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BERGMAN KERNEL ESTIMATES AND TOEPLITZ
OPERATORS ON HOLOMORPHIC LINE BUNDLES
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Abstract. We characterize operator-theoretic properties (boundedness, com-
pactness, and Schatten class membership) of Toeplitz operators with positive
measure symbols on Bergman spaces of holomorphic hermitian line bundles
over Kähler Cartan-Hadamard manifolds in terms of geometric or operator-
theoretic properties of measures.

1. Introduction and statment of results

The purpose of this paper is to extend the standard theory dealing with
boundedness, compactness, and Schatten class membership of Toeplitz opera-
tors with nonnegative measure symbols on generalized Bargmann-Fock spaces
[6,12,14–16,21,22,25,30] to Bergman spaces of holomorphic sections of hermitian
holomorphic line bundles over Kähler Cartan-Hadamard manifolds. As an appli-
cation, we give a characterization of self-holomorphic maps whose composition
operators bounded, compact or belongs to the Schatten ideal class which extend
previous results for generalized Bargmann-Fock spaces [4, 27–29,34].
Let (M, g) be a complex Hermitian manifold and (L, h) −→M be a holomorphic
Hermitian line bundle. For p ∈]0,∞], define Fp(M,L) the C-vector space of
holomorphic sections s : M −→ L such that

‖s‖2 :=
(∫

M

|s|phdvg
) 1
p
<∞.

Let P the orthogonal projection from the Hilbert space of L2(M,L) onto its closed
subspace F2(M,L). Let K ∈ C∞(M ×M,L⊗ L) the reproducing (or Bergman)
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kernel of P , that is

K(z, w) =
d∑
j=1

sj(z)⊗ sj(w),

where L is the conjugate bundle of L, (sj) is an orthonormal basis for F2(M,L)
and d = dimF2(M,L) ≤ ∞.

The first result of this paper is a pointwise estimate for the Bergman kernel
of L in spirit of those obtained in [1, 5, 20] for n = 1 and in [8, 18,26] for n ≥ 2.

Theorem 1.1. Let (M, g) be a Stein Kähler manifold with bounded geometry. Let
(L, h) −→ (M, g) be a Hermitian holomorphic line bundle with bounded curvature
such that

c(L) +Ricci(g) ≥ aωg

for some positive constant a. There are constants α, C > 0 such that for all
z, w ∈M ,

|K(z, w)| ≤ Ce−αdg(z,w).

For a positive measure µ, the Toeplitz operator Tµ with symbol µ is defined
formally by

Tµs(z) =

∫
M

K(z, w) • s(w)dµ(w),

where z → K(z, w) • s(w) ∈ Lz is the holomorphic section of L defined

K(z, w) • s(w) :=
d∑
j=1

< s(w), sj(w) >Lw sj(z).

Let µ̃ : M → R+ be the Berezin transform of µ:

µ̃(z) :=

∫
M

|kz(w)|2dµ(w),

where

kz(w) :=
K(w, z)√
|K(z, z)|

.

Let T : H1 → H2 be a compact operator from two Hilbert spaces H1 and H2 and

Tf =
∞∑
n=0

λn < f, en > σn, f ∈ H1,

its Schmidt decomposition where (en) (resp. (σn)) is an orthonormal basis of
H1 (resp. H2) and (λn) is a sequence with λn > 0 and λn → 0 (see [30]). For
0 < p ≤ ∞, the compact operator T belongs to the Schatten-von Neumann
p-class Sp(H1, H2) if and only if

‖T‖pSp :=
∞∑
n=0

λpn <∞.
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Let (N,ωN) be a Hermitian manifold. Let Φ : N → M be a holomorphic map
and

CΦ : F2(M,L) −→ F2(N,Φ∗L)

s −→ s ◦ Φ

the composition operator associated to Φ. We define the transform BΦ (related
to the usual Berezin transform) associated to Φ to be a function on M as follows:

BΦ(z)2 =

∫
M

|K(z, w)|2dνΦ(w),

where νΦ is the pull-back measure defined as follows : for all Borel set E ⊂M

νΦ(E) =

∫
N

1Φ−1(E)(w)dvωN (w).

Our second result of this paper is the characterization of operator-theoretic prop-
erties (boundedness, compactness, and Schatten class membership) of Toeplitz
operators with positive measure symbols on Bergman space of holomorpic sec-
tions which extend those for generalized Bargmann-Fock spaces.

Theorem 1.2. Let (M, g) be a Kähler Cartan-Hadamard manifold with bounded
geometry and uniformly subexponentially volume growth. Let (L, h) −→ (M, g)
be a holomorphic Hermitian line bundle with bounded curvature such that

c(L) +Ricci(g) ≥ aωg,

for some positive constant a. Let µ be a positive measure on M . Let p ∈ [1,+∞].
The following conditions are equivalent
(a) The operator Tµ : Fp(M,L) −→ Fp(M,L) is bounded (1 ≤ p ≤ ∞).
(b) µ is a Carleson measure.
(c) µ̃ is bounded on M .
(d) There exists δ > 0 such that the function z → µ(Bg(z, δ)) is bounded.

Theorem 1.3. Let (M, g) be a Kähler Cartan-Hadamard manifold with bounded
geometry and uniformly subexponentially volume growth. Let (L, h) −→ (M, g)
be a holomorphic Hermitian line bundle with bounded curvature such that

c(L) +Ricci(g) ≥ aωg,

for some positive constant a. Let µ be a positive measure on M . Let p ∈ [1,∞].
The following conditions are equivalent :
(a) The operator Tµ : F2(M,L) −→ F2(M,L) is compact.
(b) µ is a vanishing Carleson measure.
(c) lim

dg(z,z0)→∞
µ̃(z) = 0.

(d) There exists δ > 0 such that lim
dg(z,z0)→∞

µ(Bg(z, δ)) = 0

Theorem 1.4. Let (M, g) be a Kähler Cartan-Hadamard manifold with bounded
geometry and uniformly subexponentially volume growth. Let (L, h) −→ (M, g)
be a holomorphic Hermitian line bundle with bounded curvature such that

c(L) +Ricci(g) ≥ aωg
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for some positive constant a. Let µ be a positive measure on M . The following
conditions are equivalent :
(a) The operator Tµ : F2(M,L) −→ F2(M,L) belongs to Sp (0 < p ≤ ∞).
(b) µ̃ ∈ Lp(M,dvg).
(c) There exists δ > 0 such that the function z → µ(Bg(z, δ)) ∈ Lp(M,dvg).
(d) There exists δ > 0 and an r-lattice (aj) such that {µ(Bg(aj, δ))} ∈ `p(N).
Moreover, there is a positive constant C such that

1

C
‖µ̃‖Lp(M,dvg) ≤ ‖Tµ‖Sp ≤ C‖µ̃‖Lp(M,dvg).

For boundedness, compactness, and Schatten class membership of composition
operators, we have the following result which extends those for Bargmann-Fock
spaces.

Theorem 1.5. Let (M, g) be a Kähler Cartan-Hadamard manifold with bounded
geometry and uniformly subexponentially volume growth. Let (L, h) −→ (M, g)
be a holomorphic Hermitian line bundle with bounded curvature such that

c(L) +Ricci(g) ≥ aωg

for some positive constant a. Let (N,ωN) be a Hermitian manifold. Let Φ : M →
M be a holomorphic map and

CΦ : F2(M,L) −→ F2(N,Φ∗L)

s −→ s ◦ Φ

the composition operator associated to Φ. Let 0 < p <∞. Then
(i) CΦ is bounded if and only if νΦ is a Carleson measure for F2(M,L) if and
only if BΦ is bounded.
(ii) CΦ is compact if and only if νΦ is a vanishing Carleson measure for F2(M,L)
if and only if BΦ vanishes at infinity.
(iii) CΦ is in Schatten p-class if and only if BΦ ∈ Lp(M,dvg). Morever there is
a positive constant C such that

1

C
‖BΦ‖Lp(M,dvg) ≤ ‖CΦ‖Sp ≤ C‖BΦ‖Lp(M,dvg).

Characterizations of bounded, compact and Schatten class Toeplitz opera-
tors with positive measure symbols on generalized Bargmann-Fock space or on
weighted Bergman spaces of bounded strongly pseudoconvex domains, in terms
of Carleson measures and the Berezin transform, depend strongly on off-diagonal
exponential decay of the Bergman kernel. In the spirit of [8], we establish a simi-
lar off-diagonal decay of the Bergman kernel associated to holomorphic Hermitian
line bundles whose curvature is uniformly comparable to the metric form.

This paper consists of five sections. In the next section, we will recall some
definitions and properties of Kähler manifolds, Bergman Kernel of line bundles,
∂̄-methods and Toeplitz operators. In Section 3, we provide useful estimates for
Bergman kernel and we prove Theorem 1.1. In Section 4, we will prove Theorems
1.2, 1.3. In Section 5, we will prove Theorems 1.4 and 1.5.
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2. Preliminary

2.1. Curvatures in Kählerian Geometry. Let (M,J, g) be a complex n-manifold
with a Riemannian metric g which is Hermitian i.e.,

g(JX, JY ) = g(X, Y ), ∀X, Y ∈ TM ( real tangent vectors )

and a complex structure J : TM → TM i.e J2 = −IdTM . Assume furthermore
that g is Kähler i.e., the real 2-form

ωg(X, Y ) = g(JX, Y )

is closed. In local coordinates z1, z2, · · · , zn of M

g =
n∑

i,j=1

gij̄dz
i ⊗ dz̄j, ω =

√
−1

2

n∑
i,j=1

gij̄dz
i ∧ dz̄j.

The coefficients of the curvature tensor R of g are given by

Rij̄kl̄ = −
∂2gij̄
∂zk∂z̄l

+
n∑

p,q=1

gqp̄
∂gip̄
∂zk

∂gqj̄
∂z̄l

.

The sectional curvature of a 2-plane σ ⊂ TxM is defined as

K(σ) := R(X, Y, Y,X) = R(X, Y, JY, JX),

where {X, Y } is an orthonormal basis of σ.

Definition 2.1. We say that (M, g) has non-positive sectional curvature if

K(σ) ≤ 0 for all 2− plane σ ⊂ TM.

A Cartan-Hadamad manifold is a simply conneceted complete manifold with neg-
ative sectional curvature. Since each point in a Cartan-Hadamard manifold is a
pole, then the square of the distance function at such point is smooth.

