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Abstract. We consider the existence of positive solutions of

(1) −∆pu = λg(x)|u|p−2u+ αh(x)|u|q−2u+ f(x)|u|p∗−2u

in �N , where λ, α ∈ �, 1 < p < N , p∗ = Np/(N − p), the critical Sobolev exponent, and
1 < q < p∗, q �= p. Let λ+1 > 0 be the principal eigenvalue of

(2) −∆pu = λg(x)|u|p−2u in �N ,

∫
�N

g(x)|u|p > 0,

with u+1 > 0 the associated eigenfunction. We prove that, if
∫
�N f |u+1 |p

∗
< 0,

∫
�N h|u+1 |q >

0 if 1 < q < p and
∫
�N h|u+1 |q < 0 if p < q < p∗, then there exist λ∗ > λ+1 and α∗ > 0,

such that for λ ∈ [λ+1 , λ∗) and α ∈ [0, α∗), (1) has at least one positive solution.
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1. Introduction

We study the existence of positive solutions to the following problem in �N

(1.1)λ −∆pu = λg(x)|u|p−2u+ αh(x)|u|q−2u+ f(x)|u|p∗−2u,
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where λ, α ∈ �, 1 < p < N , ∆pu = div(|∇u|p−2∇u) is the p-Laplacian, p∗ =
Np/(N − p), 1 < q < p∗, q �= p, f , g and h satisfy g+ �≡ 0, f± �≡ 0, h+ �≡ 0, and
other conditions. The problem is closely related to the following eigenvalue problem,

(1.2)λ −∆pu = λg(x)|u|p−2u in �N ,

∫
�N

g(x)|u|p > 0.

It is known that (1.2)λ has an eigenvalue λ
+
1 > 0 associated with a positive eigen-

function u+1 (see [6]).
Equations involving critical Sobolev exponents have been studied extensively, and

there exists a large body of literature. We refer to [5] and the references therein.
Specifically, Swanson and Yu [12] studied (1.1)λ for the case λ ∈ (0, λ+1 ) and p < q <

p∗. It is shown in [12] that if g � 0, g ∈ LN/p(�N ), f � 0, and h � h0 > 0 in �N ,
then (1.1)λ has a positive solution if λ ∈ (0, λ+1 ). Noussair, Swanson and Yang [11]
investigated the problem

−∆mu = p(x)uτ + q(x)uγ

on an open connected smooth domain, where 2 � m < N , m − 1 < γ < τ , and
τ + 1 = Nm/(N −m). The existence of at least one positive solution was obtained
for both p and q nonnegative and satisfying other local conditions. More recently
Noussair and Swanson [10] considered

(1.3) −∆u = p|u|τ−2u+ q|u|γ−2u in �N ,

where 2 < γ < τ = 2N/(N − 2), and showed, under suitable assumptions, including
nonnegativity of p and q, that (1.3) has two positive decaying solutions. The existence
of two positive solutions of (1.1)λ was studied for the case p < q < p∗ and f ≡ 0 in
[4], and for the case h(x) ≡ 0 in [5]. Various forms of the equation

(1.4) −∆pu+ a(x)|u|p−2u = βh(x)|u|q−2u+ k(x)|u|p∗−2u in �N

are treated by Alves, Gonçalves and Miyagaki in [1], [2] and [7], where a, h and
k are nonnegative, 1 < q �= p, q < p∗, and β � 0. The existence of nonnegative
solutions was obtained via Mountain Pass arguments. Specifically, [1] deals with the
case 1 < q < p, a ≡ 0, k ≡ 1; [2] the case 1 < q < p and β = 1; and [7] the case
a ≡ 0, β = 1, k ≡ 1, and 1 < q < p∗, q �= p, p � 2.
In this paper we are mainly concerned with the situation where λ � λ+1 . We

note that, for λ ∈ (0, λ+1 ), the functional
∫
�N(|∇u|p − λg|u|p) is always positive for

u �= 0, so one can use a Mountain Pass type argument to show that (1.1)λ has
a positive solution. Assuming h > 0 in some open set in �N , one can even prove the
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existence of two positive solutions by first finding a local nonzero minimizer of the
associated functional and then using the Mountain Pass Theorem to find a saddle
point. This is the approach used in [1], [2] and [7]. For λ � λ+1 , the situation is
different. The problem is that in this case, the functional

∫
�N(|∇u|p − λg|u|p) is

no longer positive definite. Even a local minimizer is difficult to find. Specifically,
for λ > λ+1 ,

∫
�N(|∇u|p − λg|u|p) will always approach −∞ as ‖u‖ → ∞ in the

direction of u+1 , while it can achieve positive values in other directions. For λ = λ
+
1 ,∫

�N(|∇u|p − λg|u|p) will always be zero in the direction of u+1 . This destroys the
Mountain Pass structure. Here we use a procedure devised by Tarantello [13] and
further utilized in [4] and [5]. The conditions

∫
�N

f(u+1 )
p∗
< 0,

∫
�N

h(u+1 )
q > 0,(1.5) ∫

�N

f(u+1 )
p∗
< 0,

∫
�N

h(u+1 )
q < 0,(1.6)

are essential in our presentation. Under further related local conditions on g, h and
f , we can prove the existence of positive solutions of (1.1)λ.

