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A NOTE ON THE PARABOLIC VARIATION
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Abstract. A condition for solvability of an integral equation which is connected with
the first boundary value problem for the heat equation is investigated. It is shown that if
this condition is fulfilled then the boundary considered is 12 -Hölder. Further, some simple
concrete examples are examined.
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Let ϕ be a continuous function with bounded variation on a compact interval 〈a, b〉,

K = {[ϕ(t), t] ; t ∈ 〈a, b〉}.

For [x, t] ∈ �
2 , α, r > 0, α < +∞, let nx,t(r, α) denote the number (finite or +∞) of

points of the set

K ∩
{
[ξ, τ ] ∈ �

2 ; t − τ =

(
ξ − x

2α

)2
, 0 < t − τ < r

}
.

For fixed [x, t] ∈ �
2 , r > 0, the function nx,t(r, α) is a measurable function of the

variable α ∈ (0,+∞) and thus one can define

(1) VK(r;x, t) =
∫ +∞

0
e−α2nx,t(r, α) dα.

Note that the function VK(+∞; ·, ·) is called the parabolic variation of the set
(curve) K. Parabolic variation was defined in [2] in connection with the study of a
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heat potential in �2 . Note that boundedness of the parabolic variation is a condition

for the existence of limits of this potential on K and for the validity of an analogue
of the jump formula.
For [x, t] ∈ �

2 , t > a, let αx,t be the function defined on the interval 〈a,min{t, b})
by

(2) αx,t(τ) =
x − ϕ(τ)

2
√

t − τ
.

The function αx,t has locally finite variation on 〈a,min{t, b}) (under the assumption
that ϕ is of finite variation on 〈a, b〉) and

(3) VK(r;x, t) =
∫ min{t,b}

max{a,t−r}
e−α2x,t(τ) d

(
varαx,t(τ)

)

whenever max{a, t − r} < min{t, b} [otherwise VK(r;x, t) = 0].
Let [x, t] ∈ K, t > a. It is known that if VK(r;x, t) < +∞ for some r > 0 then

there is a limit (finite or infinite)

(4) αx,t(t) = lim
τ→t−αx,t(τ)

[by this equality the value αx,t(t) is defined]. Further, let G be the function defined

on �1 by

(5) G(t) =



0, t = −∞,∫ t

−∞
e−x2 dx, t > −∞.

The condition

(6) lim
r→0+

sup
t∈(a,b〉

[ 2√
�

VK

(
r;ϕ(t), t

)
+

∣∣∣1− 2√
�

G
(
αϕ(t),t(t)

)∣∣∣] < 1

plays a role in connection with the first boundary value problem for the heat equation
on the set

{[x, t] ∈ �
2 ; t ∈ (a, b), x > ϕ(t)}

or on the set
{[x, t] ∈ �

2 ; t ∈ (a, b), x < ϕ(t)}.
Analogous conditions appear also in connection with the first boundary value prob-
lem for the heat equation on sets of the form

{[x, t] ∈ �
2 ; t ∈ (a, b), ϕ1(t) < x < ϕ2(t)},

258



where ϕ1, ϕ2 are continuous functions of bounded variation on 〈a, b〉. Under the con-
dition (6) the relevant integral equation has a solution and the Fourier problem can
be represented by the heat potential. It was shown in [1] that under the condition (6)
the just mentioned integral equation is solvable also in the space of all bounded Baire

functions and that the corresponding Neumann series converges.

Let us prove the following two assertions.

Proposition 1. Let ϕ be a Lipschitz function on 〈a, b〉. Then

(7) lim
r→0+

sup
t∈(a,b〉

[ 2√
�

VK

(
r;ϕ(t), t

)
+

∣∣∣1− 2√
�

G
(
αϕ(t),t(t)

)∣∣∣] = 0.

Let ϕ be a continuous function of bounded variation on 〈a, b〉, a < a′ < b′ � b and

suppose that ϕ is Lipschitz on 〈a′, b′〉. Then

(8) lim
r→0+

sup
t∈〈a′+δ,b′〉

[ 2√
�

VK

(
r;ϕ(t), t

)
+

∣∣∣1− 2√
�

G
(
αϕ(t),t(t)

)∣∣∣] = 0

for any δ > 0, δ < b′ − a′.

�����. If ϕ is Lipschitz on 〈a, b〉 then clearly αϕ(t),t(t) = 0 and thus

∣∣∣1− 2√
�

G
(
αϕ(t),t(t)

)∣∣∣ = 0

for each t ∈ (a, b〉.
Recall a well known fact that if F is a non-negative continuous function on an

interval J ⊂ �
1 , f, g continuous functions of locally bounded variation on J then

∫
J

F d var(fg) �
∫

J

F |f | dvar g +
∫

J

F |g| dvar f.

