DOMINATING FUNCTIONS OF GRAPHS WITH TWO VALUES

BOHDAN ZELINKA, Liberec

(Received March 6, 1997)

Abstract. The Y-domination number of a graph for a given number set Y was introduced by D. W. Bange, A. E. Barkauskas, L. H. Host and P. J. Slater as a generalization of the domination number of a graph. It is defined using the concept of a Y-dominating function. In this paper the particular case where $Y = \{0, 1/k\}$ for a positive integer k is studied.

Keywords: Y-dominating function of a graph, Y-domination number of a graph

MSC 1991: 05C35

This paper will concern a certain generalization of the domination number of a graph. All graphs considered will be finite undirected graphs without loops and multiple edges.

A subset D of the vertex set V(G) of a graph G is called dominating in G, if for each vertex $x \in V(G) - D$ there exists a vertex $y \in D$ adjacent to x. The minimum number of vertices of a dominating set in G is called the domination number of G and denoted by $\gamma(G)$.

This well-known concept can be defined in another way, using domination functions. We will speak about functions f which map V(G) into some set of numbers. If $S \subseteq V(G)$, then we denote $f(S) = \sum_{x \in S} f(x)$. If $x \in V(G)$, then by N[x] we denote the closed neighbourhood of x in G, i.e. the set consisting of x and of all vertices which are adjacent to x in G. Besides, we will also consider the open neighbourhood $N(x) = N[x] - \{x\}$. Now we can formulate the alternative definition of the domination number.

A function $f\colon V(G)\to\{0,1\}$ is called a dominating function of G, if $f(N[x])\geqslant 1$ for each $x\in V(G)$. The minimum sum $f(V(G))=\sum\limits_{x\in V(G)}f(x)$ taken over all dominating functions f of G is called the domination number of G and denoted by $\gamma(G)$.

It is evident that these two definitions are equivalent. Namely, if D is a dominating set in G, then the function f defined so that f(x) = 1 for $x \in D$ and f(x) = 0 for $x \in V(G) - D$ is a dominating function of G. Conversely, if f is a dominating function of G, then the set $D = \{x \in V(G); f(x) = 1\}$ is a dominating set in D.

The concept of a dominating function and obviously also the related concept of the domination number were generalized by some authors in such a way that the set of values $\{0,1\}$ was replaced by another number set. In [1] the signed dominating function and the signed domination number were defined by replacing the set $\{0,1\}$ by $\{-1,1\}$ and in [2] the minus dominating function and the minus domination number were defined by using the set $\{-1,0,1\}$. The fractional dominating function and the fractional domination number were introduced in [3] by using the set of real numbers. The most general case is the Y-dominating function and the Y-domination number, where a quite arbitrary set Y of values of f is used [4].

Therefore, following [4], a function $f: V(G) \to Y$, where Y is a given set of numbers, is called a Y-dominating function of G, if $f(N[x]) \ge 1$ for each $x \in V(G)$. The minimum of f(V(G)) taken over all Y-dominating functions f of G is called the Y-dominating number of G and is denoted by $\gamma_Y(G)$.

We will not treat the domination is such a general way. We restrict our considerations to natural generalizations of the set $\{0,1\}$, namely to two-element number sets $\{0,t\}$, where t is a positive real number.

The following proposition is easy to prove.

Proposition 1. Let $Y = \{0, t\}$, where t is a positive real number. Let G be a graph. The Y-domination number $\gamma_Y(G)$ of G is defined and at least one Y-dominating function of G exists if and only if $\delta(G) \ge 1/t - 1$, where $\delta(G)$ denotes the minimum degree of a vertex of G.

Let f be a function which maps V(G) into the set of real numbers and let $x \in V(G)$. The vertex set x will be called a zero vertex of f, if f(x) = 0.

The following theorem enables us to restrict our consideration to numbers t which are inverses of positive integers.

Theorem 1. Let t be a positive real number, let G be a graph with $\delta(G) \ge 1/t-1$. Let $k = \lceil 1/t \rceil$ and $Y_1 = \{0, t\}$, $Y_2 = \{0, 1/k\}$. Then $\gamma_{Y_1}(G) = kt\gamma_{Y_2}(G)$ and there exists a one-to-one correspondence between Y_1 -dominating functions of G and Y_2 -dominating functions of G such that the corresponding functions have the same set of zero vertices.

