

Khayyam Journal of Mathematics

 emis.de/journals/KJM kjm-math.org
PERIODIC SOLUTIONS FOR THIRD-ORDER NONLINEAR DELAY DIFFERENTIAL EQUATIONS WITH VARIABLE COEFFICIENTS

ABDELOUAHEB ARDJOUNI ${ }^{1 *}$, FARID NOUIOUA ${ }^{1}$ AND AHCENE DJOUDI ${ }^{2}$
Communicated by F.H. Ghane

Abstract

In this paper, the following third-order nonlinear delay differential equation with periodic coefficients $$
\begin{aligned} & x^{\prime \prime \prime}(t)+p(t) x^{\prime \prime}(t)+q(t) x^{\prime}(t)+r(t) x(t) \\ & =f(t, x(t), x(t-\tau(t)))+\frac{d}{d t} g(t, x(t-\tau(t))), \end{aligned}
$$ is considered. By employing Green's function, Krasnoselskii's fixed point theorem and the contraction mapping principle, we state and prove the existence and uniqueness of periodic solutions to the third-order nonlinear delay differential equation.

1. Introduction

Third order differential equations arise from in a variety of different areas of applied mathematics and physics, as the deflection of a curved beam having a constant or varying cross section, three layer beam, electromagnetic waves or gravity driven flows and so on [19,23].

Delay differential equations have received increasing attention during recent years since these equations have been proved to be valuable tools in the modeling of many phenomena in various fields of science and engineering, see the monographs $[8,20]$ and the papers $[1-18],[21-23],[25-28]$ and the references therein.

[^0]The second order nonlinear delay differential equation with periodic coefficients

$$
x^{\prime \prime}(t)+p(t) x^{\prime}(t)+q(t) x(t)=f(t, x(t), x(t-\tau(t)))+\frac{d}{d t} g(t, x(t-\tau(t)))
$$

has been investigated in [5]. By using Krasnoselskii's fixed point theorem and the contraction mapping principle, Ardjouni and Djoudi obtained existence and uniqueness of periodic solutions.

In [23], Ren, Siegmund and Chen discussed the existence of positive periodic solutions for the third-order differential equation

$$
x^{\prime \prime \prime}(t)+p(t) x^{\prime \prime}(t)+q(t) x^{\prime}(t)+r(t) x(t)=g(t, x(t)) .
$$

By employing the fixed point index, the authors obtained existence results for positive periodic solutions.

Inspired and motivated by the works mentioned above and the papers [118], [21-23], [25-28] and the references therein, we concentrate on the existence of periodic solutions for the third-order nonlinear delay differential equation

$$
\begin{align*}
& x^{\prime \prime \prime}(t)+p(t) x^{\prime \prime}(t)+q(t) x^{\prime}(t)+r(t) x(t) \\
& =f(t, x(t), x(t-\tau(t)))+\frac{d}{d t} g(t, x(t-\tau(t))), \tag{1.1}
\end{align*}
$$

where p, q, r, τ are continuous real-valued functions. The functions $g: \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}$ and $f: \mathbb{R} \times \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}$ are continuous in their respective arguments. To show the existence of periodic solutions, we transform (1.1) into an integral equation and then use Krasnoselskii's fixed point theorem. The obtained integral equation splits in the sum of two mappings, one is a contraction and the other is compact. We also obtain the existence of a unique periodic solution of (1.1) by employing the contraction mapping principle as the basic mathematical tool.

The organization of this paper is as follows. In Section 2, we introduce some notations and lemmas, and state some preliminary results needed in later section. Then we give the Green's function of (1.1) which plays an important role in this paper. In Section 3, we present our main results on existence and uniqueness.

We state Krasnoselskii's fixed point theorem which enables us to prove the existence of periodic solutions to(1.1). For its proof we refer the reader to [24].
Theorem 1.1 (Krasnoselskii). Let \mathbb{M} be a closed convex nonempty subset of a Banach space $(\mathbb{B},\|\cdot\|)$. Suppose that H_{1} and H_{2} map \mathbb{M} into \mathbb{B} such that
(i) $x, y \in \mathbb{M}$, implies $H_{1} x+H_{2} y \in \mathbb{M}$,
(ii) H_{1} is compact and continuous,
(iii) H_{2} is a contraction mapping.

