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ON SOME GENERALIZED SPACES OF INTERVAL NUMBERS
WITH AN INFINITE MATRIX AND MUSIELAK-ORLICZ

FUNCTION

KULDIP RAJ1∗ AND SURUCHI PANDOH2

Communicated by H.R. Ebrahimi Vishki

Abstract. In the present paper we introduce and study some generalized
I-convergent sequence spaces of interval numbers defined by an infinite ma-
trix and a Musielak-Orlicz function. We also make an effort to study some
topological and algebraic properties of these spaces.

1. Introduction and preliminaries

Ideal convergence is a generalization of statistical convergence and any concept
involving ideal convergence plays a vital role not only in pure mathematics but
also in other branches of science involving mathematics, especially information
theory, computer science, biological science, dynamical systems, geographic infor-
mation systems, and motion planning in robotics. Kostyrko et al. [9] was initially
introduced the notion of I-convergence based on the structure of admissible ideal
I of subset of natural numbers N.

Let N be a nonempty set. Then a family of sets I ⊆ 2N (Power set of N) is
said to be an ideal if I is additive i.e. A,B ∈ I ⇒ A ∪ B ∈ I and A ∈ I, B ⊆
A ⇒ B ∈ I. A nonempty family of sets £(I) ⊆ 2N is said to be a filter in N
if and only if ∅ /∈ £(I), for A,B ∈ £(I) we have A ∩ B ∈ £(I), and for each
A ∈ £(I), A ⊆ B implies B ∈ £(I).
An ideal I ⊆ 2N is called non-trivial if I 6= 2N . A non-trivial ideal I ⊆ 2N is
called admissible if

{
{x} : x ∈ N

}
⊆ I. A non-trivial ideal is maximal if there

cannot exist any non-trivial ideal J 6= I containing I as a subset. For each ideal
I, there exist a filter £(I) corresponding to I i.e. £(I) = {K ⊆ N : Kc ∈ I},
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where Kc = N \K. Further details on ideal convergence can be found in [18], [20],
[24], etc. The notion of I-convergent double sequences was initially introduced
by Tripathy and Tripathy (see [25]).

Let λ = (λm) be a non-decreasing sequence of positive numbers tending to ∞
such that

λm+1 ≤ λm + 1, λ1 = 1.

The generalized de la Vallée Poussin mean is defined by

tm(x) =
1

λm

∑
k∈Jm

xk,

where Jm = [m− λm + 1,m].
A sequence x = (xk) is said to be (V, λ)-summable to a number l (see [10]) if
tm(x) → l, as m → ∞. If λm = m, then (V, λ)-summability reduces to (C, 1)-
summability. We write

[C, 1] =
{
x = (xk) : ∃ l ∈ R, lim

m→∞

1

m

m∑
k=1

|xk − l| = 0
}

and

[V, λ] =
{
x = (xk) : ∃ l ∈ R, lim

m→∞

1

λm

∑
k∈Jm

|xk − l| = 0
}
.

Let λ = (λm) and µ = (µn) be two non-decreasing sequences of positive real
numbers, each tending to ∞ such that λm+1 ≤ λm + 1, λ1 = 1; µn+1 ≤ µn +
1, µ1 = 1. Let Jm = [m − λm + 1,m], Jn = [n − µn + 1, n], Jmn = Jm × Jn and
Λ = λmn = λmµn. The generalized double de la Vallée-Poussin mean is defined
by

tmn(x) =
1

λmn

∑
(k,l)∈Jmn

xkl.

Chiao [1] introduced sequences of interval numbers and defined usual conver-
gence of sequences of interval numbers. Şengönül and Eryılmaz [21] introduced
and studied bounded and convergent sequence spaces of interval numbers and
showed that these spaces are complete metric spaces. Esi ([2], [3]) introduced and
studied strongly almost λ-convergence and statistically almost λ-convergence of
interval numbers and lacunary sequence spaces of interval numbers, respectively.
Recently, Esi in [4] has studied double sequences of interval numbers.