Main Result. Assume (1.5) if 1 < q < p and (1.6) if p < q < p∗. Then there
exist λ∗ > λ+1 and α

∗ > 0, such that for any λ ∈ [λ+1 , λ∗) and α ∈ [0, α∗), (1.1)λ has
a positive solution (see Theorems 3.8 and 4.7 for precise assumptions on f , g and h).

In our setting, g and h are allowed more flexibility than in [1], [2] and [7], e.g.,
they may or may not change sign. But (1.5) forces f to change sign, and (1.6) forces
both f and h to change sign. We note that here we need an additional condition
that α is small enough. While this is the case for 1 < q < p in [1], [2] and [7], no
such smallness restriction is postulated to h in [7] and [12], for the case p < q < p∗.
This paper is organized as follows: In Section 2 we study the geometric structure

of certain solution manifolds of the associated functional. Section 3 provides the
proof of the existence result for the case 1 < q < p. The case p < q < p∗ is discussed
in Section 4.

2. Geometry of the solution manifolds for 1 < q < p

We collect our basic assumptions and recall some known results. We assume
throughout this paper that 1 < p < N , p∗ = Np/(N − p), 1 < q < p∗ and q �= p. We
also assume

(g0) g(x) = g+(x)− g−(x), g+, g− � 0, and g+ ∈ L∞
loc(�

N ) ∩ LN/p(�N ),
g− ∈ L∞

loc(�
N ),
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(h0) h ∈ L∞
loc(�

N ) ∩ LQ(�N ), where Q = Np[Np− q(N − p)]−1.

Let

ω(x) =
1

(1 + |x|)p , x ∈ �
N ,

w(x) = max{g−(x), ω(x)} > 0, x ∈ �
N .

Let V be the completion of C∞
0 (�

N ) with respect to the norm ‖ · ‖ defined by

‖u‖ =
( ∫

|∇u|p +
∫
w(x)|u|p

)1/p

.

Here and henceforth the integrals are taken on �N unless otherwise stated. Then
V is a uniformly convex Banach space. In this paper ‖ · ‖p will denote the usual Lp

norm, and D1,p(�N ) the completion of C∞
0 (�

N ) with respect to the norm

‖u‖D =

(∫
|∇u|p

)1/p

.

Note that since V ⊂ D1,p(�N ), a weakly convergent sequence in V is also weakly
convergent in D1,p(�N ). By Hardy’s inequality, D1,p(�N ) is embedded continuously
in Lp(�N , ω(x)), so a strongly convergent sequence in D1,p(�N ) is also strongly
convergent in Lp(�N , ω(x)).

Throughout this paper the function f is always assumed to satisfy

(f0) f± �≡ 0 and f(x) ∈ L∞(�N ) ∩ C(�N ).

We have (from Lemma 2.3 of [6]):

Proposition 2.1. Assume the above conditions are satisfied. Then there exists
a unique, simple isolated eigenvalue λ+1 > 0, such that the eigenvalue problem (1.2)λ
has a positive eigenfunction u+1 ∈ V associated with λ+1 .

Next we introduce the following functional

(2.1) Iλ(u) =
1
p

∫
(|∇u|p − λg|u|p)− α

q

∫
h|u|q − 1

p∗

∫
f |u|p∗

.

It is clear that the functional Iλ is well defined on V . Obviously a critical point of
Iλ in V is a (weak) solution of (1.1)λ. We can always assume that critical points of
Iλ are nonnegative functions since Iλ is an even functional. For simplicity, we will
assume in the sequel that α > 0, for the case α = 0 has been covered in [5].
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Define

Jλ(u) =
∫
(|∇u|p − λg|u|p),

Λλ = {u ∈ V : Ψλ(u) := 〈I ′λ(u), u〉 = 0}
=

{
u ∈ V : Jλ(u) = α

∫
h|u|q +

∫
f |u|p∗

}
,

and

Λ−
λ = {u ∈ Λλ : 〈Ψ′

λ(u), u〉 < 0}.(2.2)

We list the following equivalent expressions of this set.

(2.3)

Λ−
λ =

{
u ∈ Λλ : (p− q)Jλ(u) < (p

∗ − q)
∫
f |u|p∗

}

=

{
u ∈ Λλ : (p∗ − p)Jλ(u) > α(p∗ − q)

∫
h|u|q

}

=

{
u ∈ Λλ : α(p− q)

∫
h|u|q < (p∗ − p)

∫
f |u|p∗

}
.

We note that it is not entirely clear whether Λ−
λ is nonempty for general g, h and

f . To show that Λ−
λ �= ∅, we introduce other conditions on g, f and h.

(f1) f(0) = ‖f‖∞ and for some r > 0, f(x) > 0 for x ∈ B(0, 2r),
(h1) h(x) � h0 > 0 in B(0, 2r),
(g1) g(x) � g0 > 0 in B(0, 2r).

Lemma 2.2. Suppose (f0), (f1), (g0), (g1), (h0) and (h1) hold. Then for λ > 0
in any bounded interval, there exists α1 > 0 such that Λ

−
λ �= ∅ provided α ∈ (0, α1).

