Khayyam J. Math. 2 (2016), no. 2, 112–119 DOI: 10.22034/kjm.2016.34114

FEKETE-SZEGÖ INEQUALITIES FOR CERTAIN SUBCLASSES OF STARLIKE AND CONVEX FUNCTIONS OF COMPLEX ORDER ASSOCIATED WITH QUASI-SUBORDINATION

N. MAGESH^{1*}, V.K. BALAJI² AND C. ABIRAMI³

Communicated by A.K. Mirmostafaee

ABSTRACT. In this paper, we find Fekete-Szegö bounds for a generalized class $\mathcal{M}_{a}^{\delta,\lambda}(\gamma,\varphi)$. Also, we discuss some remarkable results.

1. INTRODUCTION

Let \mathcal{A} denote the class of functions of the form

$$f(z) = z + \sum_{n=2}^{\infty} a_n z^n \tag{1.1}$$

which are analytic in the open unit disc $\mathbb{U} = \{z : z \in \mathbb{C} \text{ and } |z| < 1\}$. Further, by \mathcal{S} we shall denote the class of all functions in \mathcal{A} which are univalent in \mathbb{U} .

For two functions f and g, analytic in \mathbb{U} , we say that the function f(z) is subordinate to g(z) in \mathbb{U} , and write

$$f(z) \prec g(z) \qquad (z \in \mathbb{U})$$

if there exists a Schwarz function w(z), analytic in \mathbb{U} , with

$$w(0) = 0$$
 and $|w(z)| < 1$ $(z \in \mathbb{U})$

such that

$$f(z) = g(w(z)) \qquad (z \in \mathbb{U}) \,.$$

Date: Received: 23 May 2016; Revised: 27 July 2016; Accepted: 23 August 2016.

* Corresponding author.

²⁰¹⁰ Mathematics Subject Classification. Primary 30C45; Secondary 30C50.

Key words and phrases. Univalent functions, starlike of Ma-Minda type and convex of Ma-Minda type, majorization and quasi-subordination.

In particular, if the function g is univalent in \mathbb{U} , the above subordination is equivalent to

$$f(0) = g(0)$$
 and $f(\mathbb{U}) \subset g(\mathbb{U})$.

An analytic function f(z) is quasi-subordinate to an analytic function g(z) in the open unit disc \mathbb{U} if there exist analytic function h with $|h(z)| \leq 1$, such that $\frac{f(z)}{h(z)}$ is analytic in \mathbb{U} and

$$\frac{f(z)}{h(z)} \prec g(z) \qquad (z \in \mathbb{U}).$$

We also denote the above expression by

$$f(z) \prec_q g(z) \qquad (z \in \mathbb{U})$$

and this is equivalent to

$$f(z) = h(z)g(w(z)) \qquad (z \in \mathbb{U})$$

where w, is analytic with w(0) = 0 and |w(z)| < 1.

If $h(z) \equiv 1$, then f(z) = g(w(z)), which implies that $f(z) \prec g(z)$ in \mathbb{U} . Further, if w(z) = z, then f(z) = h(z)g(z) and denoted by $f(z) \ll g(z)$ in \mathbb{U} (see [3, 13, 14]).

Let $\varphi(z)$ be an analytic function with positive real part on \mathbb{U} with $\varphi(0) = 1$, $\varphi'(0) > 0$ which maps the unit disk \mathbb{U} onto the region starlike with respect to 1, $\varphi(\mathbb{U})$ is symmetric with respect to the real axis. The Taylor's series expansion of such function is

$$\varphi(z) = 1 + \phi_1 z + \phi_2 z^2 + \phi_3 z^3 + \dots, \qquad (1.2)$$

where all coefficients are real and $\phi_1 > 0$.