A set consisting of a closed interval of real numbers x such that a ≤ x ≤ b is
called an interval number. A real interval can also be considered as a set. Thus
we can investigate some properties of interval numbers, for instance arithmetic
properties or analysis properties. We denote the set of all real-valued closed
intervals by R. Any element of R is called a closed interval and denoted by x̄.
That is x̄ = {x ∈ R : a ≤ x ≤ b}. An interval number x̄ is a closed subset of
real numbers. Let xl and xr be first and last points of an interval number x̄. For
x̄1, x̄2 ∈ R, we have x̄1 = x̄2 ⇔ x1l = x2l , x1r = x2r , x̄1 + x̄2 = {x ∈ R : x1l +x2l ≤
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x ≤ x1r + x2r}, if α ≥ 0, then αx̄ = {x ∈ R : αx1l ≤ x ≤ αx1r}, if α < 0, then
αx̄ = {x ∈ R : αx1r ≤ x ≤ αx1l}, and

x̄1.x̄2 =

{
x ∈ R : min{x1l .x2l , x1l .x2r , x1r .x2l , x1r .x2r} ≤ x

≤ min{x1l .x2l , x1l .x2r , x1r .x2l , x1r .x2r}

}
.

In [14], Moore proved that the set of all interval numbers is a complete metric
space defined by the metric d(x̄1, x̄2) = max{|x1l−x2l |, |x1r−x2r |}. In the special
case x̄1 = [a, a] and x̄2 = [b, b], we obtain the usual metric of R.

Throughout the paper we shall denote the set of all real sequences by w.

Definition 1.1. A transformation f from N× N to R by i, j 7→ f(i, j) = x̄, x̄ =
(x̄ij) is called a sequence of double interval numbers, where x̄ij denotes the (i, j)th

term of the sequence x̄ = (x̄ij).

Definition 1.2. [1] A sequence x̄ = (x̄k) of interval numbers is said to be con-
vergent to the interval number x̄0 if for each ε > 0 there exists a positive integer
k0 such that d(x̄k, x̄0) < ε for all k ≥ k0 and we denote it by limk x̄k = x̄0. Thus,
limk x̄k = x̄0 ⇔ limk xkl = x0l and limk xkr = x0r .

Definition 1.3. An interval valued double sequence x̄ = (x̄ij) is said to be
convergent in the Pringsheim’s sense or P -convergent to an interval number x̄0,
if for every ε > 0, there exists N ∈ N such that

d(x̄ij, x̄0) < ε for all i, j > N,

where N is the set of natural numbers, and we denote it by P -lim x̄ij = x̄0. The
interval number x̄0 is called the Pringsheim limit of x̄ = (x̄ij). More exactly, we
say that a double sequence x̄ = (x̄ij) converges to a finite interval number x̄0 if
x̄ij tend to x̄0 as both i and j tends to ∞ independently of one another.

Definition 1.4. A sequence (xk) ∈ w is said to be I-convergent to a number L
if for every ε > 0, the set {k ∈ N : |xk − L| ≥ ε} ∈ I. In this case we write
I-limxk = L.

Definition 1.5. An interval valued double sequence x̄ = (x̄ij) is bounded if there
exists a positive number M such that d(x̄ij, x̄0) ≤ M for all i, j ∈ N. We shall
denote all bounded sequences of double interval numbers by l̄2∞.

Definition 1.6. Two non-negative functions f, g are called equivalent, whenever
C1f ≤ g ≤ C2f , for some Cj > 0, j = 1, 2 and in this case we write f ≈ g.

Definition 1.7. A sequence space E is said to be solid (or normal) if (αkxk) ∈ E
whenever (xk) ∈ E and (αk) is any sequence of scalars with |αk| ≤ 1 for all k ∈ N.

Definition 1.8. Let K = {k1 < k2 < ...} ⊂ N and let E be a sequence space. A
K-step space of E is a sequence space λEK = {(xkn) ∈ w : (xk) ∈ E}.

Definition 1.9. A canonical preimage of a sequence (xkn) ∈ λEK is a sequence
(yk) ∈ w defined by

yk =

{
xk, if k ∈ K
0 , otherwise.
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The canonical preimage of a step space λEK is the set of canonical preimages of
all the elements in λEK , i.e., y is in the canonical preimage of λEK if and only if y
is a canonical preimage of some x ∈ λEK .

Definition 1.10. A sequence space E is said to be monotone if it contains the
canonical preimages of its step spaces.

Lemma 1.11. [7] Every normal space is monotone.

Let A = (amnij) denote a four dimensional summability method that maps the
complex double sequences x into the double sequence Ax where the mnth term
of Ax is as follows:

(Ax)mn =

∞,∞∑
i,j=1,1

amnijxij.

Such a transformation is said to be non-negative if amnij is non-negative for all
m,n, i and j.

