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GRAPHS WITH THE SAME PERIPHERAL AND

CENTER ECCENTRIC VERTICES
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Abstract. The eccentricity e(v) of a vertex v is the distance from v to a vertex farthest
from v, and u is an eccentric vertex for v if its distance from v is d(u, v) = e(v). A vertex
of maximum eccentricity in a graph G is called peripheral, and the set of all such vertices
is the peripherian, denoted PeriG). We use Cep(G) to denote the set of eccentric vertices
of vertices in C(G). A graph G is called an S-graph if Cep(G) = Peri(G). In this paper
we characterize S-graphs with diameters less or equal to four, give some constructions of
S-graphs and investigate S-graphs with one central vertex. We also correct and generalize
some results of F. Gliviak.

Keywords: graph, radius, diameter, center

MSC 2000 : 05C12, 05C20

1. Introduction

We consider nonempty and finite graphs without loops and multiple edges. All

terminology as well as notation except that given here is taken from [1].
The set of vertices of a graph G is denoted by V (G), and the set of edges by E(G).

Let G be a connected graph with vertices u and v. The distance d(u, v) between u

and v is the length of a shortest u − v path in G. The eccentricity e(v) of a vertex

v is the distance from v to a vertex farthest from v, and u is an eccentric vertex
for v if d(u, v) = e(v). The radius r(G) of G is min{e(v) ; v ∈ V (G)}, while the
diameter d(G) of G is max{e(v) ; v ∈ V (G)}. A diametral path is a path of length
d(G) joining a pair of vertices of the graph G that are at distance d(G) from one

another. A vertex with minimum eccentricity is called a central vertex and the set of
all such vertices is the center of G denoted by C(G). A graph is self-centered if its

every vertex is in the center. The neighborhood of a vertex v ∈ V (G) is denoted by
NG(v). For any nonempty subset S of vertices in G, the induced subgraph 〈S〉 is the

331



maximal subgraph of G with the vertex set S. A vertex u is a center eccentric vertex

of G if it is an eccentric vertex of some central vertex of G. A vertex v is peripheral if
e(v) = d(G), and the set of such vertices is the peripherian of G. We use Cep(G) to
denote the set of all center eccentric vertices and Peri(G) to denote the peripherian

of G. A connected nontrivial graph G is called an S-graph if Cep(G) = Peri(G).
Buckley and Lewinter [2] proved the existence of an S-graph G with r(G) = a and

d(G) = b for every positive integers a, b, a � b � 2a, and showed how to embed a
graph G into an S-graph. They also proved that the cartesian product of two graphs

is an S-graph if and only if both these graphs are S-graphs.

2. Main results

As follows from the definition of an S-graph, any self-centered graph as well as

any tree are S-graphs. In particular, the complete graph Kn, n � 1 is an S-graph.
Further we will investigate only S-graphs that are not self-centered.

Let G1, G2 be two disjoint connected graphs. Let x ∈ V (G1), y ∈ V (G2). We say
that a graph G arose from G1 and G2 by the identification of the vertices x, y with

a new vertex t (t /∈ V (G1), t /∈ V (G2)), if

V (G) = V (G1) ∪ V (G2)− {x, y} ∪ {t},
E(G) = E(G1) ∪ E(G2)− {xu, yu ; xu ∈ E(G1), yu ∈ E(G2)}

∪ {tu ; xu ∈ E(G1) or yu ∈ E(G2)}.

Gliviak [4] gave the following construction of S-graphs with one central vertex.

������������. Let r � 1, n � 2 be natural numbers. Let Gi, i = 1, 2, . . . , n
be vertex disjoint graphs having at least one vertex vi of eccentricity r. Let the

graph H arise from graphs Gi by identification of all vertices vi with one common
vertex w.

He claims (Theorem 2) that a graph Q is an S-graph of radius one if and only if Q
is either a complete graphKn, n � 2 or can be constructed according to the previous
construction, as well as (Theorem 3) that for any r � 2 a graph Q is an S-graph of
radius r with one central vertex if and only if Q can be constructed according to this

construction.
This construction gives S-graphs with one central vertex, but not all such S-graphs.

