SPACES OF INTERVAL NUMBERS
WITH AN INFINITE MATRIX AND MUSIELAK-ORLICZ
FUNCTION
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Communicated by H.R. Ebrahimi Vishki

ABSTRACT. In the present paper we introduce and study some generalized
I-convergent sequence spaces of interval numbers defined by an infinite ma-
trix and a Musielak-Orlicz function. We also make an effort to study some
topological and algebraic properties of these spaces.

1. INTRODUCTION AND PRELIMINARIES

Ideal convergence is a generalization of statistical convergence and any concept
involving ideal convergence plays a vital role not only in pure mathematics but
also in other branches of science involving mathematics, especially information
theory, computer science, biological science, dynamical systems, geographic infor-
mation systems, and motion planning in robotics. Kostyrko et al. [9] was initially
introduced the notion of I-convergence based on the structure of admissible ideal
I of subset of natural numbers N.

Let N be a nonempty set. Then a family of sets I C 2V (Power set of N) is
said to be an ideal if I is additive i.e. A, Bel = AUB el and A€ I,B C
A = B € I. A nonempty family of sets £(I) C 2V is said to be a filter in N
if and only if @ ¢ £(I), for A, B € £(I) we have AN B € £(I), and for each
Ae £(1), AC B implies B € £(I).

An ideal I C 2V is called non-trivial if I # 2V. A non-trivial ideal I C 2V is
called admissible if {{z} : € N} C I. A non-trivial ideal is mazimal if there
cannot exist any non-trivial ideal J # I containing I as a subset. For each ideal
I, there exist a filter £(I) corresponding to I i.e. £(I) = {K C N: K¢ € [},
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where K¢ = N\ K. Further details on ideal convergence can be found in [15], [20],
[24], etc. The notion of I-convergent double sequences was initially introduced
by Tripathy and Tripathy (see [27]).

Let A = (A;,) be a non-decreasing sequence of positive numbers tending to oo
such that

/\m+1 < )\m+17 )\1 = 1.

The generalized de la Vallée Poussin mean is defined by

where J,,, = [m — A\, +1,m].

A sequence x = (xy) is said to be (V, A)-summable to a number [ (see [10]) if
tm(x) — 1, as m — oo. If A\, = m, then (V, \)-summability reduces to (C,1)-
summability. We write

m

[C’,l]:{x:(xk):EIZG]R, lim l2:|3U,,ﬂ—l|20}

m—o0 M,
k=1

and

1
[V,)\]:{x:(xk):EIZGR,nlgnooEkZJ fex — 1] =0},
em

Let A = (A\,) and p = (u,) be two non-decreasing sequences of positive real
numbers, each tending to oo such that A\, 1 < A+ 1, A = 15 piper < pin +
L pp=1. Let Jp, = [m— Ay +1,m], Jp, = [n — pn + 1, 0], Sy = Jin X J,, and
A = A\ = Aptn. The generalized double de la Vallée-Poussin mean is defined

by
L Z Lkl

M (k) ETmn

tn () = b\

Chiao [I] introduced sequences of interval numbers and defined usual conver-
gence of sequences of interval numbers. Sengoniil and Eryilmaz [21] introduced
and studied bounded and convergent sequence spaces of interval numbers and
showed that these spaces are complete metric spaces. Esi ([2], [3]) introduced and
studied strongly almost A-convergence and statistically almost A-convergence of
interval numbers and lacunary sequence spaces of interval numbers, respectively.
Recently, Esi in [1] has studied double sequences of interval numbers.