�����. Define, for ε > 0,

uε(x) =
ψ(x)

(ε+ |x|p/(p−1))(N−p)/p
, vε(x) =

uε(x)
‖uε(x)‖p∗

,

where ψ ∈ C∞
0 (B(0, 2r)) is such that 0 � ψ(x) � 1 and ψ(x) ≡ 1 on B(0, r).

Consider for t > 0,

Ψλ(tvε) = t
pJλ(vε)− αtq

∫
h|vε|q − tp

∗
∫
f |vε|p∗

.

Let sα(t) = atp − αbtq − ctp
∗
, with a = Jλ(vε), b =

∫
h|vε|q and c =

∫
f |vε|p∗

. It
is clear that b > 0, c > 0. By continuous dependence of the principal eigenvalue
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on the domain, a > 0 for ε > 0 small enough. Fix this ε so a, b, c are fixed and
let α vary. One easily sees that sα(t) → −∞ as t → ∞. Moreover, as b → 0,
sα(t) → s0(t) := atp − ctp

∗
in C1 with respect to t. Let t0 be such that s0(t0) = 0

and s0(t) > 0 for t < t0. Then s′0(t0) < 0. By C
1 convergence of sα to s0, we easily

conclude that there exist α1 > 0 and τ > 0, such that if 0 < α < α1, sα(tα) = 0
and s′α(tα) < 0 for some tα ∈ (t0 − τ, t0 + τ), that is, tαvε ∈ Λ−

λ . This completes the
proof. �

Next we study the geometry of the set Λ−
λ for λ > 0. We will seek a critical point

of Iλ on Λ
−
λ . Observe that for any u ∈ Λλ,

(2.4)
Iλ(u) =

1
N

∫
f |u|p∗

+ α
(1
p
− 1
q

) ∫
h|u|q

=
1
N
Jλ(u)− α

(1
q
− 1
p∗

)∫
h|u|q.

We also assume that ‖u+1 ‖ = 1.
The next lemma requires the following conditions.

(f2)
∫
f(u+1 )

p∗
< 0.

(h2)
∫
h(u+1 )

q > 0.

Lemma 2.3. Assume p > q, (f0), (f1), (f2), (g0), (g1), (h0), (h1) and (h2)
hold. Then there exist λ∗ > λ+1 and α2 > 0 with α2 � α1, such that for any
λ ∈ (0, λ+1 ), there exists σ > 0, such that for any λ ∈ [λ, λ∗) and α ∈ (0, α2), we
have Jλ(u) � σ‖u‖p for any u ∈ Λ−

λ .

�����. We argue by contradiction. Suppose there exist λn, αn and un ∈ Λ−
λn

such that

(2.5) αn → 0, λn → λ̂ ∈ [λ, λ+1 ], Jλn(un) <
1
n
‖un‖p.

We explicitly note that here Λ−
λn
also depends on αn. Let vn = un/‖un‖. Without

loss of generality we may assume vn → v0 weakly in V . Then we have
∫
g+|vn|p →∫

g+|v0|p by compactness. We then derive by weak lower semicontinuity of the norm
that

(2.6)

0 �
∫

|∇v0|p − λ̂

∫
g+|v0|p + λ̂

∫
g−|v0|p

� lim inf
n→∞

(∫
|∇vn|p − λn

∫
g+|vn|p + λn

∫
g−|vn|p

)

= lim inf
n→∞ Jλn(vn) � lim

n→∞
1
n
= 0.
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There are two possibilities: (1) v0 = 0, and (2) v0 = ku+1 for some k �= 0, and
λ̂ = λ+1 . If v0 = 0, it follows from (2.6) that

∫ |∇vn|p → 0 and ∫
g−|vn|p → 0. Thus

vn → 0 in V , contradicting ‖vn‖ = 1. If v0 = ku+1 for some k �= 0, and λ̂ = λ+1 , then
we have, by the weak convergence of vn to ku

+
1 and (2.6),

λ+1

∫
g+|ku+1 |p =

∫
(|∇ku+1 |p + λ+1 g−|ku+1 |p)

� lim inf
n→∞

∫
|∇vn|p + lim inf

n→∞ λn

∫
g−|vn|p

� lim inf
n→∞

∫
(|∇vn|p + λng

−|vn|p)

= lim
n→∞λn

∫
g+|vn|p = λ+1

∫
g+|ku+1 |p.

It then follows that

lim inf
n→∞

∫
|∇vn|p =

∫
|∇ku+1 |p, lim inf

n→∞

∫
g−|vn|p =

∫
g−|ku+1 |p.

We deduce that (passing to a subsequence if necessary) vn → ku+1 strongly in V . We
then derive from (2.3) that

(2.7) ‖un‖p−p∗
Jλn(vn) <

p∗ − q

p− q

∫
f |vn|p∗ → p∗ − q

p− q

∫
f |ku+1 |p

∗
< 0.