Recently, El-Ashwah and Kanas [5] introduced and studied the following two subclasses:

$$\mathcal{S}_{q}^{*}(\gamma,\varphi) := \left\{ f: f \in \mathcal{A} \quad \text{and} \quad \frac{1}{\gamma} \left(\frac{zf'(z)}{f(z)} - 1 \right) \prec_{q} \varphi(z) - 1; \quad z \in \mathbb{U}, \, \gamma \in \mathbb{C} \setminus \{0\} \right\}$$
(1.3)

and

$$\mathcal{K}_{q}(\gamma,\varphi) := \left\{ f: f \in \mathcal{A} \text{ and } \frac{1}{\gamma} \frac{zf''(z)}{f'(z)} \prec_{q} \varphi(z) - 1; \quad z \in \mathbb{U}, \, \gamma \in \mathbb{C} \setminus \{0\} \right\}.$$
(1.4)

We note that, when $h(z) \equiv 1$, the classes $S_q^*(\gamma, \varphi)$ and $\mathcal{K}_q(\gamma, \varphi)$ reduce respectively, to the familiar classes $S^*(\gamma, \varphi)$ and $\mathcal{K}(\gamma, \varphi)$ of Ma-Minda starlike and convex functions of complex order γ ($\gamma \in \mathbb{C} \setminus \{0\}$) in \mathbb{U} (see [12]). For $\gamma = 1$, the classes $S^*(\gamma, \varphi)$ and $\mathcal{K}(\gamma, \varphi)$ reduce respectively to the unified classes $S^*(\varphi)$ and $\mathcal{K}(\varphi)$ of starlike and convex functions of Ma-Minda type (see [10]). For $\gamma = 1$, the classes $S_q^*(\gamma, \varphi)$ and $\mathcal{K}_q(\gamma, \varphi)$ reduce to the classes $S_q^*(\varphi)$ and $\mathcal{K}_q(\varphi)$, respectively, introduced by Haji Mohd and Darus [8]. Further, Gurusamy et al. [7] discussed these classes $S_q^*(\varphi)$ and $\mathcal{K}_q(\varphi)$ by using the k^{-th} root transformation.

Motivated by the works of Haji Mohd and Darus [8], in this paper we define the following subclass:

Definition 1.1. Let the class $\mathcal{M}_q^{\delta,\lambda}(\gamma,\varphi)$, $0 \neq \gamma \in \mathbb{C}$, $\delta \geq 0$, consist of functions $f \in \mathcal{A}$ satisfying the quasi-subordination

$$\frac{1}{\gamma} \left((1-\delta) \frac{z \mathcal{H}_{\lambda}'(z)}{\mathcal{H}_{\lambda}(z)} + \delta \left(1 + \frac{z \mathcal{H}_{\lambda}''(z)}{\mathcal{H}_{\lambda}'(z)} \right) - 1 \right) \prec_{q} \varphi(z) - 1,$$
(1.5)

where

$$\mathcal{H}_{\lambda}(z) = (1 - \lambda)f(z) + \lambda z f'(z), \quad (0 \le \lambda \le 1).$$

Example 1.2. A function $f : \mathbb{U} \to \mathbb{C}$ defined by the following:

$$\frac{1}{\gamma} \left((1-\delta) \frac{z \mathcal{H}_{\lambda}'(z)}{\mathcal{H}_{\lambda}(z)} + \delta \left(1 + \frac{z \mathcal{H}_{\lambda}''(z)}{\mathcal{H}_{\lambda}'(z)} \right) - 1 \right) = z(\varphi(z) - 1),$$
(1.6)

belongs to the class $\mathcal{M}_q^{\delta,\lambda}(\gamma,\varphi), \ 0 \neq \gamma \in \mathbb{C}, \ \delta \geq 0.$

Throughout this work, we assume $\varphi(z)$ is an analytic function with $\varphi(0) = 1$.

For special values of the parameters and φ , the class $\mathcal{M}_q^{\delta,\lambda}(\gamma,\varphi)$ reduces to the following well known and new subclasses:

Remark 1.3. When $\lambda = 0$ in the above class, we have $\mathcal{M}_q^{\delta,0}(\gamma,\varphi) := \mathcal{M}_q^{\delta}(\gamma,\varphi)$. For $\gamma = 1$, we have $\mathcal{M}_q^{\delta}(1,\varphi) := \mathcal{M}_q^{\delta}(\varphi)$ [8, Definition 1.7]. Also, for $h(z) \equiv 1$ we get $\mathcal{M}_q^{\delta}(\varphi) := \mathcal{M}^{\delta}(\varphi)$ [2]. If

$$\varphi(z) = \frac{1 + (1 - 2\alpha)z}{1 - z}$$
 $(0 \le \alpha < 1)$ (1.7)

in $\mathcal{M}^{\delta}(\varphi)$, we have $\mathcal{M}^{\delta}(\alpha)$, [11] and setting

$$\varphi(z) = \left(\frac{1+z}{1-z}\right)^{\beta} \qquad (0 < \beta \le 1) \tag{1.8}$$

in $\mathcal{M}^{\delta}(\varphi)$, we have $\mathcal{M}^{\delta}(\beta)$, [16].

