DOUBLE n-ARY RELATIONAL STRUCTURES

JIŘÍ KARÁSEK, Brno

(Received January 22, 1996)

Abstract. In [7], V. Novák and M. Novotný studied ternary relational structures by means of pairs of binary structures; they obtained the so-called double binary structures. In this paper, the idea is generalized to relational structures of any finite arity.

Keywords: n-ary relation, n-ary structure, binding relation, double n-ary structure

MSC 1991: 04A05, 08A02

Let G be a set, let $n \ge 2$ be an integer. As usual, an n-ary relation on G is defined as a set $R \subseteq G^n$. The pair $\mathbf{G} = (G, R)$ is then called an n-ary relational structure (or briefly an n-ary structure). An n-ary structure $\mathbf{G} = (G, R)$ (and the relation R on G as well) is called

symmetric if $(x_1, x_2, \dots, x_n) \in R$ implies $(x_n, x_{n-1}, \dots, x_1) \in R$ for any $x_1, x_2, \dots, x_{n-1}, x_n \in G$;

asymmetric if $(x_1, x_2, \dots, x_n) \in R$ implies $(x_n, x_{n-1}, \dots, x_1) \notin R$ for any $x_1, x_2, \dots, x_{n-1}, x_n \in G$;

cyclic if $(x_1, x_2, \ldots, x_n) \in R$ implies $(x_2, x_3, \ldots, x_n, x_1) \in R$ for any $x_1, x_2, x_3, \ldots, x_n \in G$;

transitive if $(x_1, x_2, \dots, x_n) \in R$, $(x_n, x_{n-1}, \dots, x_2, x_{n+1}) \in R$ imply $(x_1, x_2, \dots, x_{n-1}, x_{n+1}) \in R$ for any $x_1, x_2, \dots, x_{n-1}, x_n, x_{n+1} \in G$;

weakly transitive if $(x, y, y, \dots, y) \in R$, $(y, y, \dots, y, z) \in R$ imply $(x, y, y, \dots, y, z) \in R$ for any $x, y, z \in G$.

For any $\alpha = (x_1, x_2, \dots, x_n) \in G^n$, put $\alpha^{-1} = (x_n, x_{n-1}, \dots, x_1)$, $\alpha' = (x_{n-1}, x_{n-2}, \dots, x_1, x_n)$.

Let ϱ be an *n*-ary relation on G, let r be a binary relation on ϱ with the property: If $\alpha = (x_1, x_2, \ldots, x_n) \in \varrho$, $\beta = (y_1, y_2, \ldots, y_n) \in \varrho$, $(\alpha, \beta) \in r$, then $x_{j+1} = y_j$ for $j = 1, 2, \ldots, n-1$. Then r is called a binding relation on ϱ .

Let ϱ be an *n*-ary relation on G, let r be a binding relation on ϱ . Then the triple $\mathbf{G} = (G, \varrho, r)$ is called a double *n*-ary relational structure (or briefly a double *n*-ary structure). An element $\alpha \in \varrho$ is called isolated in G if $(\alpha, \beta) \notin r$ and $(\beta, \alpha) \notin r$ for any $\beta \in \varrho$. The set of all isolated elements in G is denoted by ϱ_i .

A double n-ary structure $\mathbf{G} = (G, \varrho, r)$ (and its binary relation r) is called inversely symmetric if $(\alpha, \beta) \in r$ implies $(\beta^{-1}, \alpha^{-1}) \in r$ for any $\alpha, \beta \in \varrho$; inversely asymmetric if $(\alpha, \beta) \in r$ implies $(\beta^{-1}, \alpha^{-1}) \notin r$ for any $\alpha, \beta \in \varrho$; transferable if $(\alpha, \beta) \in r$ implies the existence of elements $\alpha_1, \alpha_2, \ldots, \alpha_{n-1} \in \varrho$ such that $(\beta, \alpha_1) \in r$, $(\alpha_j, \alpha_{j+1}) \in r$ for $j = 1, 2, \ldots, r-2, (\alpha_{n-1}, \alpha) \in r$ for any $\alpha, \beta \in \varrho$;

reversely transitive if $(\alpha, \beta) \in r$, $(\beta^{-1}, \gamma') \in r$ imply $(\alpha, \gamma) \in r$ for any $\alpha, \beta, \gamma \in \varrho$. Let $\mathbf{G} = (G, \varrho, r)$ be a double *n*-ary structure. Define an (n+1)-ary relation R on G as follows:

 $(x_1,x_2,\ldots,x_n,x_{n+1})\in R\Longleftrightarrow (x_1,x_2,\ldots,x_n)=\alpha\in\varrho,\ (x_2,x_3,\ldots,x_n,x_{n+1})=\beta\in\varrho,\ (\alpha,\beta)\in r\ \text{for any}\ x_1,\ x_2,\ x_3,\ \ldots,\ x_n,\ x_{n+1}\in G.\ \text{Denote}\ U(\mathbf{G})=(G,R).$ Then $U(\mathbf{G})$ is an (n+1)-ary structure.

If we denote by ${}_{2}\mathcal{R}_{n}$ the class of all double *n*-ary structures, and by \mathcal{R}_{n+1} the class of all (n+1)-ary structures, then U is a map of ${}_{2}\mathcal{R}_{n}$ into \mathcal{R}_{n+1} .

Now, let $\mathbf{G} = (G, R)$ be an (n+1)-ary structure. Define an n-ary relation ϱ on G as follows:

 $(x_1, x_2, \ldots, x_n) \in \varrho \iff$ there exists $t \in G$ such that $(x_1, x_2, \ldots, x_n, t) \in R$ or $(t, x_1, x_2, \ldots, x_n) \in R$ for any $x_1, x_2, \ldots, x_n \in G$; further, define a binary relation r on ϱ as follows:

 $(\alpha,\beta) \in r \iff \alpha = (x_1,x_2,\ldots,x_n) \in \varrho, \ \beta = (x_2,x_3,\ldots,x_{n+1}) \in \varrho, \ (x_1,x_2,\ldots,x_n,x_{n+1}) \in R \text{ for any } x_1,\ x_2,\ \ldots,\ x_n,\ x_{n+1} \in G. \text{ Denote } L(\mathbf{G}) = (G,\varrho,r). \text{ Then } L(\mathbf{G}) \text{ is a double } n\text{-ary structure and } L \text{ is a map of } \mathcal{R}_{n+1} \text{ into } {}_2\mathcal{R}_n.$

Moreover, denote by ${}_{2}\mathcal{R}'_{n}$ the class of all double n-ary structures without isolated elements.

1. Theorem. Let **G** be an (n+1)-ary structure. Then $(U \cdot L)(\mathbf{G}) = \mathbf{G}$, i.e. $U \cdot L = \mathrm{id}_{\mathcal{R}_{n+1}}$.

Proof. Let $\mathbf{G}=(G,R),\ L(\mathbf{G})=(G,\varrho,r),\ (U\cdot L)(\mathbf{G})=(G,R').$ Let $(x_1,x_2,\ldots,x_n,x_{n+1})\in R.$ By the definition of L, we have $(x_1,x_2,\ldots,x_n)=\alpha\in\varrho,\ (x_2,x_3,\ldots,x_n,x_{n+1})=\beta\in\varrho,\ (\alpha,\beta)\in r.$ By the definition of U, we have $(x_1,x_2,\ldots,x_n,x_{n+1})\in R'.$ Thus $R\subseteq R'.$ Let $(x_1,x_2,\ldots,x_n,x_{n+1})\in R'.$ Then, by the definition of $U,\ (x_1,x_2,\ldots,x_n)=\alpha\in\varrho,\ (x_2,x_3,\ldots,x_n,x_{n+1})=\beta\in\varrho,\ (\alpha,\beta)\in r.$ By the definition of $L,\ (x_1,x_2,\ldots,x_{n+1})\in R.$ Hence $R'\subseteq R.$ Summarizing, we conclude R=R'.

2. Theorem. Let $\mathbf{G} = (G, \varrho, r)$ be a double n-ary structure and let $(L \cdot U)(\mathbf{G}) = (G, \varrho', r')$. Then $\varrho' = \varrho - \varrho_i$, r' = r, i.e. $L \cdot U|_2 \mathcal{R}'_n = \mathrm{id}_{2\mathcal{R}'_n}$.