The notion of difference sequence spaces was introduced by Kızmaz [8], who
studied the difference sequence spaces l∞(∆), c(∆) and c0(∆). The notion was
further generalized by Et and Colak [6] by introducing the spaces l∞(∆m), c(∆m)
and c0(∆m). Another type of generalization of the difference sequence spaces is
due to Tripathy and Esi [23] who studied the spaces l∞(∆m

n ), c(∆m
n ) and c0(∆m

n ).
Let m,n be non-negative integers, then for Z = c, c0 and l∞, we have sequence
spaces

Z(∆m
n ) = {x = (xk) ∈ w : (∆m

n xk) ∈ Z},
where ∆m

n x = (∆m
n xk) = (∆m−1

n xk − ∆m−1
n xk+1) and ∆0xk = xk for all k ∈ N,

which is equivalent to the following binomial representation

∆m
n xk =

m∑
v=0

(−1)v
(
m
v

)
xk+nv.

Taking m = n = 1, we get the spaces l∞(∆), c(∆) and c0(∆) studied by Kızmaz
[8]. Taking n = 1, we get the spaces l∞(∆m), c(∆m) and c0(∆m) studied by Et
and Colak [6]. Similarly, we can define difference operators on double sequence
spaces as:

∆xk,l = (xk,l − xk,l+1)− (xk+1,l − xk+1,l+1)

= xk,l − xk,l+1 − xk+1,l + xk+1,l+1,

∆mxk,l = ∆m−1xk,l −∆m−1xk,l+1 −∆m−1xk+1,l + ∆m−1xk+1,l+1

and

∆m
n xk,l = ∆m−1

n xk,l −∆m−1
n xk,l+1 −∆m−1

n xk+1,l + ∆m−1
n xk+1,l+1.

For more details about sequence spaces see [13], [17], [19] and references therein.
An Orlicz function M : [0,∞) → [0,∞) is a continuous, non-decreasing and

convex function such that M(0) = 0, M(x) > 0 for x > 0 and M(x) −→ ∞ as
x −→∞. If convexity of Orlicz function is replaced by M(x+y) ≤M(x)+M(y),
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then this function is called modulus function. Lindenstrauss and Tzafriri [11] used
the idea of Orlicz functions to define the following sequence space,

`M =
{
x = (xk) ∈ w :

∞∑
k=1

M
( |xk|
ρ

)
<∞, for some ρ > 0

}
which is known as an Orlicz sequence space. The space `M is a Banach space
with the norm

||x|| = inf
{
ρ > 0 :

∞∑
k=1

M
( |xk|
ρ

)
≤ 1
}
.

Also it was shown in [11] that every Orlicz sequence space `M contains a subspace
isomorphic to `p (p ≥ 1). An Orlicz function M can always be represented in the
following integral form

M(x) =

∫ x

0

η(t)dt,

where η is known as the kernel of M, is right differentiable for t ≥ 0, η(0) =
0, η(t) > 0, η is non-decreasing and η(t)→∞ as t→∞.

A sequenceM = (Mk) of Orlicz functions is said to be a Musielak-Orlicz function
(see [12, 15]). A sequence N = (Nk) is defined by

Nk(v) = sup{|v|u−Mk(u) : u ≥ 0}, k = 1, 2, · · ·

is called the complementary function of a Musielak-Orlicz function M. For a
given Musielak-Orlicz function M, the Musielak-Orlicz sequence space tM and
its subspace hM are defined as follows

tM =
{
x ∈ w : IM(cx) <∞ for some c > 0

}
,

hM =
{
x ∈ w : IM(cx) <∞ for all c > 0

}
,

where IM is a convex modular defined by

IM(x) =
∞∑
k=1

Mk(xk), x = (xk) ∈ tM.

We consider tM equipped with the Luxemburg norm

||x|| = inf
{
k > 0 : IM

(x
k

)
≤ 1
}

or equipped with the Orlicz norm

||x||0 = inf
{1

k

(
1 + IM(kx)

)
: k > 0

}
.

A Musielak-Orlicz function M = (Mk) is said to satisfy ∆2-condition if there
exist constants a, K > 0 and a sequence c = (ck)

∞
k=1 ∈ l1+ (the positive cone of

l1) such that the inequality

Mk(2u) ≤ KMk(u) + ck
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holds for all k ∈ N and u ∈ R+, whenever Mk(u) ≤ a.
Let w̄2 be the set of all double sequences of interval numbers and I be an ad-
missible ideal of N × N. Suppose M = (Mij) is a Musielak-Orlicz function and
A = (amnij) be a non-negative four-dimensional regular summability method.
Also suppose that p = (pij) is a bounded double sequence of positive real num-
bers and u = (uij) be a double sequence of strictly positive real numbers. In
the present paper we define the following new double sequence spaces for interval
numbers as follows: 2w̄

I [Λ,M, p, u,∆r, A] ={
x̄ = (x̄ij) ∈ w̄2 :