Remark 1.4. When $\lambda = 0$ and $\delta = 0$ in $\mathcal{M}_q^{\delta,\lambda}(\gamma,\varphi)$, we have $\mathcal{M}_q^{0,0}(\gamma,\varphi) := \mathcal{S}_q^*(\gamma,\varphi)$. For $\gamma = 1$, $\mathcal{S}_q^*(1,\varphi) := \mathcal{S}_q^*(\varphi)$. For $h(z) \equiv 1$, we have $\mathcal{S}_q^*(\gamma,\varphi) := \mathcal{S}^*(\gamma,\varphi)$ [12]. Also, for $h(z) \equiv 1$, we get $\mathcal{S}_q^*(\varphi) := \mathcal{S}^*(\varphi)$. For $\varphi(z)$ given by (1.7), we have $\mathcal{S}^*(\alpha)$.

Remark 1.5. When $\lambda = 0$ and $\delta = 1$ in $\mathcal{M}_q^{\delta,\lambda}(\gamma,\varphi)$, we get $\mathcal{M}_q^{1,0}(\gamma,\varphi) := \mathcal{K}_q(\gamma,\varphi)$. For $\gamma = 1$, we get $\mathcal{K}_q(1,\varphi) := \mathcal{K}_q(\varphi)$. For $h(z) \equiv 1$, we have $\mathcal{K}_q(\gamma,\varphi) := \mathcal{K}(\gamma,\varphi)$ [12] and $\mathcal{K}_q(\varphi) := \mathcal{K}(\varphi)$. For $\varphi(z)$ given by (1.7), we have $\mathcal{K}(\alpha)$.

Remark 1.6. When $\delta = 0$, we get $\mathcal{M}_q^{0,\lambda}(\gamma,\varphi) \equiv \mathcal{P}_q(\gamma,\lambda,\varphi)$. For $h(z) \equiv 1$, we get the class $\mathcal{P}_q(\gamma,\lambda,\varphi) := \mathcal{P}(\gamma,\lambda,\varphi)$ of starlike and convex functions of Pascu type class.

Remark 1.7. When $\delta = 1$, we obtain $\mathcal{M}_q^{1,\lambda}(\gamma,\varphi) \equiv \mathcal{K}_q(\gamma,\lambda,\varphi)$. For $\gamma = 1$, we have the class $\mathcal{K}_q(\lambda,\varphi)$ [15].

Inspired by the aforecited works and from the literatures [1, 5, 7, 6, 8, 15], in this paper we introduce an unified univalent function class $\mathcal{M}_q^{\delta,\lambda}(\gamma,\varphi)$ as defined above and obtain the upper bounds for $|a_2|$ and $|a_3|$ for $f \in \mathcal{M}_q^{\delta,\lambda}(\gamma,\varphi)$. Also, we obtain $|a_3 - \mu a_2^2|$. Moreover, we obtain the upper bounds for different new subclasses which are obtained from our defined unified class. To discuss main results we consider the following lemmas.

Lemma 1.8. [9] Let w be the analytic function in \mathbb{U} , with w(0) = 0, |w(z)| < 1 and $w(z) = w_1 z + w_2 z^2 + \ldots$, then $|w_2 - \tau w_1^2| \leq \max[1; |\tau|]$, where $\tau \in \mathbb{C}$. The result is sharp for the functions $w(z) = z^2$ or w(z) = z.