Let k ∈ �
1 be such that for any t1, t2 ∈ 〈a, b〉

∣∣ϕ(t1)− ϕ(t2)
∣∣ � k|t1 − t2|;
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then |ϕ′(τ)| � k for almost all τ ∈ (a, b). Using the expression (3) for VK we get for

t ∈ (a, b〉, r > 0,

VK

(
r;ϕ(t), t

)
=

∫ t

max{a,t−r}
e−α2ϕ(t),t(τ) dτ varαϕ(t),t(τ)

�
∫ t

max{a,t−r}
dτ var

ϕ(t)− ϕ(τ)

2
√

t − τ

�
∫ t

max{a,t−r}

1

2
√

t − τ
dτ var

(
ϕ(t)− ϕ(τ)

)

+
∫ t

max{a,t−r}

∣∣ϕ(t)− ϕ(τ)
∣∣ dτ var

1

2
√

t − τ

�
∫ t

max{a,t−r}

|ϕ′(τ)|
2
√

t − τ
dτ +

∫ t

max{a,t−r}
k(t − τ)

1
4(t − τ)3/2

dτ

� 3
2
k

∫ t

max{a,t−r}

dτ

2
√

t − τ
� 3
2
k
√

r.

Now we see that (7) is valid.
Denote for a while

K ′ =
{
[ϕ(t), t] ; t ∈ 〈a′, b′〉}.

Fix δ > 0, δ < b′ − a′. Then for r > 0, r < δ and t ∈ 〈a′ + δ, b′〉

VK

(
r;ϕ(t), t

)
= VK′

(
r;ϕ(t), t

)
.

The second part of the assertion follows now from the first part applied to the
interval 〈a′, b′〉. �

If the condition (6) is fulfilled then the absolute values of limits

αϕ(t),t(t) = lim
τ→t−

ϕ(t)− ϕ(τ)

2
√

t − τ

[t ∈ (a, b〉] are bounded by a finite constant. This fact alone does not imply that ϕ is
1
2 -Hölder. Nevertheless, the following assertion is valid.

Proposition 2. Let ϕ be a continuous function of bounded variation on 〈a, b〉. If
the condition (6) is fulfilled then ϕ is 12 -Hölder on 〈a, b〉.
�����. Let r > 0 be such that

(9) sup
t∈(a,b〉

[ 2√
�

VK

(
r;ϕ(t), t

)
+

∣∣∣1− 2√
�

G
(
αϕ(t),t(t)

)∣∣∣] = λ < 1.
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Then, of course, ∣∣∣1− 2√
�

G
(
αϕ(t),t(t)

)∣∣∣ � λ

for each t ∈ (a, b〉 and hence there is a c0 ∈ �
1 such that for each t ∈ (a, b〉

|αϕ(t),t(t)| = lim
τ→t−

∣∣∣ϕ(t) − ϕ(τ)

2
√

t − τ

∣∣∣ � c0.

Choose k ∈ �
1 , k > c0 such that

(10)
2√
�

∫ k

0
e−α2 dα > λ.

Suppose that ϕ is not 12 -Hölder continuous on 〈a, b〉. Then there are t1, t2 ∈ 〈a, b〉,
|t1 − t2| < r, such that

(11)
∣∣ϕ(t1)− ϕ(t2)

∣∣ > 2k
√
|t1 − t2|.

We can assume that t1 > t2. Put

c =
∣∣αϕ(t1),t1(t1)

∣∣ = lim
τ→t1−

∣∣∣ϕ(t1)− ϕ(τ)
2
√

t1 − τ

∣∣∣.
We have c < k, of course. Let δ > 0 be such that

c+ δ < k.

Then there is an ε > 0, ε < t1 − t2 such that

(12)
∣∣ϕ(t1)− ϕ(τ)

∣∣ < 2(c+ δ)
√

t1 − τ

for any τ ∈ (t1 − ε, t1). Let us show that whenever α ∈ �
1 ,

c+ δ < α < k,

then

(13) nϕ(t1),t1(r, α) � 1;

recall that for [x, t] ∈ �
2 , α, r > 0 the symbol nx,t(r, α) stands for the number of

points of the intersection

K ∩
{
[ξ, τ ] ∈ �

2 ; t − τ =
(ξ − x

2α

)2
, 0 < t − τ < r

}
.
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Consider for example the case ϕ(t2) > ϕ(t1). Given α > c+ δ put

p =
{
[ξ, τ ] ∈ �

2 ; t1 − τ =
(ξ − ϕ(t1)

2α

)2
, 0 < t1 − τ < r, ξ > ϕ(t1)

}
.

If [ξ, τ ] ∈ p, τ ∈ (t1 − ε, t1) then (12) yields

ξ − ϕ(t1) = 2α
√

t1 − τ > 2(c+ δ)
√

t1 − τ > ϕ(τ) − ϕ(t1),

that is

(14) ξ > ϕ(τ).