Proof. Let $f: V(G) \to Y_1$, $g: V(G) \to Y_2$ and suppose that f, g have the same set of zero vertices. Then f(x) = ktg(x) and also f(N[x]) = ktg(N[x]) for

each $x \in V(G)$. Suppose that g is a Y_2 -dominating function of G: then $g(N[x]) \geqslant 1$ for each $x \in V(G)$. Evidently $kt \geqslant 1$ and thus $f(N[x]) \geqslant g(N[x]) \geqslant 1$ for each $x \in V(G)$ and f is a Y_1 -dominating function of G. Now suppose that g is not a Y_2 -dominating function of G. There exists $x \in V(G)$ such that g(N[x]) < 1. If k = 1, then g(N[x]) must be a non-negative integer and therefore g(N[x]) = 0. This is possible only if g(y) = 0 for each $y \in N[x]$. But then also f(y) = 0 for each $y \in N[x]$ and f(N[x]) = 0; the function f is not a Y_1 -dominating function of G. If $k \geqslant 2$, then the number of vertices of N[x] which are not zero vertices of g is at most g(x) = 0. But these vertices are exactly those vertices which are not zero vertices of g(x) = 0. But these vertices are exactly those vertices which are not zero vertices of g(x) = 0. If g(x) = 0, the function g(x) = 0 is a minimal (i.e. with the minimum sum on g(x) = 0) and thus g(x) = 0 is a minimal (i.e. with the minimum sum on g(x) = 0) and g(x) = 0 is a minimal function. We have g(x) = 0 for each g(x) = 0

For each positive integer k we denote $Y(k) = \{0, 1/k\}$ and $\gamma(k, G) = \gamma_{Y(k)}G$. From Proposition 1 we have the following corollary.

Corollary 1. Let k be a positive integer, let G be a graph. The Y(k)-domination number $\gamma(k,G)$ is defined and at least one Y(k)-dominating function of G exists if and only if $\delta(G) \geqslant k-1$.

Note that $\gamma(1,G) = \gamma(G)$, the usual domination number of G.

If we speak about a function $f: V(G) \to Y(k)$, we will use the notation $V^0 = \{x \in V(G); f(x) = 0\}, V^+ = \{x \in V(G); f(x) = 1/k\}.$

Theorem 2. Let G be a regular graph of degree k-1 with n vertices. Then $\gamma(k,G)=n/k$.

Proof. The neighbourhood N[x] for each $x \in V(G)$ has exactly k vertices. If f is a Y(k)-dominating function, then f must assign the value 1/k to all vertices of N[x]. As x was chosen arbitrarily, it assigns 1/k to all vertices of G, which implies the assertion.

By G^2 we denote the square of the graph G, i.e. the graph such that $V(G^2) = V(G)$ and two vertices are adjacent in G^2 if and only if their distance in G is at most 2. The symbol $\alpha_0(G)$ denotes the independence number of G, i.e. the maximum number of pairwise non-adjacent vertices in G.

Theorem 3. Let G be a regular graph of degree k with n vertices. Then $\gamma(k, G) = (n - \alpha_0(G^2))/k$.

Proof. For each vertex x of G the set N[x] has k+1 vertices. If f is a Y(k)-dominating function of G, then N[x] contains at most one zero vertex of f. The distance between two zero vertices of f cannot be 1; then the closed neighbourhood of either of them would contain them both. This distance cannot be 2; then there would exist a vertex adjacent to both of them and its closed neighbourhood would contain them both. Therefore the distance between two zero vertices of f in G is at least 3 and in G^2 at least 2; they form an independent set in G^2 . Therefore there are at most $\alpha_0(G^2)$ zero vertices of f and at least $n-\alpha_0(G^2)$ vertices x such that f(x)=1/k. This implies the assertion.

Corollary 2. Let C_n be the circuit of length n. Then $\gamma(3, C_n) = n/3$ and $\gamma(2, C_n) = n/3$ for $n \equiv 0 \pmod{3}$, $\gamma(2, C_n) = n/3 - 1/6$ for $n \equiv 1 \pmod{3}$, $\gamma(2, C_n) = n/3 + 1/3$ for $n \equiv 2 \pmod{3}$.

A path is a similar case. If f is a Y(2)-dominating function of a path P_n of length n, then again the distance between any two zero vertices of f is at least 3 and moreover neither the vertices of degree 1, not the vertices adjacent to them may be zero vertices of f. This yields the result.