The Ricci curvature of g is the (1, 1)-form

Ric(g) :=
i

2π

n∑
i,jk,l=1

gkl̄Rij̄kl̄dz
i ∧ dz̄j.

In local coordinates

Ric(g) = − i

2π

n∑
i,j=1

∂2 log det(gkl̄)

∂zi∂z̄j
dzj ∧ dz̄l.

Definition 2.2. We say that the Ricci curvature of (M, g) has lower bound C ∈ R
if

Ric(g)(X,X) ≥ Cωg(X,X) for all X ∈ T (1,0)M.

Denote by dg(z, w) the Riemannian distance from z ∈ X to w ∈ X and B(z, r) =
{w ∈M : dg(w, z) < r} the open geodesic ball. The manifold (M, g) is complete
if (M,dg) is a complete metric space.

Given (M, g) a Riemannian manifold, we say that a family (Ωk) of open sub-
sets of M is a uniformly locally finite covering of M if the following holds:
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(Ωk) is a covering of M , and there exits an integer N such that each point x ∈M
has a neighborhood which intersects at most N of the Ωk. One then has the
following Gromov’s Packing Lemma [11].

Lemma 2.3. Let (M, g) be a smooth, compete Riemannian n-manifold with Ricci
curvature bounded from below by some K real, and let ρ > 0 be given. There exists
a sequence (xi) of points of M such that for every r ≥ ρ :
(i) the family (Bg(xi, r)) is a uniformly locally finite covering of M , and there is
an upper bound for N in terms of n, r, ρ, and K,
(ii) for any i 6= j, Bg(xi

ρ
2
) ∩Bg(xj,

ρ
2
) = ∅.

Definition 2.4. We say that the volume of (M, g) grows uniformly subexponen-
tially if and only if for any ε > 0 there exists a constant C <∞ such that, for all
r > 0 and all z ∈M

volg(B(z, r)) ≤ Ceεrvolg(B(z, 1)).

Definition 2.5. A Hermitian manifold (M, g) is said to have bounded geometry
if there exist positive numbers R and c such that for all z ∈ M there exists a
biholomorphic mapping Fz : (U, 0) ⊂ Cn −→ (V, z) ⊂M such that
(i) Fz(0) = z,
(ii) Bg(z,R) ⊂ Fz(U) and
(iii) 1

c
ge ≤ F ∗z g ≤ cge on F−1

z (Bg(z, R)) where ge is the Euclidean metric.

By (iii)

∀ w ∈ Bg(z,R) :
1

c
‖F−1

z (w)‖e ≤ dg(w, z) ≤ c‖F−1
z (w)‖e.

Remark 2.6. If a Hermitian manifold (M, g) has bounded geometry, then the
geodesic exponential map expz : TR

z M → M is defined on a ball B(0, r) ⊂ TR
z M

for any r < R and provide a diffeomorphism of this ball onto the ball Bg(z, r) ⊂
M . It follows that the manifold (M, g) is complete.

Remark 2.7. It is well known that if (M, g) has bounded geometry and Ric(g) ≥
Kg, then (M, g) satisfies the uniform ball size condition ( [7] Prop. 14) i.e., for
every r ∈ R+

inf
z∈M

vol(Bg(z, r)) > 0 and sup
z∈M

vol(Bg(z, r)) <∞.

Also by Volume Comparison Theorem [3], there are nonnegative constants C, α, β
such that

volg(Bg(z, r)) ≤ Crαeβr, ∀ r ≥ 1, z ∈M.

Bounded geometry allows one to produce an exhaustion function which behaves
like the distance function and whose gradient and hessian are bounded onM [23].

Lemma 2.8. Let (M, g) be a Hermitian manifold with bounded geometry. For
every z ∈M there exists a smooth function Ψz : M −→ R such that
(i) C1dg(., z) ≤ Ψz ≤ C2(dg(., z) + 1),
(ii) |∂Ψz|g ≤ C3, and
(iii) −C4ωg ≤ i∂∂̄Ψz ≤ C5ωg.
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Furthermore, the constants in (i), (ii) and (iii) depend only on the constants
associated with the bounded geometry of (M, g).

2.2. Bergman Kernel of Line Bundles. Let L be a holomorphic Hermitian
line bundle over a complex manifoldM , and let (Uj) be a covering of the manifold
by open sets over which L is locally trivial. A section s of L is then represented by
a collection of complex valued functions sj on Uj that are related by the transition
functions (gjk) of the bundle

sj = gjksk on Uj ∩ Uk.

We say that s is holomorphic if each si is holomorphic on Uj and we write ∂̄s = 0.
The conjugate bundle of L is the Hermitian anti-holomorphic line bundle L whose
transition functions are (gjk). A metric h on L is given by a collection of real
valued functions Φj on Uj, related so that

|fj|2e−Φj =: |s|2h
is globally well defined. We will write h for the collection (Φj) , and refer to h
the metric on L. We say that L is positive, L > 0, if h can be chosen smooth
with curvature

c(L) := i∂∂̄Φj

strictly positive, and that L is semipositive, L ≥ 0, if it has a smooth metric
of semipositive curvature. We say that h is a singular metric if each Φj is only
plurisubharmonic.

Definition 2.9. A holomorphic Hermitian line bundle (L, h) −→ (M, g) has
bounded curvature if

−Mωg ≤ c(L) ≤Mωg,

for some positive constant M .

Fix p ∈ [1,+∞]. Consider the Lebesgue spaces

Lp(M,L) := {s : M −→ L : ‖s‖p :=
(∫

M

|u|phdvg
) 1
p
<∞},

L∞(M,L) := {s : M −→ L : ‖s‖∞ := sup
z∈M
|s(z)|h <∞},

and the Bergman spaces of holomorphic sections

Fp(M,L) := {s ∈ Lp(M,L) : ∂̄s = 0}
F∞(M,L) := {s ∈ L∞(M,L) : ∂̄s = 0}.

Let us note an important property of the space F2(X,L) which follows from
the Cauchy estimates for holomorphic functions. Namely, for every compact set
G ⊂M there exists CG > 0 such that

sup
z∈G
|s(x)| ≤ CG‖s‖2 for all s ∈ F2(X,L). (2.1)

We deduce that F2(M,L) is a closed subspace of L2(M,L). One can show also
that F2(M,L) is separable (cf. [31, p. 30]).
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Definition 2.10. The Bergman projection is the orthogonal projection

P : L2(M,L) −→ F2(M,L).

In view of (2.1), the Riesz Representation Theorem shows that for a fixed z ∈M
there exists a section K(z, .) ∈ L2(M,Lz ⊗ L) such that

s(z) =

∫
M

K(z, w) • s(w)dvg for all s ∈ F2(M,L). (2.2)

The distribution kernel K is called the Bergman Kernel of (L, h) −→ (M, g). If
F2(M,L) = 0 we have of course K(z, z) = 0 for all z ∈ M . If F2(M,L) 6= 0,
consider an orthonormal basis (sj)

d
j=1 of F2(X,L) (where 1 ≤ d ≤ ∞). By

estimates (1.1)

K(z, w) =
d∑
j=1

sj(z)⊗ sj(w) ∈ Lz ⊗ Lw,

where the right hand side converges on every compact together with all its deriva-
tives (see [31, p.62]). Thus K(z, w) ∈ C∞(M ×M,L⊗ L). It follows that

(Ps)(z) =

∫
M

K(z, w) • s(w)dvg(w), for all s ∈ L2(M,L),

that is K(., .) is the integral kernel of the Bergman projection P . Since

|K(z, w)|2 =
d∑
j=1

d∑
k=1

< sj(z)⊗ sj(w), sk(z)⊗ sk(w) >Lz⊗Lw

=
∑
j

∑
k

< sj(z), sk(z) >Lz < sj(w), sk(w) >Lw ,

then K(z, w) is symmetric

|K(z, w)| = |K(w, z)|.
The function |K(z, z)| is called the Bergman function of F2(M,L). It satisfies

|K(z, z)| =
∫
M

|K(z, w)|2dvg(w).

2.3. ∂̄-Methods. We recall Demailly’s Theorem [9], which generalizes Hörman-
der’s L2 estimates [13] (Theorem 2.2.1, p. 104) for forms with values in a line
bundle.

Theorem 2.11. Let (X,ω) be a complete Kähler manifold, (L, h) a holomorphic
Hermitian line bundle over X, and let φ be a locally integrable function over X.
If the curvature c(L) is such that

c(L) +Ric(ω) + i∂∂̄φ ≥ γω,

for some positive and continuous function γ on X, then for all v ∈ L2
(0,1)(X,L, loc),

∂̄-closed and such that ∫
X

γ−1|v|2dvω <∞.
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There exists u ∈ L2(X,L) such that

∂̄u = v and
∫
X

|u|2hdvω ≤
∫
X

γ−1|v|2ω,hdvω.

Also, we recall J. McNeal-D. Varolin’s Theorem [19] (Theorem 2.2.1, p. 104),
which generalizes Berndtsson-Delin’s improved L2-estimate of ∂̄-equation having
minimal L2-norm [2,8] for forms with values in a line bundle.

Theorem 2.12. Let (M, g) be a Stein Kähler manifold, and (L, h) −→ (M, g) a
holomorphic Hermitian line bundle with Hermitian metric h. Suppose there exists
a smooth function η : M → R and a positive i.e., strictly positive Hermitian
(1, 1)-form Θ on M such that

c(L) +Ric(g) + i∂∂̄η − i∂η ∧ ∂̄η ≥ Θ.

Let v be an L-valued (0, 1)-form such that v = ∂̄u for some L-valued section u
satisfying ∫

M

|u|2hdvg <∞.

Then the solution u0 of ∂̄u = v having minimal L2-norm i.e.,∫
M

< u0, σ > dvg = 0 for all σ ∈ F2(M,L)

satisfies the estimate ∫
M

|u0|2heηdvg ≤
∫
M

|v|2Θ,heηdvg.