In any S-graph G which we get by the construction the central vertex is a cut vertex
of G and the diameter of such a graph is equal to 2r(G). As follows from Fig. 1

there exist S-graphs with one central vertex, which cannot be constructed according
to the above construction. In Fig. 1a there is an S-graph with radius r � 1, diameter
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2r, and one central vertex v. The peripherian of this graph consists of all vertices

belonging to C2r. In Fig. 1b there is an S-graph with radius 3, diameter 5 and one
central vertex v. The peripherian of this graph is {x, y}.

Theorem 2.1. Let G be a graph with r(G) = 1 and d(G) = 2. Then G is an

S-graph if and only if |C(G)| = 1.
	���
. If C(G) = {c}, then the eccentricity of any vertex from V (G) − {c} is

equal to two. Thus Peri(G) = Cep(G) = V (G)− {c}, and G is an S-graph.

Conversely, let G be an S-graph. Let |C(G)| � 2 and x, y ∈ C(G), x �= y.
Since x, y ∈ Cep(G) and no vertex from C(G) can belong to Peri(G), we have a

contradiction. This completes the proof. �

Corollary 2.2. A graph G with r(G) = 1 is an S-graph if and only if it is a

complete graph Kp, p � 2, or has one central vertex.

As mentioned above, for any two positive integers a and b, a � b � 2a, there exists
an S-graph with radius a and diameter b. The following theorem shows that there
exists no S-graph G with d(G) = r(G) + 1 and |C(G)| = 1.

Theorem 2.3. Let G be an S-graph with r(G) �= d(G) � 3 and |C(G)| = 1.
Then r(G) < d(G) − 1.
	���
. Let G be an S-graph with C(G) = {c} and d(G) � 3. Let r(G) =

d(G)− 1. The eccentricity of any vertex t ∈ NG(c) is greater than r(G), but eG(t) �
d(G) = r(G) + 1. Therefore eG(t) = d(G) and t ∈ Peri(G) = Cep(G), which is a
contradiction with dG(t, c) = 1 < r(G). This completes the proof. �
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Lemma 2.4. Let G be an S-graph, r(G) � 2 and r(G) �= d(G). Then the

distance of any two vertices from C(G) inG is less than r(G) and d(〈V (G)−C(G)〉) �
d(G).

	���
. The distance of no two vertices from C(G) can be equal to r(G), since
no vertex from C(G) can belong to Peri(G).

If e〈V (G)−C(G)〉(x) < d(G) for any vertex x ∈ V (G) − C(G), then the eccentricity
of any vertex from V (G) in G is less than d(G), which is a contradiction. �

Theorem 2.5. Let G be a graph with d(G) = r(G) + 1 and r(G) � 2. Then G

is an S-graph if and only if any vertex from V (G)−C(G) is a center eccentric vertex

of G.

	���
. Let G be an S-graph. Then Peri(G) = V (G) − C(G), because the

eccentricity of any vertex from V (G)−C(G) is equal to d(G). Since G is an S-graph,
every vertex from Peri(G) is eccentric for some vertex from C(G).

Conversely, let any vertex of V (G)−C(G) be a center eccentric vertex of G. Since
Peri(G) = V (G)− C(G), the graph G is an S-graph. This completes the proof. �

Corollary 2.6. Let G be a graph with d(G) = 3 and r(G) = 2. Then G is an

S-graph if and only if no vertex from V (G) − C(G) is joined to all central vertices

of G.

Theorem 2.7. Let G be a graph with diameter four and radius two. Let

Q = 〈V (G) − C(G)〉, where C(G) is the center of G. Then G is an S-graph if and

only if

1) 〈C(G)〉 is a complete graph and
2) the cardinality of the set T = {x ∈ V (Q) ; NG(x) ∩ C(G) = ∅} is at least two,
and for every vertex x ∈ T at least one vertex y ∈ V (Q) such that dQ(x, y) � 4
belongs to T .

