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DISJOINT SEQUENCES IN BOOLEAN ALGEBRAS
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Abstract. We deal with the system ConvB of all sequential convergences on a Boolean
algebra B. We prove that if a is a sequential convergence on B which is generated by a set
of disjoint sequences and if 3 is any element of ConvB, then the join oV 3 exists in the
partially ordered set ConvB. Further we show that each interval of ConvB is a Brouwerian
lattice.
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1. INTRODUCTION

Some types of sequential convergences on Boolean algebras were investigated by
Lowig [3], Novak and Novotny [4] and Papangelou [5].

This note is a continuation of [1]. Throughout the paper we assume that B is
a Boolean algebra which has more than one element. Conv B is the system of all
sequential convergences on B which are compatible with the structure of B. For the
sake of completeness, the definition of Conv B as given in [1] is recalled in Section 2.

The system Conv B is partially ordered by the set-theoretical inclusion. It is a
A-semilattice with the least element (the discrete convergence on B). In general,
Conv B fails to be a lattice; i.e., for a and 3 in Conv B, the join 'V (3 need not exist
in the partially ordered set Conv B.

A sufficient condition for Conv B to be a lattice was found in [2].

We denote by D(B) the system of all sequences (x,,) in B such that

(i) @p(1) ATpee) = 0 whenever n(1) and n(2) are distinct positive integers;
(ii) x, > 0 for each positive integer n.
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The sequences belonging to D(B) will be called disjoint.

We prove that for each subset A of D(B) there exists a sequential convergence
a € Conv B which is generated by A and that for any 8 € Conv B the join a V 3
exists in the partially ordered set Conv B.

Further we show that each interval of Conv B is a complete lattice satisfying the

(\/ Oti) NB=\/(ainpB).

el il

identity

This implies that each interval of Conv B is a Brouwerian lattice.

2. PRELIMINARIES

We denote by S the system of all sequences in B. Let « C S x B. If ((zy,),2) € a,
then we denote this fact by writing z,, —, x. For a € B, const a denotes the sequence
(z,) such that x,, = a for each n € N.

We recall the definitions of Conv B and Convy B from [1].

2.1. Definition. A subset of S x B is said to be a convergence on B if the
following conditions are satisfied:

(i) If 2, —4 x and (y,) is a subsequence of (z,,), then v, —, x.
(ii)) If (zn) € S, * € B and if for each subsequence (y,) of (x,) there is a
subsequence (z,) of (y,) such that z,, —, z, then z,, —, x.
(iii) If @ € B and (x,) = const a, then z,, —4 a.
(iv) If z,, —4 x and x,, —4 y, then z = y.
(v) If 2, —»o = and y,, —4 y, then z, Vy, — ©Vy, 2, Ayn —q © Ay and
xl —q 2.

(vi) If 2, < yn < 2z, is valid for each n € N and z,, —4 @, 2, =4 &, then y,, —,, .

The system of all convergences on B is denoted by Conv B.
For each a € Conv B we put

ag = {(z,) € S: x, —4 0}

Further we define
Convg B = {«p: « € Conv B}.

Both the systems Conv B and Convg B are partially ordered by the set-theoretical
inclusion; the suprema and infima (if they exist) in Conv B or in Convg B are denoted
by the symbol V or A, respectively.
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Next, we denote by d the system of all ((z,),2) € S x B such that the set
{n € N: z,, # z} is finite. Then d is the least element of Conv B.
For each o € Conv B we put f(a) = ao.

2.2. Lemma. The mapping f is an isomorphism of the partially ordered set
Conv B onto the partially ordered set Convg B.

Proof. We have f(Conv B) = Convg B. In view of 1.4 in [1], f is a monomor-
phism.

Let o, 8 € Conv B, a < f. Further let (z,,) € ap. Hence ((z5),0) € «, thus
((),0) € g and then (zy,) € By. Thus ag < fo.

Now let «, 3 € Conv B, ag < fp. Assume that ((x,,),z) € a. In view of 1.3 in [1]
we have

o N2’ =40, ), Ax —40.

Thus from the relation oy < By we obtain
z, AT —50, z, Az —g0.
Then by applying 1.3 in [1] again we get z,, —3 z. Hence oo < 3. O

As a consequence we obtain that dg is the least element of Convg B.