This contradicts (2.6) if ‖un‖ �→ 0 or Jλn(un) � 0. Suppose ‖un‖ → 0 and
Jλn(un) < 0. It follows from (2.3) that

∫
h|un|q < 0. That is,

∫
h|vn|q � 0, which

contradicts (h2). This proves the lemma. �

������ 2.4. For λ ∈ (0, λ+1 ), conditions (f2) and (h2) are not needed because
Jλ(u) � 0 for all u. Assumptions (f2) and (h2) are introduced to compensate for the
possibility that Jλ(u) is negative.

Lemma 2.5. Assume p > q, (f0), (f1), (f2), (g0), (g1), (h0), (h1) and (h2) hold.
For any λ ∈ (0, λ+1 ), there exist 
 > 0 and α∗ > 0 with α∗ � α2, such that for any
λ ∈ [λ, λ∗), α ∈ (0, α∗) and u ∈ Λ−

λ , we have −〈Ψ′
λ(u), u〉 � 
.

�����. We first claim that there exists ζ > 0, independent of λ, such that
‖u‖ > ζ for all u ∈ Λ−

λ . If this were not true, then for some un ∈ Λ−
λn
, λn ∈ [λ, λ∗),

un → 0. Dividing (2.3) by ‖un‖p we obtain, using Lemma 2.3,

(2.8) 0 < σ � Jλn(vn) <
p∗ − q

p− q

∫
f |vn|p∗ · ‖un‖p∗−p → 0,
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a contradiction, where vn = un/‖un‖.
Now, by Young’s inequality and Lemma 2.3, for any ε > 0, there exists Cε > 0

such that

−〈Ψ′
λ(u), u〉 = (p∗ − p)Jλ(u)− α(p∗ − q)

∫
h|u|q

� (p∗ − p)σ‖u‖p − α(p∗ − q)‖h‖Q · ‖u‖q

� ((p∗ − p)σ − ε)ζp − αCε‖h‖p/(p−q)
Q .

The proof is complete. �

Corollary 2.6. Under the conditions of Lemma 2.5, for any λ ∈ (0, λ+1 ), there
exists α∗ > 0 such that Λ−

λ is a closed set for λ ∈ [λ, λ∗) provided α ∈ (0, α∗).

3. Proof of existence of solutions for 1 < q < p

Lemma 3.1. Assume (f0), (f1), (f2), (g0), (g1), (h0), (h1) and (h2) hold. Then
Iλ is bounded below on Λ

−
λ for λ ∈ (0, λ∗) and α ∈ (0, α∗), where α∗ and λ∗ are

given in Lemma 2.5.

�����. Suppose for some un ∈ Λ−
λ , Iλ(un) → −∞. Then ‖un‖ → ∞. Since

un ∈ Λ−
λ ,

∫
f |un|p∗

> 0 by (2.3) and Lemma 2.3. Dividing Iλ(un) by ‖un‖p we
obtain from (2.4) that

Iλ(un)
‖un‖p

=
1
N

∫
f |vn|p∗ · ‖un‖p∗−p − α

(1
q
− 1
p

) ∫
h|vn|q · ‖un‖q−p → � � 0,

with vn = un/‖un‖. It then follows that
∫
f |vn|p∗ · ‖un‖p∗−p → N� � 0. On the

other hand, dividing

Jλ(un) =
∫
f |un|p∗

+ α
∫
h|un|q

by ‖un‖p we obtain, using Lemma 2.3,

0 < σ � Jλ(vn) =
∫
f |vn|p∗ · ‖un‖p∗−p + α

∫
h|vn|q · ‖un‖q−p → N� � 0,

a contradiction. So Iλ is bounded below on Λ
−
λ . �

Thus we can define c0 = inf
Λ−

λ

Iλ(u).

Lemma 3.2. Assume (f0), (f1), (f2), (g0), (g1), (h0), (h1) and (h2) hold. Then
for any λ ∈ (0, λ∗), α ∈ (0, α∗), there exists a minimizing sequence {un} ⊂ Λ−

λ of Iλ
on Λ−

λ which converges weakly to a solution u of (1.1)λ.
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�����. We first show that any minimizing sequence of Iλ on Λ
−
λ is bounded.

Suppose {un} is an unbounded minimizing sequence of Iλ on Λ−
λ . Dividing Iλ(un)

by ‖un‖q, we conclude that, since Iλ(un) is bounded,
∫
f |un|p∗ · ‖un‖−q is bounded

by (2.4). Thus Jλ(un) · ‖un‖−q is also bounded by (2.3). Let vn = un/‖un‖. Then
σ � Jλ(vn) → 0, a contradiction. Thus any minimizing sequence {un} in Λ−

λ is
bounded.
Since Λ−

λ is a closed set by Corollary 2.6, it follows from Theorem 4.1 and Remark
4.1 of [9] that we can replace {un} by another minimizing sequence {zn} ⊂ Λ−

λ such
that ‖un − zn‖ < 1/n, and for any y ∈ Λ−

λ ,

(3.1) Iλ(y) > Iλ(zn)− 1
n‖y − zn‖.

We want to show that I ′λ(zn)→ 0. Choose wn of unit norm so that

〈I ′λ(zn), wn〉 � ‖I ′λ(zn)‖ − o(1)

as n→ ∞. It will suffice to show that

(3.2) 〈I ′λ(zn), wn〉 → 0.