Then there exists $z \in \mathbb{M}$ with $z=H_{1} z+H_{2} z$.
In this paper, we give the assumptions as follows that will be used in the main results.
(h1) There exist differentiable positive T-periodic functions a_{1} and a_{2} and a positive real constant ρ such that

$$
\left\{\begin{array}{l}
a_{1}(t)+\rho=p(t) \\
a_{1}^{\prime}(t)+a_{2}(t)+\rho a_{1}(t)=q(t) \\
a_{2}^{\prime}(t)+\rho a_{2}(t)=r(t)
\end{array}\right.
$$

(h2) $p, q, r, \tau \in C\left(\mathbb{R}, \mathbb{R}^{+}\right)$are T-periodic functions with $\tau(t) \geq \tau^{*}>0$ and

$$
\int_{0}^{T} p(s) d s>\rho T, \quad \int_{0}^{T} q(s) d s>0 .
$$

(h3) The functions $g(t, x)$ and $f(t, x, y)$ are continuous T-periodic in t and globally Lipshitz continuous in x and in x and y, respectively. That is

$$
g(t+T, x)=g(t, x), f(t+T, x, y)=f(t, x, y)
$$

and there are positive constants k_{1}, k_{2} and k_{3} such that

$$
|g(t, x)-g(t, y)| \leq k_{1}|x-y|
$$

and

$$
|f(t, x, y)-f(t, z, w)| \leq k_{1}|x-z|+k_{2}|y-w| .
$$

2. GREEN's FUNCTION OF THIRD-ORDER DIFFERENTIAL EQUATION

For $T>0$, let P_{T} be the set of all continuous scalar functions x, periodic in t of period T. Then $\left(P_{T},\|\|.\right)$ is a Banach space with the supremum norm

$$
\|x\|=\sup _{t \in \mathbb{R}}|x(t)|=\sup _{t \in[0, T]}|x(t)| .
$$

We consider

$$
\begin{equation*}
x^{\prime \prime \prime}(t)+p(t) x^{\prime \prime}(t)+q(t) x^{\prime}(t)+r(t) x(t)=h(t), \tag{2.1}
\end{equation*}
$$

where h is a continuous T-periodic function. Obviously, by the condition ($h 1$), (2.1) is transformed into

$$
\left\{\begin{array}{l}
y^{\prime}(t)+\rho y(t)=h(t) \\
x^{\prime \prime}(t)+a_{1}(t) x^{\prime}(t)+a_{2}(t) x(t)=y(t)
\end{array}\right.
$$

Lemma 2.1 ([3]). If $y, h \in P_{T}$, then y is a solution of equation

$$
y^{\prime}(t)+\rho y(t)=h(t),
$$

if and only if

$$
\begin{equation*}
y(t)=\int_{t}^{t+T} G_{1}(t, s) h(s) d s \tag{2.2}
\end{equation*}
$$

where

$$
\begin{equation*}
G_{1}(t, s)=\frac{\exp (\rho(s-t))}{\exp (\rho T)-1} \tag{2.3}
\end{equation*}
$$

Corollary 2.2. Green function G_{1} satisfies the following properties

$$
\begin{aligned}
G_{1}(t+T, s+T) & =G_{1}(t, s), G_{1}(t, t+T)=G_{1}(t, t) \exp (\rho T) \\
G_{1}(t+T, s) & =G_{1}(t, s) \exp (-\rho T), G_{1}(t, s+T)=G_{1}(t, s) \exp (\rho T), \\
\frac{\partial}{\partial t} G_{1}(t, s) & =-\rho G_{1}(t, s) \\
\frac{\partial}{\partial s} G_{1}(t, s) & =\rho G_{1}(t, s)
\end{aligned}
$$

and

$$
m_{1} \leq G_{1}(t, s) \leq M_{1}
$$

where

$$
m_{1}=\frac{1}{\exp (\rho T)-1}, \quad M_{1}=\frac{\exp (\rho T)}{\exp (\rho T)-1} .
$$