A set consisting of a closed interval of real numbers = such that a < x < b is
called an interval number. A real interval can also be considered as a set. Thus
we can investigate some properties of interval numbers, for instance arithmetic
properties or analysis properties. We denote the set of all real-valued closed
intervals by R. Any element of R is called a closed interval and denoted by z.
That is Z = {x € R: a < z < b}. An interval number Z is a closed subset of
real numbers. Let x; and z, be first and last points of an interval number z. For
X1,To € R, we have T; = Ty, & Xy, = To,,T1, = T2, T1+ Ty = {ZL‘ eR: T, + I <
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x <z, +x,},if >0, then ar = {x € R: axy, <z < axy,}, if @ <0, then
az ={r € R:ax;, <z < azy,}, and
e € R:min{xy,.xq, ,x1,.29, ,21,.79, ,X1,.09,} < @
1-Tg = .
< min{wy,.zy, , T1,.T2, ,X1,.To, ,T1,.T2, }

In [14], Moore proved that the set of all interval numbers is a complete metric
space defined by the metric d(Z;, Z2) = max{|z1, — |, |1, —¥2,|}. In the special
case T1 = |a,a] and Ty = [b, b], we obtain the usual metric of R.

Throughout the paper we shall denote the set of all real sequences by w.

Definition 1.1. A transformation f from N x N to R by i, j — f(i,j) = Z,
(Z;;) is called a sequence of double interval numbers, where z;; denotes the (4,
term of the sequence z = (7;;).

T =
"

Definition 1.2. [I] A sequence T = (Zj) of interval numbers is said to be con-
vergent to the interval number Z, if for each € > 0 there exists a positive integer
ko such that d(Zy,To) < € for all k > ko and we denote it by limy Z = Zy. Thus,
limy, 7, = Tp & limy, x, = xo, and limy x4, = 29

1 r ot

Definition 1.3. An interval valued double sequence T = (Z;;) is said to be
convergent in the Pringsheim’s sense or P-convergent to an interval number z,
if for every € > 0, there exists N € N such that

d(fij,fo) < e for all 1,9 > N,
where N is the set of natural numbers, and we denote it by P-limz;; = Zo. The
interval number Z is called the Pringsheim limit of z = (Z;;). More exactly, we

say that a double sequence T = (Z;;) converges to a finite interval number z, if
Z;; tend to Ty as both ¢ and j tends to oo independently of one another.

Definition 1.4. A sequence (zj) € w is said to be I-convergent to a number L
if for every € > 0, the set {k € N : |z, — L| > ¢} € I. In this case we write
I-limaxy, = L.

Definition 1.5. An interval valued double sequence T = (Z;;) is bounded if there
exists a positive number M such that d(Z;, Zo) < M for all i,j € N. We shall
denote all bounded sequences of double interval numbers by (2 .

Definition 1.6. Two non-negative functions f, g are called equivalent, whenever
Cif < g < Cyf, for some C; >0, 7 =1,2 and in this case we write f = g.

Definition 1.7. A sequence space E is said to be solid (or normal) if (apzy) € E
whenever (z;) € E and (a4) is any sequence of scalars with |ag| < 1 for all £ € N.

Definition 1.8. Let K = {k; < ky < ...} C N and let E be a sequence space. A
K -step space of E is a sequence space A& = {(z,) € w: (z3) € E}.

Definition 1.9. A canonical preimage of a sequence (zy,) € A\ is a sequence
(yr) € w defined by

- r, ifke K
Y= 0 , otherwise.
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The canonical preimage of a step space A\E is the set of canonical preimages of
all the elements in AL, i.e., y is in the canonical preimage of A% if and only if y
is a canonical preimage of some z € \Z.

Definition 1.10. A sequence space F is said to be monotone if it contains the
canonical preimages of its step spaces.

Lemma 1.11. [7] Every normal space is monotone.

Let A = (amnij) denote a four dimensional summability method that maps the
complex double sequences x into the double sequence Az where the mn!” term
of Ax is as follows:

(Ax>mn = Z AmnijLij-
ij=1,1
Such a transformation is said to be non-negative if a,,,;; is non-negative for all
m,n,i and j.