Lemma 1.9. [4] Let w be the analytic function in \mathbb{U} , with w(0) = 0, |w(z)| < 1 and let $w(z) = w_1 z + w_2 z^2 + \dots$ Then

$$|w_n| \le \left\{ \begin{array}{ll} 1, & n = 1; \\ 1 - |w_1|^2, & n \ge 2. \end{array} \right.$$

The result is sharp for the functions $w(z) = z^n$ or w(z) = z.

Lemma 1.10. [9] Let h(z) be the analytic function in U, with |h(z)| < 1 and let $h(z) = h_0 + h_1 z + h_2 z^2 + \dots$ Then $|h_0| \le 1$ and $|h_n| \le 1 - |h_0|^2 \le 1$, for n > 0.

Let f be of the form (1.1), $\varphi(z) = 1 + \phi_1 z + \phi_2 z^2 + \phi_3 z^3 + \dots$, $h(z) = h_0 + h_1 z + h_2 z^2 + \dots$ and $w(z) = w_1 z + w_2 z^2 + \dots$, throughout this article unless otherwise mentioned.

2. Fekete-Szegö Results

Theorem 2.1. If $f \in \mathcal{M}_q^{\delta,\lambda}(\gamma,\varphi)$. Then

$$|a_2| \le \frac{|\gamma|\phi_1}{(1+\delta)(1+\lambda)},$$
$$|a_3| \le \frac{|\gamma| \left\{ \phi_1 + \max\left\{ \phi_1, \left| \frac{\gamma(1+3\delta)}{(1+\delta)^2(1+\lambda)^2} \right| \phi_1^2 + |\phi_2| \right\} \right\}}{2(1+2\delta)(1+2\lambda)}$$

and for $\mu \in \mathbb{C}$

$$\left|a_{3}-\mu a_{2}^{2}\right| \leq \frac{\left|\gamma\right|\left\{\phi_{1}+\max\left\{\phi_{1},\left|\frac{\gamma(1+3\delta)-2\mu\gamma(1+2\delta)(1+2\lambda)}{(1+\delta)^{2}(1+\lambda)^{2}}\right|\phi_{1}^{2}+\left|\phi_{2}\right|\right\}\right\}}{2(1+2\delta)(1+2\lambda)}.$$

Proof. Let $f \in \mathcal{A}$ belongs to the class $\mathcal{M}_q^{\delta,\lambda}(\gamma,\varphi)$. Then there exist analytic functions h and w with $|h(z)| \leq 1$, w(0) = 0 and |w(z)| < 1 such that

$$\frac{1}{\gamma} \left((1-\delta) \frac{z \mathcal{H}_{\lambda}'(z)}{\mathcal{H}_{\lambda}(z)} + \delta \left(1 + \frac{z \mathcal{H}_{\lambda}''(z)}{\mathcal{H}_{\lambda}'(z)} \right) - 1 \right) = h(z)(\varphi(w(z)) - 1)$$
(2.1)

and

$$h(z)\left(\varphi\left(w(z)\right)-1\right) = h_0\phi_1w_1z + \left[h_1\phi_1w_1 + h_0(\phi_1w_2 + \phi_2w_1^2)\right]z^2 + \cdots$$
(2.2)

From equations (2.1) and (2.2) we get

$$\frac{1}{\gamma}(1+\delta)(1+\lambda)a_2 = h_0\phi_1w_1$$
(2.3)

and

$$\frac{1}{\gamma} \left[2(1+2\delta)(1+2\lambda)a_3 - (1+3\delta)(1+\lambda)^2 a_2^2 \right] = h_1 \phi_1 w_1 + h_0 \phi_1 w_2 + h_0 \phi_2 w_1^2.$$
(2.4)

Equation (2.3) gives

$$a_2 = \frac{\gamma h_0 \phi_1 w_1}{(1+\delta)(1+\lambda)}.$$
 (2.5)

Subtracting equation (2.4) from equation (2.3) and applying equation (2.5) we get

$$a_3 = \frac{\gamma}{2(1+2\delta)(1+2\lambda)} \left[h_1 \phi_1 w_1 + h_0 \phi_1 w_2 + \left(h_0 \phi_2 + \frac{\gamma h_0^2 \phi_1^2 (1+3\delta)}{(1+\delta)^2} \right) w_1^2 \right].$$
(2.6)