Lemma 2.3 ([22]). Suppose that (h1) and (h2) hold and

$$
\begin{equation*}
\frac{R_{1}\left[\exp \left(\int_{0}^{T} a_{1}(v) d v\right)-1\right]}{Q_{1} T} \geq 1 \tag{2.4}
\end{equation*}
$$

where

$$
\begin{aligned}
& R_{1}=\max _{t \in[0, T]}\left|\int_{t}^{t+T} \frac{\exp \left(\int_{0}^{T} a_{1}(v) d v\right)}{\exp \left(\int_{0}^{T} a_{1}(v) d v\right)-1} a_{2}(s) d s\right| \\
& Q_{1}=\left(1+\exp \left(\int_{0}^{T} a_{1}(v) d v\right)\right)^{2} R_{1}^{2} .
\end{aligned}
$$

Then there are continuous T-periodic functions a and b such that

$$
b(t)>0, \quad \int_{0}^{T} a(v) d v>0
$$

and

$$
a(t)+b(t)=a_{1}(t), b^{\prime}(t)+a(t) b(t)=a_{2}(t), \text { for } t \in \mathbb{R}
$$

Lemma 2.4 ([26]). Suppose the conditions of Lemma 2.3 hold and $y \in P_{T}$. Then the equation

$$
x^{\prime \prime}(t)+a_{1}(t) x^{\prime}(t)+a_{2}(t) x(t)=y(t),
$$

has a T-periodic solution. Moreover, the periodic solution can be expressed by

$$
\begin{equation*}
x(t)=\int_{t}^{t+T} G_{2}(t, s) y(s) d s \tag{2.5}
\end{equation*}
$$

where

$$
\begin{align*}
& G_{2}(t, s) \\
& =\frac{\int_{t}^{s} \exp \left[\int_{t}^{v} b(u) d u+\int_{v}^{s} a(u) d u\right] d v+\int_{s}^{t+T} \exp \left[\int_{t}^{v} b(u) d u+\int_{v}^{s+T} a(u) d u\right] d v}{\left[\exp \left(\int_{0}^{T} a(v) d v\right)-1\right]\left[\exp \left(\int_{0}^{T} b(v) d v\right)-1\right]} . \tag{2.6}
\end{align*}
$$

Corollary 2.5. Green's function G_{2} satisfies the following proprieties

$$
\begin{aligned}
G_{2}(t+T, s+T) & =G_{2}(t, s), G_{2}(t, t+T)=G_{2}(t, t) \\
G_{2}(t+T, s) & =\exp \left(-\int_{0}^{T} b(v) d v\right)\left[G_{2}(t, s)+\int_{t}^{t+T} E(t, u) F(u, s) d u\right], \\
\frac{\partial}{\partial t} G_{2}(t, s) & =-b(t) G_{2}(t, s)+F(t, s) \\
\frac{\partial}{\partial s} G_{2}(t, s) & =a(t) G_{2}(t, s)-E(t, s)
\end{aligned}
$$

where

$$
E(t, s)=\frac{\exp \left(\int_{t}^{s} b(v) d v\right)}{\exp \left(\int_{0}^{T} b(v) d v\right)-1}, F(t, s)=\frac{\exp \left(\int_{t}^{s} a(v) d v\right)}{\exp \left(\int_{0}^{T} a(v) d v\right)-1}
$$

Lemma 2.6 ([22]). Let $A=\int_{0}^{T} a_{1}(v) d v$ and $B=T^{2} \exp \left(\frac{1}{T} \int_{0}^{T} \ln \left(a_{2}(v)\right) d v\right)$. If

$$
\begin{equation*}
A^{2} \geq 4 B \tag{2.7}
\end{equation*}
$$

then

$$
\begin{aligned}
& \min \left\{\int_{0}^{T} a(v) d v, \quad \int_{0}^{T} b(v) d v\right\} \geq \frac{1}{2}\left(A-\sqrt{A^{2}-4 B}\right)=l \\
& \max \left\{\int_{0}^{T} a(v) d v, \quad \int_{0}^{T} b(v) d v\right\} \leq \frac{1}{2}\left(A+\sqrt{A^{2}-4 B}\right)=L
\end{aligned}
$$

