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DOMINATING FUNCTIONS OF GRAPHS WITH TWO VALUES
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Abstract. The Y-domination number of a graph for a given number set Y was introduced
by D. W. Bange, A. E. Barkauskas, L. H. Host and P. J. Slater as a generalization of the dom-
ination number of a graph. It is defined using the concept of a Y-dominating function. In
this paper the particular case where Y = {0, 1/k} for a positive integer k is studied.
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This paper will concern a certain generalization of the domination number of a
graph. All graphs considered will be finite undirected graphs without loops and
multiple edges.

A subset D of the vertex set V(@) of a graph G is called dominating in G, if for
each vertex € V(G) — D there exists a vertex y € D adjacent to z. The minimum
number of vertices of a dominating set in G is called the domination number of G
and denoted by v(G).

This well-known concept can be defined in another way, using domination func-
tions. We will speak about functions f which map V(G) into some set of numbers.
If S C V(G), then we denote f(S) = > f(x). If z € V(G), then by N[z] we denote

z€s

the closed neighbourhood of z in G, i.e. the set consisting of z and of all vertices
which are adjacent to =z in G. Besides, we will also consider the open neighbour-
hood N(z) = N[z] — {z}. Now we can formulate the alternative definition of the
domination number.

A function f: V(G) — {0,1} is called a dominating function of G, if f(N[z]) >

1 for each z € V(G). The minimum sum f(V(G)) = > f(z) taken over all
zeV(G)
dominating functions f of G is called the domination number of G and denoted by

7(G).
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It is evident that these two definitions are equivalent. Namely, if D is a dominating
set in G, then the function f defined so that f(z) =1 for € D and f(z) = 0 for
x € V(G) — D is a dominating function of G. Conversely, if f is a dominating
function of G, then the set D = {z € V(G); f(z) = 1} is a dominating set in D.

The concept of a dominating function and obviously also the related concept of
the domination number were generalized by some authors in such a way that the set
of values {0,1} was replaced by another number set. In [1] the signed dominating
function and the signed domination number were defined by replacing the set {0,1}
by {—1,1} and in [2] the minus dominating function and the minus domination
number were defined by using the set {—1,0, 1}. The fractional dominating function
and the fractional domination number were introduced in [3] by using the set of real
numbers. The most general case is the Y-dominating function and the Y-domination
number, where a quite arbitrary set Y of values of f is used [4].

Therefore, following [4], a function f: V(G) — Y, where Y is a given set of
numbers, is called a Y-dominating function of G, if f(N[z]) > 1 for each z € V(G).
The minimum of f(V(G)) taken over all Y-dominating functions f of G is called the
Y-dominating number of G and is denoted by vy (G).

We will not treat the domination is such a general way. We restrict our consid-
erations to natural generalizations of the set {0, 1}, namely to two-element number
sets {0,t}, where t is a positive real number.

The following proposition is easy to prove.

Proposition 1. Let Y = {0,t}, where t is a positive real number. Let G be
a graph. The Y-domination number vy (G) of G is defined and at least one Y-
dominating function of G exists if and only if §(G) > 1/t — 1, where 6(G) denotes
the minimum degree of a vertex of G.

Let f be a function which maps V(G) into the set of real numbers and let z € V(G).
The vertex set x will be called a zero vertex of f, if f(x) = 0.
The following theorem enables us to restrict our consideration to numbers ¢ which

are inverses of positive integers.

Theorem 1. Let ¢ be a positive real number, let G be a graph with §(G) > 1/t—1.
Let k = [1/t] and Y1 = {0,t}, Yo = {0,1/k}. Then ~y,(G) = ktvyy,(G) and there
exists a one-to-one correspondence between Yi-dominating functions of G and Ys-
dominating functions of G such that the corresponding functions have the same set
of zero vertices.