From the hypothesis of the definition h(z) is analytic and bounded in U. Using the fact

$$|h_n| \le 1 - |h_0|^2 \le 1$$
 $(n > 0),$

and the well-known inequality (see Lemma 1.9)

$$|w_1| \le 1.$$

we have

$$|a_2| \le \frac{|\gamma|\phi_1}{(1+\delta)(1+\lambda)}.$$

Further, for $\mu \in \mathbb{C}$

$$a_{3} - \mu a_{2}^{2} = \frac{\gamma \phi_{1}}{2(1+2\delta)(1+2\lambda)} \left\{ h_{1}w_{1} + h_{0} \left(w_{2} + \left[\frac{\phi_{2}}{\phi_{1}} + \frac{\gamma h_{0}\phi_{1}(1+3\delta)}{(1+\delta)^{2}} - \frac{\gamma h_{0}\phi_{1}(1+2\delta)(1+2\lambda)}{(1+\delta)^{2}(1+\lambda)^{2}} + \frac{\gamma h_{0}\phi_{1}(1-2\mu)(1+2\delta)(1+2\lambda)}{(1+\delta)^{2}(1+\lambda)^{2}} \right] w_{1}^{2} \right\}.$$
(2.7)

Again using the inequalities $|h_1| \leq 1$ and $|w_1| \leq 1$, we get

$$\begin{aligned} |a_3 - \mu a_2^2| &\leq \frac{|\gamma|\phi_1}{2(1+2\delta)(1+2\lambda)} \left\{ 1 + \left| w_2 - \left[\frac{-\phi_2}{\phi_1} \right] \right. \\ &\left. - \frac{\gamma(1+3\delta) - \gamma(1+2\delta)(1+2\lambda) + \gamma(1-2\mu)(1+2\delta)(1+2\lambda)}{(1+\delta)^2(1+\lambda)^2} h_0 \phi_1 \right] w_1^2 \right| \right\}. \end{aligned}$$

In view of Lemma 1.8 we have

$$a_{3} - \mu a_{2}^{2} \Big| \leq \frac{\left|\gamma\right| \left\{\phi_{1} + \max\left\{\phi_{1}, \left|\frac{\gamma(1+3\delta) - 2\mu\gamma(1+2\delta)(1+2\lambda)}{(1+\delta)^{2}(1+\lambda)^{2}}\right| \phi_{1}^{2} + |\phi_{2}|\right\}\right\}}{2(1+2\delta)(1+2\lambda)}.$$

For $\mu = 0$, we obtain

$$|a_3| \le \frac{|\gamma| \left\{ \phi_1 + \max\left\{ \phi_1, \left| \frac{\gamma(1+3\delta)}{(1+\delta)^2(1+\lambda)^2} \right| \phi_1^2 + |\phi_2| \right\} \right\}}{2(1+2\delta)(1+2\lambda)},$$

which completes the proof of Theorem 2.1.

Theorem 2.2. If $f \in A$ satisfies

$$\frac{1}{\gamma} \left((1-\delta) \frac{z \mathcal{H}_{\lambda}'(z)}{\mathcal{H}_{\lambda}(z)} + \delta \left(1 + \frac{z \mathcal{H}_{\lambda}''(z)}{\mathcal{H}_{\lambda}'(z)} \right) - 1 \right) \ll \varphi(w(z)) - 1,$$
(2.8)

then

$$|a_2| \le \frac{|\gamma|\phi_1}{(1+\delta)(1+\lambda)},$$
$$|a_3| \le \frac{|\gamma| \left\{ \phi_1 + \left| \frac{\gamma(1+3\delta)}{(1+\delta)^2(1+\lambda)^2} \right| \phi_1^2 + |\phi_2| \right\}}{2(1+2\delta)(1+2\lambda)},$$

and for $\mu \in \mathbb{C}$

$$\left|a_{3}-\mu a_{2}^{2}\right| \leq \frac{\left|\gamma\right|\left\{\phi_{1}+\left|\frac{\gamma(1+3\delta)-2\mu\gamma(1+2\delta)(1+2\lambda)}{(1+\delta)^{2}(1+\lambda)^{2}}\right|\phi_{1}^{2}+\left|\phi_{2}\right|\right\}}{2(1+2\delta)(1+2\lambda)}.$$

In light of Remarks 1.3 to 1.7, we have following corollaries.