Corollary 2.7. Functions G_{2}, E and F satisfy

$$
\begin{aligned}
m_{2} & \leq G_{2}(t, s) \leq M_{2} \\
E(t, s) & \leq \frac{e^{L}}{e^{l}-1} \\
F(t, s) & \leq e^{L}
\end{aligned}
$$

where

$$
m_{2}=\frac{T}{(\exp (L)-1)^{2}}, \quad M_{2}=\frac{T \exp \left(\int_{0}^{T} a_{1}(v) d v\right)}{(\exp (l)-1)^{2}}
$$

Lemma 2.8 ([11]). Suppose the conditions of Lemma 2.3 hold and $h \in P_{T}$. Then the equation

$$
x^{\prime \prime \prime}(t)+p(t) x^{\prime \prime}(t)+q(t) x^{\prime}(t)+r(t) x(t)=h(t),
$$

has a T-periodic solution. Moreover, the periodic solution can be expressed by

$$
\begin{equation*}
x(t)=\int_{t}^{t+T} G(t, s) h(s) d s \tag{2.8}
\end{equation*}
$$

where

$$
\begin{equation*}
G(t, s)=\int_{t}^{t+T} G_{2}(t, \sigma) G_{1}(\sigma, s) d \sigma \tag{2.9}
\end{equation*}
$$

Corollary 2.9. Green's function G satisfies the following properties

$$
\begin{aligned}
G(t+T, s+T) & =G(t, s), G(t, t+T)=G(t, t) \exp (\rho T) \\
\frac{\partial}{\partial t} G(t, s) & =(\exp (-\rho T)-1) G_{1}(t, t) G_{2}(t, s)-b(t) G(t, s) \\
& +\int_{t}^{t+T} F(t, \sigma) G_{1}(\sigma, s) d \sigma \\
\frac{\partial}{\partial s} G(t, s) & =\rho G(t, s),
\end{aligned}
$$

and

$$
m \leq G(t, s) \leq M
$$

where

$$
m=\frac{T^{2}}{(\exp (l)-1)^{2}(\exp (\rho T)-1)}, M=\frac{T^{2} \exp \left(\rho T+\int_{0}^{T} a(v) d v\right)}{(\exp (l)-1)^{2}(\exp (\rho T)-1)}
$$

3. Main Results

In this section, we will study the existence and uniqueness of periodic solutions of (1.1).
Lemma 3.1. Suppose (h1) - (h3) and (2.4) hold. The function $x \in P_{T}$ is a solution of (1.1) if and only if

$$
\begin{align*}
x(t) & =(\exp (\rho T)-1) G(t, t) g(t, x(t-\tau(t))) \\
& +\int_{t}^{t+T} G(t, s)\{-\rho g(s, x(s-\tau(s)))+f(s, x(s), x(s-\tau(s)))\} d s . \tag{3.1}
\end{align*}
$$

Proof. Let $x \in P_{T}$ be a solution of (1.1). From Lemma 2.8, we have

$$
\begin{align*}
x(t) & =\int_{t}^{t+T} G(t, s)\left[f(s, x(s), x(s-\tau(s)))+\frac{\partial}{\partial s} g(s, x(s-\tau(s)))\right] d s \\
& =\int_{t}^{t+T} G(t, s) f(s, x(s), x(s-\tau(s))) d s \\
& +\int_{t}^{t+T} G(t, s) \frac{\partial}{\partial s} g(s, x(s-\tau(s))) d s \tag{3.2}
\end{align*}
$$

Performing an integration by parts, we get

$$
\begin{align*}
& \int_{t}^{t+T} G(t, s) \frac{\partial}{\partial s} g(s, x(s-\tau(s))) d s \\
& =\left.G(t, s) g(s, x(s-\tau(s)))\right|_{t} ^{t+T}-\int_{t}^{t+T}\left[\frac{\partial}{\partial s} G(t, s)\right] g(s, x(s-\tau(s))) d s \\
& =(\exp (\rho T)-1) G(t, t) g(t, x(t-\tau(t)))-\rho \int_{t}^{t+T} G(t, s) g(s, x(s-\tau(s))) d s \tag{3.3}
\end{align*}
$$

We obtain (3.1) by substituting (3.3) in (3.2). Since each step is reversible, the converse follows easily. This completes the proof.

