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DOUBLE n-ARY RELATIONAL STRUCTURES
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Abstract. In [7], V. Novik and M. Novotny studied ternary relational structures by means
of pairs of binary structures; they obtained the so-called double binary structures. In this
paper, the idea is generalized to relational structures of any finite arity.
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Let G be a set, let n > 2 be an integer. As usual, an n-ary relation on G is defined
as a set R C G™. The pair G = (G, R) is then called an n-ary relational structure
(or briefly an n-ary structure). An n-ary structure G = (G, R) (and the relation R
on G as well) is called

symmetric if (x1,xa,...,T,) € Rimplies (zn,Tn-1,...,21) € Rfor any z1, 2, ...,
Tn_1,Zn € G;

asymmetric if (x1,2,...,2,) € R implies (Tpn,Tn—1,...,21) ¢ R for any z1,xa,
ey Tp—1, Ty € G

cyclic if (z1,x2,...,2,) € R implies (z2,z3,...,Tn, 1) € R for any 1, s, z3,. ..,
T, € G

transitive if (x1,22,...,2,) € R, (Tn,Tn_1,--.,%2,Tnt1) € R imply (z1,2s,...,
Tn—1,Tnt1) € R for any x1,Z2,...,Tn_1,%n, Tnt1 € G;

weakly transitive if (z,y,y,...,y) € R, (v,9,--.,9,2) € R imply (z,v,v,...,
y,2) € R for any z,y,2z € G.

For any a = (z1,22,...,%,) € G*, put a ' = (Tn,Tpn_1,...,71), &' = (Tp_1,
Ty 9yeeyT1yTp)-

Let ¢ be an n-ary relation on G, let r be a binary relation on g with the property:
If a = (z1,22,...,2,) €0, B=(Y1,Y2,---,Yn) € 0, (a,) € r, then z;4, = y; for
7=1,2,...,n—1. Then r is called a binding relation on p.
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Let ¢ be an n-ary relation on G, let r be a binding relation on g. Then the
triple G = (G, o,7) is called a double n-ary relational structure (or briefly a double
n-ary structure). An element a € g is called isolated in G if (o, B) ¢ r and (5,) ¢ r
for any 3 € o. The set of all isolated elements in G is denoted by g;.

A double n-ary structure G = (G, p,r) (and its binary relation r) is called

inversely symmetric if (o, 3) € r implies (371,a™1) € r for any «, 3 € g;

inversely asymmetric if (o, 3) € r implies (3!, a~1) ¢ r for any a, 3 € g;

transferable if (a,3) € r implies the existence of elements a;, az, ..., an_1 € 0
such that (8,a1) € 7, (aj,j41) € rfor j =1,2,...,r — 2, (an—1,a) € r for any «,
B < o

reversely transitive if (o, ) € v, (871,4") € r imply (a,~) € r for any «, 3, v € o.

Let G = (G, o,7) be a double n-ary structure. Define an (n+1)-ary relation R on
G as follows:

(Z1,%2, ., TnyTng1) € R <= (21,%2,...,Zn) = @ € 0, (T2,23,...,Tpn, Tnt1) =
B € o, (a,3) € r for any z1, T2, T3, ..., Tn, Tny1 € G. Denote U(G) = (G, R).
Then U(QG) is an (n+1)-ary structure.

If we denote by 2R, the class of all double n-ary structures, and by Rp4+1 the
class of all (n+1)-ary structures, then U is a map of 2R, into Rp41-

Now, let G = (G, R) be an (n+1)-ary structure. Define an n-ary relation o on G

as follows:

(x1,Za,...,2,) € 0 <= there exists ¢ € G such that (z1,2s,...,2,,t) € R or
(t,z1,22,...,2n) € R for any z1,zs,...,z, € G; further, define a binary relation r
on o as follows:

(a,8) €r <= a= (z1,22,...,Zn) € 0, B = (z2,23,...,Tnt1) € 0, (T1,T2,...,
Ty, Tnt1) € R for any xq, xa, ..., Tpn, Tny1 € G. Denote L(G) = (G, 0,r). Then

L(G) is a double n-ary structure and L is a map of R,41 into oaRy,.
Moreover, denote by 2 R!, the class of all double n-ary structures without isolated
elements.