116

Corollary 2.3. If $f \in \mathcal{S}_q^*(\gamma, \varphi)$, then

$$|a_2| \le |\gamma|\phi_1,$$

$$|a_3| \le \frac{|\gamma|}{2} \left[\phi_1 + \max\left\{ \phi_1, |\gamma|\phi_1^2 + |\phi_2| \right\} \right]$$

,

and for $\mu \in \mathbb{C}$

$$\left|a_{3}-\mu a_{2}^{2}\right| \leq \frac{|\gamma|}{2} \left[\phi_{1}+\max\left\{\phi_{1},|\gamma||1-2\mu|\phi_{1}^{2}+|\phi_{2}|\right\}\right].$$

Remark 2.4. For $\gamma = 1$, Corollary 2.3 reduces to [8, Theorem 2.1].

Corollary 2.5. If $f \in \mathcal{K}_q(\gamma, \varphi)$, then

$$|a_2| \le \frac{|\gamma|\phi_1}{2},$$
$$a_3| \le \frac{|\gamma|}{6} \left[\phi_1 + \max\left\{\phi_1, |\gamma|\phi_1^2 + |\phi_2|\right\}\right],$$

and for $\mu \in \mathbb{C}$

$$\left|a_{3}-\mu a_{2}^{2}\right| \leq \frac{|\gamma|}{6} \left[\phi_{1}+\max\left\{\phi_{1},\frac{|\gamma||2-3\mu|}{2}\phi_{1}^{2}+|\phi_{2}|\right\}\right].$$

Remark 2.6. For $\gamma = 1$, Corollary 2.5 reduces to [8, Theorem 2.4].

Corollary 2.7. If $f \in \mathcal{M}_q^{\delta}(\gamma, \varphi)$, then

$$\begin{aligned} |a_2| &\leq \frac{|\gamma|\phi_1}{1+\delta}, \\ |a_3| &\leq \frac{|\gamma|}{2(1+2\delta)} \left[\phi_1 + \max\left\{ \phi_1, \frac{(1+3\delta)}{(1+\delta)^2} |\gamma|\phi_1^2 + |\phi_2| \right\} \right], \end{aligned}$$

and for $\mu \in \mathbb{C}$

$$|a_3 - \mu a_2^2| \le \frac{|\gamma|}{2(1+2\delta)} \left[\phi_1 + \max\left\{ \phi_1, \left| \frac{(1+3\delta) - 2\mu(1+2\delta)}{(1+\delta)^2} \right| |\gamma| \phi_1^2 + |\phi_2| \right\} \right].$$

Remark 2.8. For $\gamma = 1$, Corollary 2.7 reduces to [8, Theorem 2.10].

Corollary 2.9. If $f \in \mathcal{P}_q(\gamma, \lambda, \varphi)$, then

$$\begin{aligned} |a_2| &\leq \frac{|\gamma|\phi_1}{1+\lambda}, \\ |a_3| &\leq \frac{|\gamma|}{2(1+2\lambda)} \left[\phi_1 + \max\left\{\phi_1, \frac{|\gamma|\phi_1^2}{(1+\lambda)^2} + |\phi_2|\right\} \right], \end{aligned}$$

and for $\mu \in \mathbb{C}$

$$|a_3 - \mu a_2^2| \le \frac{|\gamma|}{2(1+2\lambda)} \left[\phi_1 + \max\left\{ \phi_1, \frac{|1 - 2\mu(1+2\lambda)|}{(1+\lambda)^2} |\gamma| \phi_1^2 + |\phi_2| \right\} \right].$$

Corollary 2.10. If $f \in \mathcal{K}_q(\gamma, \lambda, \varphi)$, then

$$|a_2| \le \frac{|\gamma|\phi_1}{2(1+\lambda)},$$
$$|a_3| \le \frac{|\gamma|}{6(1+2\lambda)} \left[\phi_1 + \max\left\{ \phi_1, \frac{|\gamma|\phi_1^2}{(1+\lambda)^2} + |\phi_2| \right\} \right],$$

and for $\mu \in \mathbb{C}$

$$|a_3 - \mu a_2^2| \le \frac{|\gamma|}{6(1+2\lambda)} \left[\phi_1 + \max\left\{ \phi_1, \left| \frac{2 - 3\mu(1+2\lambda)}{2(1+\lambda)^2} \right| |\gamma| \phi_1^2 + |\phi_2| \right\} \right].$$

Remark 2.11. For $\gamma = 1$, Corollary 2.10 correct the results in [15, Theorem 2.1].