	���
. Let G be an S-graph. As follows from Lemma 2.4, 〈C(G)〉 is a complete
graph, and d(Q) � 4. Any vertex t ∈ V (Q) − T has eccentricity eG(t) = 3. Thus

any vertex with eccentricity four belongs to T , i.e. Peri(G) is a subset of T . Since
G is an S-graph, Peri(G) = Cep(G). But T = Cep(G), because T consists of all

center eccentric vertices of G. Obviously, |Cep(G)| � 2. Let x ∈ T . If there is no
vertex y ∈ V (Q) such that dQ(x, y) � 4 belongs to T , then eG(x) � 3, which is a
contradiction with x ∈ Peri(G).
Conversely, let 1) and 2) hold. As follows from 2), d(Q) � 4 and T consists of all

center eccentric vertices of G. Thus Cep(G) = T . Let x ∈ T and y ∈ T be such that
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dQ(x, y) � 4. Then eG(x) = 4, and T consists of all diametral vertices of G. Thus

Peri(G) = T .
This completes the proof. �

There exists no self-centered S-graph with one central vertex. As follows from

Theorem 2.3, there exists no S-graph G with one central vertex and r(G) = d(G)−1.
Next we prove that for all other possible cases of radius and diameter there does exist

an S-graph with one central vertex.

Theorem 2.8. For each pair of positive integers d and r, r � 2, r+ 2 � d � 2r,
there exists an S-graph G with r(G) = r, d(G) = d and |C(G)| = 1.
	���
. If d = 2r, then we can use the graph formed by Pd+1.

Let d = r+ k, 2 � k < r. To construct an S-graph G with the required properties
we can proceed as follows.

Let T1, T2, . . . , Tm, where m = 4k − 2, be disjoint copies of the trees from Fig. 2,
such that T1 and T2k are copies of the tree H , Tk and T3k−1 are copies of S and all
the other Ti, 1 � i � m are copies of Q.
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Let the tree T arise from T1, T2, . . . , Tm by the identification of all the corre-
sponding copies of the vertex x0 from T1, T2, . . . , Tm in this order, with one common

vertex x.
Let G be the graph which we get by forming a cycle Cj on all vertices with the

distance j from x, for j = k, k+1, . . . , r. (The corresponding graph G with the cycles
C2, C3, C4 for r = 4 and d = 6 is in Fig. 2). There are l = r − k + 1 such cycles Cj
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with lengths 2d − 2(r − j + 1) = 2(k + j − 1) for j = k, k + 1, . . . , r − 1, and 2d for
j = r.

It is easy to check that the eccentricity of any vertex t of C2d is equal to d and

this eccentricity is attained for the vertex t′ of C2d whose distance in C2d from t is
d (Fig. 2).

Let f be a vertex from Cj , k � j � r − 1 and let f ′ be the vertex from Cj with
distance d− r+ j − 1 = k+ j − 1 from f in Cj . Let f ′′ be a nearest vertex from C2d

for the vertex f ′ in G. Then dG(f, f ′′) = d − 1 = eG(f).

Let u be a vertex with a distance i � k − 1 from x, and let u belong to Tn,

1 � n � m. Let v be a vertex from C2d belonging to T(n+2k−1) mod(4k−2). Then
dG(u, v) = r + i = eG(u).