Proof. Denote $U(\mathbf{G})=(G,R)$. Let $(x_1,x_2,\ldots,x_n)\in\varrho'$. Then, by the definition of L, there exists $t\in G$ such that $(x_1,x_2,\ldots,x_n,t)\in R$ or $(t,x_1,x_2,\ldots,x_n)\in R$. In the first case, by the definition of U, we have $(x_1,x_2,\ldots,x_n)=\alpha\in\varrho$, $(x_2,x_3,\ldots,x_n,t)=\beta\in\varrho$, $(\alpha,\beta)\in r$, thus the element $\alpha\in\varrho$ is not isolated, so that $\alpha\in\varrho-\varrho_i$. In the second case, $(t,x_1,x_2,\ldots,x_{n-1})=\alpha\in\varrho$, $(x_1,x_2,\ldots,x_{n-1},x_n)=\beta\in\varrho$, $(\alpha,\beta)\in r$, hence the element $\beta\in\varrho$ is not isolated and $\beta\in\varrho-\varrho_i$. We have $\varrho'\subseteq\varrho-\varrho_i$. Let, on the contrary, $\alpha=(x_1,x_2,\ldots,x_n)\in\varrho-\varrho_i$. Then there exists $\beta\in\varrho$ such that $(\alpha,\beta)\in r$ or $(\beta,\alpha)\in r$. In the first case we have $\beta=(x_1,x_2,\ldots,x_n,t)$ for some $t\in G$, therefore, by the definition of U, $(x_1,x_2,\ldots,x_n,t)\in R$ and, by the definition of L, $\alpha\in\varrho'$. The second case is analogous. Hence $\varrho-\varrho_i\subseteq\varrho'$. Altogether, we have $\varrho'=\varrho-\varrho_i$.

Let $(\alpha,\beta) \in r'$. By the definition of L, $\alpha = (x_1,x_2,\ldots,x_n)$, $\beta = (x_2,x_3,\ldots,x_n,x_n,x_{n+1}) \in R$ for some $x_1, x_2, x_3,\ldots,x_n, x_{n+1} \in G$, $(x_1,x_2,\ldots,x_n,x_{n+1}) \in R$. This implies, by the definition of U, $\alpha \in \varrho$, $\beta \in \varrho$, $(\alpha,\beta) \in r$. Thus $r' \subseteq r$. Let $(\alpha,\beta) \in r$. Then $\alpha = (x_1,x_2,\ldots,x_n) \in \varrho$, $\beta = (x_2,x_3,\ldots,x_n,x_{n+1}) \in \varrho$ for some $x_1, x_2, x_3, \ldots, x_n, x_{n+1} \in G$, hence, by the definition of U, we have $(x_1,x_2,\ldots,x_n,x_{n+1}) \in R$. Consequently, by the definition of L, $\alpha \in \varrho'$, $\beta \in \varrho'$, $(\alpha,\beta) \in r'$, and $r \subseteq r'$. Summarizing, we obtain r = r'.

In the case that G contains no isolated elements, we have $\varrho_i = \emptyset$, thus $\varrho = \varrho'$, r = r', so that $L \cdot U|_2 \mathcal{R}'_n = \mathrm{id}_{2\mathcal{R}'_n}$.

Denote by ${}_{2}\mathbf{R}_{n}$ the category whose class of objects is ${}_{2}\mathcal{R}_{n}$ and whose morphisms are maps preserving both relations, i.e., for $\mathbf{G}=(G,\varrho,r), \ \mathbf{H}=(H,\sigma,s)\in{}_{2}\mathcal{R}_{n}$, a map $f:G\longrightarrow H$ is a morphism if $(x_{1},x_{2},\ldots,x_{n})\in\varrho$ implies $(f(x_{1}),f(x_{2}),\ldots,f(x_{n}))\in\sigma$, and $((x_{1},x_{2},\ldots,x_{n}),(x_{2},x_{3},\ldots,x_{n+1}))\in r$ implies $((f(x_{1}),f(x_{2}),\ldots,f(x_{n})),(f(x_{2}),f(x_{3}),\ldots,f(x_{n+1})))\in s$ for any $x_{1},x_{2},x_{3},\ldots,x_{n},x_{n+1}\in G$.

Further, denote by \mathbf{R}_{n+1} the category whose class of objects is \mathcal{R}_{n+1} and whose morphisms are maps preserving the relation, i.e., for $\mathbf{G} = (G, H), \mathbf{H} = (H, S) \in \mathcal{R}_{n+1}$ a map $f: G \longrightarrow H$ is a morphism if $(x_1, x_2, \ldots, x_n, x_{n+1}) \in R$ implies $(f(x_1), f(x_2), \ldots, f(x_n), f(x_{n+1})) \in S$ for any $x_1, x_2, \ldots, x_n, x_{n+1} \in G$.