For each n, let gn(t, s) = Ψλ(tzn − swn). Then gn(1, 0) = 0 and

∂gn

∂t = 〈Ψ′
λ(zn), zn〉 �= 0 at t = 1, s = 0.

It follows from the C1 Implicit Function Theorem that for each n, for small enough
s, there exists tn ∈ C1 so that Ψλ(tn(s)zn − swn) = 0, i.e. tn(s)zn − swn ∈ Λλ and

(3.3) 〈Ψ′
λ(zn), zn〉t′n(0)− 〈Ψ′

λ(zn), wn〉 = 0.

Since zn is a bounded sequence, so is ‖Ψ′
λ(zn)‖, and we then conclude from (3.3)

and Lemma 2.5 that

(3.4) t′n(0) is uniformly bounded in n.

We fix n, and consider vn(s) = tn(s)zn − swn − zn. Since ‖wn‖ = 1, we have

(3.5) ‖vn(s)‖ � |s|(1 + (|t′n(0) + o(1)|)‖zn‖)

as s→ 0. Moreover zn ∈ Λλ gives 〈I ′λ(zn), zn〉 = 0, so

(3.6) Iλ(zn)−Iλ(tn(s)zn−swn) = 〈I ′λ(zn),−vn(s)〉+o(vn(s)) = 〈I ′λ(zn), swn〉+o(s)
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follows from (3.5). By continuity of 〈Ψ′
λ(u), u〉, we have

〈Ψ′
λ(tn(s)zn − swn), tn(s)zn − swn〉 − 〈Ψ′

λ(zn), zn〉 → 0

as s→ 0. We then conclude from this and Lemma 3.4 that

〈Ψ′
λ(tn(s)zn − swn), tn(s)zn − swn〉 < 0

for s small enough, so tn(s)zn − swn ∈ Λ−
λ .

Dividing (3.6) by s and using (3.1) with y = tn(s)zn − swn and (3.5), we obtain

|〈I ′λ(zn), wn〉| � n−1(1 + (|t′n(0)|)‖zn‖) + o(1).

Letting n → ∞ we conclude that 〈I ′λ(zn), wn〉 tends to zero by boundedness of zn

and (3.4). This establishes (3.2).

Assume now that zn → u weakly in V . We have, then, as in the proof of Lemma
3.1 of [5], since I ′λ(zn)→ 0, that u is a weak solution of (1.1)λ, i.e.,

−∆pu = λg|u|p−2u+ αh|u|q−2u+ f |u|p∗−2u

in V . This proves the lemma. �

Thus we have obtained a weak solution of (1.1)λ. To show that this solution is
nontrivial, we need some preparation. Let S be the best Sobolev constant, i.e.,

S = inf

{‖∇u‖p
p

‖u‖p
p∗
: u ∈ W 1,p

0 (�
N ) \ {0}

}
,

and S0 = SN/p‖f‖(p−N)/p
∞ /N . Recall the concentration-compactness principle of

P. L. Lions ([8]).

Proposition 3.3. Let {un} converge weakly to u in D1,p(�N ) such that |un|p∗

and |∇un|p converge weakly to nonnegative measures ν and µ on �N respectively.
Then, for some at most countable set J , we have

(i) ν = |u|p∗
+

∑
j∈J

νjδxj ;

(ii) µ � |∇u|p + ∑
j∈J

µjδxj ;

(iii) Sνp/p∗

j � µj ,

where xj ∈ �
N , δxj is the Dirac measure at xj , and νj and µj are nonnegative

constants.
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Lemma 3.4. Assume (f0), (f1), (f2), (g0), (g1), (h0), (h1) and (h2) hold. For
λ ∈ [0, λ∗) and α ∈ (0, α∗), any minimizing sequence {un} of Iλ on Λ−

λ satisfying
Iλ(un) < S0 either converges strongly to a solution u ∈ Λ−

λ , hence u �= 0, or converges
weakly to a nontrivial solution u ∈ Λλ.

�����. Let {un} be such a minimizing sequence. We can assume without loss
of generality that {un} is bounded (cf. Lemma 3.2).
Assume that un → u weakly in V . We conclude as in the proof of Proposition 2.3

of [5] that

−∆pu = λg|u|p−2u+ f |u|p∗−2u+ αh|u|q−2u
in V , that is, I ′λ(u) = 0 and hence u ∈ Λλ.

Suppose that un �→ u strongly in V and u = 0. Then for some j, νj given
by Proposition 3.3 is not zero. We obtain, using the fact that

∫
h|un|q → 0 (cf.

Proposition 2.3 of [5]),

S0 > Iλ(un) =
1
N

∫
f |un|p∗

+ α
(1
p
− 1
q

) ∫
h|un|q

� 1
N

∑
j∈J

f(xj)νj � 1
N

∑
j∈J

SN/p

f(xj)(N−p)/p
� S0,

a contradiction. Here we used the facts that f(xj)νj = µj and νj � (S/f(xj))N/P ,
which follow from the proof of Proposition 2.4 of [5]. This proves the lemma. �

We need more conditions on f . Assume

(f3) for x ∈ B(0, 2r),

f(x) = f(0)+ o(|x|k), k =
N

q
if q � N(p− 1)

N − p
, k =

N − p

p− 1 if q <
N(p− 1)
N − p

,

or
(f3)′ for x ∈ B(0, 2r),

f(x) = f(0) + o(|x|δ), δ =
N − p

p− 1 .