If [ξ, τ ] ∈ p, τ = t2, then (11) yields (if α < k)

ξ − ϕ(t1) = 2α
√

t1 − t2 < 2k
√

t1 − t2 < ϕ(t2)− ϕ(t1),

that is

ξ < ϕ(t2).

This, together with the fact that for [ξ, τ ] ∈ p, τ ∈ (t1 − ε, t1) the inequality (14)
holds, implies that

K ∩ p �= ∅,

which means that nϕ(t1),t1(r, α) � 1 for any α ∈ (c + δ, k), indeed. Since δ > 0
was arbitrary we see that (13) is valid for any α ∈ (c, k). Similarly in the case
ϕ(t2) < ϕ(t1).

Since ∣∣∣1− 2√
�

G(q)
∣∣∣ = 2√

�

∫ |q|

0
e−α2 dα

for q ∈∗
�
1 we now obtain [using (1) and (10)]

2√
�

VK

(
r;ϕ(t1), t1

)
+

∣∣∣1− 2√
�

G
(
αϕ(t1),t1(t1)

)∣∣∣
� 2√

�

∫ k

c

e−α2 dα+
2√
�

∫ c

0
e−α2 dα

=
2√
�

∫ k

0
e−α2 dα > λ,

but this contradicts (9). �
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Now let us evaluate the values of the term

lim
r→0+

sup
t∈(a,b〉

[ 2√
�

VK

(
r;ϕ(t), t

)
+

∣∣∣1− 2√
�

G
(
αϕ(t),t(t)

)∣∣∣]

in the following three simple particular cases.

�����	
 1. Let 〈a, b〉 = 〈0, 1〉 and

ϕ(t) = k
√

t

on 〈a, b〉, where k > 0.

�

k
p
�

Kt

x

�

p�

Figure 1

Denote

K =
{
[ξ, τ ] ∈ �

2 ; τ ∈ 〈0, 1〉, ξ = k
√

τ
}

and consider a point [k
√

β, β] ∈ K, where β ∈ (0, 1〉. For α > 0 denote further

pα =
{
[ξ, τ ] ∈ �

2 ; β − τ =
(k

√
β − ξ

2α

)2
, τ < β

}
.

It is easy to see that K ∩ pα �= ∅ if and only if α � k
2 . The dashed parabola in

Figure 1 corresponds to the case α = k
2 and the solid parabola pα to the case α < k

2 .
For α � k

2 the intersection K ∩ pα contains just one point. Now we see that if r > 0,

β < r, then

nk
√

β,β(r, α) =

{
1 for α ∈ (0, k

2 〉,
0 for α > k

2 ,
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and thus for such r, β we always have

VK

(
r;ϕ(β), β

)
=

∫ k
2

0
e−α2 dα.

If 0 < r < β � 1 then

VK

(
r;ϕ(β), β

)
<

∫ k
2

0
e−α2 dα.

As αϕ(β),β(β) = 0 for any β ∈ (0, 1〉 we see that for each k > 0

lim
r→0+

sup
β∈(0,1〉

[ 2√
�

VK

(
r;ϕ(β), β

)
+

∣∣∣1− 2√
�

G
(
αϕ(β),β(β)

)∣∣∣] = 2√
�

∫ k
2

0
e−α2 dα < 1.

�����	
 2. Let 〈a, b〉 = 〈−1, 0〉,

ϕ(t) = k
√−t

on 〈−1, 0〉, where k > 0.

��

k
p
�

K

t

x

�

p�

�� � r
k
p
r � �

Figure 2

It is easy to see that for each r > 0

n0,0(r, α) =

{
+∞ for α = k

2 ,

0 for α �= k
2 ,

hence
VK(r; 0, 0) = 0.
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On the other hand,

α0,0(0) = lim
τ→0−

ϕ(0)− ϕ(τ)

2
√−τ

= −k

2

and thus ∣∣∣1− 2√
�

G
(
α0,0(0)

)∣∣∣ = 2√
�

∫ k
2

0
e−α2 dα.

For t ∈ (−1, 0) we have αϕ(t),t(t) = 0, of course.

Now let β ∈ (0, 1), r > 0 and suppose that

r + β < 1.

For α > 0 denote

pα =
{
[ξ, τ ] ∈ �

2 ; −β − τ =
(ξ − k

√
β

2α

)2
, τ < −β

}
.

Denote further, for a while,

K∞ =
{
[ξ, τ ] ∈ �

2 ; τ ∈ (−∞, 0〉, ξ = k
√−τ

}
.

It is easy to see that K∞∩pα �= ∅ if and only if α ∈ (0, k
2 ). If α ∈ (0, k

2 ) then K∞∩pα

is a singleton and if {[ξ, τ ]} = K∞ ∩ pα then

ξ = k
√

β
k2 + 4α2

k2 − 4α2 .

