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ON A HIGHER-ORDER HARDY INEQUALITY
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Abstract. The Hardy inequality [q, [u(z)[Pd(x) P dz < ¢ [q [Vu(2)|P dz with d(z) =
dist(z, 0) holds for u € CF°(Q) if & C R™ is an open set with a sufficiently smooth
boundary and if 1 < p < co. P.Hajlasz proved the pointwise counterpart to this inequality
involving a maximal function of Hardy-Littlewood type on the right hand side and, as a
consequence, obtained the integral Hardy inequality. We extend these results for gradients
of higher order and also for p = 1.
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1. INTRODUCTION

Let Q be a proper subdomain of R” and let d(z) = dist(z,00), = € Q, be the
corresponding distance function.

It is well known that the Hardy inequality
(1.1) / |u(x)[Pd(z)"P dz < c/ |Vu(z)P de,
Q Q
holds for uw € C§°(€2) if 1 < p < oo and the boundary of  satisfies the Lipschitz

condition or similar regularity conditions. For these results and further references
we refer to [8], [10], [12].
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Different authors introduced the notions of capacity and of thick sets in various
ways (see, e.g. [1], [4]-[9], etc.) in order to find weaker sufficient conditions for
inequalities of Hardy, Poincaré and other types. We shall concentrate mainly on [4]
and [6].

Let K be a compact subset of  and let 1 < p < oo. The variational (1, p)-capacity
C1 (K, Q) of the condenser (K, ) is defined to be

C1,(K,Q) = inf{/ |[Vu(z)Pde: v e C5°(R),u(z) > 1 for x € K}.
Q

By B(z,r) we denote the open ball in R™ of radius r, 0 < r < oo, centered at
r e R

Definition 1. A closed set K C R" is locally uniformly (1,p)-thick, if there
exist numbers b > 0 and rg, 0 < rg < 0o such that

(1.2) Cip(B(z,r) N K, B(x,2r)) 2 bCy,(B(z,r), Bz, 2r))

for all x € K and 0 < r < rg. If ro = oo, then the set K is called uniformly
(1,p)-thick.

Note that a scaling argument yields
(1.3) C1,p(B(z,r), B(z,2r)) = c(n,p)r"*.

P. Hajlasz [4] used the Hardy-Littlewood maximal operator M and showed that for
a domain  with a locally uniformly (1, p)-thick complement there exists g € (1,p)

such that every function u € C§°(Q) satisfies the pointwise analogue of the Hardy
inequality, which in a slightly simplified formulation reads

()] < ed() [M(|Vul?)(2)] ",

As a corollary he obtained the integral Hardy inequality

/Q |u(2)|Pd(z)* P da < C/Q |Vu(z)|Pd(z)* de,

for small positive numbers a. Similar results were obtained also by J. Kinnunen and
O.Martio [6].

Our aim is to extend these results for derivatives of higher order.
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n
If « = (a1,...,a,) is an n-tuple of non-negative integers, |a| = > a;, al =
i=1

a1

aql...anl and for x = (21, ...,2,) € R” weset 2 = 27" ... 2%, The corresponding

partial derivative operators will be denoted by

D% = .D]_Oé1 ...D% = 78‘04
" Ozt ... 0z

and the gradient of a real-valued function of order k, k& € N, will be the vector
Vku = {D%u} )=k For k=1, V!u = Vu is the usual gradient.

Given a measurable set £ C R™, we denote its Lebesgue n-measure by |E| and
the characteristic function of E by yg. Constants ¢ in estimates may vary during
calculations but they always remain independent of all non-fixed entities.

2. THE POINTWISE HARDY INEQUALITY

The fractional maximal function M, ru, 0 < v < n, 0 < R < oo, is defined for
every u € Li _(R") by

loc

M, pulz) = sup [Bla, )/ / )l dy, @€ R,
0<r<R B(z,r)

Note that My ou = Mu is the classical Hardy-Littlewood maximal function.

Theorem 1. Let 1 < p < oo, let k be a positive integer and 0 < v < k. Let Q
be an open subset of R™ such that R" \ Q is locally uniformly (1, p)-thick and let b
be the constant from Definition 1. Then there exists a constant ¢ = c(k,p,n,b) > 0
such that every function u € C§°(2) satisfies the inequality

_ 1/
(2.1) Ju(@)] < ed(@) P [ My aa) (IVFulP X5 2a) ()]

where x € Q, d(z) < ro, and T € 09 is such that |z — T| = d(z).

This is the main result of this section which extends Theorem 2 of [4]. To prove
it we shall need several auxiliary assertions. The first one is a generalization of |3,
Lemma 7.16].