The notion of difference sequence spaces was introduced by Kizmaz [3], who
studied the difference sequence spaces [ (A), ¢(A) and ¢y(A). The notion was
further generalized by Et and Colak [0] by introducing the spaces lo(A™), ¢(A™)
and co(A™). Another type of generalization of the difference sequence spaces is
due to Tripathy and Esi [23] who studied the spaces I, (A”), ¢(A") and co(AI").
Let m,n be non-negative integers, then for Z = ¢, ¢y and [, we have sequence
spaces

Z(AM) ={x = (xp) € w: (Alxy) € Z},
where A"z = (A"z;) = (A" 1z, — A™ gy, q) and A%z, = =y, for all k € N,
which is equivalent to the following binomial representation

Azlilj‘k = Z(—l)v ( T ) Lhtny-

v=0

Taking m = n = 1, we get the spaces [ (A), ¢(A) and ¢o(A) studied by Kizmaz
[8]. Taking n = 1, we get the spaces lo(A™), ¢(A™) and ¢y(A™) studied by Et
and Colak [6]. Similarly, we can define difference operators on double sequence
spaces as:

Aﬁk,z = (%,l - xk,l+1) - ($k+1,z - $k+1,l+1)

Tpi — Thitl — Tha1l T Tra1i41,

1 ~1 1 1
Az = A" — A" g — AT g AT T
and

m m
An Tkl = A

—1 m—1 m—1 m—1
g — AT X1 — AT X1+ AT Xy -

For more details about sequence spaces see [13], [17], [19] and references therein.

An Orlicz function M : [0,00) — [0,00) is a continuous, non-decreasing and
convex function such that M(0) = 0, M(z) > 0 for x > 0 and M(z) — oo as
x — o0. If convexity of Orlicz function is replaced by M (z+y) < M(z)+ M (y),
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then this function is called modulus function. Lindenstrauss and Tzafriri [1 1] used
the idea of Orlicz functions to define the following sequence space,

EM:{x:(xk)Ew:f:M<@> < 00, forsomep>0}
k=1

which is known as an Orlicz sequence space. The space ¢, is a Banach space

with the norm
|z]| = inf{p >0:) M(M> < 1}.
P
k=1

Also it was shown in [11] that every Orlicz sequence space £, contains a subspace
isomorphic to £, (p > 1). An Orlicz function M can always be represented in the
following integral form

where 7 is known as the kernel of M, is right differentiable for t > 0, n(0) =
0, n(t) > 0, n is non-decreasing and 7(t) — oo as t — oc.

A sequence M = (My,) of Orlicz functions is said to be a Musielak-Orlicz function
(see [12, 15]). A sequence N = (Ny) is defined by
Ni(v) = sup{|vju — My(u) :u >0}, k=1,2,---

is called the complementary function of a Musielak-Orlicz function M. For a
given Musielak-Orlicz function M, the Musielak-Orlicz sequence space ty and
its subspace h are defined as follows

tam = {wa:IM(cx) < oo for some c>0},

ha = {xew:IM(cx) < oo for all c>0},
where [, is a convex modular defined by

IM(Z‘) = ZMk(ZL‘k), Tr = (ZL‘k) €ty
k=1

We consider ¢4 equipped with the Luxemburg norm
lz|| = inf{k >0 IM<%) < 1}
or equipped with the Orlicz norm
z]]° = inf{%(l F Lukn)) k> 0},

A Musielak-Orlicz function M = (M) is said to satisfy As-condition if there
exist constants a, K > 0 and a sequence ¢ = (¢g)2,; € L (the positive cone of
I') such that the inequality
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holds for all k£ € N and u € R*, whenever M (u) < a.

Let w? be the set of all double sequences of interval numbers and I be an ad-
missible ideal of N x N. Suppose M = (M;;) is a Musielak-Orlicz function and
A = (@mni;) be a non-negative four-dimensional regular summability method.
Also suppose that p = (p;;) is a bounded double sequence of positive real num-
bers and u = (u;;) be a double sequence of strictly positive real numbers. In
the present paper we define the following new double sequence spaces for interval
numbers as follows: ow![A, M, p,u, A", A] =