Thus Peri(G) consists of all vertices of Cl, Cep(G) = Peri(G) and C(G) = {x},
which completes the proof. �

For any vertex v of a connected graph G there exists a spanning tree T that is
distance preserving from v, i.e. dT (v, u) = dG(v, u) for any vertex u ∈ V (G). If

G is an S-graph with one central vertex x, then its distance preserving spanning
tree Tx from x is also an S-graph with d(Tx) = 2r(G), C(Tx) = C(G) = {x} and
Peri(Tx) = Cep(Tx) = Peri(G) = Cep(G). Therefore any S-graph G with one central
vertex can be constructed by adding new edges to a proper tree of radius r(G) and

diameter 2r(G). On the other hand, not every tree T with radius r and one central
vertex, is a distance preserving spanning tree of an S-graph with radius r, diameter

d(G) < d(T ) and one central vertex. For example, P7 cannot be supplemented (by
adding new edges) to an S-graph G with one central vertex, of diameter 5 and radius

3. As follows from the proof of Theorem 2.8 for the case r(G) = 3 and d(G) = 5
there exists such a distance preserving spanning tree given by the construction of T

as in Fig. 2.

Given an S-graph G we will say that an edge e ∈ E(G) is superfluous in G, if

G−e is also an S-graph with the same radius, diameter and peripherian as in G. An
S-graph G is said to be critical, if it has no superfluous edge. For example, G is a

critical S-graph with one central vertex, radius r(G) and diameter d(G) = 2r(G) if
and only if it is a tree with one central vertex, radius r(G) and diameter 2r(G). We

suggest to investigate critical S-graphs with one central vertex.

Buckley and Lewinter [2] studied two other interesting classes of graphs called

F-graphs and L′-graphs. A connected graph G is an F-graph if it has at least two
central vertices, and for each pair of central vertices u and v, d(u, v) = r(G) holds.

They showed that the only graph that is both an F-graph and an S-graph is Kn,
n � 2.
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If no diametral path of a connected graph G contains a central vertex, G is called

an L′-graph.
Let G be an S-graph with one central vertex c and d(G) < 2r. Since G is an

S-graph, Peri(G) = Cep(G) and the distance between c and any diametral vertex is

equal to r(G). Since no diametral path in G can contain the central vertex c, G is
an L′-graph. The opposite is not true as there are L′-graphs that are not S-graphs.
One such graph G with diameter 5 and radius 3 is shown in Fig. 3. The center of
this graph is C(G) = {t}, Cep(G) = {x, v, q, y} and Peri(G) = {x, y}.

x v q y

t

�
Fig. 3

Let H and Q be two graphs and let s be an arbitrary vertex from V (H). We say

that the graph G arose from H by the substitution of s by Q if

V (G) = V (H) ∪ V (Q)− {s}

and

E(G) = E(H) ∪ E(Q) ∪ {xy ; x ∈ V (Q) and sy ∈ E(H)} − {sy ; sy ∈ E(H)}.
Gliviak [4] used this substitution to prove the existence of an S-graph G with

a prescribed radius a and diameter b containing a given graph Q as an induced
subgraph of G. To prove this assertion for the case a � 2 and b = 2a − 1 it is
suggested to construct such an S-graph by the substitution of any central vertices of
P2a by G and for a � 2 and b = 2a by the substitution of the central vertex of P2a+1
by G. If a = 2 and d(G) � 2 then the resulting graph is not an S-graph. This can
be corrected by substituting not a central but a diametral vertex of P2a and P2a−1,
respectively.
Next we formulate a more general theorem based on the substitution of a vertex

of an S-graph.

Theorem 2.9. Let G be an S-graph with r(G) � 3 and x ∈ V (G). Let H be a

graph disjoint with G. Let G′ be the graph, arising from G by the substitution of x

by H . Then G′ is an S-graph, and
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1) r(G) = r(G′), d(G) = d(G′)
2) Cep(G′) = Peri(G′) = Cep(G) = Peri(G) if x /∈ Cep(G)
3) Cep(G′) = Peri(G′) = Cep(G) ∪ V (H)− {x}, if x ∈ Cep(G).