Lemma 1. Let k be a natural number. There exists a constant ¢ = c¢(k,n) > 0
such that for every ball B C R® and for every function u € C*(B) the inequality

k
u(z) — \Bl_l/ P(x,y)dy’ < c/ %dy, z € B,
B B T —yl
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holds, where P is the polynomial of order < k — 1 given by

_1)lol
(2.2) P(z,y)= Y %D%(y)(y—x)“7 r,y € B.
lor| <k—1 '

Lemma 1 can be proved in a way similar to the proof of Lemma 7.16 in [3] using the
Taylor expansion of the function v(r) = u(x + r), where r = |z —y|, 0 = (y — ) /r,
x,y € . Note that assertions of this type can be found for instance in [1, §8.1] and
8, §1.1.10).

The next assertion is a variation of a well-known result of L. I. Hedberg.

Lemma 2. Let 0 < v < x and let B C R" be a ball of radius R. Then there
exists a constant ¢ = ¢(n,v, k) > 0 such that every function g € L], .(B) satisfies the
inequality

l9(y)| dy

B v —y|"~

< cR¥YM, 2r(g)(x), r € B.

Proof. Fixz € Band forie Nset A; = (B(z,2'7"R)\ B(z,27'R)) N B. Then

l9(y /
\x—m" g ‘Z " |x—y|n o
o0

< max(1,2°7") Z (27'R)" /B(w - l9(y)| dy

=0

< |B(0,1)]  max(1,277")2" TR Y 27T IM, () ().
=0

O
We shall also need the following inequality of Poincaré type which follows from

the considerations in [8, Sections 9.3 and 10.1.2].

Lemma 3. Let 1 < p < co. Let B = B(z,R) be a ball in R” and let K be a
closed subset of B. Then every function v € C*(B) such that dist(suppu, K) > 0
satisfies the inequality

Rn
p < p
/§|u(x)| dx\cCLp(K,B(xﬂR)) /§|Vu(x)\ dz,

where ¢ is a positive constant independent of B, K and u.
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Proof of Theorem 1. Let z € Q be such that d(x) < 7o, where ¢ is the
number from Definition 1. Let T € 99 satisfy |t —Z| = d(x) = R and let u € C§°(Q).
Set B = B(Z,2R). Then x € B and

(2:3) u()] < Ju(z) — Pp(z)| + [Pp(z)],

where Pp(z) = |B|™! [, P(z,y) dy and P is the polynomial from Lemma 1. Using
Lemma 1, Lemma 2 and the Holder inequality we obtain

[VEu(y)|

g lr—yln*

< R P (M, 4 (IVEulPx5) ()] 7.

(24)  Ju(z) - Pp(z)| <c dy < eR* ™My ar(|V ulxs)(x)

From (2.2) we have

k—1
Po(@) < 1B [ Ppldy < e Y RIBI [ 9]y
=0
k=1 ‘ 1/p
<y m (s [ wuwpa)
i=0 B

Repeated application of Lemma 3 and of (1.2) and (1.3) yields

% Pdx c ol
/B|v u(@)P de < i (R \9) BB 4R))

< CRP/ |Vt u(z)|P do
B

/ |Vt u(z)|P do
B

< cR(k_i)p/ |VEu(z) P da, 1=0,....,k— 1
B

Hence,
1/p
(2.5) P ()] < cR <|B|—1 /B VEu(a)P dac)
< cRF/P [M%4R(|Vku|pxg)(x)]l/p.
The inequality (2.1) follows from (2.3)—(2.5). O
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3. INTEGRAL INEQUALITIES

In this section we shall use Theorem 1 to obtain higher-order analogues of the
classical Hardy inequality. As in [4] and [6], in further considerations we shall essen-
tially use the openness of the (1, p)-thickness with respect to p. This deep property
was originally proved by J.L.Lewis [7, Theorem 1] and later on in another way by
P.Mikkonen [9, Theorem 8.2]. The following lemma can be obtained as a particular
case of Lewis’ and Mikkonen’s results. It is not important for our purpose that Lewis
dealt with another type of capacity.

Lemma 4. Let 1< p < oo and let K C R™ be a closed locally uniformly (k,p)-
thick set. Then there exists ¢, 1 < q < p, depending only on n, k, p and b, such that
K is locally uniformly (k,q)-thick with the same value of r( as for p.

For » > 0 we set

Q ={ze: dz)<r}.

Theorem 2. Let1 < p < oo and let k be a positive integer. Let ) be an open
subset of R™ such that R™ \ Q is locally uniformly (1, p)-thick. Then there exists a
positive constant ¢ = c(k, p,n,b) such that the inequality

(2.6) /Q (';‘(S;)k')p dz < C/QT |VFu(2)|P dz

holds for every function u € C§°() and for every r € (0,79), where ro is the

parameter given in Definition 1.

Proof. Letp > 1 and let ¢ € (1,p) be from Lemma 4, and suppose that
r € (0,7r9). It follows from (2.1) that for all u € C§°(Q),

(2.7) lu(@)|d(z) ™ < ¢ [M(|VFultxq,)@)] !, zeq,.

We use the boundedness of M: LP/? — LP/4 and the Holder inequality to obtain

(2.8) /QT ('C;L((;)ﬁ)p dz < C/QT [M(|Vku|qxgr)(x)]p/q dz < c/ |VFu(z)|P da.