Proof. Let f: V(G) — Y3, g: V(G) — Y3 and suppose that f, g have the
same set of zero vertices. Then f(z) = ktg(z) and also f(N[z]) = ktg(N]z]) for
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each € V(G). Suppose that g is a Y2-dominating function of G: then g(Nz]) > 1
for each z € V(G). Evidently kt > 1 and thus f(N[z]) > ¢g(N[z]) > 1 for each
x € V(G) and f is a Y1-dominating function of G. Now suppose that g is not a
Y2-dominating function of G. There exists € V(G) such that g(N[z]) < 1. If
k = 1, then g(N[z]) must be a non-negative integer and therefore g(N[z]) = 0.
This is possible only if g(y) = 0 for each y € Nz]. But then also f(y) = 0 for
each y € N[z] and f(N[z]) = 0; the function f is not a Yj-dominating function
of G. If k > 2, then the number of vertices of N[z] which are not zero vertices
of g is at most £ — 1. But these vertices are exactly those vertices which are not
zero vertices of f. We have f(N[z]) < (k — 1)t. Evidently 1/t > k — 1 and thus
f(Nz]) < (kK — 1)t < 1; the function f is not a Yi-dominating function of G.
If go is a minimal (i.e. with the minimum sum on V(G)) Yz-dominating function,
then the corresponding function fj is a minimal Y;-dominating function. We have

wi(G)= X folz)= > Ktgo(x) =kt > go(x) = ktry,(G), a

2EV(G) 2EV(G) 2EV(G)

For each positive integer k we denote Y'(k) = {0,1/k} and v(k,G) = vy x)G.
From Proposition 1 we have the following corollary.

Corollary 1. Let k be a positive integer, let G be a graph. The Y (k)-domination
number y(k, Q) is defined and at least one Y (k)-dominating function of G exists if
and only if 6(G) > k — 1.

Note that v(1,G) = v(G), the usual domination number of G.
If we speak about a function f: V(G) — Y (k), we will use the notation V0 =
{r e V(G); fx) =0}, VT ={x € V(G); f(x) = 1/k}.

Theorem 2. Let G be a regular graph of degree k — 1 with n vertices. Then
v(k,G) = n/k.

Proof. The neighbourhood NJ[z| for each z € V(G) has exactly k vertices. If
f is a Y(k)-dominating function, then f must assign the value 1/k to all vertices of
N[z]. As = was chosen arbitrarily, it assigns 1/k to all vertices of GG, which implies
the assertion. O

By G? we denote the square of the graph G, i.e. the graph such that V (G?) = V(G)
and two vertices are adjacent in G2 if and only if their distance in G is at most 2.
The symbol «y(G) denotes the independence number of G, i.e. the maximum number
of pairwise non-adjacent vertices in G.

Theorem 3. Let G be a regular graph of degree k with n vertices. Theny(k,G) =
(n — ao(G?))/k.
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Proof. For each vertex x of G the set N[z] has k + 1 vertices. If f is a Y (k)-
dominating function of G, then N[z] contains at most one zero vertex of f. The
distance between two zero vertices of f cannot be 1; then the closed neighbourhood
of either of them would contain them both. This distance cannot be 2; then there
would exist a vertex adjacent to both of them and its closed neighbourhood would
contain them both. Therefore the distance between two zero vertices of f in G is at
least 3 and in G? at least 2; they form an independent set in G2. Therefore there
are at most ag(G?) zero vertices of f and at least n — ag(G?) vertices x such that
f(x) =1/k. This implies the assertion. O

Corollary 2. Let C, be the circuit of length n. Then v(3,Cy) = n/3 and
v(2,Cy) = n/3 for n = 0(mod 3), v(2,Cy) =n/3—1/6 for n = 1(mod 3), v(2,C,) =
n/3+ 1/3 for n = 2(mod 3).

A path is a similar case. If f is a Y(2)-dominating function of a path P, of
length n, then again the distance between any two zero vertices of f is at least 3 and
moreover neither the vertices of degree 1, not the vertices adjacent to them may be
zero vertices of f. This yields the result.

Proposition 2. Let P, be a path of length n. Then v(2,P,) = n/3 + 1 for
n = 0(mod3), v(2,P,) = n/3 +2/3 for n = 1(mod3), v(2,P,) = n/3 +5/6 for
n = 2(mod 3).

Now we turn to complete graphs and complete bipartite graphs.

Theorem 4. Let k,n be positive integers, k < n. Then v(k, K,,) = 1.

Proof. In the complete graph K, we have N[z] = V(K,,) for each vertex z.
If f is a Y (k)-dominating function, then f(V(K,) = f(N]z]) > 1. Moreover, there
exists a function f which assigns the value 1/k to k vertices and the value 0 to the
remaining n — k vertices: then f(V(K,)) = 1. O

Theorem 5. Let k,m,n be positive integers, k — 1 < m < n. If k < m, then
vk, Kmn) = 2. If m =k — 1, then v(k, Ky, ) = (m+n)/k = (k+n—1)/k. If
m =k, then y(k, K,y ) =2 — 1/k.