3. Estimates for the Bergman Kernel

3.1. Weighted Bergman Inequalities.

Proposition 3.1. Let (M, g) be a complete noncompact Kähler manifold with
bounded geometry and lower Ricci curvature bound. Let (L, h) −→ (M, g) be a
Hermitian holomorphic line bundle with bounded curvature. Fix p ∈]0,∞[. Then
for each r > 0 there exists a constant Cr such that if s ∈ F2(M,L), then

|s(z)|p ≤ Cp
r

∫
Bg(z,r)

|s|pdvg. (3.1)

In particular, Fp(M,L) ⊂ F∞(M,L) and

|∇|s(z)|p|g(z) ≤ Cp
r

∫
Bg(z,r)

|s|pdvg. (3.2)

Proof. Since (M, g) has bounded geometry, there exists positive numbers R and
c such that for all z ∈ M there exists a biholomorphic mapping Ψz : (U, 0) ⊂
Cn −→ (V, z) ⊂M such that
(i) Ψz(0) = z,
(ii) Bg(z, R) ⊂ Ψz(U) and
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(iii) 1
c
ge ≤ Ψ∗zg ≤ cge on Ψ−1

z (Bg(z,R)), where ge is the Euclidean metric.
Consider the (1, 1)-form defined on Be(0, δ(R)) ⊂⊂ Ψ−1

z (Bg(z,R)) ⊂ Cn by

Θ := Ψ∗zc(L).

Since −Kωg ≤ c(L) ≤ Kωg, by [25, Lemma 4.1] , there exists a function φ ∈
C2(Be(0, δ)) such that

i∂∂̄φ = Θ and sup
Be(0,δ)

(|φ|+ |dφ|ge) ≤M.

On Bg(z, η) ⊂⊂ Ψz(Be(0, δ(R)), consider the C2-function

ψ := φ ◦Ψ−1
z

. By (iii) we have

i∂∂̄ψ = c(L) and sup
Bg(z,η)

(|ψ|+ |∇ψ|g) ≤M
′
,

where M ′ and η depend only on R and c.
Let e be a frame of L around z ∈ Bg(z, η) and Φ(w) = − log |e(w)|2. Then
i∂∂̄ψ = i∂∂̄Φ on Bg(z, η). Hence the function

ρ(w) = Φ(w)− Φ(z) + ψ(z)− ψ(w)

is pluriharmonic. Then ρ = <(F ) for some holomorphic function F with =(F )(z) =
0 and

sup
Bg(z,η)

|Φ− Φ(z)−<(F )| = sup
Bg(z,η)

|ψ − ψ(z)| ≤ C, (3.3)

sup
Bg(z,η)

|∇(Φ− Φ(z)−<(F ))|g = sup
Bg(z,η)

|∇ψ|g ≤ C. (3.4)

We can suppose 0 < r ≤ η. According to [17], for all z ∈M and all holomorphic
function f on Bg(z, η) and all ζ ∈ Bg(z, η/2)

|f(ζ)|p ≤ C

Vol(Bg(ζ, η/2))

∫
Bg(ζ,η)

|f(w)|pdvg,

where C depend only in K,n, η. Since g has bounded geometry Vol(Bg(z, η/2)) �
1 uniformly in z. Hence

|f(ζ)|p ≤ C

∫
Bg(ζ,η)

|f(w)|pdvg.

Let s ∈ Fp(M,L) and s = fe on Bg(z, η). By (2.3) we have have

|s|ph = |fe−
F
2 |pe−

p
2

Φ(z)e−
p
2

(Φ−Φ(z)−<(F ))

≤ Cp|fe−
F
2 |pe−

p
2

Φ(z).

By mean value inequality

|f(z)e−
F (z)

2 |pe−
p
2

Φ(z) ≤ cpr

∫
Bg(z,r)

|fe−
F
2 |pe−

p
2

Φ(z)dvg

≤ Cp
r

∫
Bg(z,r)

|fe−Φ(w)|pdvg.
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Hence

|s(z)|ph ≤ Cp
r

∫
Bg(z,r)

|s|pdvg.

By (2.3) and (2.4)

|∇|s|ph|g ≤ e−
p
2

Φ(z)e−
p
2

(Φ−Φ(z)−<(F )))|∇|fe−
F
2 |p|

+
p

2
|fe−

F
2 |pe−

p
2

Φ(z)e−
p
2

(Φ−Φ(z)−<(F ))|∇(Φ− Φ(z)−<(F ))|g

≤ e−
p
2

Φ(z)e−
p
2

(Φ−Φ(z)−<(F ))|∇|fe−
F
2 |p|

+
p

2
|s|phe

− p
2

(Φ−Φ(z)−<(F ))|∇(Φ− Φ(z)−<(F ))|g

≤ Cp
(
e−

p
2

Φ(z)|∇|fe−
F
2 |p|+ p

2
|s|ph
)
.

By mean value inequality (Cauchy formula for partial derivatives), there exists
cr > 0 such that

|∇|fe−
F
2 |p|(z)e−

p
2

Φ(z) ≤ cpr

∫
Bg(z,r)

|fe−
F
2 |pe−

p
2

Φ(z)dvg

≤ Cp
r

∫
Bg(z,r)

|s|pdvg.

From this, we get (2.2). �

3.2. Slow Growth of Bergman Sections.

Lemma 3.2. Let (M, g) be a Kähler manifold with bounded geometry and lower
Ricci curvature bound. Let (L, h) −→ (M, g) be a Hermitian holomorphic line
bundle with bounded curvature. Then there exists δ > 0 with the following prop-
erties: if z ∈M, s ∈ Fp(M,L), ‖s‖p ≤ 1, then

|s(z)|h ≥ a =⇒ |s(w)|h ≥
a

2
, ∀ w ∈ Bg(z, δ).

Proof. Let R > δ > 0. By (3.2) of Proposition 3.1 and mean value theorem for
all w ∈ Bg(z,R/2)

||s(w)|ph − |s(z)|ph| ≤ Cp
rdg(w, z)

(∫
Bg(z,R)

|s(ζ)|pdvg
)

≤ δCp
R‖s‖

p
p.

Hence if δ is small enough

∀w ∈ Bg(z, δ) : |s(w)|ph ≥ ap − δCp
R ≥

ap

2p
.

�
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3.3. One-Point Interpolation with Uniform Lp Estimates.

Proposition 3.3. Let (M, g) be a Kähler Cartan-Hadamard manifold with bounded
geometry. Let (L, h) −→ (M, g) be a Hermitian holomorphic line bundle with
bounded curvature such that

c(L) +Ricci(g) ≥ aωg,

for some positive constant a. Let p ∈ [1,+∞]. If p 6= 2 or p 6=∞, suppose further
that

sup
z∈M

∫
M

e−βdg(w,z)dvg <∞,

for all β > 0. Then there exists C > 0 such that for each z ∈ M and λ ∈ Lz
there exists s ∈ Fp(M,L) such that

s(z) = λ and ‖s‖p ≤ C|λ|Lz .

Proof. Let z ∈M and fix a smooth function χ with compact support onBg(z,Rc
−1/2)

(R and c are constants in Definition 2.3) such that
(i) 0 ≤ χ ≤ 1,
(ii) χ |Bg(z,Rc−1/4)= 1,
(iii) |∂̄χ|g � 1 .
Let s0 be a holomorphic section of L around Bg(z, η) such that s0(z) 6= 0. Since
(L, h) is g-regular, for all w ∈ Bg(z, η)

Φ(w) ' Φ(z) + <(F (w)).

Let λ ∈ Lz = {z} × C. Consider the local section

sz(w) = λ(w)eΦ(z)+<(F (w)s0(w)

and the (0, 1)-form with values on L

v(w) = ∂̄(χ.sz)(w) = ∂̄γ(w).sz(w)

Let Φz ∈ C∞(M) as in Lemma 2.8 and choose ε > 0 small enough such that

c(L) +Ricci(g)− ε∂∂̄Φz ≥ g on M.

By (iii) in Definition 2.5 of bounded geometry

c−2ndve ≤ Ψ∗zdvg ≤ c2ndve on Ψ−1
z (Bg(z, η)).

Hence
Volg(B(z, η)) � 1 uniformly in z ∈M.

Since M is Cartan-Hadamard d2
g(., z) is smooth. By comparison theorem for the

Hessian [10] the function w ∈M → φz(w) := log d2
g(z, z) is plurisousharmonic on

M . ∫
M

|v|2eεΦze−2nφzdvg �
∫
Bg(z,η/2)\Bg(z,η/4)

|v|2e2εΦz

dg(., z)2n
dvg

� |λ|2Volg(Bg(z, η/2) \Bg(z, η/4))

� |λ|2e−Φ(z) = |λ|2Lz
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Since a Kähler Cartan-Hadamard manifold is Stein [32], by Lemma 2.8, there
exists u such that ∂̄u = v and∫

M

|u(w)|2e2εΦz(w)

dg(w, z)2n
dvg � |λ|2Lz .

Since w −→ d−2n
g (w, z) is not summable near z, we have u(z) = 0. Let

s(w) = χ(w)sz(w)− u(w).

Then s(z) = λ and ∂̄s = 0. Since (2n)!et ≥ t2n if t ≥ 0 and Φz � dg(., z),∫
M

|u|2dvg �
∫
M

|v|2e2εΦz

dg(., z)2n
dvg � |λ|2Lz .

Thus ∫
M

|s|2dvg ≤ 2

∫
M

|χsz|2dvg + 2

∫
M

|u|2dvg ≤ C|λ|2Lz .

Also∫
M

|s(w)|2eεΨz(w)dvg(w) ≤
∫
M

|χ(w)|2eεΦz(w)|e(w)|2dvg

+

∫
M

|u(w)|2eεΦz(w)

dg(w, z)2n
d2n
g (w, z)e−εΦz(w)dvg(w).

Since Φ(w) ' Φ(z) + <(F (w)) and Ψz(w) � dg(w, z) � 1 uniformly on the
support of γ and d2n

g (w, z)e−εΦz(w) � 1 uniformly in z ∈ M , there exists C > 0
independent of z such that∫

M

|χ(w)|2eεΦz(w)|sz(w)|2dvg ≤ C|λ|2Lz] .

and ∫
M

|u(w)|2eεΦz(w)

dg(w, z)2n
d2n
g (w, z)e−εΦz(w)dvg(w) ≤ C|λ|2Lz] .

Hence ∫
M

|s(w)|2eεΦz(w)dvg(w) ≤ C|λ|2Lz .