{
(m,n) ∈ N× N :

1

λmn

∑
(i,j)∈Jmn

amnij

[
Mij

(uijd(∆r
sx̄ij , x̄0)

ρ

)]pij
≥ ε
}
∈ I, ∀ ε > 0, x̄0 ∈ R and for some ρ > 0

}
,

2w̄
I
0[Λ,M, p, u,∆r

s, A] ={
x̄ = (x̄ij) ∈ w̄2 :

{
(m,n) ∈ N× N :

1

λmn

∑
(i,j)∈Jmn

amnij

[
Mij

(uijd(∆r
sx̄ij , 0̄)

ρ

)]pij
≥ ε
}
∈ I, ∀ ε > 0 and for some ρ > 0

}
,

2w̄
I
∞[Λ,M, p, u,∆r

s, A] ={
x̄ = (x̄ij) ∈ w̄2 : ∃ K > 0 s.t.

{
(m,n) ∈ N× N :

1

λmn

∑
(i,j)∈Jmn

amnij

[
Mij

(uijd(∆r
sx̄ij , 0̄)

ρ

)]pij
≥ K

}
∈ I, for some ρ > 0

}
,

and

2w̄∞[Λ,M, p, u,∆r
s, A] ={

x̄ = (x̄ij) ∈ w̄2 : sup
m,n

1

λmn

∑
(i,j)∈Jmn

amnij

[
Mij

(uijd(∆r
sx̄ij , 0̄)

ρ

)]pij
<∞,

for some ρ > 0

}
.

Remark 1.12. Let us consider a few special cases of the above sequence spaces:

(i) If M = Mij(x) = x for all i, j ∈ N, then we have

2w̄
I [Λ,M, p, u,∆r

s, A] = 2w̄
I [Λ, p, u,∆r

s, A], 2w̄
I
0[Λ,M, p, u,∆r

s, A] = 2w̄
I
0[Λ, p, u,

∆r
s, A], 2w̄

I
∞[Λ,M, p, u,∆r

s, A] = 2w̄
I
∞[Λ, p, u,∆r

s, A] and 2w̄∞[Λ,M, p, u,∆r
s, A]

= 2w̄∞[Λ, p, u,∆r
s, A].

(ii) If p = (pij) = 1, for all i, j then we have

2w̄
I [Λ,M, p, u,∆r

s, A] = 2w̄
I [Λ,M, u,∆r

s, A], 2w̄
I
0[Λ,M, p, u,∆r

s, A] = 2w̄
I
0[Λ,M,

u,∆r
s, A], 2w̄

I
∞[Λ,M, p, u,∆r

s, A] = 2w̄
I
∞[Λ,M, u,∆r

s, A] and 2w̄∞[Λ,M, p, u,∆r
s,

A] = 2w̄∞[Λ,M, u,∆r
s, A].
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(iii) If u = (uij) = 1, for all i, j then we have

2w̄
I [Λ,M, p, u,∆r

s, A] = 2w̄
I [Λ,M, p,∆r

s, A], 2w̄
I
0[Λ,M, p, u,∆r

s, A] = 2w̄
I
0[Λ,M,

p,∆r
s, A], 2w̄

I
∞[Λ,M, p, u,∆r

s, A] = 2w̄
I
∞[Λ,M, p,∆r

s, A] and 2w̄∞[Λ,M, p, u,∆r
s,

A] = 2w̄∞[Λ,M, p,∆r
s, A].

(iv) If A = (C, 1, 1) = 1, i.e. the double Cesàro matrix, then the above classes of
sequences reduce to the following sequence spaces

2w̄
I [Λ,M, p, u,∆r

s, A] = 2w̄
I [Λ,M, p, u,∆r

s], 2w̄
I
0[Λ,M, p, u,∆r

s, A] = 2w̄
I
0[Λ,M,

p, u,∆r
s], 2w̄

I
∞[Λ,M, p, u,∆r

s, A] = 2w̄
I
∞[Λ,M, p, u,∆r

s] and 2w̄∞[Λ,M, p, u,∆r
s, A]

= 2w̄∞[Λ,M, p, u,∆r
s].

(v) Let A = (C, 1, 1) = 1 and uij = 1 for all i, j. If, in addition, M(x) = M(x)

and r = 0; s = 1, then the spaces 2w̄
I [Λ,M, p, u,∆r

s, A], 2w̄
I
0[Λ,M, p, u,∆r

s, A],

2w̄
I
∞[Λ,M, p, u,∆r

s, A] and 2w̄∞[Λ,M, p, u,∆r
s, A] are reduced to 2w̄

I [Λ,M, p],

2w̄
I
0[Λ,M, p], 2w̄

I
∞[Λ,M, p] and 2w̄∞[Λ,M, p] which were introduced and studied

by Esi and Hazarika [5].