1. Theorem. Let G be an (n+1)-ary structure. Then (U - L)(G) = G, i.e.
U-L=idg

n41°

Proof. Let G = (G,R), L(G) = (G,o,7), (U-L)(G) = (G,R'). Let

(x1,%2, ..., Tn,Tnt1) € R. By the definition of L, we have (z1,22,...,2,) = a € p,
(2,23, yTnyTnt1) = B € 0, (a,B) € r. By the definition of U, we have
(T1,T2,- -, Tn,Tny1) € R'. Thus R C R'. Let (z1,%2,...,ZTn,Tnt1) € R'. Then,

by the definition of U, (z1,22,...,Z,) = @ € 0, (2,23, ., Tpn,Tny1) = B € 0,
(o, B) € r. By the definition of L, (z1,22,...,Zn11) € R. Hence R’ C R. Summa-
rizing, we conclude R = R'. O
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2. Theorem. Let G = (G, g,r) be a double n-ary structure and let (L-U)(G) =
(G,o',r"). Then o' =p— g;, 7' =r,ie L- U|2R;1 = id, R .

Proof. Denote U(G) = (G,R). Let (z1,29,...,2,) € ¢'. Then, by the defini-
tion of L, there exists t € G such that (z1,za,...,2,,t) € Ror (t,21,Z2,...,Tpn) €
R. In the first case, by the definition of U, we have (z1,22,...,2,) = a € p,
(x,23,...,2pn,t) = B € o, (o, B) € r, thus the element a € p is not isolated, so that
a € p— g;. In the second case, (t,21,Z9,...,Tn_1) =@ € 9, (T1,T2,- ., Tn_1,Tpn) =
B € o, (a,B) € r, hence the element 3 € ¢ is not isolated and 3 € o — g;. We have
o' C o—p;. Let, on the contrary, a = (21,2, ...,2Z,) € 0—0;. Then there exists 5 € p
such that (o, ) € r or (8,a) € r. In the first case we have 8 = (z1,22,...,Tn,t)
for some t € G, therefore, by the definition of U, (x1,2s,...,2,,t) € R and, by the
definition of L, a € ¢'. The second case is analogous. Hence o — g; C ¢ . Altogether,
we have o' = o — 0;.

Let (a,8) € r'. By the definition of L, a = (z1,2a,...,2,), B = (z2,23,...,
Tn,Tpy1) € R for some x1, To, T3, ...y Ty Tne1 € G, (T1,Ta, ..., Ty, Tny1) € R.
This implies, by the definition of U, a € o, 8 € o, (,8) € r. Thus ' C r.
Let (a,8) € r. Then a = (z1,x2,...,2,) € 0, B = (T2,23,..., Ty, Tny1) € 0
for some x1, x2, x3, ..., Tn, Tny1 € G, hence, by the definition of U, we have
(T1,%2, .., Tn,Tny1) € R. Consequently, by the definition of L, a € ¢, 8 € ¢,
(o, B) € ', and r C r'. Summarizing, we obtain r = r’.

In the case that G contains no isolated elements, we have g; = (), thus o = ¢,
r=r',so that L - U‘QR;L =id,r: .

Denote by sR.,, the category whose class of objects is s R,, and whose morphisms
are maps preserving both relations, i.e., for G = (G, o,7), H = (H,0,s) € 2R, a
map f : G — H is a morphism if (z1,2s,...,2,) € o implies (f(acl),f(xg),...,
f(x,)) €0, and ((z1,22,...,20), (T2, %3,...,Tpy1)) € r implies ((f(z1), f(z2),. ..,
f(@n)), (f(z2), f(3), ..., f(Tny1))) € s for any x1, @2, T3, .- -, Ty Tnp1 € G-

Further, denote by R, 1 the category whose class of objects is R, 41 and whose
morphisms are maps preserving the relation, i.e., for G = (G,H), H = (H,S) €
Rn+1 a map f : G — H is a morphism if (z1,Z2,...,2n,Tnt1) € R implies
(f(z1), f(@2),. .., f(zn), f(znt1)) € S for any zy, @2, ..., Tn, Tng1 € G.

Moreover, for any morphism f € Hom,g, (G,H), where G = (G,p,7), H =
(H,o,s), denote U(f) = f. Similarly, for any morphism f € Homg,,, (G,H),
denote L(f) = f. O

3. Theorem. U is a covariant functor from the category sR,, to the category
R,+1, L is a covariant functor from the category R, 41 to the category 2R.,,.