Z Amnij [MZ . (M)}pij

(4,9)EJmn P

mn

{x:(xij)€w2:{(m,n)€NxN: )\1

26}6],V6>0, xoeRandforsomep>O},

Qﬂ}é[A,M,p,U, Agv A] =

> G [MZ<W)]M

(5 D) p

{{Z‘:(i‘i]’)ell_JQZ{(m,n)ENXN:

ZG}EI, Ve>0andforsomep>0},

21D£o[A7M7p7u7 Agu A] -

f:(iij)€w2:3K>Os.t.{(m,n)ENXN:

1 Z amnij[Mz’j(wﬂp” ZK}EI, for somep>0},
(i )€ Tmn P

and

Q'U_JOO[A, M, p,u, A%, A] =

1 iid Ar_i',(_) ij
{:E:(:Eij)GZDQ:sup Z amnij[Mi'<—UJ( s )>}pj<oo,

AT T p

for some p > O}.

Remark 1.12. Let us consider a few special cases of the above sequence spaces:

(i) If M = M,;;(z) == for all 4,j € N, then we have

QU_)I[AVA/LP’U?AZ’A] = 271)1[/\,}7, u, AQ,A], gwé[A,M,p,u, A;A] = Q@Tjé[/\,p,u,
AT AL 9wl [N, M pu, AT Al = ol [A, p,u, AT, A] and 9 [A, M, p,u, AT, A]
= oW [A, p,u, AL Al

(ii) If p = (p;;) = 1, for all ¢, j then we have

2w [A, M, p,u, AT, A] = ow! [A, M, u, AT, A, 5wl [A, M, p,u, AT, A] = swl[A, M,
u, AT, A], ol [A, M, p,u, AT, Al = 2w [A, M, u, AT, A] and 20 [A, M, p,u, AT,
Al = 9o [A, M, u, AL Al
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(ili) If w = (u;;) = 1, for all ¢, j then we have

2wl [A, M, p,u AT Al = 9wl [A, M, p, A” , AL 2wl A, M, p,u, AT, Al = 9wl [A, M,
p, A7, A}, sw! [A, /\/l p,u, AT, A] = sl [A M, p, Al Al and oW [A, M, p,u, AT,
Al = 2Woo[A, M, p, AL, Al

(iv) If A= (C,1,1) =1, i.e. the double Cesaro matrix, then the above classes of
sequences reduce to the following sequence spaces

2! [A, M, p,u, AT, A] = ow! [A, M p,u AT, oWl [A, M, p,u, AT, Al = 9wl [A, M,
p,u, A7), swl [A, ./\/l p,u, AT, Al = 9! [A, M, p,u, AT] and swWso[A, M, p,u, AT, A
= 9Weo[A, M, p,u, A

(v) Let A= (C,1,1) =1 and w;; = 1 for all 4, j. If, in addition, M(z) = M(z)
and r = 0; s = 1, then the spaces sw![A, M, p,u, A", A], QU_}é[A,M,p,U, A Al

w!l [A, M, p,u, A Al and 9Wao[A, M, p,u, AT, A] are reduced to ow![A, M, p],
2w0 [A M, p], sw!, [A M, p] and 2w.[A, M, p) Wthh were introduced and studied
by Esi and Hazarika [5].

The following inequality will be used through out the paper. If 0 < p;; < supp;; =
H, D = max(1,2%71) then

|aij + bi;

P < D|ay

" A [bij

i) (L1)

for all 4,7 and a;;,b;; € C. Also |a|P < max(1,|a|") for all a € C.

The main purpose of this paper is to introduce and study some generalized
I-convergent difference sequence spaces of interval numbers by using an infinite
matrix and a Musielak-Orlicz function M = (M;;). We also make an effort
to study some topological and algebraic properties of new sequence spaces and
obtain the inclusion relation related to these spaces.

2. MAIN RESULTS
Theorem 2.1. X[A, M, p,u, AT71 A) C X[A, M, p,u, A7, A] for X = w!, w0},

2L, 2o
Proof. Let T = (Z;j) € 9Woo|A, M, p,u, AT~', A]. Then for some p > 0, we have

Z amm][ (u@'jd(Ag_ljiﬁO))rij < 00.