Define the mapping $H: P_{T} \rightarrow P_{T}$ by

$$
\begin{align*}
& (H \varphi)(t) \\
& =\int_{t}^{t+T} G(t, s)\{-\rho g(s, \varphi(s-\tau(s)))+f(s, \varphi(s), \varphi(s-\tau(s)))\} d s \\
& +(\exp (\rho T)-1) G(t, t) g(t, \varphi(t-\tau(t))) \tag{3.4}
\end{align*}
$$

Note that to apply Krasnoselskii's fixed point theorem we need to construct two mappings, one is a contraction and the other is compact. Therefore, we express (3.4) as

$$
(H \varphi)(t)=\left(H_{1} \varphi\right)(t)+\left(H_{2} \varphi\right)(t),
$$

where $H_{1}, H_{2}: P_{T} \rightarrow P_{T}$ are given by

$$
\begin{equation*}
\left(H_{1} \varphi\right)(t)=\int_{t}^{t+T} G(t, s)\{-\rho g(s, \varphi(s-\tau(s)))+f(s, \varphi(s), \varphi(s-\tau(s)))\} d s \tag{3.5}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(H_{2} \varphi\right)(t)=(\exp (\rho T)-1) G(t, t) g(t, \varphi(t-\tau(t))) \tag{3.6}
\end{equation*}
$$

To simplify notation, we introduce the constants

$$
\begin{equation*}
\beta=\max _{t \in[0, T]}\{b(t)\}, \delta=\frac{\exp (L)}{\exp (l)-1} \tag{3.7}
\end{equation*}
$$

Lemma 3.2. Suppose ($h 1$) - (h3), (2.4) and (2.7) hold. Then $H_{1}: P_{T} \rightarrow P_{T}$ is compact.

Proof. Let H_{1} be defined by (3.5). Obviously, $H_{1} \varphi$ is continuous and it is easy to show that $\left(H_{1} \varphi\right)(t+T)=\left(H_{1} \varphi\right)(t)$. To see that H_{1} is continuous, we let $\varphi, \psi \in P_{T}$. Given $\varepsilon>0$, take $\theta=\varepsilon / N$ with $N=M T\left(\rho k_{1}+k_{2}+k_{3}\right)$ where k_{1}, k_{2} and k_{3} are given by ($h 3$). Now, for $\|\varphi-\psi\|<\theta$, we obtain
$\left\|H_{1} \varphi-H_{1} \psi\right\| \leq M \int_{t}^{t+T}\left[\rho k_{1}\|\varphi-\psi\|+\left(k_{2}+k_{3}\right)\|\varphi-\psi\| d s\right] \leq N\|\varphi-\psi\|<\varepsilon$.
This proves that H_{1} is continuous. To show that the image of H_{1} is contained in a compact set, we consider $\mathbb{D}=\left\{\varphi \in P_{T}:\|\varphi\| \leq \mathfrak{L}\right\}$, where \mathfrak{L} is a fixed positive constant. Let $\varphi_{n} \in \mathbb{D}$, where n is a positive integer. Observe that in view of ($h 3$) we have

$$
\begin{aligned}
|g(t, x)| & =|g(t, x)-g(t, 0)+g(t, 0)| \\
& \leq|g(t, x)-g(t, 0)|+|g(t, 0)| \\
& \leq k_{1}\|x\|+\mu_{1},
\end{aligned}
$$

and

$$
\begin{aligned}
|f(t, x, y)| & =|f(t, x, y)-f(t, 0,0)+f(t, 0,0)| \\
& \leq|f(t, x, y)-f(t, 0,0)|+|f(t, 0,0)| \\
& \leq k_{2}\|x\|+k_{3}\|y\|+\mu_{2}
\end{aligned}
$$