Proposition 2. Let P_n be a path of length n. Then $\gamma(2, P_n) = n/3 + 1$ for $n \equiv 0 \pmod{3}$, $\gamma(2, P_n) = n/3 + 2/3$ for $n \equiv 1 \pmod{3}$, $\gamma(2, P_n) = n/3 + 5/6$ for $n \equiv 2 \pmod{3}$.

Now we turn to complete graphs and complete bipartite graphs.

Theorem 4. Let k, n be positive integers, $k \leq n$. Then $\gamma(k, K_n) = 1$.

Proof. In the complete graph K_n we have $N[x] = V(K_n)$ for each vertex x. If f is a Y(k)-dominating function, then $f(V(K_n) = f(N[x]) \ge 1$. Moreover, there exists a function f which assigns the value 1/k to k vertices and the value 0 to the remaining n-k vertices: then $f(V(K_n)) = 1$.

Theorem 5. Let k, m, n be positive integers, $k-1 \le m \le n$. If k < m, then $\gamma(k, K_{m,n}) = 2$. If m = k - 1, then $\gamma(k, K_{m,n}) = (m+n)/k = (k+n-1)/k$. If m = k, then $\gamma(k, K_{m,n}) = 2 - 1/k$.

Proof. Let k < m. Let A, B be the bipartition classes of K, |A| = m, |B| = n. For each vertex $x \in A$, its open neighbourhood satisfies $N(x) \subseteq B$. As $N[x] = \{x\} \cup N(x)$ and $f(N[x]) \geqslant 1$ for a Y(k)-dominating function f, there are at least k-1 vertices $y \in N(x) \subseteq A$ which are in V^+ . If moreover f(x) = 0, then there are at least k such vertices. Therefore either f(x) = 1/k for all $x \in A$ and

f(y) = 1/k for at least k-1 vertices of B, or f(y) = 1/k for at least k vertices of B. In the former case $f(V(K_{m,n})) \ge (m+k-1)/k \ge 2$. In the latter case analogously either f(x) = 1/k for all $x \in B$ and f(y) = 1/k for at least k-1 vertices of A, or f(y) = 1/k for at least k vertices of A. In both these cases again $f(V(K_{m,n})) \ge 2$. A function f which assigns 1/k to exactly k vertices of A and to exactly k vertices of B has $f(V(K_{m,n})) = 2$.

Now suppose m=k-1. Then |A|=k-1. Let $x \in B$ and again let f be a Y(k)-dominating function of $K_{m,n}$. The set N[x] has exactly k vertices and thus f(x)=1/k for each $y \in N[x]$. This means that f(y)=1/k for each $y \in A$ and also f(x)=1/k. As x is an arbitrary vertex of B, we have f(x)=1/k for all $x \in V(K_{m,n})$ and $f(V(K_{m,n}))=(k-1+n)/k$. Another Y(k)-dominating function does not exist and thus $\gamma(k,K_{m,n})=(k-1+n)/k$.

Finally, let k = m. If f is a Y(k)-dominating function, then either f(x) = 1/k for each $x \in A$ and for at least k-1 vertices x of B, or f(x) = 1/k for exactly k-1 vertices of A and all vertices $x \in B$. In the former case $f(V(K_{m,n})) \ge (2k-1)/k = 2-1/k$, in the latter case $f(V(K_{m,n})) \ge (k-1+n)/k \ge (2k-1)/k = 2-1/k$. If f assigns the value 1/k to all vertices of A and to exactly k-1 vertices of B, then $f(V(K_{m,n})) = 2-1/k$, therefore $\gamma(k,K_{m,n}) = 2-1/k$.

By the symbol $G \oplus H$ we denote the Zykov sum of graphs G and H, i.e. the graph obtained from vertex-disjoint graphs G and H by joining all vertices of G with all vertices of H by edges.

Theorem 6. Let k, q be positive integers, let G, H be two graphs such that $\gamma(k, G), \gamma(k, H)$ are defined and $q \leq 1 + \min(\gamma(k, G), \gamma(k, H))$. Then $\gamma(kq, G \oplus H) \leq (\gamma(k, G) + \gamma(k, H))/q$.