(4,9)EJmn P

sup
m,n mn

Now, by the continuity of M = (1/;;), the result follows from the following rela-
tion
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1 .. AT 7. () ij
sup Z Amnij |:MZ] (“wd( Sk O)>]p

T G G)E T p
U 'd(Arilfij, 6) bij
C gt S i (A 0]
D i ;
’L])E.]mn
ijd(ALTi5,0)\ 1P
+ sup Z amm][ (_u]( s )>] "
ZJ)EJmn P
This shows that z = (Z;;) € 2Weo|[A, M, p,u, AL, Al. O

The following example shows that the inclusion in Theorem 2.1 is strict, in
general.

Example 2.2. Let A = (ayni;) =1 and r,s = 1. Let M;;(z) =z, u = (u;;) = 1,
p=(py) =1foralijeNxN, p=1and\,, =1. Consider the interval
sequence T = (Z;;) defined by

T;; = [ij, ij + 1] foralli,j e Nx N
and Az;; = —1. Thus T = (Z;;) € 2Weo[A, M, p,u, AT, A].

Theorem 2.3. If0 < p;; < ¢;j < oo for eachi and j, then we have w! [A, M, p,u
AT A] C ow![A, M, q,u, AT, A

Proof. Let T = (:EU) € 2wl [A, M, p,u, AT, A]. Then there exists p > 0 such that

Z amm][ (Uijd(AZJ_ﬁij,i‘o)ﬂpii > e

(4,7)EJImn P

mn

Pij
This implies that a,; [Mij <M>] < 1, for sufficiently large values

p

of 7 and j (see [22]). Since M = (M;;) is non-decreasing, we get

D g [Mz’j (uijd(Agfij’ f0)>]%’

T (4,5)ETmn P

< ! Z Amnij [Mij<Uijd(Agxij’xo))}pij.

>\mn (4,9)€Jmn p
Therefore,
d Ar_.. r ij
{(m’n) ENxN : Z amn”[ <U2] ( sxzjax[)))]q Ze} c
mn p
(4,7)EImn
1 A(ATE, Fo)\ 1P
{(m7n)ENXN: n Z angJ[MZJ(UU ( sxzj7x0))i|pj ZG}GI

mn . . P

(,9)€JImn

Thus, z = (7;;) € 2w![A, M, q,u, A", A]. This completes the proof. O
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Theorem 2.4. (i) Let 0 < infp;; < p;; <1. Then
20 [A, M, p,u, AL, A] C 5w’ [A, M, u, AL, A],
20 [N, M, p,u, AL, Al C W [A, M, AL, Al
(11) Let 1 < p;; < supp;; < oco. Then
w! [N, M, u, AT, A] C o’ [A, M, p,u, A7, Al
QWA My, AT, Al C ol [A, M, p,u, AT, Al

Proof. (i) Let Z = (zi;) € 2w![A, M,p,u, AT, A]. Since 0 < infp; < p; < 1
we have

1 . . uijd(Agfij,{Eo)
o Z(i,j)ejmn Amnij [Mw< 0

ST G [ M, (u@-jd(Ag@j,f@)]pﬁ'

(z J)ETmn P
Therefore,
uijd(A;iij, jo)
>
{(m,n)GNxN — Z amm][ ( P )] _e}
(4,9)EJImn
AT T .
c {(m)n)ENXN Z amnz]|: <UZ] ( sxzjaxO))]pJ ZE} el
P
(’L] YEJTmn

The other part can be proved in the similar way.

(ii) Let © = (Z;;) € qw![A, M,u, A", A]. Since 1 < p;; < supp;; < oo, then
for each 0 < € < 1 there exists a positive integer ng such that

Z amm][ (uijd(Aijij’%))] <e< 1 forall n > ng, (see [10]).