where $\mu_{1}=\max _{t \in[0, T]}|g(t, 0)|$ and $\mu_{2}=\max _{t \in[0, T]}|f(t, 0,0)|$. Hence if H_{1} is given by (3.5) we obtain

$$
\left\|H_{1} \varphi_{n}\right\| \leq D
$$

for some positive D. Next we calculate $\frac{d}{d t}\left(H_{1} \varphi_{n}\right)(t)$ and show that it is uniformly bounded. By making use of $(h 1),(h 2)$ and (h3) we obtain by taking the derivative in (3.5) that

$$
\begin{aligned}
& \frac{d}{d t}\left(H_{1} \varphi_{n}\right)(t) \\
& =\int_{t}^{t+T}\left[(\exp (-\rho T)-1) G_{1}(t, t) G_{2}(t, s)-b(t) G(t, s)\right. \\
& \left.+\int_{t}^{t+T} F(t, \sigma) G_{1}(\sigma, s) d \sigma\right][-\rho g(s, \varphi(s-\tau(s)))+f(s, \varphi(s), \varphi(s-\tau(s)))] d s
\end{aligned}
$$

Consequently, by invoking ($h 3$) and (3.7), we obtain

$$
\begin{aligned}
& \left|\frac{d}{d t}\left(H_{1} \varphi_{n}\right)(t)\right| \\
& \leq\left[(1-\exp (-\rho T)) M_{1} M_{2}+M \beta+M_{1} \delta T\right]\left(\rho\left(k_{1} \mathfrak{L}+\mu_{1}\right)+\left(k_{2}+k_{3}\right) \mathfrak{L}+\mu_{2}\right) T \\
& \leq K,
\end{aligned}
$$

for some positive K. Hence the sequence $\left(H_{1} \varphi_{n}\right)$ is uniformly bounded and equicontinuous. The Ascoli-Arzela theorem implies that a subsequence $\left(H_{1} \varphi_{n_{k}}\right)$ of $\left(H_{1} \varphi_{n}\right)$ converges uniformly to continuous T-periodic function. Thus H_{1} is continuous and $H_{1}(\mathbb{D})$ is contained in a compact subset of P_{T}.

Lemma 3.3. If H_{2} is given by (3.6) with

$$
\begin{equation*}
k_{1}(\exp (\rho T)-1) M<1, \tag{3.8}
\end{equation*}
$$

then $H_{2}: P_{T} \rightarrow P_{T}$ is a contraction.
Proof. Let H_{2} be defined by (3.6). It is easy to show that $\left(H_{2} \varphi\right)(t+T)=$ $\left(H_{2} \varphi\right)(t)$. To see that H_{2} is a contraction, let $\varphi, \psi \in P_{T}$. Then we have

$$
\left\|H_{2} \varphi-H_{2} \psi\right\|=\sup _{t \in[0, T]}\left|\left(H_{2} \varphi\right)(t)-\left(H_{2} \psi\right)(t)\right| \leq k_{1}(\exp (\rho T)-1) M\|\varphi-\psi\| .
$$

Hence $H_{2}: P_{T} \rightarrow P_{T}$ is a contraction.
Theorem 3.4. Suppose that conditions (h1) - (h3), (2.4), (2.7) and (3.8) hold. Suppose there exists a positive constant J satisfying the inequality

$$
(\exp (\rho T)-1) M\left(k_{1} J+\mu_{1}\right)+\left(\rho\left(k_{1} J+\mu_{1}\right)+\left(k_{2}+k_{3}\right) J+\mu_{2}\right) T \leq J
$$

Then (1.1) has a solution $x \in P_{T}$ such that $\|x\| \leq J$.
Proof. Define $\mathbb{M}=\left\{\varphi \in P_{T}:\|\varphi\| \leq J\right\}$. By Lemma 3.2, the operator $H_{1}: \mathbb{M} \rightarrow$ P_{T} is compact and continuous. Also, from Lemma 3.3, the operator $H_{2}: \mathbb{M} \rightarrow P_{T}$
is a contraction. Conditions (ii) and (iii) of Krasnoselskii theorem are satisfied. We need to show that condition (i) is fulfilled. To this end, let $\varphi, \psi \in \mathbb{M}$. Then