	���
. As follows from the substitution, eG(s) = eG′(s) for any s ∈ V (G) and
eG(x) = eG′(t) for any t ∈ V (H). Thus r(G) = r(G′) and d(G) = d(G′).
Let x /∈ Cep(G).Then dG(x, c) < r(G) for any central vertex c ∈ C(G), and also

dG′(t, c) < r(G) for any t ∈ V (H). Any s ∈ V (G) is a center eccentric vertex in G

if and only if it is a center eccentric vertex in G′. Thus Cep(G) = Cep(G′). Since
x /∈ Cep(G) = Peri(G), the eccentricity of x in G is less than d(G). Then also

eG′(t) < d(G) for any t ∈ V (H), and no vertex from V (H) is a diametral vertex in
G′. Any s ∈ V (G) is a diametral vertex in G if and only if it is a diametral vertex

in G′. Thus Peri(G) = Peri(G′).
Let x ∈ Cep(G). Then x is an eccentric center vertex in G, and any t ∈ V (H)

is an eccentric vertex in G′. Thus the set of the center eccentric vertices in G′ is
Cep(G) ∪ V (H) − {x} = Cep(G′). Since G is an S-graph, x ∈ Peri(G). Then any
vertex t ∈ V (H) is a diametral vertex in G′. Therefore the set of diametral vertices
in G′ is Peri(G′) = Peri(G) ∪ V (H)− {x} = Cep(G) ∪ V (H)− {x}. This completes
the proof. �

Theorem 2.10. Let H be a graph. For any positive integers a,b such that

a+ 2 � b � 2a, a �= b and a � 3 there exists an S-graph G with r(G) = a, d(G) = b

and 〈C(G)〉 = H .

	���
. Let Q be an S-graph with radius a and diameter b with one center

vertex c. Let G be the graph which we get by the substitution of c by H in G.
As follows from Theorem 2.9, G is an S-graph with r(G) = r(Q), d(Q) = d(G),

Peri(Q) = Cep(Q) = Peri(G) = Cep(G) and 〈C(G)〉 = H . �

Theorem 2.11. Let G1, G2, . . . , Gn, n � 2, be disjoint S-graphs with r(Gi) =

r � 2 and C(Gi) = {xi} for i = 1, 2, . . . , n. Let H be a self-centered graph disjoint

with Gi, 1 � i � n and V (H) = {t1, t2, . . . , tn}. Let G be the graph that we

construct by identifying the corresponding pairs of vertices ti and xi with a new

vertex ui, for i = 1, 2, . . . , n. Then the graph G is an S-graph with d(G) = 2r+r(H),

r(G) = r + r(H), C(G) = V (H), Peri(G) =
n⋃

i=1

Peri(Gi) and Cep(G) =
n⋃

i=1

Cep(Gi)

	���
. For every i = 1, 2, . . . , n the eccentricity eG(ui) = r + r(H) and the

eccentricity of any vertex z ∈ V (G), z �= ui for i = 1, 2, . . . , n is eG(z) > r + r(H).
Thus r(G) = r + r(H) and C(G) = {u1, u2, . . . , un}.
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The distance of any two vertices x, y ∈ V (G) is dG(x, y) � 2r + r(H). The

equality holds only if x and y are center eccentric vertices of the graphs Gi and Gj ,

respectively, for which dG(ui, uj) = r(H). Thus Peri(G) =
n⋃

i=1

Peri(Gi).

Similarly, the distance of a vertex x ∈ V (G) from ui, i ∈ 〈1, n〉 is dG(x, ui) =

r+ r(H) only if x is a center eccentric vertex of Gj for which dG(ui, uj) = r+ r(H).

Therefore Cep(G) =
n⋃

i=1

Cep(Gi). �

In the conclusion we give an estimate of the number of edges of an S-graph.

Theorem 2.12. Let G be an S-graph with p vertices and q edges. Let d(G) =
d � 3. Then p − 1 � q � d+ 1/2(p− d+ 1)(p − d+ 4).

	���
. Ore [5] proved this upper bound for any connected graph with diameter
d � 3. As follows from the example in Fig. 4, this upper bound is attained also for
S-graphs. The lower bound is obvious and it is attained for Pd+1. �

v1 v2 v3 vd−1 vd+1

Kp−d

�
Fig. 4
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