Now we see that nk
√

β,−β(r, α) = 1 if α ∈ (0, k
2 ) is such that

(∗)
√

β
k2 + 4α2

k2 − 4α2 <
√

r + β,

otherwise nk
√

β,−β(r, α) = 0. Given α0 ∈ (0, k
2 ) then there is a β > 0 (β < 1) such

that (∗) is fulfilled for each α ∈ (0, α0〉. We obtain that for β ∈ (0, 1)

VK(r; k
√

β,−β) <
∫ k
2

0
e−α2 dα

and

sup
β∈(0,1)

VK(r; k
√

β,−β) =
∫ k
2

0
e−α2 dα.
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Altogether,

lim
r→0+

sup
t∈(−1,0〉

[ 2√
�

VK

(
r;ϕ(t), t

)
+

∣∣∣1− 2√
�

G
(
αϕ(t),t(t)

)∣∣∣] = 2√
�

∫ k
2

0
e−α2 dα < 1.

�����	
 3. Consider the case 〈a, b〉 = 〈−1, 1〉,

ϕ(τ) = k
√
|τ |,

where k > 0. By example 2 we have

lim
r→0+

sup
t∈(−1,0〉

[ 2√
�

VK

(
r;ϕ(t), t

)
+

∣∣∣1− 2√
�

G
(
αϕ(t),t(t)

)∣∣∣] = 2√
�

∫ k
2

0
e−α2 dα.

It follows from Proposition 1 that for any ε > 0, ε < 1, we have

lim
r→0+

sup
t∈〈ε,1〉

[ 2√
�

VK

(
r;ϕ(t), t

)
+

∣∣∣1− 2√
�

G
(
αϕ(t),t(t)

)∣∣∣] = 0.
Thus it suffices to examine points [k

√
β, β] for β > 0 near zero.

� � r
k
p
r � �

�

k
p
�

K

t

x�

p�

Figure 3
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Let r ∈ (0, 1), β > 0, β < r
2 . Denote

pα =
{
[ξ, τ ] ∈ �

2 ; β − τ =
(ξ − k

√
β

2α

)2
, τ < β

}
,

p+α =
{
[ξ, τ ] ∈ pα ; ξ > k

√
β
}
,

p−α =
{
[ξ, τ ] ∈ pα ; ξ < k

√
β
}
,

K∞ = K ∪ {
[ξ, τ ] ∈ �

2 ; τ ∈ (−∞, 0〉, ξ = k
√−τ

}
.

It is easy to see that K ∩ p−α = ∅ for any α > k
2 , for α = k

2 the intersection K ∩ p−α
is a singleton, and K ∩ p−α consists of two points whenever α ∈ (0, k

2 ).

Now consider K∞ ∩ p+α . Elementary calculation yields that K∞ ∩ p+α �= ∅ if and
only if α ∈ (0, k

2 ), and for α ∈ (0, k
2 ) the intersection K∞ ∩ p+α is a singleton. If

α ∈ (0, k
2 ), {[ξ, τ ]} = K∞ ∩ p+α then

ξ = k
√

β
k2 + 2

√
2α

√
k2 − 2α2

k2 − 4α2 .

Thus we see that nk
√

β,β(r, α) = 0 for α > k
2 , nk

√
β,β(r,

k
2 ) = 1 and

2 � nk
√

β,β(r, α) � 3

for α ∈ (0, k
2 ). Here nk

√
β,β(r, α) = 3 if and only if

(∗)
√

β
k2 + 2

√
2α

√
k2 − 2α2

k2 − 4α2 <
√

r − β.

Given α0 ∈ (0, k
2 ) then there is a β > 0, β < r/2 such that for each α ∈ (0, α0) the

condition (∗) is fulfilled. Now one can see that for ε ∈ (0, 1)

sup
β∈(0,ε)

VK

(
r; k

√
β, β

)
= 3

∫ k
2

0
e−α2 dα.

Since αϕ(t),t(t) = 0 for t ∈ (0, 1〉 we obtain

lim
r→0+

sup
t∈(−1,1〉

[ 2√
�

VK

(
r;ϕ(t), t

)
+

∣∣∣1− 2√
�

G
(
αϕ(t),t(t)

)∣∣∣] = 3 2√
�

∫ k
2

0
e−α2 dα.

As
2√
�

∫ c

0
e−α2 dα =

1
3
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for

c ≈ 0.304570194 . . .

the condition

lim
r→0+

sup
t∈(−1,1〉

[ 2√
�

VK

(
r;ϕ(t), t

)
+

∣∣∣1− 2√
�

G
(
αϕ(t),t(t)

)∣∣∣] < 1

is not fulfilled for all k > 0 but only if

k < 0.609140388 . . .
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