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Abstract. A characterization of the weighted Hardy inequality
|Full, < C||[F"v|,, F(0)=F'(0)=F(1)=F'(1)=0
is given.
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INTRODUCTION

Let I =[0,1],1 < p, ¢ < o0, let k > 1 be an integer and let AC’;f denote the space
of all functions on I with absolutely continuous (k — 1)-th derivative F(*~1 () and
such that

IFllacs = IF®o]l, < oo,

FO)=F(0)=...=F*Y0)=F1)=...= F&Y(1) =0,

where v(z) is a locally integrable weight function and Hng = (fol lg(x)|P dx)l/p.
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10.98GR and K-0560). The work of the second author was supported in part by INTAS
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We consider the characterization problem for the inequality
k k
(1) [Full, < C|F®|| , F e ACy.

The case k = 1 has been solved by P. Gurka [2] (see also [13]) and many works
have been performed in this area by A. Kufner [6] and by A. Kufner with co-authors
[1], [5], [7-10]. In particular, following Kufner’s terminology we call the inequality
(1) “maximal overdetermined Hardy’s inequality”, that is when a function F' and
its derivatives vanish at both ends of the interval up to (k — 1)-th order. A part
of analysis related to the weighted Hardy inequality for functions vanishing at both
ends of an interval was also given by G. Sinnamon [15] and the authors [11], [12]. In
particular, the maximal inequality (1) on semiaxis was characterized in [11], [12].

The aim of the present paper is twofold. At first we prove an alternative version
of (1) (see Theorem 1) and it allows, using the results of [4], to characterize the
inequality (1), when p = ¢ = 2, k = 2 (Theorem 3).

Without loss of generality we assume throughout the paper that the undetermi-
nates of the form 0 - 00,0/0, 00/0c0 are equal to zero.

AN ALTERNATE VERSION

Denote I, f(x) and Ji f(x) the Riemann-Liouville operators of the form

uf@>=féjﬁﬂx—yﬁlf@nm,xeL

1
hf@)=fé5/(y—wf*f@ﬁw,xef

Then the maximal inequality (1) is equivalent either to

(2) [T f)ull, < Cllfoll,. fe Py
or to
(3) [(Ji)ull, < Cllfoll,» | € Py,

where Pj_; is the k-dimensional space of all polynomials o(t) = ¢y + c1t + ... +
cp—1t* Lt € I, and Pt C Ly, = {f: va”p < oo} denotes the closed subspace
of L, , of functions “orthogonal” to P;_; in the sense that

1
/ f(x)o(x)dz =0 forall o€ Py, f € P-,.
0
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In particular, f € P | if, and only if,

/Olf(x)dx:/ole(x)dx:...:/lek_lf(x)dxzo

and, obviously,
Iof(x) = Jnf(x), f € P,.

We need the following

Lemma 1. ([14], Chapter 4, Exercise 19). Let X be a Banach space and Y C X
the closed subspace. Let X* be the dual space and

Yt={peX*: p(y)=0forallycY}

Then

(4) dist(e,Y) := inf |le —y|x = sup lp(e)
X vey pev llellx-

foralle¢ Y.

Proof. Lety€Y,p €Y, Then

and
lp(e)| = |p(e —y)| < llellx-lle =yl
Consequently,
QO e

sup 1201 ey

pev L lollx-
and
(5) sup 12 Giste, ).

eeve lellx- ~ X

Now supposee ¢ Y,y € Y. Then e—y ¢ Y and by the Hahn-Banach theorem there
exists ¢ € X* such that o(y) =0forally €Y, ||¢||x =1 and p(e —y) = |le — y||.
This implies that ¢ € Y+ and

lo(e)] = lele = y)| = lle =yl = dist(e, ).
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Therefore,

(6) O] S dist(e, v).
peve ellx- — X
Combining the estimates (5) and (6) we obtain (4). O
Put

1],

Aﬂxp*”::1u§§§¢oﬂiia;ﬂ;-

Because of (2) and (3) we have
(e f)u] Ty
(7) Mi(p,q) = sup —pp—" = sup ————r.
sere, Mol gers, N0l

Denote p' = p/(p—1) and ¢’ = ¢/(¢g— 1) for 1 < p,q < oo and observe that
(Lpy)' = Ly 1y if and only if v € Ly 10c and 1/v € Ly 1oc.