The following inequality will be used through out the paper. If 0 ≤ pij ≤ sup pij =

H, D = max(1, 2H−1) then

|aij + bij|pij ≤ D(|aij|pij + |bij|pij) (1.1)

for all i, j and aij, bij ∈ C. Also |a|pij ≤ max(1, |a|H) for all a ∈ C.

The main purpose of this paper is to introduce and study some generalized
I-convergent difference sequence spaces of interval numbers by using an infinite
matrix and a Musielak-Orlicz function M = (Mij). We also make an effort
to study some topological and algebraic properties of new sequence spaces and
obtain the inclusion relation related to these spaces.

2. Main Results

Theorem 2.1. X[Λ,M, p, u,∆r−1
s , A) ⊂ X[Λ,M, p, u,∆r

s, A] for X = 2w̄
I , 2w̄

I
0,

2w̄
I
∞, 2w̄∞.

Proof. Let x̄ = (x̄ij) ∈ 2w̄∞[Λ,M, p, u,∆r−1
s , A]. Then for some ρ > 0, we have

sup
m,n

1

λmn

∑
(i,j)∈Jmn

amnij

[
Mij

(uijd(∆r−1
s x̄ij, 0̄)

ρ

)]pij
<∞.

Now, by the continuity of M = (Mij), the result follows from the following rela-
tion
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sup
m,n

1

λmn

∑
(i,j)∈Jmn

amnij

[
Mij

(uijd(∆r
sx̄ij, 0̄)

ρ

)]pij
≤ sup

m,n

1

2λmn

∑
(i,j)∈Jmn

amnij

[
Mij

(uijd(∆r−1
s x̄ij, 0̄)

ρ

)]pij
+ sup

m,n

1

2λmn

∑
(i,j)∈Jmn

amnij

[
Mij

(uijd(∆r
sx̄ij, 0̄)

ρ

)]pij
.

This shows that x̄ = (x̄ij) ∈ 2w̄∞[Λ,M, p, u,∆r
s, A]. �

The following example shows that the inclusion in Theorem 2.1 is strict, in
general.

Example 2.2. Let A = (amnij) = I and r, s = 1. Let Mij(x) = x, u = (uij) = 1,
p = (pij) = 1 for all i, j ∈ N × N, ρ = 1 and λmn = 1. Consider the interval
sequence x̄ = (x̄ij) defined by

x̄ij = [ij, ij + 1] for all i, j ∈ N× N

and ∆x̄ij = −1̄. Thus x̄ = (x̄ij) ∈ 2w̄∞[Λ,M, p, u,∆r
s, A].

Theorem 2.3. If 0 < pij ≤ qij <∞ for each i and j, then we have 2w̄
I [Λ,M, p, u,

∆r
s, A] ⊂ 2w̄

I [Λ,M, q, u,∆r
s, A].

Proof. Let x̄ = (x̄ij) ∈ 2w̄
I [Λ,M, p, u,∆r

s, A]. Then there exists ρ > 0 such that

1

λmn

∑
(i,j)∈Jmn

amnij

[
Mij

(uijd(∆r
sx̄ij, x̄0)

ρ

)]pij
≥ ε.

This implies that amnij

[
Mij

(
uijd(∆r

sx̄ij ,x̄0)

ρ

)]pij
< 1, for sufficiently large values

of i and j (see [22]). Since M = (Mij) is non-decreasing, we get

1

λmn

∑
(i,j)∈Jmn

amnij

[
Mij

(uijd(∆r
sx̄ij, x̄0)

ρ

)]qij
≤ 1

λmn

∑
(i,j)∈Jmn

amnij

[
Mij

(uijd(∆r
sx̄ij, x̄0)

ρ

)]pij
.

Therefore,{
(m,n) ∈ N× N :

1

λmn

∑
(i,j)∈Jmn

amnij

[
Mij

(uijd(∆r
sx̄ij, x̄0)

ρ

)]qij
≥ ε
}
⊆

{
(m,n) ∈ N× N :

1

λmn

∑
(i,j)∈Jmn

amnij

[
Mij

(uijd(∆r
sx̄ij, x̄0)

ρ

)]pij
≥ ε
}
∈ I.