Since ‖∂∂̄Φz‖∞ is uniformly bounded in z ∈ M , the line bundle (L, heεΦz)) has
bounded curvature. By (3.1) of Proposition 3.1

|s(w)|2 � |s(w)|2eεΦz

�
∫
Bg(w,η)

|s(ζ)|2eεΦz(ζ)dvg(ζ)

�
∫
M

|s(ζ)|2eεΦz(ζ)dvg(ζ)

≤ C|λ|2Lz .
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Hence ‖s‖∞ ≤ C|λ|Lz . Also

|s(w)|2eεΦz(w) ≤ CR

∫
Bg(w,R)

|s(ζ)|2eεΦz(ζ)dvg(ζ)

≤ CR

∫
M

|s(ζ)|2eεΦz(ζ)dvg(ζ)

≤ CR|λ|2Lz .
Thus ∫

M

|s|pdvg =

∫
M

(
|s|2eεΦz

) p
2
e−

p
2
εΦzdvg

≤ C|λ|p
∫
M

e−
p
2
εΦzdvg

≤ C|λ|pLz

∫
M

e−
pC1

2
εdg(w.z)dvg(w)

≤ Cp|λ|pLz .

Finally, there exists C > 0 independent of z ∈M and p ∈ [1,+∞] such that

‖s‖p ≤ C|λ|Lz .
�

3.4. Diagonal Bounds for the Bergman Kernel. As a consequence of (3.1)
Proposition 3.1 and Proposition 3.3, we obtain the following proposition.

Proposition 3.4. Let (M, g) be a Kähler manifold with bounded geometry and
lower Ricci curvature bound. Let (L, h) −→ (M, g) be a Hermitian holomorphic
line bundle with bounded curvature. There is a constant C > 0 such that for all
z ∈M : |K(z, z)| � C. Therefore |K(z, w)| ≤ C, for all z, w ∈M .

Proof. Let (sj) be a orthonormal basis of F2(M,L). By definition of the Bergman
Kernel

K(z, w) =
∑
j

sj(z)⊗ sj(w)

By (3.1) Proposition 3.1 the evaluation

evz : F2(M,L) −→ Lz

s −→ s(z)

is continuous and
|K(z, z)| � 1

uniformly in z ∈M . Therefore

|K(z, w)| ≤
∑
j

|sj(z)||sj(w)|

≤
√
|K(z, z)|

√
|K(w,w)| � 1.

�
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The following result gives bounds for the Bergman kernel in a small but uniform
neighborhood of the diagonal

Proposition 3.5. Let (M, g) be a Kähler manifold with bounded geometry and
lower Ricci curvature Bound. Let (L, h) −→ (M, g) be a Hermitian holomorphic
line bundle with bounded curvature. There are constants δ, C1, C2 > 0 such that
for all z ∈M and w ∈ Bg(z, δ)

C1|K(z, z)| ≤ |K(z, w)| ≤ C2|K(z, z)|.

Proof. Let z ∈M . Fix a frame e in a neighborhood U of the point z and consider
an orthonormal basis (sj)

d
j=1 of F2(X,L) (where 1 ≤ d ≤ ∞). In U each si is

represented by a holomorphic function fi such that si(x) = fi(x)e(x). Let

sz(w) := |e(z)|
d∑
i=1

fi(z)si(w).

Then

|sz(w)| =
∣∣∣( d∑

i=1

fi(z)si(w)
)
⊗ e(z)

∣∣∣
=

∣∣∣ d∑
i=1

si(w)⊗ si(z)
∣∣∣

= |K(w, z)|

and ∫
M

|sz|2dvg(w) =

∫
M

|K(w, z)|2dvg(w)

= |K(z, z)| � 1

Hence, by Lemma 3.2, there exists C, δ > 0 independent of z such that

|K(w, z)| = |sz(w)| ≥ C|sz(z)| = C|K(z, z)|,

for all w ∈ Bg(z, δ). �

3.5. Off-Diagonal Decay of the Bergman Kernel. A key tool we use is the
following off-diagonal upper bound exponential decay for the Bergman kernel of
L.

Theorem 3.6. Let (M, g) be a Stein Kähler manifold with bounded geometry. Let
(L, h) −→ (M, g) be a Hermitian holomorphic line bundle with bounded curvature
such that

c(L) +Ricci(g) ≥ aωg,

for some positive constant a. There are constants α, C > 0 such that for all
z, w ∈M ,

|K(z, w)| ≤ Ce−αdg(z,w).
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Proof. Let z, w ∈ M such that dg(z, w) ≥ δ where δ > 0 as in Proposition 3.4.
Fix a smooth function χ ∈ C∞0 (Bg(w, δ/2)) such that
(i) 0 ≤ χ ≤ 1,
(ii) χ = 1 in Bg(w, δ/4),
(iii) |∂̄χ|g � χ.
Let sz ∈ F2(M,L) defined by

sz(w) := |e(z)|
d∑
i=1

fi(z)si(w),

where (si)1≤i≤d is an orthonormal basis of F2(M,L) and e is a a local vframe of
L arround z. Then |sz(w)| = |K(w, z)| and ‖sz‖2 = |K(z, z)| � 1. Also

sz(w)⊗ e(z)

|e(z)|
= K(w, z).

By (3.1) Proposition 3.1

|sz(w)|2 �
∫
B(w,δ/2)

χ(ζ)|sz(ζ)|2dvg � ‖sz‖2
L2(χdvg)

We have ‖sz‖L2(χdVg) = supσ | < σ, sz >L2(χdvg) | where σ ∈ F2(Bg(z, δ), L) such
that ‖σ‖L2(χdvg) = 1. we have∣∣∣ < σ, sz >L2(χdvg)

∣∣∣
C

=
∣∣∣ ∫

M

< χ(w)σ(w), sz(w) > dvg(w)
∣∣∣
C

=
∣∣∣ d∑
i=1

∫
M

< χ(w)σ(w), |e(z)|fi(z)si(w) > dvg(w)
∣∣∣
C

=
∣∣∣ d∑
i=1

∫
M

< χ(w)σ(w), si(w) > fi(z)|e(z)|dvg(w)
∣∣∣
C

=
∣∣∣ d∑
i=1

∫
M

< χ(w)σ(w), si(w) > fi(z)e(z)dvg(w)
∣∣∣
Lz

=
∣∣∣ d∑
i=1

∫
M

< χ(w)σ(w), si(w) > si(z)dvg(w)
∣∣∣
Lz

=
∣∣∣ ∫

M

K(z, w) • χ(w)σ(w)dvg(w)
∣∣∣
Lz

= |P (χσ)(z)|Lz .

Since c(L) + Ricci(g) ≥ ag, by Theorem 2.11, there exists a solution u of ∂̄u =
∂̄χ.σ such that ∫

M

|u|2dvg �
∫
M

|∂̄χ|2g|σ|2dvg <∞.

Let uσ = χσ − P (χσ) be the solution having minimal L2-norm of

∂̄u = ∂̄χ.σ
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Since χ(z) = 0 ∣∣∣ < σ, sz >L2(χdvg)

∣∣∣
C

= |P (χσ)(z)|Lz = |uσ(z)|Lz .

Since B(z, δ/2)∩B(w, δ/2) = ∅, the section uσ is holomorphic in Bg(z, δ/2). Let
ε ∈]0, 2/δ], By (3.1) Proposition 3.1

|uσ(z)|2Lz �
∫
Bg(z,δ/2)

|uσ(ζ)|2Lζdvg �
∫
Bg(z,δ/2)

e−εd(ζ,z)|uσ(ζ)|2Lζdvg. (3.5)

Let η := −εΦz where Φz is as in Lemma 2.8 and Θ = εωg. Choose ε small enough
such that

c(L) +Ricci(g)− iε∂∂̄Φz − iε2∂Φz ∧ ∂̄Φz − εωg ≥ 0.

By Theorem 2.12 ∫
M

e−εΦz |uσ|2dvg �
∫
M

e−εΦz |∂̄χ|2g|σ|2dvg.

Since C1dg(., z) ≤ Φz ≤ C2(dg(., z) + 1), we obtain

|uσ(z)|2Lz �
∫
M

e−εC1dg(ζ,z)χ(ζ)|σ(ζ)|2dvg.

Since ζ ∈ Bg(w, δ), we have

dg(ζ, z) ≥ dg(z, w)− dg(w, ζ)

� dg(z, w)− δ � dg(z, w).

Finally

|K(z, w)| � sup
σ
|uσ(z)|Lz � e−αdg(z,w).

�

3.6. Boundedness of the Bergman Projection on Fp(M,L). The following
proposition is a consequence of Theorem 3.6.

Proposition 3.7. Let (M, g) be a Kähler Cartan-Hadamard manifold with bounded
geometry such that

sup
z∈M

∫
M

e−βdg(w,z)dvg <∞,

for all β > 0. Let (L, h) −→ (M, g) be a Hermitian holomorphic line bundle with
bounded curvature such that

c(L) +Ricci(g) ≥ aωg,

for some positive constant a. Let p ∈ [1,+∞]. Then the Bergman projection is
bounded as a map from Lp(M,L) to Fp(M,L).
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Proof. If p =∞, we have

‖Ps‖∞ =
∥∥∥∫

M

K(z, w).s(w)dvg(w)
∥∥∥
∞

≤ ‖s‖∞ sup
z∈M

∫
M

|K(z, w)|dvg(w)

� ‖s‖∞ sup
z∈M

∫
M

e−αdg(z,w)dvg(w)

� ‖s‖∞.

P is bounded from L∞(M,L) to F∞(M,L). If p ∈ [1,∞[,∫
M

|Ps(z)|pdvg(w) =

∫
M

∣∣∣ ∫
M

K(z, w).s(w)dvg(w)
∣∣∣pdvg(z)

≤
∫
M

∣∣∣ ∫
M

|s(w)|K(z, w)|dvg(w)
∣∣∣pdvg(z)

≤
∫
M

((∫
M

|K(z, w)|dvg(w)
)p−1

×
∫
M

|s(w)|p|K(z, w)|dvg(w)
)
dvg(z)( Jensen inequality)

�
∫
M

(∫
M

e−αdg(w,z)dvg(w)
)p−1

×
∫
M

|s(w)|p|K(z, w)|dvg(w)
)
dvg(z).

Thus ∫
M

|Ps(z)|pdvg(w) �
∫
M

∫
M

|s(w)|pe−αdg(w,z)dvg(w)dvg(z)

�
∫
M

|s(w)|pdvg(w)

and then P is bounded from Lp(M,L) to Fp(M,L). �

4. Boundedness and Compactness for Toeplitz Operators

Let (M, g) be a Kähler manifold. Consider the following conditions:
(1) (M, g) is a Cartan-Hadamard manifold.
(2) (M, g) has bounded geometry.
(3) (L, h) −→ (M, g) is a Hermitian holomorphic line bundle with bounded cur-
vature such that

c(L) +Ricci(g) ≥ aωg,

for some positive constant a.
(4) For all β > 0

sup
z∈M

∫
M

e−βdg(w,z)dvg(w) <∞.