Proof. Let k < m. Let A, B be the bipartition classes of K, |A| = m,
|B| = n. For each vertex x € A, its open neighbourhood satisfies N(z) C B. As
N[z] = {2} U N(z) and f(N|z]) > 1 for a Y (k)-dominating function f, there are
at least k — 1 vertices y € N(z) C A which are in V'*. If moreover f(z) = 0, then
there are at least k such vertices. Therefore either f(z) = 1/k for all x € A and
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f(y) = 1/k for at least k — 1 vertices of B, or f(y) = 1/k for at least k vertices of B.
In the former case f(V(Km.n)) = (m+k —1)/k > 2. In the latter case analogously
either f(z) = 1/k for all z € B and f(y) = 1/k for at least k — 1 vertices of A, or
f(y) = 1/k for at least k vertices of A. In both these cases again f(V(Km.n)) = 2.
A function f which assigns 1/k to exactly k vertices of A and to exactly k vertices
of B has f(V(Kmn)) = 2.

Now suppose m = k — 1. Then |A| = k — 1. Let 2 € B and again let f be a
Y (k)-dominating function of K, ,. The set N[z] has exactly k vertices and thus
f(z) = 1/k for each y € N[z]. This means that f(y) = 1/k for each y € A and
also f(z) = 1/k. As z is an arbitrary vertex of B, we have f(z) = 1/k for all
x € V(Ky) and f(V(Kyn)) = (k=14 n)/k. Another Y (k)-dominating function
does not exist and thus vy(k, K,,,.,) = (k — 14+ n)/k.

Finally, let k = m. If f is a Y (k)-dominating function, then either f(z) = 1/k for
each z € A and for at least k—1 vertices z of B, or f(x) = 1/k for exactly k—1 vertices
of A and all vertices z € B. In the former case f(V(K,, ) > (2k—1)/k =2—1/k,
in the latter case f(V(Kmn)) = (k—14+n)/k > 2k —-1)/k =2—-1/k. If f
assigns the value 1/k to all vertices of A and to exactly k — 1 vertices of B, then
f(V(Km,n)) =2 — 1/k, therefore y(k, Kpmn) =2 — 1/k. O

By the symbol G @& H we denote the Zykov sum of graphs G and H, i.e. the graph
obtained from vertex-disjoint graphs G and H by joining all vertices of G with all
vertices of H by edges.

Theorem 6. Let k,q be positive integers, let G, H be two graphs such that
v(k,G), v(k, H) are defined and ¢ < 14+ min(y(k, G),~v(k, H)). Then v(kq, G&H) <
(v(k,G) +~(k, H))/q.

Proof. Let gand h be minimal Y (k)-dominating functions of G and H, respec-
tively. Let f: V(G)UV(H) — Y (kq) be defined so that f(z) = g(x)/q for x € V(G)
and f(z) = h(z)/q for x € V(H). Consider z € V(G). The closed neighbourhood
of z in G @ H is the disjoint union of the closed neighbourhood of z in G and of
V(H). The sum of values of f over the closed neighbourhood of z in G is at least
1/q, its sum over V(H) is at least v(k, H)/q. Tt follows from the assumption that
1/q+~(k,H)/q > 1. For x € V(H) this may be proved quite analogously. Therefore
f is a Y (kq)-dominating function of G @ H. This implies the assertions. O

For the particular case £k = 1 we have a corollary.

Corollary 3. Let q be a positive integer, let G, H be two graphs such that
¢ < 1+ min(y(G),v(H)). Then v(¢,G & H) < (v(G) +~(H))/q-
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A similar assertion holds for G @ K3, i.e. the graph which is obtained from G by
adding a new vertex and joining it with all vertices of G by edges.

Theorem 7. Let k be a positive integer, let G be a graph for which (k,G) is
defined. Then
Yk +1.G® K1) =~k G) - 5 + 77

Proof. Let f be a minimal Y (k)-dominating function of G. Let w be the added
vertex. Let g: V(G) U{w} — Y (k + 1) be defined so that g(z) = kf(z)/(k + 1) for
x € V(G) and g(w) = 1/(k+1). Then the sum of g(x) over the closed neighbourhood
of z in G® K is equal to the sum of g over the closed neighbourhood of z in GG plus
g(w). The sum of g over the closed neighbourhood of z in G is at least k/(k + 1)
and g(w) = 1/(k + 1), therefore the sum of g over the closed neighbourhood of z in
G @ K is at least 1. The closed neighbourhood of w in G® K1 is V(G)U{w} and the
sum of g over it is greater than or equal to this sum over the closed neighbourhood
of any other vertex, therefore it is also at least 1 and