2.3. Lemma. (Cf. [1].) (i) ConvgB is a A-semilattice and each interval of
Convg B is a complete lattice.
(ii) If 0 # {a¥};cr € Convg B, then

0 _ 0
Mol ={1al

i€l iel
(iii) There exists a Boolean algebra By such that Convg By fails to be a lattice.

From 2.2 and 2.3 we infer

2.4. Proposition. Conv B is a A-semilattice and each interval of Conv B is
a complete lattice. There exists a Boolean algebra By such that Conv B is not a

lattice.
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3. ON THE SET D(B)

We apply the notation as in the previous sections. A subset T of S is called regular
if there exists ag € Convg B such that T' C ag.

Let T be a regular subset of S and let o be as above. Then in view of 2.3 there
exists an element a"(7') of Convy B such that a®(T') is the least element of Convy B
having T as a subset. We say that a®(T') is the element of Convy B which is generated
by T. We also say that 7" generates the convergence «, where ag = a°(7").

If T is regular, then clearly each subset of T is regular.

For (zy), (yn) € S we put (z,) < (yn) if z, < y, for each n € N. Then S turns
out to be a Boolean algebra. Let A be a nonempty subset of S. We denote by

A*—the set of all (x,,) € S such that for each subsequence (y, ) of (z,,) there exists
a subsequence (z,) of (y,) which belongs to A;

[A]—the ideal of the Boolean algebra generated by the set A;

0 A—the set of all subsequences of sequences belonging to A.

The following assertion is easy to verify.

3.1. Lemma. Let A be a nonempty subset of S. Then [A] is the set of all
sequences (z,) € S such that there exist k € N and (w}), (w2),..., (wk) € A having
the property that the relation

zn S ’w,ll\/wi\/...\/'wfb
is valid for each n € N.

3.2. Lemma. (Cf. [1],2.9.) Let ) # A C S. Then the following conditions are
equivalent:

(i) A is regular.
(i) If (y}), (¥2),..., (y¥) are elements of §A and if b is an element of B such that
b<ylvylv...vyk is valid for each n € N, then b = 0.

From the definition of Convg B and from [1], 2.5 we conclude

3.3. Lemma. Let A # () be a regular subset of S. Then [§A]* is an element of
Convg B which is generated by the set A.

3.4. Lemma. (Cf. [1], 5.2.) Let (z,,) € D(B). Then the set {(z,)} is regular.

3.5. Lemma. Let (z,) € D(B) and suppose that (yl), (y2),..., (y¥) are subse-
quences of (z,,). Put (z,) = yL Vy2 V...V yk for eachn € N. Then there exists a
subsequence (t,,) of (zy,) such that (t,) € D(B).
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Proof. For each i € {1,2,...,k} and each n € N there is a positive integer
j(i,n) such that
Yn = Tj(im)-

Thus for each i € {1,2,...,k} we have
(1) jli,n) — 0o as n — oo.

We define the sequence (t,,) by induction as follows. We put ¢; = z;. Suppose that
n > 1 and that ¢1, %2, ..., %,_1 are defined. Hence there are £(1),4(2),...,¢(n—1) € N
with

ts =2y fors=1,2,...,n—1
In view of (1) there exists the least positive integer p having the property that for
each s € {1,2,...,n— 1} and each i(1),4(2) € {1,2,...,k} the relation

Ji(1), s) < j(i(2),p)

is valid. Then we put t,, = z,.
Hence ¢, ANty =0 for s =1,2,...,n— 1. Thus (z,) € D(B). O

3.6. Lemma. Let () # Ay be a regular subset of S and let (x,) € D(B). Then
the set Ay U {(x,)} is regular.

Proof. We denote by ag the element of Convy B which is generated by the
set A;. Put A = A; U {(x,)}. By way of contradiction, suppose that A fails to be
regular. Then in view of 3.2 there are (y.), (¥2),...,(y™) € A and 0 < b € B such
that the relation

0<b<yVvyiv...vy™

is valid for each n € N. Put

Mlz{i€{1,2,...,m}: (y;) EAl},
M2={1,2,...,m}\M1.

Since the set A; is regular, in view of 3.2 the relation M = ) cannot hold. Further,
according to 3.4 and 3.2, the set M; cannot be empty. Denote

o=\, (€M), z22=\/y, (i€My).
Then (z}) € ap.
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According to 3.5 there exists a mapping ¢: N — N such that ¢ is increasing and
the sequence (zi(n)) belongs to D(B). We have

0<b< zé(n) \Y% zi(n) for each n € N.