$$
\begin{aligned}
& \left|\left(H_{1} \varphi\right)(t)+\left(H_{2} \psi\right)(t)\right| \\
& \leq M \int_{t}^{t+T}\left[\rho\left(k_{1}\|\varphi\|+\mu_{1}\right)+\left(k_{2}+k_{3}\right)\|\varphi\|+\mu_{2}\right] d s \\
& +(\exp (\rho T)-1) M\left(k_{1}\|\psi\|+\mu_{1}\right) \\
& \leq(\exp (\rho T)-1) M\left(k_{1} J+\mu_{1}\right)+\left(\rho\left(k_{1} J+\mu_{1}\right)+\left(k_{2}+k_{3}\right) J+\mu_{2}\right) T \leq J .
\end{aligned}
$$

Thus $\left\|H_{1} \varphi+H_{2} \psi\right\| \leq J$ and so $H_{1} \varphi+H_{2} \psi \in \mathbb{M}$. All the conditions of Krasnoselskii theorem are satisfied and consequently the operator H defined in (3.4) has a fixed point in \mathbb{M}. By Lemma 3.1 this fixed point is a solution of (1.1) and the proof is complete.

Theorem 3.5. Suppose that conditions (h1) - (h3), (2.4) and (2.7) hold. If

$$
(\exp (\rho T)-1) M k_{1}+\left(\rho k_{1}+k_{2}+k_{3}\right) T<1
$$

then (1.1) has a unique T-periodic solution.
Proof. Let the mapping H be given by (3.4). For $\varphi, \psi \in P_{T}$, we have

$$
\begin{aligned}
& |(H \varphi)(t)-(H \psi)(t)| \\
& \leq M \int_{t}^{t+T}\left[\rho k_{1}\|\varphi-\psi\|+\left(k_{2}+k_{3}\right)\|\varphi-\psi\|\right] d s+(\exp (\rho T)-1) M k_{1}\|\varphi-\psi\|
\end{aligned}
$$

Hence

$$
\|H \varphi-H \psi\| \leq\left[(\exp (\rho T)-1) M k_{1}+\left(\rho k_{1}+k_{2}+k_{3}\right) T\right]\|\varphi-\psi\|
$$

By the contraction mapping principle, H has a fixed point in P_{T} and by Lemma 3.1, this fixed point is a solution of (1.1). The proof is complete.