146 SAID ASSERDA

Remark 4.1. Let (M, g) have bounded geometry and Ricci(g) ≥ Kg. Since∫
M

e−βdg(w,z)dvg(w) �
∫ ∞

0

e−βrvol(Bg(z, r))dr,

if the volume of (M, g) grows uniformly subexponentially, then it satisfies the
condition (4). In particular, this is true if the volume of (M, g) grows uniformly
polynomially.

4.1. Carleson Measures for Fp(M,L).

Definition 4.2. A positive measure µ on M is Carleson for Fp(M,L), 1 ≤ p <
∞, if the exists Cµ,p > 0 such that

∀ s ∈ Fp(M,L) :

∫
M

|s|pdµ ≤ Cµ,p

∫
M

|s|pdvg.

If p = ∞, the measure µ on M is Carleson for F∞(M,L) if there exist C, r > 0
such that µ(B(z, r)) ≤ C.

The following is a geometric characterization of Carleson measures established
earlier for classical Bargmann-Fock space by Ortega Cerda [22] and for generalized
Bargmann-Fock space by Schuster-Varolin [23].

Theorem 4.3. Let (M, g) be a Kähler manifold which satisfies (1),(2) and (3).
Let µ be a positive measure on M . Let p ∈ [1,∞[. If p 6= 2 or p 6= ∞, suppose
further

sup
z∈M

∫
M

e−βdg(w,z)dvg(w) <∞,

for all β > 0. The following are equivalent:
(a) The measure µ is Carleson, for Fp(M,L).
(b) There exists r0 > 0 such that µ(Bg(z, r)) ≤ Cr0, for any z ∈M .
(c) For each r > 0 there exists Cr > 0 such that µ(Bg(z, r)) ≤ Cr for any z ∈M .

Proof. (c) =⇒ (b) is trivial. For (b) =⇒ (c), fix r > r0 and an r0-lattice (ak) in
M . There exists an integer N such that each point z ∈ M has a neighborhood
which intersects at most N of the Bk(ak, r0)’s. Hence

µ(B(z, r)) ≤
N∑
k=1

µ(Bg(ak, r0)) ≤ NCr0

(b) =⇒ (a). Let s ∈ Fp(M,L). By (3.1) of Proposition 3.1∫
Bg(ak,r0/2)

|s|pdµ ≤ µ(B(ak, r0/2)) sup
w∈Bg(ak,r0/2)

|s(w)|p

� sup
w∈Bg(ak,r0/2)

|s(w)|2

�
∫
Bg(ak,r0)

|s(w)|pdvg.
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Hence ∫
M

|s|pdµ �
∞∑
k=1

∫
Bg(ak,r0)

|s|pdµ

�
∞∑
k=1

∫
Bg(ak,r0)

|s|2dvg

�
∫
M

|s|pdvg

(a) =⇒ (b). Let z ∈ M . By Proposition 3.3, there is a section sz ∈ Fp(M,L)
such that

|sz(z)| = 1 and
∫
M

|sz|pdvg ≤ C,

for some C > 0 independent of z. Also, by Lemma 3.2, there exists 0 < δ < R
such that

∀ w ∈ Bg(z, δ) : |sz(w)| ≥ 1

2
.

Hence

µ(Bg(z, δ)) �
∫
Bg(z,δ)

|sz|pdµ

�
∫
M

|sz|pdµ

�
∫
M

|sz|pdvg

� 1. (by Carleson condition)

�

4.2. Vanishing Carleson Measures for F2(M,L). Recall that a bounded lin-
ear operator T : F2(M,L) −→ L2(M,L, dµ) is a compact operator if for all
sequence (sj) ⊂ F2(M,L) converging weakly to zero section i.e.,

∀ σ ∈ F2(M,L) : lim
j→∞

∫
M

< σ(w), sj(w) > dvg = 0.

We have

lim
j→∞

∫
M

|Tsj|pdµ = 0.

The following lemma is a consequence of Proposition 3.1, Montel’s Theorem and
Alaouglu’s Theorem.

Lemma 4.4. Let (sj) be a sequence in F2(M,L). The following are equivalent.
(a) (sj) converges weakly zero.
(b) There exists C > 0 such that

sup
j

∫
M

|sj|2dvg ≤ C
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and for all compact F ⊂M

lim
j→∞

sup
z∈F
|sj(z)− s(z)| = 0.

Definition 4.5. A positive measure µ on M is a vanishing Carleson if the inclu-
sion ıµ : F2(M,L) −→ L2(M,L, µ) is a compact operator.

Theorem 4.6. Let (M, g) be a Kähler manifold which satisfies (1),(2) and (3).
Let µ be a positive measure on M . Then the following are equivalent.
(a) The measure µ is a vanishing Carleson for F2(M,L).
(b) For every ε > 0, there exists r > 0 such that µ(Bg(z, R)) ≤ ε for any z ∈
M \Bg(z0, r), where z0 ∈M fixed.

Proof. (b) =⇒ (a). Let s ∈ F2(M,L). By Proposition (2.1)???

|s(z)| �
∫
M

1Bg(z,1)|s|2dvg.

Hence ∫
M

|s(z)|2dµ �
∫
M

∫
M

1Bg(z,1)|s(w)|2dvg(w)dµ(z)

=

∫
M

|s(w)|2µ(B(z, 1))dvg(w).

Let (sj) ⊂ F2(M ;L) be a sequence converging weakly to zero. By Lemma 3.4
(sj) is bounded by C on F2(M,L) and converges to zero locally uniformly in M .
Let ε > 0 and r > 0 such that µ(Bg(z, 1)) < ε for z ∈ M \ Bg(z0, r). For j large
enough ∫

M

|sj|2dµ �
∫
Bg(z0,r)

|sj(z)|2µ(Bg(z, 1))dvg(z)

+ε

∫
M\Bg(z0,r)

|sj(z)|2µ(Bg(z, 1))dvg(z)

�
∫
Bg(z0,r)

|sj(z)|2µ(Bg(z, 1))dvg(z) + Cε

� 2Cε.

Thus µ is a vanishing Carleson measure.
(a) =⇒ (b). Let (zj) ⊂ M such that dg(zj, z0) −→ ∞. For each j, let sj ∈
F2(M,L) such that

|sj(w)| = |K(w, zj)| and ‖sj‖2 � 1.

Then sj −→ 0 locally uniformly in M . Since µ is vanishing Carleson

lim
j→∞

∫
M

|sj|2dµ = 0.

By Proposition 3.5, there exist positive constants C1, C2 and δ such that

|K(z, w)| ≥ C1|K(z, z)| ≥ C2,
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for all w ∈ Bg(z, δ). Then∫
M

|sj|2dµ ≥
∫
Bg(zj ,δ)

|szj |2dµ

=

∫
Bg(zj ,δ)

|K(z, zj)|2dµ

� µ(Bg(zj, δ))|K(zj, zj)|2

� µ(Bg(zj, δ))

since |K(zj, zj)| � 1 uniformly in j. Hence

lim
j→∞

µ(Bg(zj, δ)) = 0.

Since Bg(zj, 1) is covered by N balls Bg(ak1 , δ), · · · , Bg(akN , δ) ( δ-lattice ), it
follows that

lim
j→∞

µ(Bg(zj, 1)) = 0.

�

4.3. Berezin Transforms of Carleson Measures. Let µ be a positive meaure
on M . The Berezin transform of µ is the function µ̃ : M → R+ defined by

µ̃(z) :=

∫
M

|kz(w)|2dµ(w),

where

kz(w) :=
K(w, z)√
|K(z, z)|

.

Theorem 4.7. Let (M, g) be a Kähler manifold satisfying the conditions (1),(2)
and (3). Let µ be a positive measure on M . Let p ∈ [1,∞]. If p 6= 2 or p 6= ∞,
suppose further

sup
z∈M

∫
M

e−βdg(w,z)dvg(w) <∞,

for all β > 0. The following are equivalent.
(a) µ is Carleson for Fp(M,L).
(b) µ̃ is bounded on M .

Proof. (a) =⇒ (b). For z ∈ M , let sz ∈ F2(M,L) such that |sz(w)| = |K(z, w)|.
By off-diagonal estimate |sz(w)| ≤ Ce−αdg(z,w) � 1. Let (ai) be a lattice of M .
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Since µ is Carleson by Theorem 4.1 µ(Bg(aj, r)) ≤ C. We have

µ̃(z) =
1√

|K(z, z)|

∫
M

|sz|2dµ(w)

≤
∑
j

∫
Bg(aj ,r)

|sz|2dµ(w) ( since |K(z, z)| � 1)

≤
∑
j

(∫
Bg(aj ,r)

|sz|pdµ(w)
) 1
p
(∫

Bg(aj ,r)

|sz|qdµ(w)
) 1
q

≤
∑
j

(∫
Bg(aj ,r)

|sz|pdµ(w)
) 1
p
µ(Bg(aj, r))

1
q sup
Bg(aj ,r)

|sz(w)|

�
(∫

M

|sz|pdµ(w)
) 1
p

�
(∫

M

|sz|pdvg(w)
) 1
p (µ is Carleson for Fp(M,L))

�
(∫

M

|sz|pdvg(w)
) 1
p

� 1.

Hence if µ is a Carleson, then µ̃ is uniformly bounded.
(b) =⇒ (a). Suppose that µ̃ is bounded on M . Then there exists C > 0 such that
for all δ > 0 and z ∈M∫

Bg(z,δ)

|kz(w)|2dµ(w) ≤ µ̃(z) ≤ C.

By diagonal estimates for the Bergman Kernel, there exists C1, δ > 0 independent
of z such that for all w ∈ Bg(z, δ)

|K(z, w)| ≥ C1|K(z, z)|.

Since |K(z, z)| � 1

|kz(w)|2 � 1, ∀ w ∈ Bg(z, δ).

Hence
µ(Bg(z, δ)) � 1 uniformly for z ∈M

and by Theorem 4.3 µ is Carleson for Fp(M,L). �

4.4. Berezin Transforms of Vanishing Carleson Measures.

Theorem 4.8. Let (M, g) be a Kähler manifold satisfying the conditions (1),(2)
and (3). Let µ be a positive measure on M . The following are equivalent.
(a) µ is vanishing Carleson for F2(M,L).
(b) lim

dg(z,z0)→∞
µ̃(z) = 0.