Lemma 3.5. Assume (f0), (f1), (f2), (f3) or (f3)′, (g0), (g1), (h0) and (h1) hold.
Then for λ > 0, and ε > 0 small enough, we have

(3.7) sup
t�0

Iλ(tvε) <
1
N
SN/p‖f‖(p−N)/p

∞ = S0,

where vε is given in the proof of Lemma 2.2.

159



�����. Our proof is similar to that of Lemma 4.1 of [12]. Recall for ε > 0,

uε(x) =
ψ(x)

(ε+ |x|p/(p−1))(N−p)/p
, vε(x) =

uε(x)
‖uε(x)‖p∗

,

where ψ ∈ C∞
0 (B(0, 2r)) is such that 0 � ψ(x) � 1 and ψ(x) ≡ 1 on B(0, r).

Calculations show that (cf. the proof of Lemma 5.6 in [5])

(3.8)
∫

|vε|t =



Kε(N(p−t)+tp)(p−1)/p2 , if t > p∗

p′ ,

KεN(p−1)/p2 | ln ε|, if t = p∗
p′ ,

Kεt(N−p)/p2 , if t < p∗
p′ ,

and

(3.9)
∫

|∇vε|t =



K ′εN(p−t)(p−1)/p2 , if t > N(p−1)

N−1 ,

K ′εt(N−p)/p2 | ln ε|, if t = N(p−1)
N−1 ,

K ′εt(N−p)/p2 , if t < N(p−1)
N−1 .

In particular, we have

(3.10)
∫

|vε| =



Kε(N−p)/p2 , if p > 2N

N+1 ,

Kε(N−p)/p2 | ln ε|, if p = 2N
N+1 ,

Kε(N(p−1)+p)(p−1)/p2 , if p < 2N
N+1 ,

(3.11)
∫

|vε|p =



Kεp−1 p2 < N,

Kεp−1| ln ε| p2 = N,

Kε(N−p)/p, p2 > N.

∫
vp∗

ε = 1,

(3.12)
∫

|∇vε| =



K ′ε(N−p)/p2 , if p > 2N−1

N ,

K ′ε(N−p)/p2 | ln ε|, if p = 2N−1
N ,

K ′εN(p−1)2/p2 , if p < 2N−1
N ,

(3.13)
∫

|∇vε|p−1 = K ′ε(N−p)(p−1)/p2 ,
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and

(3.14)
∫

|∇vε|p =
∫ |∇uε|p
‖uε‖p

p∗
=
K1
K2
+O(ε(N−p)/p),

where K1/K2 = S.
Note that for ε > 0 small enough, Jλ(vε) > 0, so Iλ(tvε) attains its maximum at

some tε ∈ (0,∞) with s′(tε) = 0, where s(t) = Iλ(tvε). That is,

0 = s′(tε) = tp−1ε

(∫
(|∇vε|p − λg|vε|p)− αtq−p

ε

∫
h|vε|q − tp

∗−p
ε

∫
f |vε|p∗

)
.

Thus, by (g1) and (h1),

tp
∗−p

ε �
∫ |∇vε|p

f(x∗)
∫ |vε|p∗ ,

where f(x∗) = inf
x∈B(0,r)

f(x) > 0. It then follows that tε is bounded from above. We

may also assume that tε is bounded from below, otherwise Iλ(tεvε) → 0 as ε → 0.
Now,

(3.15) Iλ(tεvε) = sup
t�0

Iλ(tvε) = E(ε)− F (ε) + V (ε),

where

E(ε) =
tpε
p

∫
|∇vε|p − f(0)tp

∗
ε

p∗

∫
vp∗

ε ,

F (ε) =
λtpε
p

∫
gvp

ε + α
tqε
q

∫
hvq

ε ,

V (ε) =
tp

∗
ε

p∗

∫
(f(0)− f(x))vp∗

ε .

The maximum of ap−1tp − b(p∗)−1tp
∗
is achieved at t = (a/b)(N−p)/p2 for positive

a, b, so

E(ε) �
(1
p
− 1
p∗

)
[f(0)](p−N)/p

[∫
|∇vε|p

]N/p[∫
vp∗

ε

]−N/p∗

=
1
N
SN/p‖f‖(p−N)/p

∞ .

We also have, for k and δ given in (f3) and (f3)′ respectively,

Vε = O(εk(p−1)/p), O(εδ(p−1)/p).

Assuming (f3) holds, we estimate, using the fact that tε is bounded from below,

F (ε) � αh0

∫
vq

ε =



Kε[N(p−q)+qp](p−1)/p2 , if q > N(p−1)

N−p ,

KεN(p−1)/p2| ln ε|, if q = N(p−1)
N−p ,

Kεq(N−p)/p2 , if q < N(p−1)
N−p .
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From (f3) we derive that for ε > 0 small enough, F (ε) dominates V (ε). Thus we
conclude from the above that, for ε > 0 small enough and K > 0,

(3.16) Iλ(tεvε) �



S0 −Kε[N(p−q)+qp](p−1)/p2 , if q > N(p−1)

N−p ,

S0 −KεN(p−1)/p2 | ln ε|, if q = N(p−1)
N−p ,

S0 −Kεq(N−p)/p2 , if q < N(p−1)
N−p .