Proof. Let f € Hom,r,(G,H), where G = (G,p,7), G = (G,R), H =
(H,o0,s8), UH) = (H, S). Let (z1,22,...,%n,Zny1) € R. Then (z1,29,...,2,) € o,
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(X2, %3, ..., TnyTnt1) € 0, ((xl,xg,...,xn),(xz,xg,...,xn,xn+1)) € r, so that
(f(ml)vf(w2)7af(wn)) € o, (f(l'2),f(l'3),---7f(~rn)7f(xn+l)) € o, ((f('rl)a
f(x2)a'"af(xn))v(f(l‘2)af(x3)v"')f(l‘n)af(xn+1))) € s thus (f(xl)af(IQ)a---a
f(@n), f(®nt1)) € S and U(f) € Homg,,, (U(G),U(H)). It is easy to show
that U(idg) = idy(g) for any G € 3R, and U(g - f) = Ul(g) - U(f) for any
f € Hom,r, (G,H), g € Hom,gr, (H,K), G, H, K € 2 R,,. Analogously for L. O

4, Theorem. Let G be a double n-ary structure. Then the following assertions
hold:
(i) G is inversely symmetric if and only if U(G) is symmetric.
(ii) G is inversely asymmetric if and only if U(G) is asymmetric.

Proof. Let G=(G,o,r), UG)=(G,R).

(i) Let G be inversely symmetric and let (z1,z2,...,Zn,Znt1) € R. Then
(Z1,Z2,...,%p) = @ € 0, (T2,23,..-,Tn,Tny1) = B € 0, (a,B) € r. This implies
(B~ a7t) € r, thus B~ = (Tpy1,Tn,y .-, T3, 72) € 0, 71 = (Tp,...,72,71) € 0,
so that (Tpy1,Zn,...,22,21) € R and U(Q) is symmetric. Let U(G) be sym-

metric and let (a,3) € r. Then there exist elements x1, =g, ..., Tpn, Tny1 € G
such that a = (z1,22,...,2,) € 0, B8 = (22,23,...,2Zpn,Tnt1) € 0. This implies
(1,22« sy TnyTnt1) € R, so that (xpy1,ZTn,...,22,21) € R, i.6. (Tnt1,Tn,--.,T3,
) =07t €0, (Tn,.--,29,71) = a! € o, hence (871,a~!) € r and G is inversely
symmetric.

(if) Let G be inversely asymmetric and let (z1, z3,...,Zn, Znt1) € R. Then again
(Z1,29,...,Tn) = @ € 0, (T2,23,...,Tpn,Tpn11) = B € 0, (a,3) € r. This im-
plies (37 1,a™!) ¢ r. But 87! = (Tny1,Tn,...,23,72), @ = (zp,...,29,71),
thus (Zn41,Tn,...,T2,21) ¢ R and U(G) is asymmetric. Let U(G) be asymmet-
ric and let (a,3) € r. Then there exist elements z1, T2, X3, ..., Tn, Tnt1 € G
such that (z1,29,...,2,) = a € o, (z2,23,...,Tn,Tnt1) = B € p. This im-
plies (z1,22,...,Zn,ZTny1) € R, so that (Tpi1,Zn,...,T2,21) ¢ R. Consequently
(Tng1sTnye-oy@3,m2) = B~ & g or (Tp,...,72,71) = a~t & por 871, a™t € p,
but (37',a™1) ¢ r. In all three cases, however, we have (3~!,a~!) ¢ r, and G is
inversely asymmetric. O

5. Theorem. Let G be an (n+1)-ary structure. Then the following assertions
hold:
(i) G is symmetric if and only if L(G) is inversely symmetric.
(ii) G is asymmetric if and only if L(QG) is inversely asymmetric.

Proof. (i) If L(G) is inversely symmetric, then, by 4, U(L(G)) is symmetric.
But, by 1, U(L(G)) = G. If G = U(L(G)) is symmetric, then, by 4, L(G) is
inversely symmetric.
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(ii) If L(G) is inversely asymmetric, then, by 4, U(L(G)) is asymmetric. But
U(L(G)) = G. If G = U(L(G)) is asymmetric, then, by 4, L(G) is inversely
asymmetric. O

6. Theorem. Let G be a double n-ary structure. Then G is transferable if and
only if U(G) is cyclic.

Proof. Let G = (G,o,7), U(G) = (G,R). Let G be transferable and let

(1,22, ..., TnyTnt1) € R. Then (z1,22,...,2n) = @ € 0, (T2,T3,...,Tn, Tnt1) =
B € o, (a,B) € r. Thus, there exist a;i, as, ..., an—1 € p such that (8,a;) € r,
(aj,ajq1) €rforj=1,2,...,n—2and (an—1, ) € r. Denote ag = B, an, = . Then
we have (o, a541) for j =0,1,2,...,n — 1. We shall show by induction that o; =
(Tj42,Tj43y- -+ Tny Tpt1, L1, T2, ..., &) for j =0,1,2,...,n. For j = 0itistrue. Let
0 < jo < n. Let the preceding hold for each j, 0 < j < jo. As (ajy—1,j,) €7 and 7
is binding, there exists y € G such that o, = (42, Tjo4+3,. .- T1,.. ., Tjo—1,Y). We