Thus, x̄ = (x̄ij) ∈ 2w̄
I [Λ,M, q, u,∆r

s, A]. This completes the proof. �
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Theorem 2.4. (i) Let 0 < inf pij ≤ pij ≤ 1. Then

2w̄
I [Λ,M, p, u,∆r

s, A] ⊆ 2w̄
I [Λ,M, u,∆r

s, A],

2w̄
I
0[Λ,M, p, u,∆r

s, A] ⊆ 2w̄
I
0[Λ,M,∆r

s, A].

(ii) Let 1 ≤ pij ≤ sup pij <∞. Then

2w̄
I [Λ,M, u,∆r

s, A] ⊆ 2w̄
I [Λ,M, p, u,∆r

s, A],

2w̄
I
0[Λ,M, u,∆r

s, A] ⊆ 2w̄
I
0[Λ,M, p, u,∆r

s, A].

Proof. (i) Let x̄ = (x̄ij) ∈ 2w̄
I [Λ,M, p, u,∆r

s, A]. Since 0 < inf pij ≤ pij ≤ 1

we have

1
λmn

∑
(i,j)∈Jmn

amnij

[
Mij

(
uijd(∆r

sx̄ij ,x̄0)

ρ

)]
≤ 1

λmn

∑
(i,j)∈Jmn

amnij

[
Mij

(uijd(∆r
sx̄ij, x̄0)

ρ

)]pij
.

Therefore,{
(m,n) ∈ N× N :

1

λmn

∑
(i,j)∈Jmn

amnij

[
Mij

(uijd(∆r
sx̄ij, x̄0)

ρ

)]
≥ ε
}

⊆
{

(m,n) ∈ N× N :
1

λmn

∑
(i,j)∈Jmn

amnij

[
Mij

(uijd(∆r
sx̄ij, x̄0)

ρ

)]pij
≥ ε
}
∈ I.

The other part can be proved in the similar way.

(ii) Let x̄ = (x̄ij) ∈ 2w̄
I [Λ,M, u,∆r

s, A]. Since 1 ≤ pij ≤ sup pij < ∞, then
for each 0 < ε < 1 there exists a positive integer n0 such that

1
λmn

∑
(i,j)∈Jmn

amnij

[
Mij

(uijd(∆r
sx̄ij, x̄0)

ρ

)]
≤ ε < 1 for all n ≥ n0, (see [16]).

This implies that

1
λmn

∑
(i,j)∈Jmn

amnij

[
Mij

(uijd(∆r
sx̄ij, x̄0)

ρ

)]pij
≤ 1

λmn

∑
(i,j)∈Jmn

amnij

[
Mij

(uijd(∆r
sx̄ij, x̄0)

ρ

)]
.

Therefore, we have{
(m,n) ∈ N× N :

1

λmn

∑
(i,j)∈Jmn

amnij

[
Mij

(uijd(∆r
sx̄ij, x̄0)

ρ

)]pij
≥ ε
}
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⊆
{

(m,n) ∈ N× N :
1

λmn

∑
(i,j)∈Jmn

amnij

[
Mij

(uijd(∆r
sx̄ij, x̄0)

ρ

)]
≥ ε
}
∈ I.

The other part can be proved in the similar way. This completes the proof. �

Theorem 2.5. Let M = (Mij) and S = (Sij) be two Musielak-Orlicz functions.
Then

2w̄
I [Λ,M, p, u,∆r

s, A] ∩ 2w̄
I [Λ,S, p, u,∆r

s, A] ⊂ 2w̄
I [Λ,M+ S, p, u,∆r

s, A].

Proof. Let x̄ = (x̄ij) ∈ 2w̄
I [Λ,M, p, u,∆r

s, A] ∩ 2w̄
I [Λ,S, p, u,∆r

s, A]. Then for
every ε > 0, we have{

(m,n) ∈ N× N :
1

λmn

∑
(i,j)∈Jmn

amnij

[
Mij

(uijd(∆r
sx̄ij, x̄0)

ρ1

)]pij
≥ ε
}
∈ I,

for some ρ1 > 0 and{
(m,n) ∈ N× N :

1

λmn

∑
(i,j)∈Jmn

amnij

[
Sij

(uijd(∆r
sx̄ij, x̄0)

ρ2

)]pij
≥ ε
}
∈ I,

for some ρ2 > 0. Let ρ = max{ρ1, ρ2}. The result follows from the inequality

1
λmn

∑
(i,j)∈Jmn

amnij

[
(Mij + Sij)

(uijd(∆r
sx̄ij, x̄0)

ρ

)]pij
=

1

λmn

∑
(i,j)∈Jmn

amnij

[
Mij

(uijd(∆r
sx̄ij, x̄0)

ρ

)]pij
+

1

λmn

∑
(i,j)∈Jmn

amnij

[
Sij

(uijd(∆r
sx̄ij, x̄0)

ρ

)]pij
≤ D

1

λmn

∑
(i,j)∈Jmn

amnij

[
Mij

(uijd(∆r
sx̄ij, x̄0)

ρ

)]pij
+ D

1

λmn

∑
(i,j)∈Jmn

amnij

[
Sij

(uijd(∆r
sx̄ij, x̄0)

ρ

)]pij
, see (1.1).

