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ON SOME FRACTIONAL INTEGRAL INEQUALITIES OF
HERMITE-HADAMARD TYPE FOR r-PREINVEX FUNCTIONS
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Abstract. In this paper, we prove Hermite-Hadamard type inequalities for
r-preinvex functions via fractional integrals. The results presented here would
provide extensions of those given in earlier works.

1. Introduction

Let f : I ⊆ R → R be a convex function defined on an interval I of real
numbers and a, b ∈ I with a < b. The following inequality holds

f
(
a+b

2

)
≤ 1

b− a
b∫
a

f(x)dx ≤ f(a) + f(b)

2
. (1.1)

The double inequality (1.1) is known, in the literature, as the Hermite–Hadamard
integral inequality for convex functions. Both inequalities hold in the reversed
direction if f is concave. The inequality (1.1) has been extended and generalized
for various classes of convex functions via different approaches, see [4, 7, 10]. For
several recent results concerning the inequality (1.1) we refer the interested reader
to [1–12,14–16,18], and references therein.

2. Preliminaries

Let K be a nonempty subset of Rn and let η : K ×K → Rn be a function.
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Definition 2.1. ( [19]) Let u ∈ K. We say K is invex at u with respect to η if,
for each v ∈ K

u+ tη(v, u) ∈ K, t ∈ [0, 1] . (2.1)

K is said to be an invex set with respect to η if K is invex at each u ∈ K.

Definition 2.2. ( [13]) The function f on the invex set K is said to be preinvex
with respect to η, if

f(u+ tη(v, u)) ≤ (1− t)f(u) + tf(v), (u, v ∈ K, t ∈ [0, 1]). (2.2)

Definition 2.3. ( [17]) A positive function f on the invex set K is said to be
logarithmically preinvex, if

f(u+ tη(v, u)) ≤ f 1−t(u)f t(v) (2.3)

for all u, v ∈ K and t ∈ [0, 1] .

Definition 2.4. ( [17]) The function f on the invex set K is said to be r-preinvex
with respect to η, if

f(u+ tη(v, u)) ≤Mr(f(u), f(v); t)

holds for all u, v ∈ K and t ∈ [0, 1], where

Mr (x, y; t) =

{
[(1− t)xr + tyr]

1
r , r 6= 0

x1−tyt , r = 0

is the weighted power mean of order r for positive numbers x and y.

Definition 2.5. ( [18]) Let f ∈ L1[a, b]. The Riemann-Liouville fractional inte-
grals Jαa+f (x) and Jαb−f (x) of order α > 0 are defined, respectively, by

Jαa+f (x) = 1
Γ(α)

x∫
a

(x− t)α−1 f (t) dt, x > a (2.4)

and

Jαb−f (x) = 1
Γ(α)

b∫
x

(t− x)α−1f (t) dt, x < b, (2.5)

where Γ (α) =
∞∫
0

e−uuα−1du is the Gamma function and J0
a+f(x) = J0

b−f(x) =

f(x).

The main purpose of this paper is to establish Hermite-Hadamard type in-
equalities for Riemann-Liouville fractional integral using r-preinvex functions.
Then, we give some interesting results of Hermite-Hadamard type inequalities for
Riemann-Liouville fractional integrals. Some special cases are also discussed.
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3. Main results

Theorem 3.1. Let K = [a, a+η(b, a)] be an interval of real numbers with interior
K◦, a, b ∈ K◦, and a < a+η(b, a). Let f : K → (0,∞) be an r-preinvex function
on the interval K◦, then(

Jα
(a+η(b,a))−

f
)

(a) ≤ [η(b, a)]α

Γ (α)

{
B

(
α,

1

r
+ 1

)
f r(a) +

r

αr + 1
f r(b)

} 1
r

(3.1)

holds for all 0 < r ≤ 1.

Proof. Since f is an r-preinvex function and r > 0, we have

f(a+ tη(b, a)) ≤ [tf r(b) + (1− t)f r(a)]
1
r

for all t ∈ [0, 1] . Then,

Γ(α)

(η(b, a))α

(
Jα

(a+η(b,a))−
f
)

(a) =
1

(η(b, a))α

a+η(b,a)∫
a

(u− a)α−1 f (u) du

=
1∫
0

tα−1f(a+ tη(b, a))dt

≤
1∫
0

tα−1 [tf r(b) + (1− t)f r(a)]
1
r dt

=
1∫
0

[
tr(α−1)+1f r(b) + tr(α−1)(1− t)f r(a)

] 1
r dt.