Acknowledgement. The authors are very much thankful to the referee for his valuable comments and suggestions for the improvement of this paper.

References

- H.R. Abdel-Gawad, On the Fekete-Szegö problem for alpha-quasi-convex functions, Tamkang J. Math. **31** (2000), no. 4, 251–255.
- R.M. Ali, S.K. Lee, V. Ravichandran, and S. Supramaniam, The Fekete-Szegő coefficient functional for transforms of analytic functions, Bull. Iranian Math. Soc. 35 (2009), no. 2, 119–142.
- O. Altıntaş and S. Owa, Majorizations and quasi-subordinations for certain analytic functions, Proc. Japan Acad. Ser. A Math. Sci. 68 (1992), no. 7, 181–185.
- P.L. Duren, Univalent Functions, Grundlehren der Mathematischen Wissenschaften, 259, Springer, New York, 1983.
- R. El-Ashwah and S. Kanas, Fekete-Szegö inequalities for quasi-subordination functions classes of complex order, Kyungpook Math. J. 55 (2015), no. 3, 679–688.
- S.P. Goyal and O. Singh, Fekete-Szego problems and coefficient estimates of quasisubordination classes, J. Rajasthan Acad. Phys. Sci. 13 (2014), no. 2, 133–142.
- P. Gurusamy, J. Sokółand S. Sivasubramanian, The Fekete-Szegö functional associated with k-th root transformation using quasi-subordination, C. R. Math. Acad. Sci. Paris 353 (2015), no. 7, 617–622.
- M. Haji Mohd and M. Darus, Fekete-Szegő problems for quasi-subordination classes, Abstr. Appl. Anal. 2012, Art. ID 192956, 14 pp.
- F.R. Keogh and E.P. Merkes, A coefficient inequality for certain classes of analytic functions, Proc. Amer. Math. Soc. 20 (1969), 8–12.
- W.C. Ma and D. Minda, A unified treatment of some special classes of univalent functions, in: Proceedings of the Conference on Complex Analysis (Tianjin, 1992), 157–169, International Press, Cambridge, MA.
- S.S. Miller, P.T. Mocanu and M.O. Reade, All α-convex functions are starlike, Rev. Roumaine Math. Pures Appl. 17 (1972), 1395–1397.
- V. Ravichandran, Y. Polatoglu, M. Bolcal and A. Sen, Certain subclasses of starlike and convex functions of complex order, Hacet. J. Math. Stat. 34 (2005), 9–15.
- F.Y. Ren, S. Owa and S. Fukui, Some inequalities on quasi-subordinate functions, Bull. Aust. Math. Soc. 43 (1991), no. 2, 317–324.
- M.S. Robertson, Quasi-subordination and coefficient conjectures, Bull. Amer. Math. Soc. 76 (1970), 1–9.
- B. Srutha Keerthi and P. Lokesh, Fekete-Szegö problem for certain subclass of analytic univalent function using quasi-subordination, Math. Æterna 3 (2013), no. 3-4, 193–199.
- L. Xiaofei, On the Fekete-Szego Problem for a Subclass of λ-Convex, Int. J. Math. Research, 5 (2013), no. 1, 13–17.

¹ Post-Graduate and Research Department of Mathematics, Government Arts College for Men, Krishnagiri 635001, Tamilnadu, India.

E-mail address: nmagi_2000@yahoo.co.in

² Department of Mathematics, L.N. Govt. College Ponneri, Chennai, Tamil-NADU, INDIA.

E-mail address: balajilsp@yahoo.co.in

 3 Faculty of Engineering and Technology, SRM University, Kattankulathur-603203, Tamilnadu, India.

E-mail address: shreelekha07@yahoo.com