Moreover, for any morphism $f \in \operatorname{Hom}_{2\mathcal{R}_n}(\mathbf{G}, \mathbf{H})$, where $\mathbf{G} = (G, \varrho, r)$, $\mathbf{H} = (H, \sigma, s)$, denote U(f) = f. Similarly, for any morphism $f \in \operatorname{Hom}_{\mathbf{R}_{n+1}}(\mathbf{G}, \mathbf{H})$, denote L(f) = f.

3. Theorem. U is a covariant functor from the category ${}_{2}\mathbf{R}_{n}$ to the category \mathbf{R}_{n+1} , L is a covariant functor from the category \mathbf{R}_{n+1} to the category ${}_{2}\mathbf{R}_{n}$.

Proof. Let $f \in \text{Hom}_{2\mathbf{R}_n}(\mathbf{G}, \mathbf{H})$, where $\mathbf{G} = (G, \varrho, r)$, $\mathbf{G} = (G, R)$, $\mathbf{H} = (H, \sigma, s)$, $U(\mathbf{H}) = (H, S)$. Let $(x_1, x_2, \dots, x_n, x_{n+1}) \in R$. Then $(x_1, x_2, \dots, x_n) \in \varrho$,

 $(x_2, x_3, \ldots, x_n, x_{n+1}) \in \varrho$, $((x_1, x_2, \ldots, x_n), (x_2, x_3, \ldots, x_n, x_{n+1})) \in r$, so that $(f(x_1), f(x_2), \ldots, f(x_n)) \in \sigma$, $(f(x_2), f(x_3), \ldots, f(x_n), f(x_{n+1})) \in \sigma$, $((f(x_1), f(x_2), \ldots, f(x_n)), (f(x_2), f(x_3), \ldots, f(x_n), f(x_{n+1}))) \in s$, thus $(f(x_1), f(x_2), \ldots, f(x_n), f(x_{n+1})) \in S$ and $U(f) \in \operatorname{Hom}_{\mathbf{R}_{n+1}} (U(\mathbf{G}), U(\mathbf{H}))$. It is easy to show that $U(\operatorname{id}_{\mathbf{G}}) = \operatorname{id}_{U(\mathbf{G})}$ for any $\mathbf{G} \in {}_{2}\mathcal{R}_{n}$ and $U(g \cdot f) = U(g) \cdot U(f)$ for any $f \in \operatorname{Hom}_{{}_{2}\mathbf{R}_{n}}(\mathbf{G}, \mathbf{H}), g \in \operatorname{Hom}_{{}_{2}\mathbf{R}_{n}}(\mathbf{H}, \mathbf{K}), \mathbf{G}, \mathbf{H}, \mathbf{K} \in {}_{2}\mathcal{R}_{n}$. Analogously for L. \square

- **4. Theorem.** Let G be a double n-ary structure. Then the following assertions hold:
 - (i) **G** is inversely symmetric if and only if $U(\mathbf{G})$ is symmetric.
- (ii) G is inversely asymmetric if and only if U(G) is asymmetric.