(4,7)EImn
This implies that

Z Amnij [ (uijd(Agj;ij7 ) )]pi]_

(4,7)EImn P
Uzd<Aer fo)
S amm[Mz< J = >i|
o Z ] p
1,5)€Jmn
Therefore, we have
Uzd(ATZfZ f()) bij
m,n) € NxN: amm[ < J st )} Ze}
{om.n) > i ;

mn (4,7)EImn
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g{(m,n)ENXN

T (]

(4,9)EJmn

The other part can be proved in the similar way. This completes the proof. [

Theorem 2.5. Let M = (M;;) and S = (S;;) be two Musielak-Orlicz functions.
Then

20 [A, M, p,u, AT, Al M@ [A, S, pu, AT, A] C 9! [A, M 4+ S, p,u, AT, A].
Proof. Let © = (Z;;) € w![A, M,p,u, AT, A] N 2w’ [A, S, p,u, A7, A]. Then for

every € > 0, we have
1d Ar—i"— Pij
Z amnz]|: (uj ( ;xj x0)>:| 26}6],
1

(4,9)EJmn

{(m,n) e NxN:

mn

for some p; > 0 and

Z Amnij [Sij <uijd(A§xij, xo))]pij > 6} el,

L 2
(1.7)Emm P

1
{(m,n)ENXN:A

mn

for some py > 0. Let p = max{p1, p2}. The result follows from the inequality

» Z mnij [ + Si5) <uijd<Agfij7 fo))}f’ia‘

(1,5) EJmn P)
! 1d Arii‘,i Pij
B Z Armnij [Mij<“9 ( ;1'] :Bo)>]
" (i§)ETmn
b S ()
" (65) € dmn
- mnij ij
" (i,§) € Tn p
! Zd Arii',i Pij
+ D Qmnij [Sij(uj ( sLij $0)>i| J7 seo (11)
M (i,5) Edmn p
Thus, z = (Z;;) € 2w'[A, M + 8, p, u, A7, A]. This completes the proof. 0]

Theorem 2.6. Let M = (M;;) and S = (S;;) be two Musielak-Orlicz functions.
Then

20 [A, M, p,u, AT, A] C 2! [A, S o M, p,u, AT, A].

Proof. Let inf p;; = Hy. For given ¢ > 0, we first choose ¢y > 0 such that

max{el, e}°} < e. Now using the continuity of (S;;) choose 0 < § < 1 such that
0 <t < ¢ implies S;;(t) < €.
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Let = (Z;;) € 2w![A, M, p,u, AT, A]. Now from definition of yw![A, M, p,u, A",
A, for some p > 0

A(8) = {(m,n) eNxN: )\im ST Gy [Mij(wﬂpu - 5H} cr
(4,5)€Jmn

Thus if (m,n) ¢ A(J), then we have

Z ammj[ (uijd(Aga_cij,jO)ﬂpn _ st

(4,7)EImn P

N Z amm][ (uijd(Agfij,Eo)ﬂpij <A gH

(4,7)EJmn P

= Qmnij |:M1]<

uijd(A5Ti, To)
p
uid(A5Tij, To)
)
Hence from the above inequality and using continuity of (.S;;), we must have
uid(A5Ti5, To)
™
which consequently implies that

Z amm][ ,]( (uijd(Agjij’jo)»rij < Aom max{egl, eglo} < Amn€

(4,9)EImn P

D DR N YA (A

(6 5)E Tmn P

)}p” <" foralli,j—=1,2,3 ...

= i [Mij( )}p <6 foralli,j—1.2.3,. ...

Amnij |:Sl] <Mz] )>i| < € for all 1,7 =1,2,3,...