Put
11 2 _ 2
Then
b=a,Va,
for each n € N. We have (¢}) € ag and (¢2) € D(B).
Since b =g}, ;1 V ¢2,, we get

2 _ 2 2 1 2 2 51 2 502 2 5 1

qn = qn A b = qn A (q'n+1 \ qn+1) = (qn A qn+1) \ (qn A qn—i—l) = qn A qn-&-l

and clearly (¢2 A gp, 1) € ag. Therefore (¢i V ¢2) € ap yielding that constb € ay,
which is impossible. O

By the obvious induction, from 3.6 we obtain

3.7. Lemma. Let () # A; be a regular subset of S, m € N, (z}), (22),..., (z™)
€ D(B). Then the set A; U {(z)), (x2),..., (™)} is regular.

n

Since the system of sequences which is dealt with in the condition (ii) of 3.2 is
finite, from 3.7 we conclude

3.8. Proposition. Let () # A; be a regular subset of S. Then the set Ay UD(B)
is regular.

It is obvious that if ) £ Ay C .9, then A, is regular if and only if the set {const 0}U
A, is regular. Hence by putting A; = {const 0}, from 3.8 we obtain

3.9. Proposition. The set D(B) is regular.

In view of 3.9, there exists v € Conv B which is generated by the set D(B).

Let ag € Convg B. According to 3.8, the set ap U D(B) is regular. Hence there
exists By € Convg B such that [y is generated by the set ag U D(B).

In view of 3.3, we have ag < By and vy < (. Let 81 € Convg B, 1 > ag, 51 = Yo-
Thus D(B) C 31 and hence op U D(B) C ;. By using 3.3 again we get 8y < 1.
Therefore By = ag V 79- We obtain

3.10. Proposition. Let ag € Convg B. Then the join ag V g exists in the
partially ordered set Convy B.
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In view of 2.2 we conclude

3.11. Corollary. Let a € Conv B. Then the join a V y exists in the partially

ordered set Conv B.

If Ay is a nonempty subset of D(B), then it is regular and thus there exists
v € Conv B which is generated by Ag. Clearly 71 < ; from 3.11 and 2.4 we obtain

3.12. Corollary. Under the notation as above, for each a € Conv B there exists

a V1 in Conv B.

4. A DISTRIBUTIVE IDENTITY

Suppose that p; and po are elements of Convg B such that u; < ps. Consider the
interval [u1, po] of the partially ordered set Convg B. In view of 2.3, this interval is
a complete lattice.

Let © # {c;}icr C [p1, po] and B € (1, p2]. Then the elements

vy = (\/ai)/\ﬁ; sz\/(ai/\ﬁ)

iel iel
exist in [p1, 2] and v1 > v, Put

A1 = U (679 A2 = U(a, ﬁﬂ)

icl icl

Suppose that (v,) € v;. Hence according to 2.3 we have

(vp,) € B and (v,) € \/ Q.

iel
From the second relation and from Lemma 3.3 in [1] we obtain
(vn) € [Ad]".

Hence for each subsequence (t.) of (v,) there is a subsequence (t2) of (t1) such that

(t7) € [Ad].
Let (tL) and (¢2) have the mentioned properties. Therefore in view of 3.1 there
are (wl), (w?),...,(wk) in A such that the relation

tigw}leiv...Vwi‘;
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is valid for each n € N. Put
@, = to Nwi,

for each n € N and each j € {1,2,...,k}. Thus

2 =g vgVv...vgt foreachneN,

and (), (¢2),...,(q¥) € A;. At the same time we have (¢}), (¢2),...,(¢¥) € 8.
Hence for each j € {1,2,...,k} there is i(j) € I such that

(@) € ayjy N B.

In view of 3.1, this yields that (#2) belongs to [As]. Therefore (v,) € [A2]*. Thus by
applying Lemma 3.3 in [1] we get (vy,) € va.
Summarizing, we have

4.1. Proposition. Let [u1,ps2] be an interval of Convy B, 3 € [u1,p2], O #
{ai}iel - [,u1,,u2]. Then

) (Vi) r8=Vianm,

i€l i€l

4.2. Corollary. Fach interval of Convy B is Brouwerian.

From 4.1 and 2.2 we obtain

4.3. Corollary. Fach interval of Conv B satisfies the identity (1).
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