Proof. Let $\mathbf{G} = (G, \varrho, r), U(\mathbf{G}) = (G, R).$

- (i) Let G be inversely symmetric and let $(x_1,x_2,\ldots,x_n,x_{n+1})\in R$. Then $(x_1,x_2,\ldots,x_n)=\alpha\in\varrho,\ (x_2,x_3,\ldots,x_n,x_{n+1})=\beta\in\varrho,\ (\alpha,\beta)\in r$. This implies $(\beta^{-1},\alpha^{-1})\in r$, thus $\beta^{-1}=(x_{n+1},x_n,\ldots,x_3,x_2)\in\varrho,\ \alpha^{-1}=(x_n,\ldots,x_2,x_1)\in\varrho$, so that $(x_{n+1},x_n,\ldots,x_2,x_1)\in R$ and $U(\mathbf{G})$ is symmetric. Let $U(\mathbf{G})$ be symmetric and let $(\alpha,\beta)\in r$. Then there exist elements $x_1,\ x_2,\ldots,x_n,\ x_{n+1}\in G$ such that $\alpha=(x_1,x_2,\ldots,x_n)\in\varrho,\ \beta=(x_2,x_3,\ldots,x_n,x_{n+1})\in\varrho$. This implies $(x_1,x_2,\ldots,x_n,x_{n+1})\in R$, so that $(x_{n+1},x_n,\ldots,x_2,x_1)\in R$, i.e. $(x_{n+1},x_n,\ldots,x_3,x_2)=\beta^{-1}\in\varrho,\ (x_n,\ldots,x_2,x_1)=\alpha^{-1}\in\varrho,$ hence $(\beta^{-1},\alpha^{-1})\in r$ and \mathbf{G} is inversely symmetric.
- (ii) Let \mathbf{G} be inversely asymmetric and let $(x_1,x_2,\ldots,x_n,x_{n+1})\in R$. Then again $(x_1,x_2,\ldots,x_n)=\alpha\in\varrho,\ (x_2,x_3,\ldots,x_n,x_{n+1})=\beta\in\varrho,\ (\alpha,\beta)\in r$. This implies $(\beta^{-1},\alpha^{-1})\notin r$. But $\beta^{-1}=(x_{n+1},x_n,\ldots,x_3,x_2),\ \alpha^{-1}=(x_n,\ldots,x_2,x_1)$, thus $(x_{n+1},x_n,\ldots,x_2,x_1)\notin R$ and $U(\mathbf{G})$ is asymmetric. Let $U(\mathbf{G})$ be asymmetric and let $(\alpha,\beta)\in r$. Then there exist elements $x_1,\ x_2,\ x_3,\ \ldots,\ x_n,\ x_{n+1}\in G$ such that $(x_1,x_2,\ldots,x_n)=\alpha\in\varrho,\ (x_2,x_3,\ldots,x_n,x_{n+1})=\beta\in\varrho$. This implies $(x_1,x_2,\ldots,x_n,x_{n+1})\in R$, so that $(x_{n+1},x_n,\ldots,x_2,x_1)\notin R$. Consequently $(x_{n+1},x_n,\ldots,x_3,x_2)=\beta^{-1}\notin\varrho$ or $(x_n,\ldots,x_2,x_1)=\alpha^{-1}\notin\varrho$ or $\beta^{-1},\ \alpha^{-1}\in\varrho$, but $(\beta^{-1},\alpha^{-1})\notin r$. In all three cases, however, we have $(\beta^{-1},\alpha^{-1})\notin r$, and \mathbf{G} is inversely asymmetric.
- **5.** Theorem. Let **G** be an (n+1)-ary structure. Then the following assertions hold:
 - (i) G is symmetric if and only if L(G) is inversely symmetric.
- (ii) G is asymmetric if and only if L(G) is inversely asymmetric.
- Proof. (i) If $L(\mathbf{G})$ is inversely symmetric, then, by 4, $U(L(\mathbf{G}))$ is symmetric. But, by 1, $U(L(\mathbf{G})) = \mathbf{G}$. If $\mathbf{G} = U(L(\mathbf{G}))$ is symmetric, then, by 4, $L(\mathbf{G})$ is inversely symmetric.

- (ii) If $L(\mathbf{G})$ is inversely asymmetric, then, by 4, $U(L(\mathbf{G}))$ is asymmetric. But $U(L(\mathbf{G})) = \mathbf{G}$. If $\mathbf{G} = U(L(\mathbf{G}))$ is asymmetric, then, by 4, $L(\mathbf{G})$ is inversely asymmetric.
- **6. Theorem.** Let G be a double n-ary structure. Then G is transferable if and only if U(G) is cyclic.