Thus, x̄ = (x̄ij) ∈ 2w̄
I [Λ,M+ S, p, u,∆r

s, A]. This completes the proof. �

Theorem 2.6. Let M = (Mij) and S = (Sij) be two Musielak-Orlicz functions.
Then

2w̄
I [Λ,M, p, u,∆r

s, A] ⊂ 2w̄
I [Λ,S ◦M, p, u,∆r

s, A].

Proof. Let inf pij = H0. For given ε > 0, we first choose ε0 > 0 such that

max{εH0 , ε
H0
0 } < ε. Now using the continuity of (Sij) choose 0 < δ < 1 such that

0 < t < δ implies Sij(t) < ε0.
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Let x̄ = (x̄ij) ∈ 2w̄
I [Λ,M, p, u,∆r

s, A]. Now from definition of 2w̄
I [Λ,M, p, u,∆r

s,
A], for some ρ > 0

Ā(δ) =
{

(m,n) ∈ N× N :
1

λmn

∑
(i,j)∈Jmn

amnij

[
Mij

(uijd(∆r
sx̄ij , x̄0)

ρ

)]pij
≥ δH

}
∈ I.

Thus if (m,n) /∈ Ā(δ), then we have

1
λmn

∑
(i,j)∈Jmn

amnij

[
Mij

(uijd(∆r
sx̄ij, x̄0)

ρ

)]pij
< δH

⇒
∑

(i,j)∈Jmn

amnij

[
Mij

(uijd(∆r
sx̄ij, x̄0)

ρ

)]pij
< λmnδ

H

⇒ amnij

[
Mij

(uijd(∆r
sx̄ij, x̄0)

ρ

)]pij
< δH , for all i, j = 1, 2, 3, . . .

⇒ amnij

[
Mij

(uijd(∆r
sx̄ij, x̄0)

ρ

)]pij
< δ, for all i, j = 1, 2, 3, . . . .

Hence from the above inequality and using continuity of (Sij), we must have

amnij

[
Sij

(
Mij

(uijd(∆r
sx̄ij, x̄0)

ρ

))]
< ε0 for all i, j = 1, 2, 3, . . .

which consequently implies that∑
(i,j)∈Jmn

amnij

[
Sij

(
Mij

(uijd(∆r
sx̄ij, x̄0)

ρ

))]pij
< λmn max{εH0 , ε

H0
0 } < λmnε

⇒ 1

λmn

∑
(i,j)∈Jmn

amnij

[
Sij

(
Mij

(uijd(∆r
sx̄ij, x̄0)

ρ

))]pij
< ε.

This shows that{
(m,n) ∈ N×N :

1

λmn

∑
(i,j)∈Jmn

amnij

[
Sij

(
Mij

(uijd(∆r
sx̄ij, x̄0)

ρ

))]pij
≥ ε
}
⊂ Ā(δ)

and so belongs to I. This completes the proof. �

Theorem 2.7. LetM = (Mij) be a Musielak-Orlicz function and let A = (amnij)
be a non-negative four-dimensional regular summability method. Suppose that

β = lim
t→∞

Mij(t)

t
<∞. Then 2w̄

I [Λ, p, u,∆r
s, A] = 2w̄

I [Λ,M, p, u,∆r
s, A].

Proof. In order to prove that 2w̄
I [Λ, p, u,∆r

s, A] = 2w̄
I [Λ,M, p, u,∆r

s, A], it is
sufficient to show that 2w̄

I [Λ,M, p, u,∆r
s, A] ⊂ 2w̄

I [Λ, p, u,∆r
s, A]. Now, let β >

0. By definition of β, we have Mij(t) ≥ βt for all t ≥ 0. Since β > 0, we have
t ≤ 1

β
Mij(t) for all t ≥ 0. Let x̄ = (x̄ij) ∈ 2w̄

I [Λ,M, p, u,∆r
s, A]. Thus, we have

1

λmn

∑
(i,j)∈Jmn

amnij

[(uijd(∆r
sx̄ij, x̄0)

ρ

)]pij
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≤ 1

β

1

λmn

∑
(i,j)∈Jmn

amnij

[
Mij

(uijd(∆r
sx̄ij, x̄0)

ρ

)]pij
.