This shows that

- |:Sij (Mij(uijd(Ame,fo)»r” > 6} c A()

{(m,n)eNxN: P

>\mn

(1,5) € Imn

and so belongs to I. This completes the proof. (]

Theorem 2.7. Let M = (M,;) be a Musielak-Orlicz function and let A = (Gpmnij)
be a mon-negative four-dimensional regular summability method. Suppose that

M;;(t
B = lim ;( ) < 00. Then »w'[A, p,u, A", A] = yw![A, M, p,u, A", A].

t—o0

Proof. In order to prove that »@![A,p,u, AT, A] = s@![A, M,p,u, AT, A], it is
sufficient to show that »w![A, M, p,u, A7, A] C 2w![A, p,u, AT, A]. Now, let 3 >
0. By definition of 3, we have M;;(t) > ft for all t > 0. Since 8 > 0, we have
t < %Mij(t) for all ¢ > 0. Let T = (%;;) € ow![A, M, p,u, AT, A]. Thus, we have

Z i [(Uz‘jd(Angj, xo)ﬂpij

(4,9)€EJmn p

mn
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]_ ,d Ar_i', T ij
ho B el (A
(4,9)EJImn P
Therefore, we have
N i
{(m,n)eNxN: Z ammjKuU ( Smw,xo))}pg 26}
mn (1,5)€EJmn p
CA(AT T T i
C {(m,n) c NxN: D) Z Amnij [Mij(um ( sxuaxo)ﬂpy > e} 1.
mn (1,5)€Jmn P

which implies that z = (Z;;) € 2w’[A, p,u, A7, A]. This completes the proof. [

Theorem 2.8. Let M = (M;;) and S = (S;;) be two Musielak-Orlicz functions
such that M;; ~ S;; for all i,j. Then Z[A,M,p,u, AL, Al = Z|\,S,p,u, AL, A],
for Z = Q’I,DI, Qwé, ngo and Qwoo.

Theorem 2.9. The sequence spaces ow! [N, M, p,u, A", A, swl[A, M, p,u, AT, A,
oW [N, M, p,u, AT, Al and 2s[A, M, p,u, AT, A] are solid as well as monotone.

Proof. We give the proof of the theorem for owl[A, M, p,u, A", A] only. Let T =
(Z45) € 2w{[A, M, p,u, AT, A] and (ay;) be a scalar sequence such that |a;;| < 1
for all 7,5 € N. Then for every e > 0 we have

Z amm;[ (uijd(Agaijjij,O)ﬂmj > e}

(i,)€Jmn p

{(m,n) eNxN:

Q{(m,n)ENXN: b\ amnij[Mij<M)i|p”Z€}ejy
where G = max{1, |a;;|"}. Hence (az) € 2wl[A, M,p,u,A”, A]. By Lemma
1.11, the space 2wl [A, M, p,u, AT, A] is monotone. This completes the proof. [J
In what follows, we show that the classes of interval numbers yw![A, M, p, u, AT,
A, 9wk [A, M, p,u, AT, A], wl [A, M, p,u, A7, Al and 9We[A, M, p,u, A7, A] are
not symmetric, in general.
Example 2.10. Let A = (apmnij) = L and r,s = 1. Let M;;(z) =z, u = (u;;) = 1,
p = (pij) = 1 foralli,j7 € NxN, p=1and \,, = 1. Consider the interval
sequence T = (Z;;) defined by

1
Zi; = [zg ¢j+§} for all 7, j € N x N

and AZ;; = —1. Thus T = (Z;;) € 2Weo[A, M, p,u, AL, A].
Let the sequence of interval numbers § = (y;;) be a rearrangement of the se-
quence of interval numbers = = (Z;;) defined as follows:

— — j17j27j47£37£97j5aj167
yZ(yz’j):{— o

Lo, 25, L7, L36, Ly L49, ---
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le.
j(%)% for all 4, 5 odd;
Ay = a_j(anr%), for all 7, j even and
m,n satisfies mn(mn — 1) <ij < mn(mn + 1).

ij+1

5 < mn(mn+

Thus for all i, j odd and m,n € N x N, satisfying mn(mn—1) <
1), we have
_ ij 1] +2\2 1 1] 17 +2\2 1
s = [ D) (L5 () - (252 1]
Yij mn + 9 5 5 mn + 5 5 + 5
From the last two equations, it is clear that (Agy,;) is unbounded, thus y =
(Uij) & 2Woo[A, M, p,u, AL, A]. Therefore, the class ot [A, M, p, u, A%, A] is not

symmetric.
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