BERGMAN KERNEL ESTIMATES AND TOEPLITZ OPERATORS 151

Proof. (a) =⇒ (b). Let (zn) ∈M such that limn→∞ dg(zn, z0) =∞. For n ∈ N let
sn ∈ F2(M,L) such that |sn(w)| = |K(w, zn)|. Put

s̃n(w) =
sn(w)√
|K(zn, zn)|

.

Then s̃n ∈ F2(M,L). Since |K(zn, zn)| � 1 uniformly in n and

|s̃n(w)| ≤ Ce−αdg(w,zn),

then lim
n→∞

s̃n(w) = 0 and ∫
M

|s̃n|2dvg(w) = 1.

So s̃n → 0 uniformly on compacts of M . By Lemma 4.4 s̃n → 0 weakly on
F2(M,L). Since µ is vanishing Carleson

lim
n→∞

µ̃(zn) = lim
n→∞

∫
M

|s̃n(w)|2dµ(w) = 0.

(b) =⇒ (a). Following the proof of (b) =⇒ (a) in Theorem 4.3 we have

µ(B(z, r)) � µ̃(z).

Hence

lim
dg(z,z0)→∞

µ(B(z, r)) � lim
dg(z,z0)→∞

µ̃(z) = 0.

By Theorem 4.6 µ is vanishing Carleson. �

4.5. Proof of Theorem 1.2. (b)⇐⇒ (c) follows from Theorem 4.7.
(b)⇐⇒ (d) follows from Theorem 4.3.
(b) ⇐⇒ (a). Suppose that µ is a Carleson measure. Fix p ∈]1,∞[. Let s ∈
Fp(M,L). Then∫

M

∣∣∣ ∫
M

< s(w), K(w, z > dµ(w)
∣∣∣pdvg(z)

≤
∫
M

(∫
M

|s||K(w, z)|dµ(w)
)p
dvg(z)

≤
∫
M

(∫
M

|s||K(w, z)|
1
p |K(w, z)|

1
q dµ(w)

)p
dvg(z)

≤
∫
M

(∫
M

|s(w)|p|K(w, z)|dµ(w)
)(∫

M

|K(z, w)|dµ(w)
)p−1

dvg(z).
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Let sz ∈ F2(M,L) such that |sz(w)| = |K(w, z)|. Then∫
M

|K(w, z)|dµ(w) =

∫
M

|sz(w)|dµ(w)

�
∫
M

|sz(w)|dvg(w) (µ is Carleson for F1(M,L))

=

∫
M

|K(w, z)|dvg(w)

≤ C

∫
M

e−αdg(w,z)dvg(w) � 1

and ∫
M

(∫
M

|s(w)|2|K(w, z)|dµ(w)
)
dvg(z)

≤
∫
M

|s(w)|p
(∫

M

|K(w, z)|dvg(z)
)
dµ(w)

�
∫
M

|s|pdµ(w) (by off-diagonal estimate)

�
∫
M

|s|pdvg (µ is Carleson for Fp(M,L)).

Hence ∫
M

|Tµs(w)|pdvg(z) ≤ Cµ

∫
M

|s|pdvg.

If f ∈ F1(M,L), then∫
M

∣∣∣ ∫
M

< s(w), K(w, z > dµ(w)
∣∣∣dvg(z)

≤
∫
M

(∫
M

|s||K(w, z)|dµ(w)
)
dvg(z)

≤
∫
M

(∫
M

|s||K(w, z)|dµ(w)
)
dvg(z)

≤
∫
M

|s(w)|
(∫

M

|K(z, w)|dvg(z)
)
dµ(w)

≤
∫
M

|s(w)|
(∫

M

e−αdg(z,w)dvg(z)
)
dµ(w)

≤
∫
M

|s(w)|dµ(w)

≤
∫
M

|s(w)|dvg(w) (µ is Carleson for F1(M,L)).

Hence ∫
M

|Tµs(w)|dvg(z) ≤ Cµ

∫
M

|s|dvg.
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If f ∈ F∞(M,L), then

sup
z∈M

∣∣∣ ∫
M

< s(w), K(w, z > dµ
∣∣∣ ≤ ‖s‖∞ sup

z∈M

∫
M

|K(z, w)|dµ(w)

= ‖s‖∞ sup
z∈M

∫
M

|sz(w)|dµ(w)

� ‖s‖∞ sup
z∈M

∫
M

|sz(w)|dvg(w)

� ‖s‖∞ sup
z∈M

∫
M

|K(z, w)|dvg(w)

� ‖s‖∞ sup
z∈M

∫
M

e−αdg(z,w)dvg(w)

� ‖s‖∞
Hence

sup
z∈M
|Tµs(z)| ≤ Cµ sup

z∈M
|s(z)|.

We conclude that Tµ : Fp(M,L)→ Fp(M,L) is well defined and bounded if µ is
Carleson.
Conversely, suppose Tµ : Fp(M,L) → Fp(M,L) is bounded. Let sz ∈ F2(M,L)
such that |sz(w)| = |K(w, z)|. By reproducing property of the Bergman kernel

sz(w) =

∫
M

< sz(t), K(t, w) > dvg(t).

By diagonal bounds for the Bergman kernel, there exists C, δ > 0 such that
|sz(w)| ≥ C for all w ∈ Bg(z, δ). We have

µ(Bg(z, δ)) �
∫
Bg(z,δ)

|sz(w)|2dµ(w)

�
∫
M

|sz(w)|2dµ(w)

=

∫
M

< sz(w),

∫
M

< sz(t), K(t, w) > dvg(t) > dµ(w)

=

∫
M

(∫
M

< sz(w), < sz(t), K(t, w) >> dµ(w)
)
dvg(t)

=

∫
M

(∫
M

< sz(t), < sz(w), K(w, t) >> dµ(w)
)
dvg(t)

=

∫
M

< sz(t),

∫
M

< sz(w), K(w, t) > dµ(w) > dvg(t)

=

∫
M

< sz(t), Tµsz(t) > dvg(t)

≤ ‖Tµsz‖p‖sz‖q ≤ ‖Tµ‖‖sz‖p‖sz‖q ≤ C.

Therefore by Theorem 4.3 µ is Carleson for Fp(M,L).
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4.6. Proof of Theorem 1.3. (b)⇐⇒ (c) follows from Theorem 4.8.
(b)⇐⇒ (d) follows from Theorem 4.6.
(b)⇐⇒ (a). Suppose that µ is vanishing Carleson. Let s ∈ F2(M,L). Let sz the
holomorphic section such that |sz(w)| = |K(w, z)|. Then∫

M

|Tµ(z)|2dvg(z) =

∫
M

∣∣∣ ∫
M

< s(w), K(w, z) > dµ(w)
∣∣∣2dvg(z)

≤
∫
M

(∫
M

|s(w)|2|K(w, z)|dµ(w)
)(∫

M

|K(w, z)|dµ(w)
)
dvg(z)

=

∫
M

(∫
M

|s(w)|2|K(w, z)|dµ(w)
)(∫

M

|sz(w)|dµ(w)
)
dvg(z)

�
∫
M

(∫
M

|s(w)|2|K(w, z)|dµ(w)
)(∫

M

|sz(w)|dvg(w)
)
dvg(z)

�
∫
M

∫
M

|s(w)|2|K(w, z)|dµ(w)dvg(z)
(

sup
z∈M

∫
M

|sz(w)|dvg(w)
)

�
∫
M

∫
M

|s(w)|2|K(z, w)|dvg(z)dµ(w)

�
∫
M

|s(w)|2dµ(w).

Hence ‖Tµ‖ ≤ C‖ıµ‖ and this follows that Tµ is compact.
Conversely, suppose that Tµ : F2(M,L) → F2(M,L) is compact. Let (zj) ∈ M
such that dg(zj, z0)→ 0 and szj ∈ F2(M,L) such that |szj(w)| = |K(w, zn)|. By
off-diagonal estimate, the sequence (szj) is bounded on F2(M,L) and converges
locally uniformly to zero section. Hence (szj) converges weakly to the zero. Since
Tµ is compact and ∣∣∣ ∫

M

< Tµszj , szj > dvg

∣∣∣ ≤ ‖Tµszj‖2‖szj‖2,

we have

lim
j→∞

∫
M

< Tµszj , szj > dvg = 0.

From ∣∣∣ ∫
M

< Tµszj , szj > dvg

∣∣∣ =

∫
M

|szj |2dvg

and the diagonal estimates |szj(w)| � 1 on Bg(zj, δ), we get

lim
j→∞

µ(Bg(zj, δ)) � lim
j→∞

∣∣∣ ∫
M

< Tµszj , szj > dvg

∣∣∣ = 0.

By Theorem 4.8 µ is vanishing Carleson for F2(M,L).

5. Schatten Class Membership of Toeplitz Operators

Suppose that T is a compact operator between Hilbert spaces H1 and H2.
Then T has a Schmidt decomposition, so that there are orthonormal bases (en)
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and (σn) of H1 and H2, respectively, and a sequence (λn) with λn > 0 and λn → 0
such that for all f ∈ H1

Tf =
∞∑
n=0

λn < f, en > σn.

For 0 < p ≤ ∞, such a compact operator T belongs to the Schatten-von Neumann
p-class Sp = Sp(H1, H2) if and only if

‖T‖pSp :=
∞∑
n=0

λpn <∞.

If p ≥ 1, then Sp is a Banach space. If 0 < p < 1, then Sp is a Frechet space.
For all T, S ∈ Sp(H1, H1),

‖T + S‖pSp ≤ 2(‖T‖pSp + ‖S‖pSp). (5.1)

By Proposition 6.3.3 in [33], if T is a positive operator on a Hilbert space H and
0 < p < 1, then

< T pem, em >≤< Tem, em >p,

where (em) is an orthonormal set of H. It gives that

‖T‖pSp ≤
∞∑
m,k

| < Tem, ek > |p.

We will introduce the complex interpolation of Schatten p-class.

Lemma 5.1. If 1 ≤ p ≤ ∞, then

[Sp0 ,Sp1 ]θ = Sp
with equal norm for all 1 ≤ p0 < p1 ≤ ∞ and all θ ∈]0, 1[, where

1

p
=

1− θ
p0

+
θ

p1

.

We will let (aj) denote an r-lattice of M and µ̃ the Berezin transform of the
positive measure on M . For z ∈M let sz ∈ F2(M,L) such that

sz(w)⊗ e(z)

|e(z)|
= K(w, z),

where e is a frame of L around z.