References

1. A. Ardjouni and A. Djoudi, Existence of periodic solutions for a second-order nonlinear neutral differential equation with variable delay, Palestine J. Math., 3 (2014), no. 2, 191197.
2. A. Ardjouni, A. Djoudi and A. Rezaiguia, Existence of positive periodic solutions for two types of third-order nonlinear neutral differential equations with variable delay, Appl. Math. E-Notes, 14 (2014), 86-96.
3. A. Ardjouni and A. Djoudi, Existence of positive periodic solutions for a nonlinear neutral differential equations with variable delay, Appl. Math. E-Notes, 12 (2012), 94-101.
4. A. Ardjouni and A. Djoudi, Existence of periodic solutions for a second order nonlinear neutral differential equation with functional delay, Electron. J. Qual. Theory Differ. Equ., (2012), no. 31, 1-9.
5. A. Ardjouni and A. Djoudi, Periodic solutions for a second-order nonlinear neutral differential equation with variable delay, Electron. J. Differential Equations, 2011 (2011), no. 128, 1-7.
6. A. Ardjouni and A. Djoudi, Periodic solutions in totally nonlinear dynamic equations with functional delay on a time scale, Rend. Sem. Mat. Univ. Politec. Torino, 68 (2010), no. 4, 349-359.
7. T. A. Burton, Liapunov functionals, fixed points and stability by Krasnoselskii's theorem, Nonlinear Stud., 9 (2002), no. 2, 181-190.
8. T. A. Burton, Stability by Fixed Point Theory for Functional Differential Equations, Dover Publications, New York, 2006.
9. F. D. Chen, Positive periodic solutions of neutral Lotka-Volterra system with feedback control, Appl. Math. Comput., 162 (2005), no. 3, 1279-1302.
10. F. D. Chen and J. L. Shi, Periodicity in a nonlinear predator-prey system with state dependent delays, Acta Math. Appl. Sin. Engl. Ser., 21 (2005), no. 1, 49-60.
11. Z. Cheng and J. Ren, Existence of positive periodic solution for variable-coefficient thirdorder differential equation with singularity, Math. Meth. Appl. Sci., (2014), no. 37, 22812289.
12. Z. Cheng and Y. Xin, Multiplicity Results for variable-coefficient singular third-order differential equation with a parameter, Abstr. Appl. Anal., 2014 (2014), 1-10.
13. S. Cheng and G. Zhang, Existence of positive periodic solutions for non-autonomous functional differential equations, Electron. J. Differential Equations, 59 (2001), 1-8.
14. H. Deham and A. Djoudi, Periodic solutions for nonlinear differential equation with functional delay, Georgian Math. J., 15 (2008), no. 4, 635-642.
15. H. Deham and A. Djoudi, Existence of periodic solutions for neutral nonlinear differential equations withvariable delay, Electron. J. Differential Equations, 2010 (2010), no. 127, 1-8.
16. Y. M. Dib, M. R. Maroun and Y. N. Rafoul, Periodicity and stability in neutral nonlinear differential equations with functional delay, Electron. J. Differential Equations, 2005 (2005), no. 142, 1-11.
17. M. Fan and K. Wang, P. J. Y. Wong and R. P. Agarwal, Periodicity and stability in periodic n-species Lotka-Volterra competition system with feedback controls and deviating arguments, Acta Math. Sin. (Engl. Ser.), 19 (2003), no. 4, 801-822.
18. H. I. Freedman, J. Wu, Periodic solutions of single-species models with periodic delay, SIAM J. Math. Anal., 23 (1992), 689-701.
19. M. Gregus, Third Order Linear Differential Equations, Reidel, Dordrecht, 1987.
20. Y. Kuang, Delay Differential Equations with Application in Population Dynamics, Academic Press, New York, 1993.
21. W. G. Li and Z. H. Shen, An constructive proof of the existence Theorem for periodic solutions of Duffng equations, Chinese Sci. Bull., 42 (1997), 1591-1595.
22. Y. Liu, W. Ge, Positive periodic solutions of nonlinear Duffing equations with delay and variable coefficients, Tamsui Oxf. J. Math. Sci., 20 (2004), 235-255.
23. J. Ren, S. Siegmund and Y. Chen, Positive periodic solutions for third-order nonlinear differential equations, Electron. J. Differential Equations, 2011 (2011), no. 66, 1-19.
24. D. R. Smart, Fixed Points Theorems, Cambridge University Press, Cambridge, 1980.
25. Q. Wang, Positive periodic solutions of neutral delay equations (in Chinese), Acta Math. Sinica (N.S.), 6 (1996), 789-795.
26. Y. Wang, H. Lian and W. Ge, Periodic solutions for a second order nonlinear functional differential equation, Appl. Math. Lett., 20 (2007), 110-115.
27. W. Zeng, Almost periodic solutions for nonlinear Duffing equations, Acta Math. Sinica (N.S.), 13 (1997), 373-380.
28. G. Zhang, S. Cheng, Positive periodic solutions of non autonomous functional differential equations depending on a parameter, Abstr. Appl. Anal., 7 (2002), 279-286.
${ }^{1}$ Department of Mathematics and Informatics, University of Souk Ahras, P.O. Box 1553, Souk Ahras, 41000, Algeria.

E-mail address: abd_ardjouni@yahoo.fr, fnouioua@gmail.com
2 Department of Mathematics, University of Annaba, P.O. Box 12, Annaba, 23000, Algeria.

E-mail address: adjoudi@yahoo.com

[^0]: Date: Received: 16 November 2016; Revised: 16 March 2017; Accepted: 22 March 2017.

 * Corresponding author.

 2010 Mathematics Subject Classification. Primary 34K13, 34A34; Secondary 34K30, 34L30.
 Key words and phrases. Fixed point, periodic solutions, third-order nonlinear delay differential equations.