Using Minkowski’s inequality, we have
1∫
0

[
tr(α−1)+1f r(b) + tr(α−1)(1− t)f r(a)

] 1
r dt

≤
{[

1∫
0

tα−1+ 1
r f(b)dt

]r
+

[
1∫
0

tα−1(1− t) 1
r f(a)dt

]r} 1
r

=

{
f r(b)

r

αr + 1
+ f r(a)B

(
α,

1

r
+ 1

)} 1
r

,

and the proof is complete.

Remark 3.2. Under the same conditions as in Theorem 3.1, with α = 1, r = 1
and η(b, a) = b− a, we have

1

b− a

b∫
a

f(x)dx ≤ f(a) + f(b)

2
.

�
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Theorem 3.3. Let f, g : K = [a, a + η(b, a)] → (0,∞) be r-preinvex and s-
preinvex functions respectively on the interval of real numbers K◦, a, b ∈ K◦

with a < a+ η(b, a), then(
Jα

(a+η(b,a))−
fg
)

(a)

≤ [η(b, a)]α

2Γ (α)

{(
B

(
2 (α− 1)

r
+ 1,

2

r
+ 1

)
f r(a) +

r

2α + r
f r(b)

) 2
r

+

(
B

(
2 (α− 1)

s
+ 1,

2

s
+ 1

)
gs(a) +

s

2α + s
gs(b)

) 2
s

}
(3.2)

holds for 0 < r, s ≤ 2.

Proof. Since f is a r-preinvex function and g is a s-preinvex function, by the
hypothesis, we have

f(a+ tη(b, a) ≤ [tf r(b) + (1− t)f r(a)]
1
r (3.3)

and

g(a+ tη(b, a) ≤ [tgs(b) + (1− t)gs(a)]
1
s (3.4)

for t ∈ [0, 1] . By using the inequality (3.3) and (3.4), we get

1

[η(b, a)]α

a+η(b,a)∫
a

(u− a)(α−1)( 1
r

+ 1
s) f (u) g(u)du

=
1∫
0

t(α−1)( 1
r

+ 1
s)f(a+ tη(b, a))g (a+ tη(b, a)) dt

≤
1∫
0

t(α−1)( 1
r

+ 1
s) [tf r(b) + (1− t)f r(a)]

1
r [tgs(b) + (1− t)gs(a)]

1
s dt.

(3.5)

Using Cauchy’s inequality for (3.5), we have

1∫
0

[tαf r(b) + tα−1(1− t)f r(a)]
1
r [tαgs(b) + tα−1(1− t)gs(a)]

1
s dt

≤ 1

2

{
1∫
0

[tαf r(b) + tα−1(1− t)f r(a)]
2
r dt+

1∫
0

[tαgs(b) + tα−1(1− t)gs(a)]
2
s dt

}

=
1

2
{I1 + I2} .
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Using Minkowski’s inequality for I1 and I2, we hawe

I1 =
1∫
0

[tαf r(b) + tα−1(1− t)f r(a)]
2
r dt

≤

{(
1∫
0

t
2
r
αf 2(b)dt

) r
2

+

(
1∫
0

t
2(α−1)

r (1− t) 2
r f 2(a)dt

) r
2

} 2
r

=

{
f r(b)

r

2α + r
+ f r(a)B

(
2 (α− 1)

r
+ 1,

2

r
+ 1

)} 2
r

,

and

I2 =
1∫
0

[tα+1gs(b) + tα(1− t)gs(a)]
2
s dt

≤
{
gs(b)

s

2α + s
+ gs(a)B

(
2 (α− 1)

s
+ 1,

2

s
+ 1

)} 2
s

.

Combining I1 and I2 leads to (3.2) and the proof is complete. �

Corollary 3.4. Under the same conditions as in Theorem 3.3, if r = s = 2, we
have

Γ (α)

(η(b, a))α

(
Jα

(a+η(b,a))−
fg
)

(a) ≤ f 2(a) + f 2(b) + g2(a) + g2(b)

2 (α + 1)
.

Corollary 3.5. Under the same conditions as in Theorem 3.3, if η(b, a) = b− a
and r = s = 2, we have

Γ (α)

(b− a)α
Jαb+fg(a) ≤ f 2(a) + f 2(b) + g2(a) + g2(b)

2 (α + 1)
.