Lemma 5.2. If T is a positive operator on F2(M,L), then

tr(T ) �
∫
M

T̃ (z)dvg(z),

where
T̃ (z) =

∫
M

< Tsz(w), sz(w) > dvg(w)

is the Berezin transform of T. In particular, T is trace-class if and only if the
integral above converges.
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Proof. Since T is positive, then T = R2 for some R ≥ 0. Let (ej) is an orthonor-
mal basis of F2(M,L). Then

tr(T ) =
∞∑
j=1

< Tej, ej >�
∞∑
j=1

‖Rej‖2

=
∞∑
j=1

∫
M

|Rej(z)|2dvg(z)

=

∫
M

∞∑
j=1

|Rej(z)|2dvg(z).

Hence

tr(T ) =

∫
M

∞∑
j=1

∣∣∣ ∫
M

< Rej(w), K(w, z) > dvg(w)
∣∣∣2dvg(z)

=

∫
M

∞∑
j=1

∣∣∣ ∫
M

< Rej(w), sz(w)⊗ e(z)

|e(z)|
> dvg(w)

∣∣∣2dvg(z)

=

∫
M

∞∑
j=1

∣∣∣ ∫
M

< Rej(w), sz(w) >
e(z)

|e(z)|
dvg(w)

∣∣∣2dvg(z)

=

∫
M

∞∑
j=1

∣∣∣ ∫
M

< Rej(w), sz(w) > dvg(w)
∣∣∣2dvg(z)

=

∫
M

∞∑
j=1

∣∣∣ ∫
M

< ej(w), Rsz(w) > dvg(w)
∣∣∣2dvg(z)

�
∫
M

‖Rsz‖2dvg(z) �
∫
M

< Tsz, sz > dvg(z) =

∫
M

T̃ (z)dvg(z).

�

Corollary 5.3. Let ν be a positive measure on M . Then Tν ∈ S1 if and only if
µ(M) < ∞. In particular, if the support of µ is compact, then Tµ ∈ Sp for each
p ≥ 1.
Proof. Suppose that µ(M) <∞. By Lemma 5.2

tr(Tµ) =

∫
M

T̃µ(z)dvg(z)

�
∫
M

∫
M

< Tµsz(w), sz(w) > dvg(w)dvg(z)

�
∫
M

∫
M

|sz(w)|2dµ(w)dvg(z)

�
∫
M

∫
M

|K(w, z)|2|dvg(z)
)
dµ(w)

�
∫
M

|K(w,w)|dµ(w) � µ(M).
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Let Tµ ∈ S1 and z0 ∈M fixed. By diagonal bound estimates we have

tr(T ) �
∫
M

T̃ (z)dvg(z) �
∫
M

(∫
M

|K(w, z)|2dvg(z)
)
dµ(w)

�
∫
M

(∫
Bg(z0,δ)

|K(w, z)|2|dvg(w)
)
dµ(z) � volg(Bg(z0, δ)µ(M)

� µ(M).

�

We will need the following simple lemma that is well known in the classical Fock
space setting [33].

Lemma 5.4. Let r > 0 and let (ej) be any orthonormal basis for F2(M,L). If
(aj) is an r-lattice ofM and H is the operator on F2(M,L) defined by Hej := saj ,
then H can be extended to a bounded operator on all of F2(M,L) whose operator
norm is bounded above by a constant that only depends on r.

Proof. Let σ, t ∈ F2(M,L), then

< Hσ, t >=
∞∑
j=1

< σ, ej >< saj , t > .

Since

saj(w)⊗ e(aj)

|e(aj)|
= K(w, aj),

where e is a frame of L around aj. Since

t(aj) =

∫ ∫
M

< t(w), K(w, aj) > dvg(w)

by Cauchy-Schwarz inequality and Proposition 3.1

| < Aσ, t > | ≤
∞∑
j=1

| < σ, ej >L2 || < saj , t >L2 |

=
∞∑
j=1

| < σ, ej >L2 |
∣∣∣ < saj , t >L2

e(aj)

|e(aj)|

∣∣∣
Laj

≤ ‖σ‖2

( ∞∑
j=1

∣∣∣ ∫
M

< t(w), K(w, aj) > dvg(w)
∣∣∣2
Laj

) 1
2

≤ ‖σ‖2

( ∞∑
j=1

|t(aj)|2
) 1

2

� ‖σ‖2

( ∞∑
j=1

∫
Bg(aj ,r)

|t|2dvg
) 1

2

� ‖σ‖2‖t‖2.

�
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Lemma 5.5. Let p ≥ 1. If φ ∈ Lp(M,dvg) and Tφ be the Toeplitz operator with
symbol φ

Tφs(z) =

∫
M

< s(w), K(w, z) > φ(w)dvg(w)

for all s ∈ F2(M,L), then Tφ ∈ Sp.

Proof. Assume p = 1. Let g ∈ L1(M,dvg) and (ej) be an orthonormal set on
F2(M,L). By Fubini Theorem

< Tφej(z), ej(z) >=

∫
M

|ej(z)|2φ(z)dvg(z).

Hence

∞∑
j=1

| < Tφej, ej > | =
∞∑
j=1

∣∣∣ ∫
M

|ej(w)|2φ(w)dvg(w)

≤
∫
M

∞∑
j=1

|ej(w)||φ(w)|dvg(w)

=

∫
m

|φ(w)||K(w,w)|dg(w)

� ‖φ‖1 (by diagonal estimate).

Thus, for p = 1, Tφ ∈ S1 and ‖Tµ‖S1 � ‖φ‖1. Also ‖Tµ‖S∞ � ‖φ‖∞. By
interpolation of Lemma 5.1, we can get Tφ ∈ Sp and ‖Tφ‖Sp ≤ ‖φ‖p. �

Lemma 5.6. Suppose that (M, g) satisfies the conditions (1), (2), (3) and (4) of
Section 4. Let r > 0 and 0 < p < 1. The following are equivalent:
(a) µ̃ ∈ Lp(M,dvg).
(b) µ(Bg(., r) ∈ Lp(M,dvg).
(c) µ(Bg(aj, r)) ∈ `p(N).

Proof. (c) =⇒ (a). We have

µ̃(z) =

∫
M

|kz(w)|2dµ(w)

=
∞∑
j=1

∫
Bg(aj ,r)

|K(w, z)|2

|K(z, z)|
dµ(w)

≤ C
∞∑
j=1

∫
Bg(aj ,r)

e−2αdg(w,z)dµ(w).
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Since dg(w, ) ≥ dg(z, aj)− dg(aj, w) for all w ∈ Bg(aj, r)

µ̃(z) ≤
∞∑
j=1

∫
Bg(aj ,r)

e−2αdg(w,z)dµ(w)

≤ C
∞∑
j=1

∫
Bg(aj ,r)

e−2α(dg(z,aj)−r)dµ(w)

�
∞∑
j=1

e−2αdg(z,aj)µ(Bj(aj, r)).

By Hölder inequality µ̃(z)p �
∞∑
j=1

e−2pαdg(z,aj)µ(Bj(aj, r))
p. Hence

∫
M

µ̃(z)p �
∞∑
j=1

∫
M

e−2pαdg(z,aj)µ(Bj(aj, r))
p

�
∞∑
j=1

µ(Bj(aj, r))
p sup
j∈N

∫
M

e−2pαdg(z,aj)

�
∞∑
j=1

µ(Bj(aj, r))
p <∞.

(a) =⇒ (b). By diagonal bound estimate |K(z, z)| � 1 and |K(z, w)| � |K(z, z)|
for all w ∈ Bg(z, δ)

µ̃(z) =

∫
M

|kz(w)|2dµ(w)

≥
∫
Bg(z,r)

|kz(w)|2dµ(w)

�
∫
Bg(z,r)

|K(w, z)|2dµ(w)

�
∞∑
j=1

∫
Bg(z,r)∩Bg(aj ,δ)

|K(w, z)|2dµ(w)

�
∞∑
j=1

∫
Bg(z,r)∩Bg(aj ,δ)

dµ(w). � µ(B(z, r))

(b) =⇒ (c). We have
∞∑
j=1

∫
Bg(aj ,

r
2

)

µ(B(z, r))pdvg(z) �
∫
M

µ(Bg(z, r))
pdvg(z).

Since for any z ∈ Bg(aj,
r
2
) : µ(Bg(z, r)) ≥ µ(Bg(aj,

r
2
), then

∞∑
j=1

µ(Bg(aj,
r

2
))p �

∫
M

µ(Bg(z, r))
pdvg(z).
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Thus µ(Bg(., r)) ∈ Lp(M,dvg) implies that (µ(Bg(aj, r)) ∈ `p(N). �

5.1. Proof of Theorem 1.4 for the case 1 ≤ p < ∞. (a) =⇒ (b). Since Tµ
is a positive operator, then Tµ ∈ Sp if and only if T pµ ∈ S1. By Proposition 6.3.3
in [33]

T̃ pµ(z) =

∫
M

< T pµsz(w), sz(w) > dvg(w)

≥
(∫

M

< Tµsz(w), sz(w) >
)p

= (µ̃(z))p.

Hence by Lemma 5.2∫
M

(µ̃(z))pdvg(z) ≤
∫
M

|T̃ pµ(z)| ≤ tr(T pµ) <∞.

Then φ ∈ Lp(M,dvg).
(b) =⇒ (c). Put

φr(z) = µ(Bg(z, r)).

By diagonal estimates for the Bergman kernel, for some ε > 0 we have

µ(Bg(z, ε)) �
∫
Bg(z,ε)

|K(z, w)|2dµ(w)

� 1

|K(z, z)|

∫
Bg(z,ε)

|K(z, w)|2dµ(w)

� µ̃(z).

Hence z → φε(z) := µ(Bg(z, ε)) ∈ Lp(M,dvg).
(c) =⇒ (a). Suppose that Tφ ∈ Sp. For z0 ∈M fixed, write µ = µ1 + µ2, where

µ1 := µ |Bg(z0,ε) and µ2 := µ |M\Bg(z0,ε)

By Corollary 5.5 Tµ1 ∈ Sp. Hence it suffices to show that Tµ2 ∈ Sp. If σ ∈
F2(M,L) we have

< Tφεσ, σ > =

∫
M

|σ(w)|φε(w)dvg(w)

=

∫
M

|σ(w)|2µ(Bg(w, ε))dvg(w)

≥
∫
z∈M

∫
Bg(z,ε)

|σ(w)|2dvg(w)dµ(z)

�
∫
M\Bg(z0,ε)

|σ(z)|2dµ(z) (Prop. 3.1)

� < Tµ2σ, σ > .