Proof. Let g and h be minimal Y(k)-dominating functions of G and H, respectively. Let $f \colon V(G) \cup V(H) \to Y(kq)$ be defined so that f(x) = g(x)/q for $x \in V(G)$ and f(x) = h(x)/q for $x \in V(H)$. Consider $x \in V(G)$. The closed neighbourhood of x in $G \oplus H$ is the disjoint union of the closed neighbourhood of x in G and of V(H). The sum of values of f over the closed neighbourhood of x in G is at least 1/q, its sum over V(H) is at least $\gamma(k,H)/q$. It follows from the assumption that $1/q + \gamma(k,H)/q \geqslant 1$. For $x \in V(H)$ this may be proved quite analogously. Therefore f is a Y(kq)-dominating function of $G \oplus H$. This implies the assertions. \square

For the particular case k = 1 we have a corollary.

Corollary 3. Let q be a positive integer, let G, H be two graphs such that $q \leq 1 + \min(\gamma(G), \gamma(H))$. Then $\gamma(q, G \oplus H) \leq (\gamma(G) + \gamma(H))/q$.

A similar assertion holds for $G \oplus K_1$, i.e. the graph which is obtained from G by adding a new vertex and joining it with all vertices of G by edges.

Theorem 7. Let k be a positive integer, let G be a graph for which $\gamma(k,G)$ is defined. Then

$$\gamma(k+1, G \oplus K_1) = \gamma(k, G) \cdot \frac{k}{k+1} + \frac{1}{k+1}.$$

Proof. Let f be a minimal Y(k)-dominating function of G. Let w be the added vertex. Let $g \colon V(G) \cup \{w\} \to Y(k+1)$ be defined so that g(x) = kf(x)/(k+1) for $x \in V(G)$ and g(w) = 1/(k+1). Then the sum of g(x) over the closed neighbourhood of x in $G \oplus K_1$ is equal to the sum of g over the closed neighbourhood of x in G plus g(w). The sum of g over the closed neighbourhood of x in G is at least k/(k+1) and g(w) = 1/(k+1), therefore the sum of g over the closed neighbourhood of x in $G \oplus K_1$ is at least 1. The closed neighbourhood of x in $x \in K_1$ is at least 1. The closed neighbourhood of x in $x \in K_1$ is greater than or equal to this sum over the closed neighbourhood of any other vertex, therefore it is also at least 1 and

$$\sum_{x \in V(G) \cup \{w\}} g(x) = \frac{k}{k+1} \sum_{x \in V(G)} f(x) + g(w) = \frac{k}{k+1} \gamma(k, G) + \frac{1}{k+1}.$$

Hence $\gamma(k+1,G\oplus K_1)\leqslant \frac{k}{k+1}\gamma(k,G)+\frac{1}{k+1}.$ On the other hand, let g_0 be a minimal Y(k+1)-dominating function of $G\oplus K_1$ and let $f_0\colon V(G)\to Y(k)$ be defined so that $f_0(x)=(k+1)g_0(x)/k$ for each $x\in V(G)$. The sum of values of g over the closed neighbourhood of any vertex $x\in V(G)$ in G is at least 1-1/(k+1) and thus such a sum of f_0 is at least 1. We have $\sum\limits_{x\in V(G)}f_0(x)=\sum\limits_{x\in V(G)}(k+1)g_0(x)/k=\frac{k+1}{k}\sum\limits_{x\in V(G)}g_0(x)=\frac{k+1}{k}\gamma(k+1,G\oplus K_1)-\frac{1}{k}$ and thus $\gamma(k,G)\leqslant \frac{k+1}{k}\gamma(k+1,G\oplus K_1)-\frac{1}{k}$, which yields $\gamma(k+1,G\oplus K_1)\geqslant \frac{k}{k+1}\gamma(k,G)+\frac{1}{k+1}$. Hence we have the equality $\gamma(k+1,G\oplus K_1)=\frac{k}{k+1}\gamma(k,G)+\frac{1}{k+1}$.

In the end we will consider the number $\gamma(k,G)$ for different numbers k and for the same graph G.

Theorem 8. Let k, q be positive integers. Then there exists a graph G such that $\gamma(k+1,G) - \gamma(k,G) = q$.