Qr

Note that the norm of the maximal operator M and, consequently, also the constant
¢ depend on the value of p/q. O
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If p = 1, we cannot use Lemma 4. Instead we use the fact that for Q with |Q] < co
the maximal operator M is a bounded mapping of Llog L(Q)) in L(Q) (see [2],
p. 74). Recall that Llog L(?) is the Zygmund space which consists of all measurable
functions u with [, [u(z)[log, |u(z)|dz < co, endowed with the norm

12 0
full sz = [ w(©1og Pa
0

where v* is the non-increasing rearrangement of w.
Theorem 3. Letp =1 and let k be a positive integer. Let ) be a bounded open

subset of R™ such that R™ \ Q is locally uniformly (1,1)-thick. Then there exists a
positive constant ¢ = ¢(k, n,b) such that the inequality

u\x
29) | 84 < e 1*ulioe g0
Q.

holds for every function u € C§°() and for every r € (0,79), where ro is the
parameter given in Definition 1.

Proof. From the estimate (2.1) we have
lu(x)|d(x) ™ < cM(\Vkub(QT)(x), z € Q,.

Integrating both sides of the inequality over €2, and using the boundedness of
M: Llog L(Q) — L(Q) we arrive at the inequality (2.9). O

Corollary 1. Let 1 < p < oo and let k be a positive integer. Let €2 be an open
subset of R"™ such that R™ \ Q is locally uniformly (1, p)-thick. Then there exists a
number €y > 0 such that the inequality

(2.10) /Q 7\ (';L((;))J)pd(x)ap dz <c /Q \VFu(z)[Pd(z)° dz

T

holds for all u € C§°(Q2), r € (0,79) and 0 < &€ < 9. The constant ¢ > 0 depends on
n, p, k, b and on the number ¢ from Lemma 4.

Proof. Fixe > 0 and let u € C5°(Q2) be such that the integral on the right
hand side of (2.10) is finite.
If k =1, we set v(x) = |u(z)|d(z)®. Then

(2.11) |Vo(z)| < |Vu(z)|d(z)® + e|u(z)|d(z)*  for a.e. x € Q,
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and (2.10) implies that v belongs to the Sobolev space WO1 "P(Q). Applying Theorem 2
to functions from C§°(€) which approximate v in VVO1 P(Q2) and passing to the limit
we obtain

[ s (Y e, maora

for 0 < e < gg. By (2.11), we have

J, () e

<c (/Q |Vu(z)Pd(x)? do + €” /QT ('Zg;')pd(x)sp dx) .

r

Thus, the inequality (2.10) holds for 0 < & < g9 = ¢~ /7.
Let k > 1 and suppose that the inequality (2.10) holds for j =1,2,...,k — 1 and
0 < e < gp. Let o be the regularized distance function equivalent to d and satisfying
the estimate
Vio(2)| < d(z)™7, z€Q, j=12,...,
(see, e.g., [11, p.171]). Set v(x) = |u(x)|o(x)®. Then

VFo(z)| < [VFu(z +EZQJ @)V u(x)|o(x)*,

where @); are polynomials of degree j. Thus, we have
p p
/ ('“(x),J) d(z)° do < c/ ('”(x)k') da
o, \d(z) o, \o(z)
[ IVt oyt o+ cspz e [ (o
Q- Q.
k $)| ?
< c/ [VPu(z)|P o(x)P doz + cep o(z)* P dx
Q.

¢ / |vku(x)|pd(x)€pdx+cep (
Q.

and the inequality (2.10) holds for 0 < & < ¢~ /7. O

LY o

Corollary 2. Let Q be such that R™" \ Q is locally uniformly (1,p)-thick with
ro > 1 diam(€2). Then the inequality (2.1) holds for every = € Q and the assertions
of Theorem 2, Theorem 3 and Corollary 1 hold with Q in place of Q,. and for all
functions u from the corresponding Sobolev spaces W(f P on Q.

Proof. It suffices to observe that €, = Q for r > %diam(Q) and that the
constant ¢ does not depend on the parameter rg. O
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Note that the assumption of Corollary 2 holds, in particular, if R™ \  is uniformly
(1, p)-thick (i.e., rg = 00).

An open problem. Additional weights could be introduced into the inequal-
ity (2.6) by applying a weighted inequality for the maximal function. Following the
proof of Theorem 2 we can multiply both sides of inequality (2.7) (or, more precisely,
of inequality (2.1)) by d(x)¢ and integrate over 2. However, to make the final step
in (2.8) we have to know that the maximal function satisfies the weighted inequality

[ (9 e ) @] d@yr dr < [ [Vu@)Pa) .
Q, Q.

Note that we are dealing with the global maximal function (the balls in the construc-
tion of M, 44(,) from inequality (2.1) cross the complement of Q) and so to use the
known weighted inequalities for M we would have to consider d(x) extended properly
outside 2. The question is, if the sufficient conditions for such weighted estimate
would not override the condition of (1, p)-thickness of R™ \ €.
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