Proof. Let $\mathbf{G}=(G,\varrho,r),\ U(\mathbf{G})=(G,R).$ Let \mathbf{G} be transferable and let $(x_1,x_2,\ldots,x_n,x_{n+1})\in R.$ Then $(x_1,x_2,\ldots,x_n)=\alpha\in\varrho,\ (x_2,x_3,\ldots,x_n,x_{n+1})=\beta\in\varrho,\ (\alpha,\beta)\in r.$ Thus, there exist $\alpha_1,\ \alpha_2,\ldots,\alpha_{n-1}\in\varrho$ such that $(\beta,\alpha_1)\in r,\ (\alpha_j,\alpha_{j+1})\in r$ for $j=1,2,\ldots,n-2$ and $(\alpha_{n-1},\alpha)\in r.$ Denote $\alpha_0=\beta,\ \alpha_n=\alpha.$ Then we have (α_j,α_{j+1}) for $j=0,1,2,\ldots,n-1.$ We shall show by induction that $\alpha_j=(x_{j+2},x_{j+3},\ldots,x_n,x_{n+1},x_1,x_2,\ldots,x_j)$ for $j=0,1,2,\ldots,n.$ For j=0 it is true. Let $0< j_0\leqslant n.$ Let the preceding hold for each $j,\ 0\leqslant j< j_0.$ As $(\alpha_{j_0-1},\alpha_{j_0})\in r$ and r is binding, there exists $y\in G$ such that $\alpha_{j_0}=(x_{j_0+2},x_{j_0+3},\ldots,x_1,\ldots,x_{j_0-1},y).$ We shall show by another induction that α_{j_0+k} has y on the (n-k)-th position, for $k=0,1,2,\ldots,n-j_0.$ For k=0 it is true. Let $0< k_0\leqslant n-j_0.$ As $(\alpha_{j_0+k_0-1},\alpha_{j_0+k_0})\in r,$ $\alpha_{j_0+k_0-1}$ has y on the $(n-k_0+1)$ -th position, and r is binding, $\alpha_{j_0+k_0}$ has y on the $(n-k_0)$ -th position. Particularly, α_n has y on the j_0 -th position, hence $y=x_{j_0}.$ Thus, we have $\beta=(x_2,x_3,\ldots,x_n,x_{n+1})\in\varrho,\ \alpha_1=(x_3,x_4,\ldots,x_n,x_{n+1},x_1)\in\varrho,\ (\beta,\alpha_1)\in r,$ so that $(x_2,x_3,\ldots,x_n,x_{n+1},x_1)\in R$ and $U(\mathbf{G})$ is cyclic.

Let, on the contrary, $U(\mathbf{G})$ be cyclic and let $(\alpha, \beta) \in r$. Then there exist elements $x_1, x_2, \ldots, x_n, x_{n+1} \in G$ such that $\alpha = (x_1, x_2, \ldots, x_n) \in \varrho$, $\beta = (x_2, x_3, \ldots, x_n, x_{n+1}) \in \varrho$, thus $(x_1, x_2, \ldots, x_n, x_{n+1}) \in R$. Hence $(x_2, x_3, \ldots, x_n, x_{n+1}, x_1) \in R$, $(x_3, x_4, \ldots, x_n, x_{n+1}, x_1, x_2) \in R$, $(x_{n+1}, x_1, x_2, \ldots, x_n) \in R$. Denote $\alpha_1 = (x_3, x_4, \ldots, x_n, x_{n+1}, x_1)$, $\alpha_2 = (x_4, x_5, \ldots, x_{n+1}, x_1, x_2)$, \ldots , $\alpha_{n-1} = (x_{n+1}, x_1, x_2, \ldots, x_{n-1})$. Then $\alpha_j \in \varrho$ for $j = 1, 2, \ldots, n-1$, $(\beta, \alpha_1) \in r$, $(\alpha_j, \alpha_{j+1}) \in r$ for $j = 1, 2, \ldots, n-2$, $(\alpha_{n-1}, \alpha) \in r$. Consequently, \mathbf{G} is transferable.

7. Theorem. Let $L(\mathbf{G})$ be an (n+1)-ary structure. Then \mathbf{G} is cyclic if and only if $L(\mathbf{G})$ is transferable.

Proof. Let $L(\mathbf{G})$ be transferable. By 6, $U(L(\mathbf{G}))$ is cyclic. But, by 1, $\mathbf{G} = U(L(\mathbf{G}))$.

Let G = U(L(G)) be cyclic. Then, by 6, L(G) is transferable.

8. Theorem. Let $\mathbf{G} = (G, \varrho, r)$ be a double n-ary structure. If the binary relation r is transitive, then $U(\mathbf{G})$ is weakly transitive.