Proof. Denote p = kq + q + 1 and let G be the Zykov sum $K_k \oplus \overline{K}_p$, where \overline{K}_p denotes the complement of the complete graph \overline{K}_p , i.e. the graph consisting of p isolated vertices. If f is a function such that f(x) = 0 for $x \in V(\overline{K}_p)$ and f(x) = 1/k for $x \in V(K_k)$, then f is a Y(k)-dominating function of G; namely, we have $V(K_k) \subseteq N[x]$ for each $x \in V(G)$ and $f(V(K_k)) = 1$. We have $\gamma(k, G) = 1$. Each vertex of

 \overline{K}_p has degree k in G and therefore for each Y(k+1)-dominating function g we have g(y) = 1/(k+1) for each $y \in V(G)$ and $\gamma(k+1,G) = (p+k)/(k+1) = q+1$. \square

The next theorem is not expressed for k in general, but only for $\gamma(1,G)$ and $\gamma(2,G)$.

Theorem 9. Let q be a positive integer. Then there exists a graph G such that $\gamma(1,G) - \gamma(2,G) = q$.

Proof. Let H be a graph obtained from the circuit of length 4 by adding a new vertex u and joining it to a vertex v of the circuit by an edge. Take 2q pairwise vertex-disjoint copies H_1, \ldots, H_{2q} of H. Take a vertex w and join it by edges with the vertex corresponding to u in each of the graphs H_1, \ldots, H_{2q} . Finally, take a new vertex x and join it with w by an edge. The resulting graph will be G. For q = 4 this graph is shown Fig. 1. The number $\gamma(1, G)$ is the usual domination number $\gamma(G)$ of G,

i.e. the minimum number of vertices of a dominating set D in G. Evidently such a dominating set must contain at least one of the vertices w,x and at least two vertices from each H for $i=1,\ldots,2q$: hence $\gamma(G)\geqslant 4q+1$. If D consists of w, of the vertices corresponding to v in H and of one other vertex of the circuit in H for $i=1,\ldots,2q$, then D is dominating in G and |D|=4q+1, which implies $\gamma(G)=4q+1$. Now let V^+ be the set consisting of all vertices of D and, moreover, of x and of one more vertex of the circuit in each H for $i=1,\ldots,2q$. We have $|V^+|=6q+2$. If $f(x)=\frac{1}{2}$ for $x\in V^+$ and f(x)=0 for $x\in V(G)-V^+$, then f is a V(2)-dominating function of G and is evidently minimal. We have $\gamma(2,G)=f(V(G))=\frac{1}{2}|V^+|=3q+1$. Hence $\gamma(1,G)-\gamma(2,G)=q$.

Problem. Can Theorem 10 be generalized to a theorem analogous to Theorem 9?

A final remark. The Y(k)-domination number of a graph can be defined in another way, without using the concept of a Y(k)-dominating function:

A subset D of V(G) is called k-tuply dominating in G, if for each $x \in V(G) - D$ there exist k vertices y_1, \ldots, y_k od D adjacent to x and for each $y \in D$ there exist k-1 vertices z_1, \ldots, z_{k-1} adjacent to y. The minimum number of vertices of a k-tuply dominating set in G is called the Y(k)-domination number of G.

A k-tuply dominating set was defined and used also in [5], but in a weaker form: the requirement of existence of z_1, \ldots, z_{k-1} for $y \in D$ was not used there.

References

- Dunbar J.; Hedetniemi S. T.; Henning M. A.; Slater P. J.: Signed domination in graphs.
 In: Graph Theory, Combinatorics and Applications (ed. Y. Alavi, A. Schwenk). Wiley, New York, 1995, pp. 311–321.
- [2] Dunbar J.; Hedetniemi S. T.; Henning M. A.; McRae A.: Minus domination in graphs. Computers Math. Appl. To appear.
- [3] Grinstead D. L.; Slater P. J.: Fractional domination and fractional packing in graphs. Congr. Numer. 71 (1990), 153–172.
- [4] Bange D. W.; Barkauskas A. E.; Host L. H.; Slater P. J.: Generalized domination and efficient domination in graphs. Discrete Math. 159 (1996), 1–11.
- [5] Zelinka B.: On k-ply domatic numbers of graphs. Math. Slovaca 34 (1984), 313-318.

Author's address: Bohdan Zelinka, Katedra diskrétní matematiky a statistiky Technické university, Hálkova 6, 461 17 Liberec 1, Czech Republic, e-mail: bohdan.zelinka @vslib.cz.