shall show by another induction that a1, has y on the (n — k)-th position, for k =
0,1,2,...,n—jo. For k = 0itis true. Let 0 < ko < n—Jo. AS (®jytky—15Xjotke) €T,
Qjo+ko—1 has y on the (n — ko + 1)-th position, and r is binding, o;,+r, has y on
the (n — ko)-th position. Particularly, o, has y on the jo-th position, hence y = z;,.
Thus, we have 8 = (z2,23,...,Zn,Tnt1) € 0, @1 = (T3,T4,...,Tn, Tnt1,T1) € 0,
(B,0a1) € 7, so that (z2,23,...,Zn, Zny1,21) € R and U(G) is cyclic.

Let, on the contrary, U(G) be cyclic and let (a,3) € r. Then there ex-

ist elements 1, x2, ..., Tn, Tny1 € G such that o = (z1,22,...,2,) € o,
B = (x2,23,. .., Tn,Tny1) € 0, thus (z1,z2,...,Tn,Tny1) € R. Hence (z2,x3,...,
TpyTpt1,21) € R, (3,T4y..  TnyTpy1,21,22) € Roit) (Tpy1,%1,T2,...,Tp)
€ R. Denote an = (T3,Z4,--«,TnyTnt1,T1), 02 = (T4, T5, ey Tna1, T1,L2),-- -,
0n—1 = (Tnt1,21,%2,...,Zn_1). Then a; € pfor j =1,2,...,n -1, (B,) € 7,
(aj,aj41) €rfor j=1,2,...,n—2,(an_1,a) € r. Consequently, G is transferable.

O

7. Theorem. Let L(G) be an (n+1)-ary structure. Then G is cyclic if and only
if L(QG) is transferable.

Proof. Let L(G) be transferable. By 6, U(L(G)) is cyclic. But, by 1, G =
U(L(G)).
Let G = U(L(G)) be cyclic. Then, by 6, L(G) is transferable. O

8. Theorem. Let G = (G,p,r) be a double n-ary structure. If the binary
relation r is transitive, then U(G) is weakly transitive.

Proof. Let U(G) = (G,R) and let (z,y,y,...,y) € R, (y,¥,...,¥,2) € R.
Then a = (z,9,y,...,¥) €0, 8=, 4,---,¥) € 0, Y= (¥, ¥>---,¥,2) € 0, (o, B) €
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r, (B,7) € r. Hence (a,7) € r, so that (z,y,v, ...,¥,2) € R and U(G) is weakly
transitive. O

9. Remark. The converse of 8 does not hold, which can be easily shown by a
counterexample.

10. Theorem. Let G be a double n-ary structure. Then G is reversely transitive
if and only if U(G) is transitive.

Proof. Let G = (G,o,7), U(G) = (G,R). Let G be reversely transitive,
let (z1,22,...,Zn,Tnt1) € R, (Tnt1,Tny---,T2,Tny2) € R. Then, by the defini-
tion of U, (z1,Z2,...,Zn) = @ € 0, (X2,X3,...,Tpn,Tny1) = B € o, (,8) € T,
(Tpg1s Tny-- 5 T2) = L€ 0, (Tn,Tn1,---,T2,Tng2) =7 €0, (B7L,Y)ETr. As G

is reversely transitive, we have (a,v) € r. But v = (22, 23,...,Zn,Tnt2) € 0, hence
(Z1,%2, ..., Tn,Tnt2) € R and U(Q) is transitive.

Let U(G) be transitive and let o, 3, v € o, (o, 3) € 7, (371,9") € r. There
exist elements z1,%2,...,Tn,Tnt1,Tnt2 € G such that a = (x1,29,...,24,),
B = (22,3,...,Tpn,Tpny1) (for r is binding), v = (22,23,...,Tn, Tnya) (for B~ =
(Tnt1sTny -, 23,%2), ¥V = (TnyTn—1,-..,23,T2,Tnta) and r is binding). Hence
(T1, T2y« oy Tny Tny1) € B, (Tnt1,Tn,...,T3,T2,Tnya) € R, so that (r1,za,...,
Zn,Tnt2) € R, for U(Q) is transitive. Consequently, (a,v) € r and G is reversely
transitive. O

11. Theorem. Let G be an (n + 1)-ary structure. Then G is transitive if and
only if L(G) is reversely transitive.

Proof. By 1, U(L(G)) = G. Hence L(G) is reversely transitive if and only if
U(L(G)) = G is transitive, by 10. a
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