Proof. Let $U(\mathbf{G})=(G,R)$ and let $(x,y,y,\ldots,y)\in R,\ (y,y,\ldots,y,z)\in R.$ Then $\alpha=(x,y,y,\ldots,y)\in \varrho,\ \beta=(y,y,\ldots,y)\in \varrho,\ \gamma=(y,y,\ldots,y,z)\in \varrho,\ (\alpha,\beta)\in \mathcal{C}$

- $r,\ (\beta,\gamma)\in r$. Hence $(\alpha,\gamma)\in r$, so that $(x,y,y,\ldots,y,z)\in R$ and $U(\mathbf{G})$ is weakly transitive. \square
- 9. Remark. The converse of 8 does not hold, which can be easily shown by a counterexample.
- 10. Theorem. Let G be a double n-ary structure. Then G is reversely transitive if and only if U(G) is transitive.
- Proof. Let $\mathbf{G}=(G,\varrho,r),\ U(\mathbf{G})=(G,R).$ Let \mathbf{G} be reversely transitive, let $(x_1,x_2,\ldots,x_n,x_{n+1})\in R,\ (x_{n+1},x_n,\ldots,x_2,x_{n+2})\in R.$ Then, by the definition of $U,\ (x_1,x_2,\ldots,x_n)=\alpha\in\varrho,\ (x_2,x_3,\ldots,x_n,x_{n+1})=\beta\in\varrho,\ (\alpha,\beta)\in r,\ (x_{n+1},x_n,\ldots,x_2)=\beta^{-1}\in\varrho,\ (x_n,x_{n-1},\ldots,x_2,x_{n+2})=\gamma'\in\varrho,\ (\beta^{-1},\gamma')\in r.$ As G is reversely transitive, we have $(\alpha,\gamma)\in r.$ But $\gamma=(x_2,x_3,\ldots,x_n,x_{n+2})\in\varrho,$ hence $(x_1,x_2,\ldots,x_n,x_{n+2})\in R$ and $U(\mathbf{G})$ is transitive.
- Let $U(\mathbf{G})$ be transitive and let α , β , $\gamma \in \varrho$, $(\alpha, \beta) \in r$, $(\beta^{-1}, \gamma') \in r$. There exist elements $x_1, x_2, \ldots, x_n, x_{n+1}, x_{n+2} \in G$ such that $\alpha = (x_1, x_2, \ldots, x_n)$, $\beta = (x_2, x_3, \ldots, x_n, x_{n+1})$ (for r is binding), $\gamma = (x_2, x_3, \ldots, x_n, x_{n+2})$ (for $\beta^{-1} = (x_{n+1}, x_n, \ldots, x_3, x_2)$, $\gamma' = (x_n, x_{n-1}, \ldots, x_3, x_2, x_{n+2})$ and r is binding). Hence $(x_1, x_2, \ldots, x_n, x_{n+1}) \in R$, $(x_{n+1}, x_n, \ldots, x_3, x_2, x_{n+2}) \in R$, so that $(x_1, x_2, \ldots, x_n, x_{n+2}) \in R$, for $U(\mathbf{G})$ is transitive. Consequently, $(\alpha, \gamma) \in r$ and \mathbf{G} is reversely transitive.
- 11. **Theorem.** Let **G** be an (n+1)-ary structure. Then **G** is transitive if and only if $L(\mathbf{G})$ is reversely transitive.

Proof. By 1, $U(L(\mathbf{G})) = \mathbf{G}$. Hence $L(\mathbf{G})$ is reversely transitive if and only if $U(L(\mathbf{G})) = \mathbf{G}$ is transitive, by 10.

References

- [1] V. Novák: Cyclically ordered sets. Czechoslovak Math. J. 32 (1982), 460-473.
- [2] V. Novák, M. Novotný: On determination of a cyclic order. Czechoslovak Math. J. 33 (1983), 555-563.
- [3] V. Novák: Dimension theory for cyclically and cocyclically ordered sets. Czechoslovak Math. J. 33 (1983), 647–653.
- [4] V. Novák: On some minimal problem. Arch. Math. (Brno) 20 (1984), 95-99.
- [5] V. Novák: Cuts in cyclically ordered sets. Czechoslovak Math. J. 34 (1984), 322-333.
- [6] V. Novák, M. Novotný: Universal cyclically ordered sets. Czechoslovak Math. J. 35 (1985), 158–161.
- [7] V. Novák, M. Novotný: Binary and ternary relations. Math. Bohem. 117(1992), 283-292.

Author's address: Jiří Karásek, Technical University, Technická 2, 61669 Brno, Czech Republic.