Hence Tµ2 � Tφε so that ‖Tµ2‖p � ‖Tφε‖p and then Tµ2 ∈ Sp.
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5.2. Proof of Theorem 1.4 for the case 0 < p < 1. By Lemma 5.6, it suffices
to prove (a) =⇒ (d) and (b) =⇒ (a).
(a) =⇒ (d). Suppose that Tµ ∈ Sp. By near diagonal uniform estimate for the
Bergman kernel there exists δ > 0 such that

∀ z ∈M, ∀ w ∈ Bg(z, δ) : |K(w, z)| � 1. (5.2)

Let r ≥ 2δ and (aj) be an r-lattice. Let (akj) ⊂ (aj) such that dg(akj , akl) > r if
j 6= l so that

dg(w, akj) ≤ r/2 =⇒ dg(w, akl) ≥ r/2 (5.3)

and

dg(w, akj) ≤ r/2 =⇒ dg(w, akl) ≥
1

2
dg(akj , akl). (5.4)

Let ν be the positive measure

ν :=
∑
j

1Bg(aj ,δ)µ.

Then Tν ≤ Tµ so that ‖Tν‖p ≤ ‖Tµ‖p. Let (et) be an orthonormal basis of
F2(M,L) and H : F2(M,L)→ F2(M,L) the operator defined by

Hem = sakm ,

where sakm ∈ F
2(M,L) defined as

sakm (w)⊗ e(akm)

|e(akm)|
= K(w, akm),

where e is a frame of L around akm . By off-diagonal estimate for the Bergman
kernel

∀ w ∈M : |sakm (w)| � e−αdg(w,akm ).

By Lemma 5.4, H can be extended to a bounded operator on all of F2(M,L)
whose operator norm is bounded above by a constant that only depends of (akm).
If R = H∗TνH then

‖R‖p ≤ ‖Tν‖p ≤ ‖Tµ‖p.

Consider the operators ∆ and E defined by

∆s :=
∑
m

< Hem, em >< s, em > em and E = R−∆.

By (5.1) we have
1

2
‖∆‖pp − ‖E‖pp ≤ ‖H‖pp ≤ ‖Tµ‖pp. (5.5)
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We estimate ‖∆‖p from below,

‖∆‖pp =
∑
m

< Dem, em >p

=
∑
m

< Tνakm , akm >p

=
∑
m

(∫
M

|sakm (w)|2dν(w)
)p

=
∑
m

(∫
M

|K(w, akm)|2dν(w)
)p

≥
∑
m

(∫
Bg(akm ,δ)

|K(w, akm)|2dν(w)
)p

�
∑
m

(µ(Bg(akm , δ))
p.

Thus

‖∆‖pp �
∑
m

(µ(Bg(akm , δ))
p. (5.6)

We estimate ‖E‖p from above,

‖E‖pp ≤
∑
l 6=m

< Rem, ek >
p

=
∑
l 6=m

< Tνem, ek >
p

≤
∑
l 6=m

< Tνsakm , sakl >
p

≤
∑
l 6=m

(∫
M

|sakm (w)||sakl (w)|dν(w)
)p

≤
∑
l 6=m

(∫
M

e−αdg(w,akm )e−αdg(w,akl )dν(w)
)p

� e
−αpr

2

∑
m 6=l

(∫
M

e−
α
2
dg(w,akm )e−

α
2
dg(w,akl )dν(w)

)p
(5.3)

� e
−αpr

2

∑
m 6=l

(∑
j

∫
Bg(akj ,δ)

e−
α
2
dg(w,akm )e−

α
2
dg(w,akl )dν(w)

)p
� e

−αpr
2

∑
m 6=l

(∑
j

µ(Bg(akj , δ))e
−α

4
dg(akm ,akj )e−

α
4
dg(akl ,akj )dν(w)

)p
. (5.4)
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Since 0 < p < 1

‖E‖pp � e
−αpr

2

∑
j

µ(Bg(akj , δ))
p
∑
m6=k

e−
α
4
dg(akm ,akj )e−

α
4
dg(akl ,akj )

� e
−αpr

2

∑
j

µ(Bg(akj , δ))
p
(∑

l

e−
α
4
dg(akl ,akj )

)2

� e
−αpr

2

∑
j

µ(Bg(akj , δ))
p.

Thus
‖E‖pp � e

−αpr
2

∑
j

µ(Bg(akj , δ))
p. (5.7)

By (5.5), (5.6) and (5.7), for r large enough

‖Tµ‖pp ≥
(c1

2
− c2e

−αpr
2

)∑
j

µ(Bg(akj , δ))
p

�
∑
j

µ(Bg(akj , δ))
p,

for each sub-lattice (akj) of the r-lattice (aj). Thus∑
j

µ(Bg(aj, δ))
p � ‖Tµ‖pp.

(b) =⇒ (a). Suppose that µ̃ ∈ Lp(M,dvg). By Lemma 5.6 it suffice to show

µ(Bg(., δ)) ∈ Lp(Mdvg) =⇒ Tµ ∈ Sp.

Let φr(z) := µ(Bg(z, δ)). If s ∈ F2(M,L) we have

< Tφrs, s > =

∫
M

|s(z)|2µ(Bg(z, δ))dvg(z)

=

∫
M

|s(z)|2dvg(z)

∫
M

1Bg(w,δ)dµ(w)

=

∫
M

dµ(w)

∫
M

|s(z)|21Bg(w,δ)dvg(z)

=

∫
M

dµ(w)

∫
Bg(w,δ)

|s(z)|2dvg(z)

� < Tµs, s > .

Thus Tµ � Tφr . Since Tφr ∈ Sp (Lemma 5.5) we get Tµ ∈ Sp.

5.3. Proof of Theorem 1.5. For the proof of Theorem 1.5, we need some pre-
liminary lemmas.
Let (M, g) be a Kähler manifold and (L, h) → M be a holomorphic Hermit-
ian line bundle. Let (N,ωN) be a a Hermitian manifold. For a holomorphic
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map Φ : N → M , let (Φ∗L,Φ∗h) → N the holomorphic Hermitian line bun-
dle, called the pull back of L, whose fibers are (Φ∗L)x = LΦ(x) with metrics
(Φ∗h)(x) = h(Φ(x)), where x ∈ N . We define the composition operator

CΦ : F2(M,L) −→ F2(N,Φ∗L)

s −→ s ◦ Φ.

The transform BΦ (related to the usual Berezin transform) associated to Φ is the
function on M defined as follows.

BΦ(z)2 :=

∫
M

|K(z, w)|2dνΦ(w),

where νΦ is the pull-back measure defined as follows: for all Borel set E ⊂M

νΦ(E) =

∫
N

1Φ−1(E)(w)dvωN (w).

Let z ∈ M . Fix a frame e in a neighborhood U of the point z and consider
an orthonormal basis (sj)

d
j=1 of F2(X,L) (where 1 ≤ d ≤ ∞). In U each si is

represented by a holomorphic function fi such that si(x) = fi(x)e(x). Let

sz(w) := |e(z)|
d∑
i=1

fi(z)si(w).

Then sz is a holomorphic section and

|sz(w)| =
∣∣∣( d∑

i=1

fi(z)si(w)
)
⊗ e(z)

∣∣∣
=

∣∣∣ d∑
i=1

si(w)⊗ si(z)
∣∣∣

= |K(w, z)|.
By Proposition 3.3 ∫

M

|sz|2dvg(w) =

∫
M

|K(w, z)|2dvg(w)

= |K(z, z)| � 1.

Lemma 5.7. We have

< C∗ΦCΦsz, sz >= BΦ(z)2,

BΦ(z)2 =

∫
M

|sz(w)|2dνΦ(w)

and ∫
M

|BΦ(z)|pdvg(z) =

∫
M

< C∗ΦCΦsz, sz >
p
2 dvg(z),

where νΦ is the pull-back measure defined as follows: for all Borel set E ⊂M

νΦ(E) =

∫
N

1Φ−1(E)(w)dvωN (w).
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Proof. We have
< C∗ΦCΦsz, sz > = < CΦsz, CΦsz >

=

∫
N

|sz(Φ(w))|2dvωN (w)

=

∫
M

|sz(w)|2dνΦ(w)

=

∫
M

|K(z, w)|2dνΦ(w)

=

∫
M

|K(z,Φ(w))|2dvg(w)

= BΦ(z)2.

�

The following lemma presents a desired connection between composition opera-
tors and Toeplitz operators.

Lemma 5.8. Let (M, g) be a Kähler manifold and let Φ : N →M be a holomor-
phic map such that CΦ is bounded. Then

C∗ΦCΦ = TνΦ
,

where
TνΦ

s(z) =

∫
M

< s(w), K(w, z) > dνΦ(w).

Proof. Since CΦ is bounded, for all s, σ ∈ F2(M,L)

< C∗ΦCΦs, σ > = < CΦs, CΦσ >

=

∫
N

< s(Φ(w)), σ(Φ(w)) > dvωN (w)

=

∫
M

< s(w), σ(w) > dνΦ(w).

Since
σ(w) =

∫
M

< σ(z), K(z, w) > dvg(z)

by Fubini Theorem

< C∗ΦCΦs, σ > =

∫
M

< s(w),

∫
M

K(w, z).σ(t)dvg(z) > dνΦ(w)

=

∫
M

∫
M

< s(w), K(w, z).σ(t) > dvg(z)dνΦ(w)

=

∫
M

∫
M

< K(z, w).s(w), σ(t) > dvg(z)dνΦ(w)

=

∫
M

<

∫
M

K(z, w).s(w)dνΦ(w), σ(z) > dvg(z)

= <

∫
M

K(., w).s(w)dνΦ(w), σ > .
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Hence we get

C∗ΦCΦs(z) =

∫
M

< s(w), K(w, z) > dνΦ(w).

�

Corollary 5.9. Let (M, g) be a Kähler manifold and let Φ : N → M be a
holomorphic map such that CΦ : F2(M,L)→ F2(N,Φ∗L) is bounded. If 0 < p <
∞, then CΦ ∈ Sp if and only if TνΦ

∈ Sp/2.

Since |K(z, z)| � 1 and

ν̃Φ(z) =
1

|K(z, z)|

∫
M

|K(z, w)|2dνΦ(w) �
∫
M

|K(z, w)|2dνΦ(w)

� BΦ(z)2,

then the proof of Theorem 1.5 follows from Theorems 1.2, 1.3 and 1.4.
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