The following result gives an alternative version of the problems to characterize
(1), (2), (3) and helps us to realise the desired solution for p = ¢ =k = 2.

Theorem 1. Let 1 < p,q < oo and the weight functions u and v be such that
(LP,U)* = Lp/,l/va (Lq,u)* = Lq/,l/u- Then

(8) My(p,q) = sup ||f/u||q71LdiSt (In.fs Pe-1) -

’
'\ 1/u p1/v

Proof. Applying Lemma 1 and the duality of L, , and Ly 1,4, Lqu and Ly 1/,
Jir and I, we write

(Jrxg)u
My (p,q) = sup u
geps, ool

1
‘fo (Jkg)f‘
= sup sup ———————
gepPi feLy I ulle]lgol],
1
L |l
= sw ffulyt sup 2
€Ly 1/u gePL HgUHp
= swp f/ullyt dist (I, Pey)
FELy 1 /0 Lprase

Remark. The equality (8) holds for Ji f instead of I f.
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THE CASE p =2

The implicit formulae (8) becomes clearer when p = 2. Let du(x) = |v(z)|"2dz
and

Fuo) = R(f0(e) = 15 / “(@— ) Fuly) dy.

Then

k-1 9 1/2
%ist (Fy Pr—1) = (/ ‘Fk(x) —Fro— ZF;“wz(x)l du(ac)) ,
2o I i=1

1/2
where Loy = {f+ || flla = (fy |f2du)""* < o0} and

1
Fio= —— / Fiodp,
M(I) I

1
Fk,i:—/kaid,u, i=1,...,k—1
wi(I) Jr

and polynomials {w;(x)}, i =1,...,k — 1, appear from the Gram-Schmidt orthogo-
nalization process of {1,¢,...,t*"1} in Ly, (see [4], Lemma 2).
Observe, that if p £ 2, p € (1,00) and k = 1, then

1/p 1/p
(/ |Fy — Fiol” du;;) SLdiSt (F1, Po) <2</|F1—F1,0|p dup) ;
I Pkp I

(see [3]), where du,(z) = |v(z)| P da.
Thus, for p = 2 the characterization problems of (1), (2) and (3) are equivalent to
the following Poincaré-type inequality

k—1

(9) Fy — Fro— ZFk,iwi <C|fllg-
i=1

2,1
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THE CASE k =2

We need the following notation. Let k¥ > 1,1 < p,qg < o0, 1/r = 1/q—1/p if
1<qg<p<oo. Put

Ak,O = Ak,O;(a,b),u,v

1/ A 1/p
sup ((J;'(z = )10 D)o de) " (fLp)

a<t<b

=
VA
)

(S (S =Dt ar)” ()" o ) o> g
Ak:,l = Ak,l;(a,b),u,v Uy
P

(1) (1= ap et an) y
(ﬁ(ﬁhmyw(ﬁu—mﬂhﬂwuwﬁd@”ﬂmwwwf”, p>q

B0 = By,05(a,b),u.w

sup ([ =) D@ az) " (17 o)

a<t<b

N
<

S
N
<

/

(5 (it = ay=Dpugaypraz)™ (2 )" orﬂwf”,p>m

Bk,lszl(ab)uv

s (f1ul) " (5 = 0 6D ar) »
(12 ()™ (@ = 0P 6 Dppta) ao) " pan)”, p> g

VA
)

Ak = Ak;(a,b),u,v = maX(Ak,Oa Ak,l):
By = Biy(a,b),u,v = max(By o, Br,1)-

The constants Ay and Bj are equivalent to the norms of the Riemann-Liouville
operators I, and Jy, respectively, from L, ,(a,b) into Lg(a,b) [16-17].

Theorem 2. Let 1 < p,q < oo, k = 2 and let the hypothesis of Theorem 1 be
fulfilled. Then

(10)

M < inf Ay, T),u,v A‘T u,(x—7)"1v(z Biy(r z—71)u(zx),v
2p0) < It (A0 T A uen e T B e-nue),
+ D:,,\ + DT,)\ + B2;(o’,1),u,v + Al;(z\,a),(afa:)u(m),'u

+ Bino) (o) to(a) + Dao + D3 o),

298



where

( ' u|q)1/q( = @ o) )
([o- x>Qu<x>|de)1/q( / ' v|—p/)1/p ,
D= ([ - T>Qu<x>|de)l/q( / |v|-p’)1/p ,
() u|q)1/q( / (o= o @) ¥ dx)w-

Proof. If f € Pi, then for all z € [0, 1] we have

(11) Lf(z) = J2f (x).