On the other hand, assume (f3)′ holds. We have

F (ε) � g0

∫
vp

ε =



Kεp−1, if p2 < N,

Kεp−1| ln ε|, if p2 = N,
Kε(N−p)/p, if p2 > N.

Since p− 1 � (N − p)/p for p2 � N and δ(p− 1)/p > (N − p)/p for p2 > N by (f3)′,
F (ε) dominates V (ε). Again we have

(3.16)′ Iλ(tεvε) �



S0 −Kεp−1, if p2 < N,

S0 −Kεp−1| ln ε|, if p2 = N,
S0 −Kε(N−p)/p, if p2 > N.

The lemma then follows. �

Lemma 3.6. Assume (f0), (f1), (f2), (f3) or (f3)′, (g0), (g1), (h0), (h1), (h2),
and λ and α as in Lemma 2.5. Then c0 = inf

Λ−
λ

Iλ(u) < S0.

This lemma follows from Lemma 3.5 and the fact that tεvε ∈ Λ−
λ for some tε > 0

(cf. the proof of Lemma 2.2). Thus we have proved, via Lemmas 3.4 and 3.6,
the existence of a nonnegative solution. The next result shows that the solution is
actually positive.

Proposition 3.7. Let u be a nonnegative solution of (1.1)λ with q � p∗. Then
u > 0 in �N .

The proof is essentially as that of Lemma 4.3 of [12] and is omitted.
Now we can state our main result.

Theorem 3.8. Assume that (f0), (f1), (f2), (f3) or (f3)′, (g0), (g1), (h0), (h1),
and (h2) hold. Then there exist λ∗ > λ+1 and α

∗ > 0, so that the problem

−∆pu = λg(x)|u|p−2u+ αh(x)|u|q−2u+ f(x)|u|p∗−2u

has at least one positive solution in V for any λ ∈ [λ+1 , λ∗) and α ∈ (0, α∗).

162



4. The case p < q < p∗ and some remarks

For this case, the set Λ−
λ is defined as in (2.3). We first have the following result.

Lemma 4.1. Assume supp f+ ∩ supph+ contains an open set. Then Λ−
λ �= ∅ for

λ > 0.

�����. Suppose supp f+ ∩ supph+ contains an open set B and let ϕ > 0 be
such that suppϕ ⊂ B with Jλ(ϕ) > 0. Such ϕ exists as explained in the proof of
Lemma 2.2. For t > 0, we have

Ψ(tϕ) = tpJλ(ϕ) − αtq
∫
hϕq − tp

∗
∫
fϕp∗

.

Let again s(t) = atp − αbtq − ctp
∗
, with a = Jλ(ϕ) > 0, b =

∫
hϕq > 0 and

c =
∫
fϕp∗

> 0. Obviously s(t) > 0 for t > 0 small and s(t) → −∞ as t → ∞.
Suppose s(t0) = 0. Then

s′(t0) = t
q−1
0 (patp−q

0 − αqb − p∗ctp
∗−q
0 )

= tq−10 [α(p− q)b − (p∗ − p)ctp
∗−q
0 ] < 0

since p < q. That is, t0ϕ ∈ Λ−
λ . This concludes the proof. �

������ 4.2. Note that (f1) and (h1) imply that supp f+∩ supp h+ contains an
open set. So we will assume for simplicity in the sequel that (f1) and (h1) hold. We
also note that Lemma 4.1 holds if h ≡ 0.
Instead of (h2), we need
(h2)′

∫
h|u+1 |q < 0.

Lemma 4.3. Assume (f0), (f1), (f2), (g0), (g1), (h0), (h1) and (h2)′ hold. Then
there exist λ∗1 > λ+1 and α1 > 0 such that for any λ ∈ (0, λ+1 ), there exists σ > 0,
such that for any λ ∈ [λ, λ∗1) and α ∈ (0, α1), Jλ(u) � σ‖u‖p for any u ∈ Λ−

λ .

�����. If the conclusion were false, there would exist λn, αn and un ∈ Λ−
λn

such that
αn → 0, λn → λ̂ ∈ [λ, λ+1 ], Jλn(un) <

1
n
‖un‖p.

As in the proof of Lemma 2.3, we conclude that vn = un/‖un‖ → ku+1 for some
k �= 0. Then instead of (2.7) we have

(4.1) ‖un‖p−p∗
Jλn(vn) >

p∗ − q

p− q

∫
f |vn|p∗ → p∗ − q

p− q

∫
f |ku+1 |p

∗
> 0,
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since p < q and
∫
f |ku+1 |p

∗
< 0 by (f2). If ‖un‖ �→ 0, then (4.1) contradicts the fact

that Jλn(vn)→ 0. If ‖un‖ → 0, (4.1) implies that Jλn(vn) > 0. We then have

(4.2) αn

∫
h|vn|q +

∫
f |vn|p∗ · ‖un‖p∗−q = Jλn(vn) · ‖un‖p−q > 0.