Corollary 3.6. Under the same conditions as in Theorem 3.3, if α = 1 and
r = s = 2, we have the inequality

1

η(b, a)

a+η(b,a)∫
a

f (u) g(u)du ≤ f 2(a) + f 2(b) + g2(a) + g2(b)

4

in [17].

Corollary 3.7. Under the same conditions as in Theorem 3.3, if α = 1, η(b, a) =
b− a and r = s = 2, we have

1

b− a
b∫
a

f (u) g(u)du ≤ f 2(a) + f 2(b) + g2(a) + g2(b)

4
.

Corollary 3.8. Under the same conditions as in Theorem 3.3, if α = 1, r = s =
2, and f (x) = g(x), we have the inequality

1

η(b, a)

a+η(b,a)∫
a

f 2 (u) du ≤ f 2(a) + f 2(b)

2

in [17].
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Theorem 3.9. Let f, g : K = [a, a + η(b, a)] → (0,∞) be r-preinvex and s-
preinvex functions, respectively, on the interval of real numbers K◦, a, b ∈ K◦

with a < a+ η(b, a). If r > 1 and
1

r
+

1

s
= 1, then(

Jα
(a+η(b,a))−

fg
)

(a)

≤ [η(b, a)]α

Γ (α)

((
f r(a)B (α, 2) +

f r(b)

α + 1

) 1
r

+

(
gs(a)B (α, 2) +

gs(b)

α + 1

) 1
s

)
.

Proof. Since f is a r-preinvex function and g is a s-preinvex function, for t ∈ [0, 1],
we have

f(a+ tη(b, a) ≤ [tf r(b) + (1− t)f r(a)]
1
r (3.6)

and
g(a+ tη(b, a) ≤ [tgs(b) + (1− t)gs(a)]

1
s . (3.7)

From (3.6) and (3.7), we get

1

[η(b, a)]α

a+η(b,a)∫
a

(u− a)(α−1)( 1
r

+ 1
s) f (u) g(u)du

=
1∫
0

t(α−1)( 1
r

+ 1
s)f(a+ tη(b, a))g (a+ tη(b, a)) dt

≤
1∫
0

t(α−1)( 1
r

+ 1
s) [tf r(b) + (1− t)f r(a)]

1
r [tgs(b) + (1− t)gs(a)]

1
s dt.

By virtue of Hölder’s inequality, we have
1∫
0

[
tαf r(b) + tα−1(1− t)f r(a)

] 1
r
[
tαgs(b) + tα−1(1− t)gs(a)

] 1
s dt

≤
{

1∫
0

[
tαf r(b) + tα−1(1− t)f r(a)

]
dt

} 1
r

+

{
1∫
0

[
tαgs(b) + tα−1(1− t)gs(a)

]
dt

} 1
s

=
[η(b, a)]α

Γ (α)

{(
f r(b)

1

α+ 1
+ f r(a)B (α, 2)

) 1
r

+

(
gs(b)

1

α+ 1
+ gs(a)B (α, 2)

) 1
s

}
.

The proof is done. �

Corollary 3.10. Under the same conditions as in Theorem 3.9, if r = s = 2, we
have (

Jα
(a+η(b,a))−

fg
)

(a)

≤ [η(b, a)]α

Γ (α)

(√
f 2(a)B (α, 2) +

f 2(b)

α + 1
+

√
g2(a)B (α, 2) +

g2(b)

α + 1

)
.



126 A. AKKURT, H. YILDIRIM

Corollary 3.11. Under the same conditions as in Theorem 3.9, if r = s = 2,
η(b, a) = b− a, we have

(b− a)α

Γ (α)
Jαb+fg(a) ≤

√
f 2(a)B (α, 2) +

f 2(b)

α + 1
+

√
g2(a)B (α, 2) +

g2(b)

α + 1
.

Corollary 3.12. Under the same conditions as in Theorem 3.9, if r = s = 2,
η(b, a) = b− a and α = 1, we have

1

b− a

b∫
a

f (u) g(u)du ≤
√
f 2(a) + f 2(b)

2

√
g2(a) + g2(b)

2
.

Corollary 3.13. Under the same conditions as in Theorem 3.9, if r = s = 2 and
α = 1, we have

1

[η(b, a)]

a+η(b,a)∫
a

f (u) g(u)du ≤
√
f 2(a) + f 2(b)

2

√
g2(a) + g2(b)

2
.
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