Therefore, we have{
(m,n) ∈ N× N :

1

λmn

∑
(i,j)∈Jmn

amnij

[(uijd(∆r
sx̄ij, x̄0)

ρ

)]pij
≥ ε
}

⊆
{

(m,n) ∈ N× N :
1

βλmn

∑
(i,j)∈Jmn

amnij

[
Mij

(uijd(∆r
sx̄ij, x̄0)

ρ

)]pij
≥ ε
}
∈ I,

which implies that x̄ = (x̄ij) ∈ 2w̄
I [Λ, p, u,∆r

s, A]. This completes the proof. �

Theorem 2.8. Let M = (Mij) and S = (Sij) be two Musielak-Orlicz functions
such that Mij ≈ Sij for all i, j. Then Z[Λ,M, p, u,∆r

s, A] = Z[Λ,S, p, u,∆r
s, A],

for Z = 2w̄
I , 2w̄

I
0, 2w̄

I
∞ and 2w̄∞.

Theorem 2.9. The sequence spaces 2w̄
I [Λ,M, p, u,∆r

s, A], 2w̄
I
0[Λ,M, p, u,∆r

s, A],

2w̄
I
∞[Λ,M, p, u,∆r

s, A] and 2w̄∞[Λ,M, p, u,∆r
s, A] are solid as well as monotone.

Proof. We give the proof of the theorem for 2w̄
I
0[Λ,M, p, u,∆r

s, A] only. Let x̄ =
(x̄ij) ∈ 2w̄

I
0[Λ,M, p, u,∆r

s, A] and (αij) be a scalar sequence such that |αij| ≤ 1
for all i, j ∈ N. Then for every ε > 0 we have{

(m,n) ∈ N× N :
1

λmn

∑
(i,j)∈Jmn

amnij

[
Mij

(uijd(∆r
sαijx̄ij, 0̄)

ρ

)]pij
≥ ε
}

⊆
{

(m,n) ∈ N× N :
G

λmn

∑
(i,j)∈Jmn

amnij

[
Mij

(uijd(∆r
sx̄ij, 0̄)

ρ

)]pij
≥ ε
}
∈ I,

where G = max{1, |αij|H}. Hence (αx̄) ∈ 2w̄
I
0[Λ,M, p, u,∆r

s, A]. By Lemma
1.11, the space 2w̄

I
0[Λ,M, p, u,∆r

s, A] is monotone. This completes the proof. �

In what follows, we show that the classes of interval numbers 2w̄
I [Λ,M, p, u,∆r

s,
A], 2w̄

I
0[Λ,M, p, u,∆r

s, A], 2w̄
I
∞[Λ,M, p, u,∆r

s, A] and 2w̄∞[Λ,M, p, u,∆r
s, A] are

not symmetric, in general.

Example 2.10. Let A = (amnij) = I and r, s = 1. Let Mij(x) = x, u = (uij) = 1,
p = (pij) = 1 for all i, j ∈ N × N, ρ = 1 and λmn = 1. Consider the interval
sequence x̄ = (x̄ij) defined by

x̄ij =
[
ij, ij +

1

2

]
for all i, j ∈ N× N

and ∆x̄ij = −1̄. Thus x̄ = (x̄ij) ∈ 2w̄∞[Λ,M, p, u,∆r
s, A].

Let the sequence of interval numbers ȳ = (ȳij) be a rearrangement of the se-
quence of interval numbers x̄ = (x̄ij) defined as follows:

ȳ = (ȳij) =

{
x̄1, x̄2, x̄4, x̄3, x̄9, x̄5, x̄16,
x̄6, x̄25, x̄7, x̄36, x̄8, x̄49, ...

}
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i.e.

∆ȳij =


x̄( ij+1

2
)2 , for all i, j odd;

x̄(mn+ ij
2

), for all i, j even and

m,n satisfies mn(mn− 1) < ij ≤ mn(mn+ 1).

Thus for all i, j odd and m,n ∈ N×N, satisfying mn(mn−1) < ij+1
2
≤ mn(mn+

1), we have

∆ȳij =
[(
mn+

ij

2

)
−
(ij + 2

2

)2

− 1

2
,
(
mn+

ij

2

)
−
(ij + 2

2

)2

+
1

2

]
.

From the last two equations, it is clear that (∆ȳij) is unbounded, thus ȳ =
(ȳij) /∈ 2w̄∞[Λ,M, p, u,∆r

s, A]. Therefore, the class 2w̄∞[Λ,M, p, u,∆r
s, A] is not

symmetric.
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