Note that
∫
f |vn|p∗ · ‖un‖p∗−q → 0 since ‖un‖ → 0. Inequality (4.2) then implies∫

h|vn|q > 0, contradicting (h2)′. Thus the lemma is proved. �

������ 4.4. We point out that Lemma 4.3 holds if h ≡ 0.
The reason is that instead of (4.2), we now have

(4.2)′
∫
f |vn|p∗ · ‖un‖p∗−p = Jλn(vn) > 0.

This leads to a contradiction again.

Lemma 4.5. Assume that (f0), (f1), (f2), (g0), (g1), (h0), (h1) and (h2)′ hold.
Then for λ ∈ (0, λ∗) and α ∈ (0, α1),
(i) Iλ(u) > 0 for any u ∈ Λ−

λ ,

(ii) any minimizing sequence of Iλ on Λ
−
λ is uniformly bounded.

�����. We observe that, for u ∈ Λ−
λ , from (2.4) and Lemma 4.3,

(4.3)
Iλ(u) =

1
N
Jλ(u)− α

p∗ − q

p∗q

∫
h|u|q

>
[ 1
N

− p∗ − p

qp∗
]
Jλ(u) =

q − p

Nq
Jλ(u) �

q − p

Nq
σ‖u‖p.

Since σ only depends on α1 and λ∗, the conclusions then follow directly. This com-
pletes the proof. �

Now, by Lemma 4.5, there exists R > 0, so that for any α ∈ (0, α1) and λ ∈ (0, λ∗),
for any minimizing sequence {un} ⊂ Λ−

λ of Iλ (here Iλ also depends on α), we can
assume that, by taking a subsequence if necessary, ‖un‖ � R. Define UR = {u ∈
V : ‖u‖ � R}.

Lemma 4.6. Assume (f0), (f1), (f2), (g0), (g1), (h0), (h1) and (h2)′ hold. For
any λ ∈ (0, λ+1 ), there exist 
 > 0 and α∗ with α∗ � α1, such that for any λ ∈ [λ, λ∗),
α ∈ (0, α∗) and u ∈ Λ−

λ ∩ U2R, −〈Ψ′
λ(u), u〉 � 
.

�����. We first show that for some η > 0, depending only on α1 and λ∗,
‖u‖ � η for u ∈ Λ−

λ . Indeed, if for some un ∈ Λ−
λ , un → 0, then we have, by
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Lemma 4.3,

0 < σ � Jλ(vn) = α
∫
h|vn|q · ‖un‖q−p +

∫
f |vn|p∗ · ‖un‖p∗−p → 0,

a contradiction, where vn = un/‖un‖.
Using Lemma 4.3 we get

−〈Ψ′
λ(u), u〉 = (p∗ − p)Jλ(u)− α(p∗ − q)

∫
h|u|q

� (p∗ − p)Jλ(u)− α(p∗ − q)‖h‖Q · ‖u‖q

� (p∗ − p)σηp − α(p∗ − q)‖h‖Q(2R)
q > c > 0,

for α small enough. The lemma is proved. �

Lemma 4.6 implies that Λ−
λ ∩U2R is a closed set (in fact one can prove that Λ−

λ is
a closed set). Replacing Λ−

λ by Λ
−
λ ∩U2R, and noting that any minimizing sequence

in Λ−
λ ∩ U2R will be a positive distance from the boundary ‖u‖ = 2R, we can check

straightforwardly that the proofs of Lemmas 3.2, 3.4, 3.5, and 3.6 remain valid. So
we can state our result.

Theorem 4.7. Assume that (f0), (f1), (f2), (f3) or (f3)′, (g0), (g1), (h0), (h1),
and (h2)′ hold. Then there exist λ∗ > λ+1 and α

∗ > 0, such that for any λ ∈ [λ+1 , λ∗)
and α ∈ (0, α∗), the problem

−∆pu = λg(x)|u|p−2u+ αh(x)|u|q−2u+ f(x)|u|p∗−2u

has at least one positive solution in V .

������ 4.8. As we remarked earlier, for λ ∈ (0, λ+1 ), Theorems 3.8 and 4.7 hold
without the integral conditions (f2), (h2) and (h2)′, and can be proved via Mountain
Pass argument. Cf. [1], [2], [7] and [12].

������ 4.9. We note that the proofs are applicable to Dirichlet problems on
bounded domains and similar results hold. We can also deal with

−∆pu+ a(x)|u|p−2u = λg(x)|u|p−2u+ αh(x)|u|q−2u+ f(x)|u|p∗−2u

in �N , where a(x) ∈ L∞
loc(�

N ), a(x) � 0.

������ 4.10. Similarly, one can consider the negative principal eigenvalue
λ−1 < 0 given by

−∆pu = λg(x)|u|p−2u in �N ,

∫
g(x)|u|p < 0.

Existence of positive solutions of (1.1)λ for λ < 0 can be obtained provided conditions
similar to (f2), (h2) and (h2)′ hold.
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