Let A € (0,1) and for any 7 € (0,A) and = € (7, ) we find

sz(x):/ow(/Osf>ds:/oT(/Osf>ds+/j</osf)ds
:/()T<T—y>f<y>dy—/Tm</glf>ds
:/OT(T—y)f(y)dy—/jf(y)(/Ty ds) @
_ :f(y)</j ds)dy—Alf(y)<1m ds)dy

— /T(T —y)f(y)dy — /m(y —7)f(y)dy
0

T

—(x—T)/:f—(x—T)/:f-

Analogously, with o € (A, 1) for z € (A, 0) we write

I2f(x):J2i‘(x):1/:</slf)ds |
SAVEIEIAVEE

1 g
:/ (y—a)f(y)dy—/ (0 —y)f(y)dy

—(U—w)/;f—(o—x)/:f.
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Now we estimate the norm of each term on the right hand side. Using [16-17] we

obtain
HX[O’T} (IQf)qu g A2;(0,7‘),u,v||X[0,T]f/UHp g Azi(O’T)’uvafUHp'

Plainly

e (o), < rstedute) [ = ) ol
T A
+lhea@ut) [ =0, + Ixen@u@e - [,
+xry@u@e =) [ 7],

(we use the Holder inequality for the first and the fourth term and the upper estimates
which follow from the weighted Hardy inequalities [13] for the second and the third

term)

< (DT,)\ + Al;(-r,)\),u,(a:f‘r)*lv(w) + Bl;(T,/\),(a:f‘r)u(w),'u + Di,)\) HfUHp
Similarly, applying (11),

X701 (T2f) ul],
< (D;,g + Bl;()\,o),u,(a—m)*lv(z) + Al;()\,a),(afm)u(a:),v + D)\,U) HfUHp
HX[UJ-] (IQf)qu = HX[UJ-] (JQf)u”q < B2;(‘771)’u7vaUHp'

Finally we obtain

| () ull, < x0T ul|, + [[xpra F2f) ul],
+{xino) T ) ull, + [|XGo,17 (T2f) ],
< (Azy0,7),u0 + Drx + Avy(r3) s (a—1) - 1o(2) + BLi(rA), (e—r)u(e) v
+ D} + D3 5 + Bi,(v o) u,(0—2) o)
+ AL (o) (o—nyu(@).0 T Dao + Bayo,n,u) [ 2] -

Since 7, A and o were arbitrary the upper bound (10) of My(p, q) follows. O

Remark. Theorem 2 gives the upper bound for M (p, q), when k = 2. Obviously
the similar upper estimates can be proved by the same method for & > 2. We omit
the details.

Denote £ the right hand side of (10) when p = ¢ = 2. The following result brings
the characterization of (1) for p=¢ =k = 2.
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Theorem 3. Let the hypothesis of Theorem 1 be fulfilled for p = q =2 . Then
(12) ERrE < My(2,2) <€,

where k = k(v).

Proof. The upper bound is an immediate corollary of Theorem 2. To prove
the lower bound we use Theorem 1 and the arguments from Lemma 7 [4]. Let

du(z) = Jo()| 2 d; mnzlww;

wmzz@—ww@xmmm=W@Wmmm;mnzﬁdm@.

If we take the point A € I such that w(\) = 0 and choose 7, o so that
O0<7<A<o<l, p0,7)=p(r,A) and pu(, o) = u(o,b),
then there exist positive numbers ¢; = 6;(v) € (0,1), ¢ =1,...,5 for which

w(0, )‘) = 61u(l), pr(m,A) = dapa(I), pr(A,0) = d3p1(I),

u()?’
1
_ 2 _ ()
| =) = 205,
Set § = mind; and x = (§)*>/2. Then Lemma 7 [4] gives us the required lower bound
M(2,2) > 55KE. O
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