Yo 9@ =5 Y f@) +gw) = Z5vkG) + 25

z€V(G)U{w} TEV(G)

Hence v(k+1,Gd K1) < k—f_lﬁ/(l@, G)+ k—_}_l On the other hand, let gg be a minimal
Y (k + 1)-dominating function of G @ K; and let fo: V(G) — Y (k) be defined so
that fo(z) = (k + 1)go(x)/k for each z € V(G). The sum of values of g over the
closed neighbourhood of any vertex z € V(G) in G is at least 1 — 1/(k + 1) and
thus such a sum of fy is at least 1. We have >  fo(z)= > (k4 1)go(x)/k =

zeV(G) 2eV(G)

Bl St go(z) = B y(k+1,G@ K1) — go(w) = EH2v(k+1,G@® K1) — 1 and thus
zeV(G)

v(k,G) < By (k+1,G® K1) — £, which yields y(lif+1,G@K1) > 2oy (k, G) + 5

Hence we have the equality y(k +1,G @ K1) = ;757(k, G) + k+r1 O

In the end we will consider the number v(k, G) for different numbers k and for the
same graph G.

Theorem 8. Let k, g be positive integers. Then there exists a graph G such that

Proof. Denote p=kq+ g+ 1 and let G be the Zykov sum Kj & I_(p, where
K p denotes the complement of the complete graph K p, i.e. the graph consisting of p
isolated vertices. If f is a function such that f(z) = 0 for x € V(K,) and f(z) = 1/k
for z € V(K}), then f is a Y (k)-dominating function of G; namely, we have V(K},) C
Nlz] for each z € V(G) and f(V(Ky)) = 1. We have v(k,G) = 1. Each vertex of
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K, has degree k in G and therefore for each Y (k + 1)-dominating function g we have
g(y) =1/(k+1) foreachy € V(G) and v(k+1,G) = (p+ k)/(k+1)=q+1. O

The next theorem is not expressed for k in general, but only for v(1,G) and
(2, G).

Theorem 9. Let q be a positive integer. Then there exists a graph G such that
’Y(L G) - 7(27 G) =4q.

Proof. Let H be a graph obtained from the circuit of length 4 by adding a new
vertex u and joining it to a vertex v of the circuit by an edge. Take 2¢ pairwise vertex-
disjoint copies H1,. .., Hyq of H. Take a vertex w and join it by edges with the vertex
corresponding to u in each of the graphs Hy,..., Hy,. Finally, take a new vertex x
and join it with w by an edge. The resulting graph will be G. For ¢ = 4 this graph
is shown Fig. 1. The number ~(1,G) is the usual domination number v(G) of G,

U3
V2
v,
4 us U
Uy x
Us U5 4 U1 U1
us
us our
Ug
Vg
U7
Fig. 1

i.e. the minimum number of vertices of a dominating set D in G. Evidently such a
dominating set must contain at least one of the vertices w, z and at least two vertices
from each H for i =1,...,2¢: hence 7(G) > 4q+1. If D consists of w, of the vertices
corresponding to v in H and of one other vertex of the circuit in H fori =1, ..., 2q,
then D is dominating in G and |D| = 4¢ + 1, which implies v(G) = 4¢ + 1. Now let
VT be the set consisting of all vertices of D and, moreover, of = and of one more
vertex of the circuit in each H for i =1,...,2q. We have |V | = 6¢+2. If f(z) = %
forx € VT and f(z) =0forz € V(G)—V™, then f is a V(2)-dominating function of
G and is evidently minimal. We have v(2,G) = f(V(G)) = 3|V*| = 3¢+ 1. Hence
(1L, G) —v(2,G) = q. u
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Problem. Can Theorem 10 be generalized to a theorem analogous to Theo-
rem 97

A final remark. The Y (k)-domination number of a graph can be defined in another
way, without using the concept of a Y (k)-dominating function:

A subset D of V(G) is called k-tuply dominating in G, if for each z € V(G) — D
there exist k vertices y1,...,yr od D adjacent to x and for each y € D there exist
k — 1 vertices zi1,...,2r_1 adjacent to y. The minimum number of vertices of a
k-tuply dominating set in G is called the Y (k)-domination number of G.

A k-tuply dominating set was defined and used also in [5], but in a weaker form:
the requirement of existence of z1,...,z,_1 for y € D was not used there.
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